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Abstract. An analysis of a parallel solution of 

N2-1 Puzzle using clusters, is presented. This 
problem is interesting due to its complexity and 

related applications, particularly in the field of 

robotics. 

A variation of classic heuristics for 
forecasting the work to be done in order to reach 

a solution is analyzed, and it is shown that its use 

significantly improves the time of sequential 
algorithm A*.

Then, a parallel solution on a distributed 

architecture is presented and speedup is 
analyzed based on the number of processors, 

efficiency, and the possible superlinearity when 

scaling the problem. 

Keywords. Parallel Algorithms, Distributed 

Processing, Speedup, Superlinearity, Efficiency 
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1. Introduction 

Discrete optimization problems encompass a 
wide variety of areas [24] and are often resolved 

by means of state-space exploration methods by 

looking for a “solution” state [13]. 

These search techniques usually have a high 
computational cost, and, in many cases, a 

thorough analysis of the solutions space is 

impossible, which creates a need for heuristics 
that approach an optimal solution [8][17]. 

Complexity and computation time favor the 

development of parallel algorithms for discrete 
optimization problems and, in particular, graph 

processing techniques representing the problem 

have been of great interest [5][21]. 
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This is the case of BFS (Best First Search) 

methods, which start from a node of the graph 

representing the problem and apply some type of 
work assessment metrics to reach a solution, so 

as to evolve from an initial state of the graph 

towards the “optimum solution” state.  
The natural parallelization of the technique 

consists in starting the evolution from different 

“possible” nodes on the different processors of 

the multiprocessor architecture. As the algorithm 
evolves, processors need to be communicated to 

inform the results achieved or discard partial 

solutions based on the type of metrics selected 
[19][12]. 

Some of the aspects observed when using 

cluster-type parallel architectures for the 
resolution of discrete optimization problems [1] 

are of interest: 

Parallelization granularity is critical, since 

it will determine the improvement in the time 
required to find the solution and communications 

overhead. 

In general, load balancing needs to be 
dynamic (which calls for communication) 

because the task to be done is of an exploratory 

nature and very hard to predict in advance [2]. 

Usually, in parallel processing, the first point 
of interest in the resolution of an algorithm on a 

multiprocessor architecture is the speedup factor 

(Sp), which is a relative performance measure 
defined as the ratio between the execution time 

of the best sequential algorithm on a 

monoprocessor computer and the execution time 
of the corresponding parallel algorithm on a 

multiprocessor computer [7][14]. If Ts is the 

sequential execution time and Tp is the parallel 

execution time, then we have Sp = Ts/Tp, which 
is usually maximized as much as possible in the 

development of parallel applications. Speedup is 

limited by the maximum concurrence time that 
can be obtained from the application, by the 

unavoidable sequential component of the 
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algorithm, and by the number of processors (N)

available for the execution. [18]. 

A second significant parameter when 

analyzing parallel applications is the efficiency 
(E) achieved. The efficiency is defined as the 

ratio between speedup and the number of 

processors used to obtain it: E = Sp/N.   This 
definition yields efficiency values between 0 and 

1. The closer to 1 the value, the closer speedup is 

to the optimum N. The efficiency parameter is a 
quality and cost metrics for the parallel algorithm 

that is particularly significant and cannot always 

be maintained when escalating problems, 

increasing the number of processors, or carrying 
the algorithm to a different multiprocessor 

architecture [3]. 

Scalability is a very important factor in 
parallel applications: problems usually 

“escalate”, i.e., the volume of work to be done 

increases, and the multiprocessor architectures 
used can also “escalate” by increasing the 

number of processors used. The effect of 

escalating workload and/or processors on the 

performance of parallel algorithms, considering 
speedup and efficiency [11], is of interest. 

The maximum theoretical speedup can in 

some cases be improved, which is known as 
superlinearity (Su). It is interesting analyzing 

why speedup can surpass N, particularly with 

discrete optimization problems solved in parallel: 

the exploration of the total space of possible 
solutions can be reduced by distributing the 

workload between N processors so as to “cut 

down” or “finish” the global search by reaching 
the expected result in any of these processors 

[10][15]. That is, in theory, the cluster 

architecture will allow superlinearity depending 
on workload balancing, processor heterogeneity, 

and the processing time/communication time 

ratio of the algorithm used [22]. 

If distributed architectures that are even more 
weakly coupled are used (such as miniclusters or 

grids), the relation between processing time and 

communication time will impose a limit on the 
possibility of achieving superlinearity [25]. 

1.1. Contribution 

The parallel processing on clusters for solving 

the N
2
-1 Puzzle, a complex NP discrete 

optimization problem that is of special interest 

due to the possibility of achieving superlinearity 

[23] and for its application in robot motion 

planning on graphs problems [6][16], is studied. 
The contributions of this paper are: 

Incorporation to the algorithm presented in 

[23] of an a priori detection feature that 

determines the solvability of an initial given 

configuration. 
Analysis of the implementation of a 

variant (MDLC) of the work prediction heuristic 

that combines Manhattan Distance (MD) with the 
detection of linear conflicts and allows a very 

significant improvement in the algorithm’s 

response time, both sequentially and in parallel 
[9]. 

Presentation of a series of experimental 

results on boards of different dimensions and 

clusters of 4, 6, 8, 12, and 16 processors, 
analyzing performance (speedup, efficiency, 

superlinearity) and a local work parameter (LW)

that may affect load balancing. 

2. Characterization of the N
2
-1 Puzzle 

problem 

The N
2
-1 Puzzle problem is a generalization 

of the 15 puzzle problem devised by Sam Lloyd 

[20]. It consists of N
2
-1 pieces numbered from 1

to N2-1 placed on an N
2
-sized board. N

2
-1 

squares of the board have exactly one piece, and 
only one of the squares –called “hole”– is empty. 

The purpose of the puzzle is to repeatedly fill 

in the hole with one of the pieces adjacent to it 
(horizontally or vertically) until reaching a state 

where the square (i,j) is occupied by the piece 

numbered as (i-1)*N + j, and the square (N,N) is 

the hole. 
The solution to the problem posed should be 

the one that minimizes the number of movements 

required to achieve the final configuration from 
the initial given configuration. 

Fig. 1 shows an N
2
-1 Puzzle and the solution 

board used with N = 4. 

                           
Figure 1. Initial and final board of 15 Puzzle. 

2.1. Solvable and unsolvable cases. 

It is not always possible to get to the final 

board from a given initial distribution. This is 
because only half of the states can be reached 

from any other state, and therefore the search 

space for the Puzzle N
2
-1 problem is reduced to 

N
2
!/2. 
The procedure to corroborate if an initial 

board can be solved is the following:  
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For each piece i (i = 2..N
2
-1), the number 

of pieces with a lower number that appear after 

the piece in question – whether on the same row 

to the right or on any lower row – are counted. 
We will call this the i inversion number and will 

denote it as ni.

Then, NT = n2 + n3 +…+ n(N2-1) + e is 
calculated, where e is the number corresponding 

to the row containing the hole, for both the initial 

and final boards. 
If the parity of both results is the same, 

then the final board can be reached from the 

initial board. This is because (N mod 2) does not 

vary with any legal movement. 
In the previous example, for Fig. 1, NT = 28 

and 4. Therefore, the board represented in Fig. 1 

can be solved. 

2.2. Manhattan distance (MD) 

Let’s assume that each position of the board is 

represented as an ordered pair. The distance 

between positions ( i,j ) and ( k,l ) is defined as 

|i-k|+|j-l|. This distance is known as Manhattan 
distance. The addition of Manhattan distances 

between board x and final board positions will be 

a minimum estimator of the number of 
movements required to transform board x into 

the solution board.  

2.3. Linear conflicts 

A more polished heuristic would have the 
algorithm process a lower amount of nodes, thus 

reducing total search time. 

Let’s assume that two pieces, x and y, are 

positioned in the correct row, but inverted: this is 
called linear conflict. One of them will have to 

change rows for the other to be able to move into 

its final position and, after moving across the 
columns as its MD indicates, the piece will have 

to return to its target row. The same can be 

applied to columns. Thus, for each linear 
conflict, 2 additional movements could be added 

to the board’s Manhattan distance. 

Any given piece could be part of one linear 

conflict per row and another one per column at 
the most. This restriction prevents that the 

heuristic overestimates the real cost, which 

would cause the function to stop being 
admissible. 

Figure 2. Sequence of movements in case of 
a linear conflict in a row 

Fig. 2 shows this situation in a 2x2 board. 

Let’s assume that x > y, and that both pieces are 

on the correct row. Note that Manhattan distance 

is 1 for both pieces. 

2.4. Manhattan distance and linear 

conflict detection (MDCL)  

The work prediction heuristic analyzed here 
is based on Hanson’s proposition [9] and 

combines Manhattan distance with the detection 

of linear conflicts, being defined as: MDLC (t) = 
MD(t) + LC(t) 

Where t represents the current board, MD is 

the function that calculates Manhattan distance 

for t, and LC(t) = 2*(amount of linear conflicts 
in t).

3. Sequential solution using MD and 

MDLC heuristics 

A* is one of the variants of the Best First 

Search technique [21]. Each node n is assessed 

based on the cost of reaching it from the root of 
the search tree (g(n)) and a heuristic that 

estimates the cost to go from n to a solution node 

(h(n)). Thus, the cost function will be L(x) 

=g(x)+h(x). Algorithm A* always ensures the 
best solution. 

This algorithm keeps a list of unexplored 

nodes (open list) ordered by the value of function 
L, and a second list of already explored nodes 

(closed list) used to avoid loops in the search 

graph. Initially, the open list contains only one 

element, the initial node, and the closed list is 
empty.  

After each step, the node with the lowest L

value (the best node) is removed from the open 
list and examined. If the node is the solution, the 

algorithm ends. If it is not, the node is expanded 

and added to the closed list. Each successive 
node is added to the open list only if it does not 

appear on the closed list, or if it does but its 

value L is lower than that of the previous node. 

Experimental tests were carried out with the 
two heuristic functions (MD and MDLC) 

presented before. Results are shown in Table 1 

and Fig. 4. It can be clearly seen that the use of 
the MDLC heuristic allows a noticeable 

improvement in the response time of sequential 

algorithm A* to find an “optimal” solution for 
the Puzzle N

2
-1 problem. 

Based on these results, the MDLC heuristic is 

adopted for the parallel processing experiment to 
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be carried out on a cluster. 

Figure 3. Sequential  algorithm. 

Table 1. Reduction % of time with MDCL. 

Figure 4. Reduction % of time with MDCL. 

4. Outline of the parallel solution on 

cluster. 

The parallelization strategy consists in 

keeping local open and closed lists on each 
processor. At the beginning, only one of the 

processors will work with the initial node. As 

other nodes are generated, processors will 
receive them and start working.  

The proposed parallel solution does not 

require a central process. All processors will 
search locally, building their own closed list – to 

avoid locally repeated work – as well as their 

open list. Processors should communicate among 

them the minimum values of the solutions found 

in order to minimize unnecessary searches. 

For the implementation of the parallel 
algorithm, the “Asynchronous Round Robin” 

(ARR) distributed load balancing technique and 

the modified “Dijkstra’s Termination Algorithm” 
are used [4]. 

Each of the p “worker” processes will have a 

value indicating the cost of the best solution 
found so far (BSC), which will be used to limit 

the search process. The initial board is assigned 

to worker 0, which is also in charge of detecting 

the end of the search. 
A process that has some work pending on its 

open list will process at the most a fixed amount 

of nodes for each iteration (local work parameter, 
LW) or will process nodes until it finds a solution 

or until its open list is empty. Then, the worker 

receives the costs of the “best solutions” – if 
there are any – found so far by the other workers 

and updates its BSC variable as needed. Thus, 

the nodes to process will be only those whose 

cost is lower than BSC. 
If the process still has some work pending on 

its open list, it checks if there are any work 

requests from other processes, and if there are, it 
sends the first and last nodes of its open list to 

the requesting idle processor. It then continues 

working with its nodes.  

If the process does not have any pending 
work, it will be idle, so it will send a work 

request to its donor following the ARR 

algorithm. If the process found a new solution, it 
sends the corresponding cost to the other 

processes. It then waits for the following types of 

messages, which will be processed with no 
particular order of priority: 

Work request: an idle worker selected this 

process as its donor.  

Work: the donor sends the requested work. 
The process is active again. 

Rejection of work request: the selected 

donor does not have any work. The process must 
send a work request message to the next donor. 

Token: reception of the token for 

termination detection. If necessary, the token is 
updated and the next process begins. Processor 0, 

upon receiving the token, checks termination. 

New solution found by other worker: if 

necessary, the BSC variable is updated. 
When process 0 detects the termination, it 

sends a message to the other processes to inform 

the end of the computation. 
The termination token is used to translate the 

Create open list. 

Create closed list. 

Insert (open list, x, h(x)). 

// h(x) is the heuristic function 

while (non-empty open list) and (did not find a solution) 

        // Extract the minimum node of the open list, let’s call it n 

        n = RemoveMinimum (open list) 

        // If h(n) = 0 terminates the algorithm, if not n is expanded. 

        if (IsSolution(n)) 

 solution = n 

        else 

 children = Expand(n) 

 Insert(closed list,n)  

                //A node is acceptable if it is not on the closed list, or if it  

                  is but with a cost that is higher than the current cost 

                  for each child of n 

     if (IsAcceptable(child)) 

                 Insert(open list, child, h(child) + g(n) + 1) 

Return solution. 
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minimum cost solution movements to process 0, 

so that the messages communicating new 

solutions found with the algorithm only have an 

integer number, the cost, to avoid 
communication overhead.

5. Experimental results with the MDLC 

heuristic. 

To carry out the tests, a homogeneous cluster 

composed by 20 Pentium 4, 2.4GHz and 1GB 

RAM processors was used. 
To study the performance of the parallel 

algorithm developed, tests for different initial 

states were carried for with 4x4, 5x5 and 6x6

boards, in all cases using LW= 250, 500, 750, 
and 1000.

To analyze the behavior of the application 

upon escalation regarding the architecture, each 
board was tested with subsets of P processors 

belonging to the cluster described above, where 

P = 4, 6, 8, 12 and 16.
To observe how the algorithm escalates as the 

size of the problem increases (bigger boards), 

two types of initial configuration were defined: 

Configuration 1: inversion of the third 
column and then the third row in the bottom right 

4x4 sub-board.  

Configuration 2: inversion of the second 
column and then the second row in the bottom 

right 4x4 sub-board.  

Figure 5. Examples for 5x5 boards. Conf. 1 
(left) and Conf. 2 (right). 

Table 2. Speedup, efficiency and optimum LW 
for tests with configuration 1. 

Table 3. Speedup, efficiency and optimum LW 
for tests with configuration 2. 

Tables 2 and 3 show the results obtained 

during the tests with configurations 1 and 2, 

respectively, for the different board sizes and 
different numbers of processors. For each case, 

the LW value that optimizes the final time of the 

parallel algorithm is shown. 
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Figure 6. Efficiency of tests. 

Fig. 6 is a summary chart of the efficiency 

achieved during the tests, clearly showing when 

superlinearity is obtained. 
    We performed several test for different initial 

states and a similar behavior has been observed 

as the one shown in the Table 2, Table3 and 

Figure 6. The full set of result is in [22]. 

6. Conclusions and future lines of work 

An analysis of the parallel solution for the 

Puzzle N
2
-1 problem on clusters has been 

presented, incorporating the MDLC heuristic that 
considers Manhattan distance and linear conflicts 

for estimating the amount of work to be done 

from a graph node in order to achieve a solution, 
so as to discard alternatives that cannot compete 

in the function to optimize (number of steps to 

reach the solution). 
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The advantages of the MDLC heuristics as 

compared to Manhattan distance has been 

analyzed, both for the sequential and the parallel 

algorithms, and speedup, efficiency, and 
superlinearity have been studied for different 

configurations of the cluster architecture and 

different dimensions and initial states of the 
problem. 

It was observed that there is no optimum LW

for all tests, but that it rather depends on different 
factors. A future research line is the study of the 

relationship between these factors: board size, 

initial disorder, and number of processors, in 

order to assess the optimum LW value a priori for 
each particular test.  

Current research activities are focused on the 

generalization of the Puzzle N
2
-1 problem so as 

to apply this to the movement of robots, 

particularly multi-robots with multiple 

objectives. The migration of the parallel 
algorithm to multi-cluster and grid is also being 

analyzed. 
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