
Parallel Processing Puzzle N
2
-1 on Cluster Architectures

Performance Analysis

Victoria Sanz
1
, Armando De Giusti

2
, Franco Chichizola

3
, Marcelo Naiouf

4
, and Laura De Giusti

5

Instituto de Investigación en Informática (III-LIDI) –School of Computer Sciences – UNLP

vsanz@ciudad.com.ar,{degiusti, francoch, mnaiouf, ldgiust}@lidi.info.unlp.edu.ar

Abstract. An analysis of a parallel solution of

N2-1 Puzzle using clusters, is presented. This
problem is interesting due to its complexity and

related applications, particularly in the field of

robotics.

A variation of classic heuristics for
forecasting the work to be done in order to reach

a solution is analyzed, and it is shown that its use

significantly improves the time of sequential
algorithm A*.

Then, a parallel solution on a distributed

architecture is presented and speedup is
analyzed based on the number of processors,

efficiency, and the possible superlinearity when

scaling the problem.

Keywords. Parallel Algorithms, Distributed

Processing, Speedup, Superlinearity, Efficiency

Scalability.

1. Introduction

Discrete optimization problems encompass a
wide variety of areas [24] and are often resolved

by means of state-space exploration methods by

looking for a “solution” state [13].

These search techniques usually have a high
computational cost, and, in many cases, a

thorough analysis of the solutions space is

impossible, which creates a need for heuristics
that approach an optimal solution [8][17].

Complexity and computation time favor the

development of parallel algorithms for discrete
optimization problems and, in particular, graph

processing techniques representing the problem

have been of great interest [5][21].

1Student Research Fellow. Teaching Assistant.
2CONICET Main Researcher. Full-Time Chair Professor.
3CONICET PhD Scholar. Co-Chair Professor.
4Full-Time Chair Professor.
5Advanced Scholar UNLP. Co-Chair Professor.

This research is partly financed by CIC and YPF Foundation.

This is the case of BFS (Best First Search)

methods, which start from a node of the graph

representing the problem and apply some type of
work assessment metrics to reach a solution, so

as to evolve from an initial state of the graph

towards the “optimum solution” state.
The natural parallelization of the technique

consists in starting the evolution from different

“possible” nodes on the different processors of

the multiprocessor architecture. As the algorithm
evolves, processors need to be communicated to

inform the results achieved or discard partial

solutions based on the type of metrics selected
[19][12].

Some of the aspects observed when using

cluster-type parallel architectures for the
resolution of discrete optimization problems [1]

are of interest:

Parallelization granularity is critical, since

it will determine the improvement in the time
required to find the solution and communications

overhead.

In general, load balancing needs to be
dynamic (which calls for communication)

because the task to be done is of an exploratory

nature and very hard to predict in advance [2].

Usually, in parallel processing, the first point
of interest in the resolution of an algorithm on a

multiprocessor architecture is the speedup factor

(Sp), which is a relative performance measure
defined as the ratio between the execution time

of the best sequential algorithm on a

monoprocessor computer and the execution time
of the corresponding parallel algorithm on a

multiprocessor computer [7][14]. If Ts is the

sequential execution time and Tp is the parallel

execution time, then we have Sp = Ts/Tp, which
is usually maximized as much as possible in the

development of parallel applications. Speedup is

limited by the maximum concurrence time that
can be obtained from the application, by the

unavoidable sequential component of the

879
Proceedings of the ITI 2008 30th Int. Conf. on Information Technology Interfaces, June 23-26, 2008, Cavtat, Croatia

algorithm, and by the number of processors (N)

available for the execution. [18].

A second significant parameter when

analyzing parallel applications is the efficiency
(E) achieved. The efficiency is defined as the

ratio between speedup and the number of

processors used to obtain it: E = Sp/N. This
definition yields efficiency values between 0 and

1. The closer to 1 the value, the closer speedup is

to the optimum N. The efficiency parameter is a
quality and cost metrics for the parallel algorithm

that is particularly significant and cannot always

be maintained when escalating problems,

increasing the number of processors, or carrying
the algorithm to a different multiprocessor

architecture [3].

Scalability is a very important factor in
parallel applications: problems usually

“escalate”, i.e., the volume of work to be done

increases, and the multiprocessor architectures
used can also “escalate” by increasing the

number of processors used. The effect of

escalating workload and/or processors on the

performance of parallel algorithms, considering
speedup and efficiency [11], is of interest.

The maximum theoretical speedup can in

some cases be improved, which is known as
superlinearity (Su). It is interesting analyzing

why speedup can surpass N, particularly with

discrete optimization problems solved in parallel:

the exploration of the total space of possible
solutions can be reduced by distributing the

workload between N processors so as to “cut

down” or “finish” the global search by reaching
the expected result in any of these processors

[10][15]. That is, in theory, the cluster

architecture will allow superlinearity depending
on workload balancing, processor heterogeneity,

and the processing time/communication time

ratio of the algorithm used [22].

If distributed architectures that are even more
weakly coupled are used (such as miniclusters or

grids), the relation between processing time and

communication time will impose a limit on the
possibility of achieving superlinearity [25].

1.1. Contribution

The parallel processing on clusters for solving

the N
2
-1 Puzzle, a complex NP discrete

optimization problem that is of special interest

due to the possibility of achieving superlinearity

[23] and for its application in robot motion

planning on graphs problems [6][16], is studied.
The contributions of this paper are:

Incorporation to the algorithm presented in

[23] of an a priori detection feature that

determines the solvability of an initial given

configuration.
Analysis of the implementation of a

variant (MDLC) of the work prediction heuristic

that combines Manhattan Distance (MD) with the
detection of linear conflicts and allows a very

significant improvement in the algorithm’s

response time, both sequentially and in parallel
[9].

Presentation of a series of experimental

results on boards of different dimensions and

clusters of 4, 6, 8, 12, and 16 processors,
analyzing performance (speedup, efficiency,

superlinearity) and a local work parameter (LW)

that may affect load balancing.

2. Characterization of the N
2
-1 Puzzle

problem

The N
2
-1 Puzzle problem is a generalization

of the 15 puzzle problem devised by Sam Lloyd

[20]. It consists of N
2
-1 pieces numbered from 1

to N2-1 placed on an N
2
-sized board. N

2
-1

squares of the board have exactly one piece, and
only one of the squares –called “hole”– is empty.

The purpose of the puzzle is to repeatedly fill

in the hole with one of the pieces adjacent to it
(horizontally or vertically) until reaching a state

where the square (i,j) is occupied by the piece

numbered as (i-1)*N + j, and the square (N,N) is

the hole.
The solution to the problem posed should be

the one that minimizes the number of movements

required to achieve the final configuration from
the initial given configuration.

Fig. 1 shows an N
2
-1 Puzzle and the solution

board used with N = 4.

Figure 1. Initial and final board of 15 Puzzle.

2.1. Solvable and unsolvable cases.

It is not always possible to get to the final

board from a given initial distribution. This is
because only half of the states can be reached

from any other state, and therefore the search

space for the Puzzle N
2
-1 problem is reduced to

N
2
!/2.
The procedure to corroborate if an initial

board can be solved is the following:

880

For each piece i (i = 2..N
2
-1), the number

of pieces with a lower number that appear after

the piece in question – whether on the same row

to the right or on any lower row – are counted.
We will call this the i inversion number and will

denote it as ni.

Then, NT = n2 + n3 +…+ n(N2-1) + e is
calculated, where e is the number corresponding

to the row containing the hole, for both the initial

and final boards.
If the parity of both results is the same,

then the final board can be reached from the

initial board. This is because (N mod 2) does not

vary with any legal movement.
In the previous example, for Fig. 1, NT = 28

and 4. Therefore, the board represented in Fig. 1

can be solved.

2.2. Manhattan distance (MD)

Let’s assume that each position of the board is

represented as an ordered pair. The distance

between positions (i,j) and (k,l) is defined as

|i-k|+|j-l|. This distance is known as Manhattan
distance. The addition of Manhattan distances

between board x and final board positions will be

a minimum estimator of the number of
movements required to transform board x into

the solution board.

2.3. Linear conflicts

A more polished heuristic would have the
algorithm process a lower amount of nodes, thus

reducing total search time.

Let’s assume that two pieces, x and y, are

positioned in the correct row, but inverted: this is
called linear conflict. One of them will have to

change rows for the other to be able to move into

its final position and, after moving across the
columns as its MD indicates, the piece will have

to return to its target row. The same can be

applied to columns. Thus, for each linear
conflict, 2 additional movements could be added

to the board’s Manhattan distance.

Any given piece could be part of one linear

conflict per row and another one per column at
the most. This restriction prevents that the

heuristic overestimates the real cost, which

would cause the function to stop being
admissible.

Figure 2. Sequence of movements in case of
a linear conflict in a row

Fig. 2 shows this situation in a 2x2 board.

Let’s assume that x > y, and that both pieces are

on the correct row. Note that Manhattan distance

is 1 for both pieces.

2.4. Manhattan distance and linear

conflict detection (MDCL)

The work prediction heuristic analyzed here
is based on Hanson’s proposition [9] and

combines Manhattan distance with the detection

of linear conflicts, being defined as: MDLC (t) =
MD(t) + LC(t)

Where t represents the current board, MD is

the function that calculates Manhattan distance

for t, and LC(t) = 2*(amount of linear conflicts
in t).

3. Sequential solution using MD and

MDLC heuristics

A* is one of the variants of the Best First

Search technique [21]. Each node n is assessed

based on the cost of reaching it from the root of
the search tree (g(n)) and a heuristic that

estimates the cost to go from n to a solution node

(h(n)). Thus, the cost function will be L(x)

=g(x)+h(x). Algorithm A* always ensures the
best solution.

This algorithm keeps a list of unexplored

nodes (open list) ordered by the value of function
L, and a second list of already explored nodes

(closed list) used to avoid loops in the search

graph. Initially, the open list contains only one

element, the initial node, and the closed list is
empty.

After each step, the node with the lowest L

value (the best node) is removed from the open
list and examined. If the node is the solution, the

algorithm ends. If it is not, the node is expanded

and added to the closed list. Each successive
node is added to the open list only if it does not

appear on the closed list, or if it does but its

value L is lower than that of the previous node.

Experimental tests were carried out with the
two heuristic functions (MD and MDLC)

presented before. Results are shown in Table 1

and Fig. 4. It can be clearly seen that the use of
the MDLC heuristic allows a noticeable

improvement in the response time of sequential

algorithm A* to find an “optimal” solution for
the Puzzle N

2
-1 problem.

Based on these results, the MDLC heuristic is

adopted for the parallel processing experiment to

881

be carried out on a cluster.

Figure 3. Sequential algorithm.

Table 1. Reduction % of time with MDCL.

Figure 4. Reduction % of time with MDCL.

4. Outline of the parallel solution on

cluster.

The parallelization strategy consists in

keeping local open and closed lists on each
processor. At the beginning, only one of the

processors will work with the initial node. As

other nodes are generated, processors will
receive them and start working.

The proposed parallel solution does not

require a central process. All processors will
search locally, building their own closed list – to

avoid locally repeated work – as well as their

open list. Processors should communicate among

them the minimum values of the solutions found

in order to minimize unnecessary searches.

For the implementation of the parallel
algorithm, the “Asynchronous Round Robin”

(ARR) distributed load balancing technique and

the modified “Dijkstra’s Termination Algorithm”
are used [4].

Each of the p “worker” processes will have a

value indicating the cost of the best solution
found so far (BSC), which will be used to limit

the search process. The initial board is assigned

to worker 0, which is also in charge of detecting

the end of the search.
A process that has some work pending on its

open list will process at the most a fixed amount

of nodes for each iteration (local work parameter,
LW) or will process nodes until it finds a solution

or until its open list is empty. Then, the worker

receives the costs of the “best solutions” – if
there are any – found so far by the other workers

and updates its BSC variable as needed. Thus,

the nodes to process will be only those whose

cost is lower than BSC.
If the process still has some work pending on

its open list, it checks if there are any work

requests from other processes, and if there are, it
sends the first and last nodes of its open list to

the requesting idle processor. It then continues

working with its nodes.

If the process does not have any pending
work, it will be idle, so it will send a work

request to its donor following the ARR

algorithm. If the process found a new solution, it
sends the corresponding cost to the other

processes. It then waits for the following types of

messages, which will be processed with no
particular order of priority:

Work request: an idle worker selected this

process as its donor.

Work: the donor sends the requested work.
The process is active again.

Rejection of work request: the selected

donor does not have any work. The process must
send a work request message to the next donor.

Token: reception of the token for

termination detection. If necessary, the token is
updated and the next process begins. Processor 0,

upon receiving the token, checks termination.

New solution found by other worker: if

necessary, the BSC variable is updated.
When process 0 detects the termination, it

sends a message to the other processes to inform

the end of the computation.
The termination token is used to translate the

Create open list.

Create closed list.

Insert (open list, x, h(x)).

// h(x) is the heuristic function

while (non-empty open list) and (did not find a solution)

 // Extract the minimum node of the open list, let’s call it n

 n = RemoveMinimum (open list)

 // If h(n) = 0 terminates the algorithm, if not n is expanded.

 if (IsSolution(n))

 solution = n

 else

 children = Expand(n)

 Insert(closed list,n)

 //A node is acceptable if it is not on the closed list, or if it

 is but with a cost that is higher than the current cost

 for each child of n

 if (IsAcceptable(child))

 Insert(open list, child, h(child) + g(n) + 1)

Return solution.

882

minimum cost solution movements to process 0,

so that the messages communicating new

solutions found with the algorithm only have an

integer number, the cost, to avoid
communication overhead.

5. Experimental results with the MDLC

heuristic.

To carry out the tests, a homogeneous cluster

composed by 20 Pentium 4, 2.4GHz and 1GB

RAM processors was used.
To study the performance of the parallel

algorithm developed, tests for different initial

states were carried for with 4x4, 5x5 and 6x6

boards, in all cases using LW= 250, 500, 750,
and 1000.

To analyze the behavior of the application

upon escalation regarding the architecture, each
board was tested with subsets of P processors

belonging to the cluster described above, where

P = 4, 6, 8, 12 and 16.
To observe how the algorithm escalates as the

size of the problem increases (bigger boards),

two types of initial configuration were defined:

Configuration 1: inversion of the third
column and then the third row in the bottom right

4x4 sub-board.

Configuration 2: inversion of the second
column and then the second row in the bottom

right 4x4 sub-board.

Figure 5. Examples for 5x5 boards. Conf. 1
(left) and Conf. 2 (right).

Table 2. Speedup, efficiency and optimum LW
for tests with configuration 1.

Table 3. Speedup, efficiency and optimum LW
for tests with configuration 2.

Tables 2 and 3 show the results obtained

during the tests with configurations 1 and 2,

respectively, for the different board sizes and
different numbers of processors. For each case,

the LW value that optimizes the final time of the

parallel algorithm is shown.

0

1

2

3

4

5

6

7

8

4 6 8 12 16

Number of Processors

E
ff

ic
ie

n
c

y

Conf. 1 - 4x4

Conf. 2 - 4x4

Conf. 1 - 5x5

Conf. 2 - 5x5

Conf. 1 - 6x6

Conf. 2 - 6x6

Figure 6. Efficiency of tests.

Fig. 6 is a summary chart of the efficiency

achieved during the tests, clearly showing when

superlinearity is obtained.
 We performed several test for different initial

states and a similar behavior has been observed

as the one shown in the Table 2, Table3 and

Figure 6. The full set of result is in [22].

6. Conclusions and future lines of work

An analysis of the parallel solution for the

Puzzle N
2
-1 problem on clusters has been

presented, incorporating the MDLC heuristic that
considers Manhattan distance and linear conflicts

for estimating the amount of work to be done

from a graph node in order to achieve a solution,
so as to discard alternatives that cannot compete

in the function to optimize (number of steps to

reach the solution).

883

The advantages of the MDLC heuristics as

compared to Manhattan distance has been

analyzed, both for the sequential and the parallel

algorithms, and speedup, efficiency, and
superlinearity have been studied for different

configurations of the cluster architecture and

different dimensions and initial states of the
problem.

It was observed that there is no optimum LW

for all tests, but that it rather depends on different
factors. A future research line is the study of the

relationship between these factors: board size,

initial disorder, and number of processors, in

order to assess the optimum LW value a priori for
each particular test.

Current research activities are focused on the

generalization of the Puzzle N
2
-1 problem so as

to apply this to the movement of robots,

particularly multi-robots with multiple

objectives. The migration of the parallel
algorithm to multi-cluster and grid is also being

analyzed.

7. References

[1] Anderson T., Culler D., Patterson D. A Case for

NOW (Networks of Workstations). IEEE Micro

1995; 15(1): pp. 54-64.

[2] Bohn C., Lamont G. Load Balancing for
Heterogeneous Clusters of PCs. Future

Generation Computer Systems, 2002; 18(3):

389-400.

[3] Buyya R. High Performance Cluster Computing:

Architectures and Systems. Prentice-Hall; 1999.

[4] Dijkstra E., Scholten C. Termination detection

for diffusing computations. Information

Processing Letters 1980; 11(1):1-4.

[5] Ferreira A., Pardalos P. Solving Combinatorial

Optimization Problems in Parallel: Methods and

Techniques. New York: Springer; 1996.
[6] Fitch R., Butler Z., Rus D. Reconfiguration

Planning Among Obstacles for Heterogeneous

Self-Reconfiguring Robots. In: Proc. of the

IEEE International Conference on Robotics and

Automation; 2005. p. 117-124.

[7] Grama A., Gupta A., Karypis G., Kumar V. An

Introduction to Parallel Computing. Design and

Analysis of Algorithms. Pearson Addison

Wesley; 2003.

[8] Grama A., Kumar V. State of the art in parallel

search techniques for discrete optimization

problems. IEEE Trans. on Knowledge and Data
Engineering, 1999; 11(1): 28-35.

[9] Hanson O., Mayer A., Yung M. Criticizing

Solutions to Relaxed Model Yields Powerful

Admissible Heuristics. Information Sciences

1992; 63(3): 207-227.

[10] Helmbold D., McDowell C. Modeling speedup

(n) greater than n. IEEE Trans. on Parallel and

Distributed Systems, 1990; 1(2): 250-256.

[11] Hwang K. Advanced Computer Architecture.

Parallelism, Scalability, Programmability.

McGraw Hill; 1993.

[12] Korf R. Large-scale parallel breadth-first search.

In: Proc. of the 20th National Conference on

Artificial Intelligence; Pittsburgh, USA; 2005. p.

1380-1385.

[13] Lambur H, Shaw B. Parallel State Space
Searching Algorithms. 2004. www.metablake.

com/parallel_search_project.

[14] Leopold C. Parallel and distributed computing.

A survey of models, paradigms, and approaches.

New York: Wiley; 2001.

[15] Manquinho V., Marques-Silva J. Search Pruning

Techniques in SAT-Branch-and-Bound

Algorithms for Binate Covering Problem. IEEE

Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 2002; 21(5): 505-516.

[16] Papadimitriou C., Raghavan P., Sudan M.,
Tamaki H. Motion Planning on a Graph. In:

Proc. of the 35th Annual Symposium on

Foundations of Computer Science; 1994. p. 511-

520.

[17] Parberry I. A Real Time Algorithm for the (n
2-1)

Puzzle. Information Processing Letters 1995;

56(1): 23-28.

[18] Quiin M. J. Parallel Computing: Theory and

Practice. McGraw-Hill Companies; 1993.

[19] Rao V. N., Kumar V. On the efficiency of

parallel backtracking. IEEE Trans. on Parallel

and Distributed System, 1993; 4(4): 427-437.
[20] Ratner D., Warmuth M. The (n2 1)-puzzle and

related relocation problems. Journal for

Symbolic Computation 1990; 10(2):11–137.

[21] Reinefeld A. Complete Solution of the Eight-

Puzzle and the Benefit of Node Ordering in I D

A*. In: Proc. of the 13th International Joint

Conference on Artificial Intelligence; Chambery

Savoi, France; 1993. p. 248-253.

[22] Sanz V. Paralelización de N-Puzzle. Technical

Report 2007.

[23] Sanz V., Chichizola F., Naiouf M., De Giusti L.,
De Giusti A. Superlinealidad sobre Clusters.

Análisis experimental en el problema del Puzzle

N2-1. In: Proc. of the XIII Congreso Argentino

de Ciencias de la Computación; Chaco-

Corrientes, Argentina; 2007. p. 1300-1309.

[24] Sergienko I., Shylo V. Problems of discrete

optimization: Challenges and main approaches

to solve them. New York: Springer; 2006; 42(4):

465-482.

[25] Wilkinson B., Allien M. Parallel Programming:

Techniqus and Applications Using Network

Workstation and Parallel Computers. Pearson
Prentice Hall; 2005.

884

