
Refactoring Big Balls of Mud

Paul Adamczyk∗ Arturo Zambrano Federico Balaguer
LIFIA, Facultad de Informática

Universidad Nacional de La Plata
La Plata, Argentina

{Paul.Adamczyk, Arturo.Zambrano, Federico.Balaguer}@lifia.info.unlp.edu.ar

Abstract

This experience report describes a redesign of a large
commercial system. The goal of the redesign was to break
up the system into two parts without changing its external
behavior. Such a task is essentially a refactoring. We de-
scribe our redesign process as steps of a refactoring called
Extract subsystem to a separate process. We believe that
documenting large-scale refactorings is important, and nec-
essary to make redesigning software easier.

1 Introduction

Software systems that have many users tend to grow very
fast to accommodate new requirements. Quickly, they out-
grow the original architecture and get too big to understand.
But because they are working systems that keep generat-
ing revenue, they are used, extended, and maintained far
beyond their intended life span. Such systems are what
Foote and Yoder call Big Balls of Mud – “haphazardly
structured, sprawling, sloppy, duct-tape and bailing wire,
spaghetti code jungle” [5]. Other characteristics to add to
this list are dead code, scattered functionality, and unusable
documentation artifacts. Foote and Yoder claim that Big
Ball of Mud, or BBM for short, is the most typical soft-
ware architecture. But it’s important to note that we do not
condemn BBMs. Such systems are useful, even if it is in-
creasingly more difficult to extend them, and at some point
it becomes economically infeasible.

This report describes our refactoring, called extract sub-
system to a separate process. We have performed this refac-
toring on a large software system with BBM characteristics.
We will describe it here as a sequence of five distinct steps.
First, it is necessary to study the code and other artifacts
to learn as much as possible about the system. The sec-
ond step is to cleanly separate the responsibilities of the two

∗also affiliated with the Department of Computer Science, University
of Illinois at Urbana-Champaign.

processes by dividing the code between them and identify-
ing which code might be needed by both processes. The
next step requires implementing enough code to success-
fully compile and build an executable of each process. Next,
the communication between the processes must be imple-
mented. Until, finally, all the prior functionality is restored,
one feature at a time, in the new, distributed system.

We performed this refactoring on a casino game engine,
written in C++. A casino game engine (CGE) has three
key parts: game-playing logic, game graphics, and report-
ing/monitoring functionality. Roughly, these parts corre-
spond to the needs of three groups of stakeholders involved
with casino games – owners, players, and regulating agen-
cies (i.e. government). The owners need to control how
much money machines pay out to maximize their revenue.
The players select which games to play based on their ap-
pearance (but also based on the potential payout). The gov-
ernment, also to maximize its revenue, is interested in cor-
rect applications of the many laws regulating the casino
gaming industry. Slot machines are monitored and con-
trolled by systems we will refer to as report servers.

This system has become a BBM through piecemeal
growth [5]. It contains about 1.5 million LOC in C++, not
counting the scripting code for game graphics. One of its
problems is lack of modularity – its reporting and monitor-
ing functionality is intimately intertwined with the game-
playing logic. The system’s core and the reporting func-
tionality are evolving at different pace, so it became nec-
essary to separate them. Since the reporting functionality
must meet real-time requirements, it was decided to move it
to a separate process, so that it could run even on dedicated
hardware. Note that because this is a proprietary system,
we cannot disclose specific details.

Many software systems benefit from large-scale re-
design, which helps to keep them in use longer. Many sys-
tem fall out of use, in part, because they are not redesigned
in time. In this report we share our experience of refac-
toring a BBM and the challenges we faced. The currently
available redesign techniques do not provide adequate sup-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3494-7/09/$25.00 © 2009 IEEE Companion Volume50

port for performing this complex task. We describe our ex-
perience with a large-scale refactoring in order to initiate a
discussion about advancing the state of practice in this area.

This report begins by motivating the need for large-scale
refactorings. Then the extract subsystem to a separate pro-
cess refactoring is presented in detail. The description of
some tools that helped us execute this refactoring follows.
A discussion of the challenges of redesigning and refactor-
ing BBMs in general comes next. The report ends with a
short evaluation of our approach and lessons learned.

2 Toward Large-scale Refactorings

Redesigning large systems is hard. Refactoring, i.e. al-
tering the internal structure of code without changing its
external behavior [6], turns a redesign into a sequence of
small steps. Refactoring research today still focuses on such
small refactorings and tools for implementing them. Cur-
rent refactoring techniques don’t scale to the size of large-
scale redesign.

At the age of multi-core processors, breaking up a mono-
lithic system to run as multiple processes is a recurring re-
design problem. There are many variants of this task: turn-
ing a standalone system into a distributed one, splitting a
system among multiple processors or multiple processes on
the same processor. We are not familiar with any work
describing the steps required to perform such refactorings.
Other examples of BBM-scale refactorings are extract be-
havior to new component and extract a library – both fo-
cusing on improving system modularity. Another example
is restructure the API of the system to adapt software to meet
the constraints of a larger distributed system, for example
the Web. (An example where this refactoring is relevant is
outlined in section 6.2). Doubtless there are other large-
scale refactorings to consider, but this report focuses only
on the one refactoring we have performed.

It would seem that a large-scale refactoring should be
just like a long sequence of small refactorings. This would
be true if the software system to be redesigned was modu-
larized, i.e. if it were not a BBM. The system we worked
on, like most real systems, had bad modularity; its original
design has eroded, and its critical functionality was inter-
twined with the rest of the code. Because of the code size
and the number of inter-dependencies, it was not possible
to redesign it by applying small refactorings sequentially.

To begin the extract subsystem to a separate process
refactoring, a BBM must be cut at its core. Refactoring
tools offer limited help in achieving this step, because their
primary goal is to preserve the behavior of the system after
applying each automated refactoring. When a BBM is cut in
half, the system is broken and it cannot be run or tested un-
til the cut is healed. This may mean going weeks or months
without the cushion of passing tests. But regardless of how

much one would like to simplify this step, cutting out a set
of classes and moving them to a new module is the smallest
possible first step of this refactoring.

There are many other reasons why large-scale refactor-
ing is harder than its automated, small-scale counterpart.
We will return to some of them in section 5.

3 ‘Extract subsystem to a separate process’
refactoring

The procedure for performing this complex refactoring
along with the tools we developed to help us with the pro-
cess (described in the next section) is the core of this ex-
perience report. We regret not being able to illustrate this
section with more specific examples but, as already noted,
we cannot present details of the system.

We split our BBM into two independent processes. How-
ever this procedure could be applied to split one process into
n processes, where n is small. The refactoring has five steps
(also shown in Figure 1):

• study the existing system
• split the functionality between processes
• define logical abstractions necessary to compile the

code of both processes separately
• define shared data structures and implement the shared

behavior to run basic functionality
• port features, one at a time

We began each step in the in order listed. These steps
correspond roughly to the software development lifecycle –
analysis, architecture, design, implementation, and mainte-
nance, respectively – but they aren’t as neatly delineated.
We have often found ourselves working on multiple steps
in parallel. In fact, in the last step, it is necessary to retrace
the earlier steps iteratively in order to re-introduce existing
features into the system. Following the style of document-
ing refactorings, we present these steps as imperative com-
mands, augmented with some necessary commentary.

3.1 Step 1. Exploration

The purpose of the first step is to develop a mental
model of the system. On the outside, BBMs look like well-
designed systems – they seem to have structure and all the
code appears to have a purpose. The insides are messy. To
explore the insides, start playing with the system – run it,
read the code, take notes on the code structure, make small
code changes – to get a feel for the system.

This step involves understanding the current code and
drawing new borders between the emerging components.
For this step code analysis tools can be used, for example

51

Figure 1. Flow of the “extract subsystem to
a separate process” refactoring. Rounded
boxes are steps. The second column shows
the substeps for adding individual features.
Ellipses show tools applicable to each step.

CodeSurfer [13]. Annotating the code also helps in prepar-
ing the terrain for the next step. Tools like TagSea [11] help
to organize the metadata in the code.

The only wrong thing to do at this stage is to trust the
existing design documents and the code comments – they
seldom look obviously wrong at the first glance, but they
are rarely up to date. They do, however, provide interest-
ing insights into the history of the code changes, so they
shouldn’t be ignored. Just don’t accept them on faith.

Figure out which parts of the system need to be sepa-
rated. In our CGE, we were moving all the reporting func-
tionality out of the game process. Of course, our system
reports the game data, so the separated processes shared a
lot of data and behavior.

This is the good time to see if you can change the struc-
ture of your system by making small changes. Perhaps your
system is malleable and it can be fixed by making small
design changes. You might be able to separate the code
cleanly by moving classes, one at a time, and compiling the
code after each move. But it’s more likely that after moving
3 or 4 classes, you will be forced to resort to tricks – like
defining ad hoc interfaces – to make the code compile. This
is precisely why such systems are called Big Balls of Mud

– all the code is connected together. Another quick exercise
to try here is applying small refactorings to break up the
system slowly (Michael Feathers calls this a scratch refac-
toring [4]). Again, you’ll determine quickly whether your
system is a BBM. We tried both of these approaches first,
but failed. This convinced us that a BBM redesign cannot
be accomplished in small steps.

Automated testing is the other critical ingredient of a
successful redesign. Our GCE is a reactive GUI system.
Most tests are initiated by performing the player activities,
e.g. starting a game. This means that every non-trivial test
is a system test. When we began the redesign, the system
had no automated tests. System tests, complex and cumber-
some to execute manually, are also hard to automate. For
our purposes, it did not make sense to write subsystems tests
– it wouldn’t make sense to test one process in isolation,
because neither process can do much by itself. Setting up
the infrastructure for running unit tests in C++ looked even
more difficult. To be able to test our changes effectively, we
built a system integration tool for automating system tests.
We describe the tool in some detail in section 4.3.

But even without automated tests, testing is crucial. It’s
the most important self-check mechanism for a redesign.
Since nobody understands the behavior of the entire BBM,
the only way to determine the correct behavior is to run the
original system and observe the results. Learn to run the
basic tests. Keep a running copy of the original system to
compare the results of running the same tests. Use a source
control tool – have one branch for exploration and prototyp-
ing and a separate one for new development; make sure to
tag the original code in the source control so that you can
find it easily. Use the original system as the guide even if its
results appear to be wrong. Let other developers fix bugs in
the original system, in the main development branch.

The essential problem posed by BBMs is not the func-
tionality, but the way different parts of the system are con-
nected. These connections (or glue code) adapt to the code
around it and inherit its assumptions. In the process of sep-
arating functionality, one often finds that the glue code in-
cludes some domain functionality that needs to be preserved
when the connection is broken.

It may turn out that it’s not possible to redesign the sys-
tem in the way originally envisioned. If the functionality
to be moved is entangled intimately with the core function-
ality, the redesign may be too difficult, too expensive, too
time consuming, or too risky. Talk to management and quit
early, if the task is too hard. Perhaps instead of a clean
redesign, the best you can do is to break the BBM into two
smaller, but still messy, parts that may be redesigned further
at a later time.

One key exploration required for our refactoring was
to study candidate inter-process communication models.
When a system consisting of a single process is being re-

52

designed, it has no IPC functionality to reuse. Build toy
processes and try different models of communication to see
which one suits better. It’s not critical to select the best
model at first. It’s more important to try out multiple op-
tions to get some idea about the tradeoffs between them, in
case you need to use a different model later.

At the end of this step, you will have a high-level under-
standing of the system. Armed with the knowledge of the
current system and the lessons learned from prototyping,
present the new system architecture to other stakeholders.

Learning and exploring doesn’t end when this step is
completed. As each feature is ported, it must be first studied
in depth as we will see in section 3.5.

3.2 Step 2. Cutting the Gordian knot

After doing some exploration, you will feel ready to get
your hands dirty and to start coding. Then and only then
should you begin the next step of the refactoring: cutting
the functionality that belongs in the new process out of the
main process. This task requires Alexandrian skill and ruth-
lessness, because the cut must be sharp and clean.

Move only the essential code to the new process and dis-
regard all the glue code, even if it contains domain-specific
functionality. Pay the most attention to places where the
core functionality of the main process and the essential
functionality to be removed are intertwined in the code. In
our CGE, the game functionality and the reporting func-
tionality intersect at the places where the game generates
the data to be reported. In the original design, the Game
object indicates that new data is available by notifying its
observers using the Observer pattern [7]. Since you are
moving these objects to a different process, the notification
mechanism needs be replaced. But for this step, mark in the
code where logical connections are broken and move on –
these breaks will be fixed later.

After dividing the functionality between the two pro-
cesses, factor out the code which is common to both pro-
cesses and place that code in a separate library accessible to
both processes. The two processes are now two separate ex-
ecutables, so they will need to be compiled independently,
but they can both depend on the same shared libraries. Fig-
ure 2 shows both processes sharing common code, and the
New Communication Protocol needed to support the dis-
tributed functionality. Note that any process-specific code
that depends on the code of the communications protocol
also has to be placed in the shared library. The figure de-
picts it as Game Specific and Reporting Specific Code.

At this point, the code does not even compile, but this
step sets the table for doing bottom-up compilation, one
class/file/module at a time, until all the dependencies that
we broke in this step are fixed. Even though nothing is
working, the most crucial work is finished.

Figure 2. Game process, extracted Reporting
process, and the Shared Library in the GCE.

3.3 Step 3. Defining abstract interfaces

The purpose of this step is to compile the code for the
first time. This is accomplished by defining a set of new
interfaces that declare the shared functionality of both pro-
cesses.

To determine what interfaces are needed, identify which
objects need to be active on both processes. Let’s call them
key objects. Some ideas are global to the system; they can-
not be tied to one process. Step 2 works only because the
cut is sharp and decisive; if every class or module needs to
be sliced, this refactoring will not work. While the behavior
associated with the key objects needs to be executed on both
processes, the objects themselves reside on one process and
have proxies [7] on the other one. In our CGE, the report-
ing process communicates with the report servers that can
initiate requests to modify the internal state of the game,
e.g. take the slot machine offline, so the Game object and
game-specific data must be shared, so that both processes
have read and write access to the data.

For each class that needs to be shared, make it a subclass
of its new interface class. Declare all the shared methods
in the interface class and make them abstract. This is the
extract interface refactoring [4]. In these interfaces include
all the methods that the key objects need to make available
on the other process, where they are not present. For ex-
ample, a GameInterface class provides all the getters and
setters used by the reporting functionality. Its dummy sub-
class is instantiated on the reporting process and provides
default implementation of all the required the behavior. All
the existing code moved to the reporting process that has
previously referred to the Game class is changed to point to
GameInterface by using the rename class refactoring [6].

Now the key objects can stay in one process and be
known on the other process only by their interface name

53

(and a dummy implementation). Place the code of the in-
terfaces in the shared library. This trick makes it possible to
compile the code for the first time.

These dummy implementations serve another purpose:
they indicate the project’s progress. The number of inter-
face methods left to be implemented is a pessimistic indi-
cator of the amount of remaining work. Why pessimistic?
In the end, some of the interface methods will turn out to
be unnecessary. When they are deleted, the progress metric
will improve immediately with little extra work.

At the end of this step, the whole system finally com-
piles. The real functionality is not implemented, but being
able to run each process idly is a sufficient sanity test. In
our CGE, we can run the game standalone, play it, and have
it generate reports (which are not sent out by the system).
Similarly, we can run the reporting process, standalone,
sending reports with all the data set to dummy default val-
ues and accepting messages from the report servers.

3.4 Step 4. Distributing shared data and behavior

At this point, the pieces are in place to start writing new
code to replace the dummy default implementations intro-
duced in the previous step. Some new code is needed to
facilitate communication between the two processes. Other
important part is the code that cleanly divides data and be-
havior between processes to eliminate unnecessary dupli-
cation. Each shared key object, although it resides on one
process, is logically present on both. Make one process re-
sponsible for keeping its state consistent, while the other
process is a passive user with limited ability to modify the
internal state of the key object.

There are many ways for two processes to communi-
cate. We will call the data-carrying messages passed be-
tween them commands. Commands may be implemented as
binary messages, serialized objects, distributed observers.
Choose only one implementation – mixing multiple ap-
proaches is error-prone and can produce strange bugs, espe-
cially if the processes use multithreading. The choice of the
implementation depends on the needs of the system, but the
overall goal is to pass data between the two processes as ef-
ficiently as possible. It is important to minimize the amount
of data to be passed, but another important consideration is
the amount of code to write. The command-passing code is
merely glue code, so it should be kept small.

There are different ways to fake the presence of key ob-
jects on both processes while keeping most of the original
code unchanged. Here are three ways of providing the be-
havior and up-to-date data of key objects on both sides:

Duplicate the behavior. Large portion of the behav-
ior shared by the two processes will be similar on both
processes, but not exactly the same. Place the common
code that both sides share in the interface classes. Concrete

classes that represent key objects on both processes will ex-
tend the common code by overriding the interface methods.

If the same feature can be initiated by either process, they
both need to keep track of the originator. In multi-command
exchanges (i.e. transactions), both processes must know the
current state of the transaction. For example the process of
passing game credits to the player, i.e. cashout, can be ini-
tiated by many entities in the casino: the player, the game
when a predefined threshold is reached, or any report server.
Regardless of who initiates the cashout, the basic process-
ing is the same – game credits are transferred from the slot
machine to the player – but the division of responsibilities
between the two processes is different in each case.

Duplicate shared data and update it in lock-step.
Keep duplicates of the critical data that both processes need
to access often on both processes. When a key object stor-
ing the data is modified on one process, apply the same
methods with the same parameters to its copy on the other
process. Pass the data needed for the call in a command.

When data is duplicated, either process can provide it to
the outside world as soon as requested thus improving the
responsiveness of the system. Note that the relationship be-
tween the data of the two processes is somewhat complex
– there is no master copy and backup copy. The respon-
siveness comes at the price of code complexity required to
keep the distributed data synchronized. The first process to
receive the update applies it and then sends the command
with the update to the other process.

The lock-step update is ideal for simple numeric data,
which is changed by incrementing and decrementing. It
doesn’t work with more complex data structures that are
sensitive to the order in which changes are applied. For
those cases, it’s better to consider the next option.

Cache shared data. Designate one process to be the
owner of some data. In the other, cache process keep a read-
only copy of the data. Pass the delta of the change from the
main process to its cache on each relevant change.

This might seem inefficient, for example, if the cache
process generates an event that will result in changing its
data. It might seem easier to update the cache first and to
notify the main process next, but this may lead to timing
bugs. Let’s consider error cases that put CGE out of ser-
vice. There are many causes of this condition. If the re-
porting process detects a problem first and updates its state,
the report server might query it for the status and learn that
CGE is out of service before the game process is notified.
But if the game process is rendering an animation, it won’t
process the update command from the reporting process un-
til the animation is completed. In the meantime, the game
process might detect a different condition that puts it out of
service. In the end, both processes will see two errors, but
in different order; and as the ordering of events is important,
they will end up with inconsistent states.

54

When it is important to preserve the timing and order-
ing of the events so that they can be applied in the same
order on both sides, designate one process to always apply
all the updates. When an event occurs on the cache pro-
cess, have it first notify the main process, which will pro-
cess the command and send out an update with a consistent
new state. It’s better to incur the extra overhead of waiting
for the update, because this guarantees that both processes
see the same events in the same order.

We applied these three techniques to different parts of
the system. You can use more than one of these techniques
to distribute data and behavior between processes, as long
as you apply only one technique to a key object, or other
piece of data.

At the end of this step, the basic functionality is in place.
Test it. In our CGE, at this point we can, for example, play
a game and verify that the result of the game is sent by the
reporting process to the report servers.

3.5 Step 5. Moving features

Although this is the last step, performing it means revis-
iting all the previous steps, iteratively, for each feature. In
this step we fix all the remaining broken code we marked in
step 2.

Once the core of the system works, port existing features,
one at a time. Pick the most challenging features first, be-
cause they are likely to add some insight into the emerging
design. Explore and understand the existing code of each
new feature before writing new code.

The new design is still malleable at this point, because it
is not constrained by the glue code. The initial split of func-
tionality in step 2 was coarse and not likely to be perfect. As
you iteratively add features by re-introducing the old code,
you will find problems or missing pieces in the communi-
cation model and the definitions of the key objects. Change
the design as needed, as soon as you know how.

As soon as some interesting features are re-introduced
into the system, you can start evaluating the new system
(e.g. measure its performance). In our CGE, it’s easy to
see performance improvements – asking the game for the
the last game won by the player no longer requires waiting
for the game animation to finish. The reporting process can
reply immediately with its current result.

As an added benefit of having two processes, their de-
ployment can be done on separated computers. This de-
cision guides the distribution of the behavior. Recall that
in Step 1 all the code related to reporting was disabled to
avoid compilation problems. But now that the existing fea-
tures must be reenabled, it is necessary to decide where to
enable each piece of behavior – in the game or on the re-
porting process. Let’s look at an example. Some slot ma-
chines use vouchers instead of coins. When a player does

a cashout, the machine prints a voucher, which can be in-
serted in another machine to transfer the credits there. For
security reasons, vouchers have no money codified, instead
they have an identifier that is mapped to an amount of cred-
its in a report server. A slot machine needs to notify the
server when a voucher is printed – so that the server keeps
track of that money – and also when a voucher is inserted –
to ask the server for the associated credits. Porting of this
feature is constrained by the fact that the associated hard-
ware (a bill acceptor capable of reading vouchers) is on the
game side, so the functionality of reading the voucher needs
to be on that process. After reading the voucher, the slot
machine needs to validate its code. But every report server
could potentially have a different type of voucher, so the
voucher validation should take place on the reporting pro-
cess, which keeps track of the different servers. The report-
ing process notifies the appropriate server about the voucher
and receives the acknowledgment from the server. Now the
credits can be shown to the player, so the reporting process
tells the game process to accept the credits associated with
the voucher. In short, one important heuristic for distribut-
ing the behavior is to keep the behavior in the process which
has access to the needed data, hardware or connectivity.

In parallel with this refactoring, the original system is be-
ing maintained, so many fixes are applied to the code. Don’t
try to incorporate these fixes in your code branch. This is a
refactoring – the existing behavior, even if it’s wrong, must
be preserved. After the refactoring is completed, incorpo-
rate all the code changes in other branches into the system
before attempting to merge the code into the mainline.

4 Tools

In this section we describe some tools we have built to
make our refactoring easier. We built a simple tool that finds
subject-observer dependencies. To locate inconsistent data
updates we built another simple tool. Finally, we built a
large automatic integration testing tool to run regression and
system tests.

4.1 Dependency visualizer

Our system was using the Observer pattern heavily. The
application of the pattern was correct, but we ran into some
problems trying to undo some dependencies. We describe
this problem in more detail in section 5.4.

It’s difficult to keep a consistent image of the system that
has dozens, or hundreds, observers. We developed a simple
tool for locating the uses of the Observer pattern in the code.
We used the tool to find all observers of a subject. Given
this simple information, we could identify which subject-
observer relationships should be broken up, e.g. because
the subject object was big, but the observers were interested

55

in a small portion of that object’s state. The tool also helped
us find all subjects that have no observers (or only one) sug-
gesting which observers may no longer be necessary.

The dependency visualizer is a simple static analysis
tool. The tool reads the code to find connections between
observers and subjects at the class level. It is looking for
specific patterns in the code, e.g. class definitions where
Subject or Observer are listed as superclasses. These pat-
terns are matched using regular expressions.

Having fewer dependencies to account for makes it eas-
ier to understand the run-time behavior of the system. As
an additional benefit, this tool helped us locate dead code.
Over time, many developers have introduced new observers,
but failed to remove obsolete dependencies.

4.2 Cache consistency verifier

The lock-step cache update approach (described in sec-
tion 3.4) is effective only if all the updates are performed
diligently and timely on both processes. While a refactoring
is in progress not all the code is working making it difficult
to ensure that every code change is applied consistently on
both processes. We have built a periodic synchronization
tool for detecting when the shared data gets out of sync.

At predefined time intervals, the cache process asks the
main process (via a command) to send it the current version
of the shared data. For better performance, the data was sent
as a digest (compressed XML).

Here is the algorithm used when the digest is re-
ceived:

• Calculate the digest of the cache’s current data. If the
sizes of the two digests don’t match, the data is obvi-
ously wrong. Goto (3).

• Compare digests, byte by byte. If they are the same, the
cache is up to date, exit.

• Unpack the digest, and replace the contents of the cache
with the new value.

There are some conditions when this synchronization
step should be skipped. The cache process should not ask
for an update when it is processing a transaction, because
its data may be inconsistent. For the same reason, the main
process should not send the response if it processing a trans-
action. Because of these conditions, neither process should
depend on the timing of the periodic synchronization com-
mand, but both need to process it whenever it arrives.

We incorporated this tool into the system and used it
to verify that both processes were updating their data cor-
rectly. This tool was used during the debugging stage to
detect places where code was not updated and to find newly
introduced race conditions. Now that the system is in de-
ployment, this code is disabled.

4.3 Test runner

As noted earlier, typical refactorings benefit from auto-
mated unit testing [1] – whenever code is changed, tests
must be run to ensure that no functionality is broken. In the
case of large scale refactoring, unit tests are not enough –
automated integration testing is critical. System testing is
complex, mainly because the system needs to be tested for
all the use cases. There are myriads of tests to write and
run, since it is desirable to cover as many execution paths as
possible.

We developed a tool for automated system testing to aid
our redesign. Given the real-time nature of the CGE, the
testing tool has been organized into two layers: infrastruc-
ture (the bottom layer), and high-level scripting. To suc-
cessfully test a distributed system, it is necessary to test the
inter-networking between the subsystems, the communica-
tion with other entities in the network, and the events that
occur at the application layer. To test any scenario, the re-
port servers, the network connections, and the player in-
teracting with the user interface must be simulated. The
bottom layer of the test runner is responsible for doing the
low-level generation, delivery, and handling of events (e.g.
network messages, user clicks, timeouts) that occur outside
of the game engine, in real time. It is implemented in C++.
The top layer, written in a scripting language, provides a
higher level abstraction for writing and executing tests. The
upper layer makes it possible to write complete tests (setup
the test scenario, perform some actions on the game, and
check the results by executing a series of assertions on the
test data) using domain specific vocabulary and without re-
compiling the code of the bottom layer.

The development of this kind of tools can also benefit
from other large scale refactorings. For example extract a
library refactoring can help reuse existing classes, in both
the new process and the testing tool.

This new testing tool was developed in response to the
needs of our refactoring. After the refactoring was com-
pleted, the tool became an added asset for the system. Hav-
ing this tool will facilitate the testing of future refactorings
of the system.

5 Challenges of refactoring BBMs

Having presented the details of our refactoring, it’s time
to step back and consider some of the challenges of doing
large-scale redesign. The biggest challenge is that current
refactorings are too small to be useful at this large scale.
Therefore it is important to convince the refactoring com-
munity that (1) large-scale refactorings, like the one we
have described, fit the classic definition of refactoring and
(2) more work on this topic would be beneficial to advance
the state of practice. Other tasks we found challenging were

56

recovering the conceptual integrity and, surprisingly, deal-
ing with software patterns. Another typical challenge to
consider is getting the support of the management.

5.1 Refactoring today

The industry has began to accept the idea of refactorings
once the tools for performing them have become common-
place. The tools make the results of applying refactorings
predictable. Simple refactorings, such as rename or extract
method [6], are easy to understand and very useful in daily
development. The clinical precision of modern refactoring
tools comes at stark contrast with the messy code of typical
large systems. They don’t just seem different, they seem
to be opposites, which makes it difficult to even attempt to
bridge the gap.

The largest refactorings described in the literature are ex-
tract class hierarchy [6], or move a class within the inher-
itance hierarchy [10]. They are presented as a sequence of
smaller, fully-automated refactorings so that a complete re-
design is performed in small, safe steps. This approach did
not work in our case, because the change was too big and
too complex to plan it as a sequence of small refactorings.

An important challenge posed by refactorings at the
BBM scale is the fact they require a complete understand-
ing of the system. This might sound obvious, but it’s not
required for typical refactorings. For example: a developer
with little knowledge of the existing system can apply some
tool-supported refactorings, because their effects are well-
known and usually there are unit tests to prove that the sys-
tem still works. Refactorings of BBMs do not offer that
safety net, because they lack tool support and passing unit
tests are not sufficient to show that the change was applied
correctly. Having automated system testing is very impor-
tant to ensure that large-scale refactorings preserve the be-
havior of the system.

5.2 Is this refactoring?

The task of breaking up a BBM into smaller, well-
structured pieces is clearly a redesign. Sometimes the term
refactoring is used as a synonym to redesign. But we are
using refactoring in its original meaning.

By definition, refactoring requires that there are no
changes in the observable behavior of the system after the
refactoring; that the change is behavior-preserving∗. This
is difficult to guarantee, for example, when a single process
system is refactored into a multi-processed system.

A successfully applied large-scale refactoring produces
a system with a modified internal structure that still passes
all the original test cases. The fact that the behavior is not

∗It is desirable that refactoring improve non-functional requirements,
such as maintainability or performance.

preserved at every point during the refactoring doesn’t mean
that the final result isn’t behavior-preserving; it merely in-
dicates that individual steps of the refactoring may be not
behavior-preserving. For this reason, we believe that it is
possible to define general purpose large-scale and behavior-
preserving refactorings.

5.3 Conceptual integrity

The key idea behind redesigning a BBM is recovering
the conceptual integrity [2] of the system. Conceptual in-
tegrity is more than the architecture of the system. It pro-
vides a common metaphor for discussing the architecture.
That metaphor can guide developers when adding new func-
tionality that was not originally envisioned in the system.
If a system has conceptual integrity, it’s easier to add new
things without breaking the overall architecture.

When the original designers of the system leave, they
take the undocumented architecture of the system with
them. Knowledge that isn’t documented at that time, takes
on the form of myths: “Bob wrote this part this way, be-
cause... I don’t remember, but we need to keep it that way.”
When design decisions are not shared, adding any code in-
creases the complexity of a BBM and obscures any concep-
tual integrity that the system still might have.

Recovering conceptual integrity of a system is hard. In
our case, it was a process that spanned the entire refactoring.
During the exploration stage, we identified some concepts
that seemed important and tried to map the major pieces
of the existing code to these concepts. Next, to facilitate
inter-process communication, we extended the architecture
with some new concepts, such as commands. As we were
re-introducing features back into the system and refining
the design, new architectural elements emerged and they fit
nicely into the design. The Systematic untangling of the
BBM has made it easier to recognize them.

Protecting the conceptual integrity of a system is equally
important. We have developed an attachment to the archi-
tecture, because we recovered it. By participating in the
process of recovering the conceptual integrity, the current
developers feel like the owners of the architecture and they
are more likely to protect its integrity as the system grows.
Giving meaningful names to architectural elements, care-
ful documentation, and discussions of design tradeoffs will
help to preserve the architecture for posterity.

Small automated refactorings need to be applied sev-
eral times to improve a design. Similarly, many large scale
refactorings may be needed to recover the conceptual in-
tegrity of a system.

57

5.4 Problems with patterns: Observer

Refactoring goes hand in hand with design patterns. In
the process of refactoring the code, one often introduces
patterns into the system to improve the design [8]. Some
patterns can cause to trouble if they are overused. Cinnéide
and Fagan discuss problems with Singleton, Abstract Fac-
tory and Facade [3]. One can also overcomplicate a design
by applying Mediator or Visitor too often, but most patterns
are beneficial when applied judiciously in the code.

Ironically, BBMs have an uncanny ability to caricature
even the most useful design patterns. Consider the Ob-
server pattern [7], used to decouple event producers (sub-
jects) from event consumers (observers). The use of Ob-
server enables systems to grow much faster, because it de-
couples different parts of the system. But an unrestrained
growth of observers can lead to problems. We have ob-
served several problems caused by adding subject-observer
dependencies blindly, without checking the existing depen-
dencies and removing ones that are no longer used. When
nobody understands the system architecture completely, but
many developers are updating it in parallel, observers are
added indiscriminately. While these problems have only
marginal impact on working systems, they make breaking
up a system that has many such dependencies much harder
than necessary.

Here are some problems we discovered, along with pos-
sible solutions. We gave these problems pet names to make
it easier to refer to them during the refactoring.

• My 15 seconds of fame. In a system with hundreds
of subjects and observers, a single, seemingly trivial,
update() call can bring the system to a sudden halt,
if the call causes other, marginally related, updates be
called just in case. Eliminating these update chains re-
quires having a global view of the system. They can
only be removed one at a time, and carefully tested.

• Miss Universe. Large, important objects may over time
become the subjects of many objects in the system.
When they change, the whole system is flooded with
change notifications. But most observers are likely in-
terested in a specific aspect of these objects. Make these
objects announce changes of their different parts sepa-
rately, by calling different changed() methods.

• Telephone game (or My observer’s observer’s ob-
server). Object A observes object B, but it is not di-
rectly interested in the update. Instead, when object
B changes, object A notifies its observers (object C)
that it (A) has changed. When C is notified that A has
changed, it deduces that B must have changed. The ob-
vious solution is to make C observe B directly.

• Too shy to hold hands. Sometimes the subject-observer
relationship is added between objects that are already

coupled. Two objects keep direct references to each
other, but instead of communicating directly, they
broadcast updates via the change notification mecha-
nism. Removing the unnecessary update() call im-
proves performance, but more importantly it makes the
code easier to understand.

Bigger systems are more intimidating and harder to
change, because they require more effort and more care to
undo small things that grow unwieldy over time. This un-
controlled growth of observers might be caused by the fact
that the Observer pattern has good reputation, so develop-
ers that do not fully understand the system see it as a safe
way to add functionality without going through the trouble
of understanding the existing code.

5.5 Fear of big changes

We were lucky to enjoy full support of our management
throughout the refactoring process. But often the biggest
obstacles to redesign aren’t technical.

Working software is rarely brought to an overhaul. A
large-scale refactoring is a serious overhaul, even if the
refactoring is performed in a separate code branch. At some
point, the code needs to be merged and the sheer size of the
changed code will make it time consuming and difficult.

Managers tend to discourage big redesigns, because they
know that the system will be broken temporarily. Even
when a refactoring task is underway, the uncertainty about
when the system will be working again adds extra pressure
for developers, especially if the current team is not the one
which has developed the original architecture. As they do
not know the details of the system, the developers are afraid
of making big changes. Therefore refactoring tasks need to
be planned in order to mitigate risk. Roock and Lippert [10]
provide a lot of good advice on planning refactorings.

When management discourages good practices like
refactoring, developers get uncomfortable with the code
they maintain. They know the code is troublesome, so they
want to fix it, but there is no time or resources allocated for
that. As the system evolves, the discontent of the developers
grows and makes the work frustrating.

6 Evaluation

There are many lessons to learn from performing a large-
scale refactoring. Most of our advice is sprinkled through-
out this report. In this section, we present some summary
observations about our project. We also consider it from a
broader context of software engineering – what insight we
have gained about redesign in contrast to reuse, and about
modularity.

58

6.1 Outcome of the refactoring

Our refactoring was a success; the redesigned system
was delivered on time. The main business goal, improv-
ing the response time, was achieved; the response time of
the system improved about 3-fold. The main technical goal,
improving the system’s design, was also achieved. The sys-
tem has regained a better-focused architecture and the re-
porting subsystem is clearly separated from the main logic.
Moreover, we have produced some design artifacts, such as
high-level documentation, that didn’t exist before.

The redesign took about six months of full-time work
of the first two authors. Most of the time we were pair-
programming. We spent the most time working on step 1
and step 5. Step 1 lasted for about two months. Step 5,
combined with the integration testing, took about the same
time. We needed two weeks to add the first large feature,
and one week to add the second one, but once we figured
out how to perform that step, adding the remaining features
was much faster.

Most of the integration testing was done by two other de-
velopers. Our refactoring did not affect the entire codebase,
we touched about 300 KLOC. Not counting the code of the
new tools, the redesign decreased the size of the codebase
by about 5 KLOC. This result is worth repeating: despite
adding a lot of new code to facilitate distributed processing,
we removed more code than we added.

One important lesson we have learned was not directly
related to refactoring. It turns out that redesign, even on
the BBM scale, is relatively easy compared to the difficul-
ties posed by multithreading. We have spent a lot of time
coding, refining, debugging, and rewriting the interaction
between threads. Our cache verifier tool helped us detect
race conditions. In the end, our documentation describing
how the threads ought to interact will probably be the most
often used design artifact we have produced.

Since we have only applied this refactoring to a single
system, we don’t know how widely applicable it is. To eval-
uate our approach thoroughly, we should apply the same
refactoring to other projects. We’re looking forward to do-
ing that in the future.

6.2 Redesign vs. Reuse

Refactoring techniques help to redesign the structure of
software systems. But most advances in software design
techniques (objects, then components, now services) are
driven primarily by reuse. These advances seem to suggest
that doing big redesigns is not a good idea, that the best way
to build software is to connect the existing pieces together.
But is reuse always better? in every context?

We hope to have shown in this report that large-scale re-
design is feasible and should be done. The question of re-

design vs. reuse is relevant in other domains too. For exam-
ple, in the Web services world, both approaches, redesign
and reuse, are tried side by side. RESTful Web services
champion redesign, while the WS-* services focus strictly
on reuse. So far, there is no clear winner [9].

The WS-* (a.k.a. SOAP) Web services promote the reuse
of existing systems. The Web service simply exposes the
API of the existing system via XML and makes the system
Web-accessible without making any changes to the code.
Some IDEs offer a push-of-a-button conversion of the API
into the WS-* services. But as the ever increasing numbers
of software security vulnerabilities indicate, most systems
cannot be converted into Web services automatically; some
redesign is required.

In contrast, the REST model suggests rewriting the API
of a system before it is Web-enabled. The API needs to be
aligned with the architecture of the Web, which is based on
universal resources accessible through a small set of meth-
ods. Changing the public interface of a system to fit the
constraints of URI and HTTP standards is also a large-scale
refactoring, but the result of turning existing systems into
RESTful Web services is more predictable. These services
fit the architecture of the Web and obtain many of its ben-
efits for free, e.g. addressability. In short, RESTful Web
services reuse most of the underlying implementation, but
they redesign the public API.

6.3 Modularity

As a system ages, the borders between its architectural
components erode. In our case, the erosion occurred be-
cause the requirement to support the reporting functionality
was added after the original game was already built. Ac-
commodating this new requirement into the existing sys-
tem resulted in scattering new code throughout the exist-
ing modules. In this way the reporting feature could not be
completely modularized, compromising its own maintain-
ability and the maintainability of its host (the CGE).

This problem is known in the separation of concerns
community as the dominant decomposition dimension
problem [12]. It originates crosscutting concerns. Some
concerns are crosscutting to a particular decomposition –
in this case, to the original decomposition of the CGE.
This first decomposition is dominant and a requirement that
comes after and does not fit completely, becomes crosscut-
ting. Its implementation gets scattered in other modules,
and the code in other modules is tangled with the code im-
plementing the new requirement. That is what happened
with the implementation of the reporting functionality be-
ing added to our CGE.

Performing the extract subsystem to a separate process
refactoring helped us recover the modularity of the sys-
tem by extracting a new component which was previously

59

buried in the code of the CGE. Modularity gained from this
refactoring facilitates the evolution and maintainability of
both processes, especially of the reporting subsystem that
now encapsulates all the reporting logic. This refactoring
was suitable to improve modularization in this particular
case. Other large-scale refactorings should be applied in
other contexts. If having a separate process wasn’t our pri-
mary focus, we could have simply extracted the reporting
functionality into a separate library, which is another poten-
tial large-scale refactoring.

7 Conclusion

Refactoring techniques are great aid in keeping software
lean and fresh, but they are not prevalent in industry. One
reason is that popular refactorings are small and they do not
offer immediate impact in redesigning large systems, ones
that could really benefit from refactoring. Many large sys-
tems are Big Balls of Mud: they seem to be working, have
many users, but are very difficult to change. Our experi-
ence indicates that BBMs can be refactored, but to do so
they require equally big, large-scale refactorings. As of yet,
no descriptions of such refactorings are available and this
report is an attempt to fill this void. We hope that our expe-
riences will be helpful to other developers who are facing a
similar task.

Acknowledgments

The authors would like to thank Eloy Colell, Juan Anto-
nio Zubimendi, and Javier Búcar for their help during the
project as well as during the writing this report. We also
would like to thank Baris Aktemur, Munawar Hafiz, An-
drzej Leszczynski, and Diego De Sogos for reviewing an
earlier draft.

References

[1] Kent Beck. Extreme Programming Explained: Em-
brace Change. Addison Wesley, 2004.

[2] Frederick Brooks. Mythical Man-Month: The An-
niversary Edition. Addison Wesley, 1995.

[3] Mel Ó Cinnéide and Paddy Fagan. Design Patterns:
the Devils in the Detail. PLoP, 2006.

[4] Michael Feathers. Working Effectively with Legacy
Code. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2004.

[5] Brian Foote and Joe Yoder. Big Ball of Mud. Pat-
tern Languages of Program Design 4, pages 277–288,
2000.

[6] Martin Fowler. Refactoring: Improving The Design of
Existing Code. Addison Wesley, 1999.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Re-
usable Object-Oriented Software. Addison Wesley,
1994.

[8] Joshua Kerievsky. Refactoring to Patterns. Addison
Wesley, 2004.

[9] Leonard Richardson and Sam Ruby. RESTful Web Ser-
vices. O’Reilly, 2007.

[10] Stefan Roock and Martin Lippert. Refactoring in
Large Software Projects: Performing Complex Re-
structurings Successfully. Wiley, 2006.

[11] Margaret-Anne Storey, Li-Te Cheng, Ian Bull, and Pe-
ter Rigby. Shared waypoints and social tagging to sup-
port collaboration in software development. In CSCW
’06: Proceedings of the 2006 20th anniversary confer-
ence on Computer supported cooperative work, pages
195–198, New York, NY, USA, 2006. ACM Press.

[12] Peri L. Tarr, Harold Ossher, William H. Harrison, and
Stanley M. Sutton Jr. degrees of separation: Multi-
dimensional separation of concerns. In ICSE, pages
107–119, 1999.

[13] Gramma Tech. Codesurfer.

60

