
Design Aspects for Describing Frameworks
Federico Balaguer

Software Architecture Group –
Computer Science Department

Univ. of Illinois at Urbana-Champaign
Urbana, Illinois - 61802

(217) 333-1043

balaguer@uiuc.edu

ABSTRACT
The poster presents an extension to UML for describing design
aspects of frameworks. Aspects are documented by applying a
UML Profil e called "Framework Description" to class diagrams.
Design Aspects of frameworks are useful for reasoning about
extensions and instantiations scenarios as well as designing the
appli cation that relies on them.

Keywords
Framework Design, UML, UML-F, Framework Implementation,
Design Aspects, Separation of Concern.

1. INTRODUCTION
Modern object-oriented systems are usuall y made from several
frameworks. Each framework addresses a different part of the
system, such as security, persistence, transaction management, or
user interface. The system provides the glue that coordinates the
components and customizes the frameworks. Thus, developers
spend a lot of time instantiating and configuring frameworks.

Different types of frameworks require different instantiation
techniques. Black-box frameworks are instantiated by specifying
parameters that will produce the desired behavior. White-box
frameworks, on the other hand, are instantiated by adding code to
an existing class structure [3]. Most appli cations developed from
frameworks use both techniques. Extending a framework is a
different scenario, developers need to acquire a profound
knowledge of the design and its domain in order to add new
classes and methods.

The extension introduced usuall y follows the abstractions and
principles that the framework mandates. Note that after the
instantiation step developers are still one step away from
building a real appli cation where the instantiated frameworks are
applied. Developers have to add the code that represent the
appli cation behavior and create objects from the frameworks.

Although, UML-F has been used for describing variation points
within a framework [2], the approach does not apply well to
black-box framework where the instantiation of the framework is

based on parameterizing instances of classes provided by the
framework [5][1]. Moreover, UML-F only considers one of the
possible dimensions of concern [6], the instantiation face.

The poster presents an extension to UML (as a UML Profil e) for
describing aspects of a framework design. Each aspect captures
variation points, domain invariants and other quali fiers of the
framework design. Aspects systematicall y capture design
decisions relevant for extending, instantiating and initi ali zing
frameworks.

2. DESIGN ASPECTS OF FRAMEWORKS
UML-F [2] is a UML extension for describing the information
required for framework development and instantiation. UML-F
introduces a set of fix tagged-value describing variation points
and instantiation constraints. The elements introduced can be
applied to different parts of a model. For example, { appl-class}
is a tagged-value appli cable to classes that are present after the
framework is instantiated. Other tagged-values include,
{ variable} appli cable to methods, { extensible} appli cable to
classes and { incomplete} appli cable to generali zation/reali zation
relationships, { dynamic} is appli cable to Extensible Interface,
Classes and Methods when run-time instantiation is required.

UML-F is well suited for describing variation points at the
instantiation face of a white-box framework. The inclusion of
the { dynamic} tag does not provide enough expressive power to
UML to describe instantiation of black-box frameworks.
Instantiation of black-box frameworks depends on scripting
languages or tools. Either way users (in this case the developers)
don't need to know about the design of the framework but the
abstractions (offered by the framework) and the legal
relationships among them.

Figure 1 shows a simpli fied version of the design of PPL a
persistence framework for Smalltalk and Java. The class
diagram includes core classes of the framework such as
PersistentObject, SessionManager, DatabaseConnection,
AttributeSpec, TableSpec, and the RDBType hierarchy.
Developers instantiating the framework have to make subclasses
of PersistentObject and implement few operations such as:
attributeSpec() and oidPrefix().

On the other hand, developers extending the framework for
including new data types such URL, should create a new
subclass on the RDBtype hierarchy with the required methods for
mapping the type to the database. These two scenarios are
examples of concerns traversing the framework: instantiating and
extending respectively.

+save() : bool
+attributeSpec() : String
+oidPrefix() : unsigned int

Persiste ntObject

+save(in object : Object) : bool
+retrieve(in oid : unsigned int) : Object
+retrieve(in protoObject : Object) : Object

-cache : ObjectCache = {empty}

SessionM anager

AttributeSpec

RDBType

DBIn teger DBVarChar

Tab leSpec

+executeSQL(in sqlStatement : String)

DatabaseConnection

-spec

1

*
-table*

1

-columns

1

*

...

-session*

1

-connection

**

Figure 1 Persistence Framework

3. DESIGN ASPECTS OF FRAMEWORKS
WITH UML
A design aspect captures variation points, invariants and other
quali fiers of a framework design. Each aspect is specificall y
related with one of the dimension (instantiation, extension,
configuration/initi ali zation) in which a framework can be
examined. Design aspects are different from programming
aspects [4] in that design aspects capture the relationship
between elements of a framework design (classes, operations,
attributes, relations) and concerns within the three mayor
dimensions mentioned before. Programming aspects allow
managing variations in the code and flow of control of programs.
Each aspect defines an implementation (between many
alternatives) of a given concern.

The extension proposed in the poster is defined as a UML Profil e
called "Framework Description". The profil e introduces
stereotypes (such as: Aspect and crosscutting-point), a set of
tagged-values and constraints that complement those introduced
by UML-F. These new tagged-values describe attributes of the
framework that are not variation points. For example, { final} is
a boolean tag appli cable to classes and methods, (cfg-constrain)
is an OCL (Object Constrain Language) expression that captures
invariants at the domain level and { empty} is a boolean tag
appli cable to methods meaning that subclasses has to implement
it. Constrains introduced by the extension (cfg-constrain) refer to
incompatibiliti es among the extended set of tagged-values, for
example a given method within a particular aspect cannot be
labeled as { extensible=true} and { final=true} or
{ incomplete=true} and { extensible=false} (which was legal in
UML-F).

Design aspects do not add new elements to an existing model as
it is proposed in [6] but they quali fy existing elements of the

framework. The approach does not assume any development
process since it tries to capture the rational behind the design
instead of producing it.

We are building a tool that manages aspects of a UML model.
The tool is a wrapper over Visio 2000, it is implemented in
Dolphin Smalltalk and based on COM technology.

Different frameworks are being documented based on these ideas
such as: a framework for developing digital-li braries, the
Observation framework along with a persistent framework.
These frameworks can be downloaded from:
http://www.uiuc.edu/ph/www/balaguer.

4. CONCLUSIONS
UML is not suff icient for expressing different concern
dimensions of a framework, but it can be extended to be
suff icient. This poster presents an on-going research extending
UML with a profil e for capturing design aspects of frameworks

5. ACKNOWLEDGMENTS
The research project is sponsored by Systems Integration
Technology Center, Toshiba Corporation and University of
Illi nois at Urbana-Champaign.

6. REFERENCES
[1] D. D'Souza, A. Cameron Will s. 'Objects, Components

and Frameworks with UML. The Catalysis Approach'.
Addison-Wesley. 1999

[2] M. Fontoura, W. Pree, B. Rumpe. 'UML-F: A
Modeling Language for Object-Oriented
Frameworks'. Proceedings of ECOOP 2000. Springer
Verlag. 2000

[3] R. Johnson, B. Foot. 'Designing Reusable Classes'.
Journal of Object-Oriented Programming, 1(2):22-25,
June/July 1988.

[4] G. Kickzales et. al. ‘Aspect Oriented Programming’
Proceedings of ECOOP 1997. Springer-Verlang. 1997

[5] M. Markiewicz, C. de Lucena. 'Object Oriented
Framework Development'. Crossroads. Issue 7.4,
Summer 2001. ACM

[6] P. Tarr et al. ‘N Degrees of Separation: Multi -
Dimensional Separation of Concerns’ . Proceedings of
ICSE 1999. ACM. 1999

