Design Aspects for Describing Frameworks

Federico Balaguer
Software Architecture Group —
Computer Science Department

Univ. of lllinois at Urbana-Champaign

Urbana, lllinois - 61802

(217) 333-1043

balaguer@uiuc.edu

ABSTRACT

The poster presents an extension to UML for describing design
aspects of frameworks. Aspects are documented by applying a
UML Profile called "Framework Description™ to class diagrams.
Design Aspects of frameworks are useful for reasoning about
extensions and instantiations senarios as well as designing the
appli cation that relies on them.

Keywords
Framework Design, UML, UML-F, Framework Implementation,
Design Aspects, Separation of Concern.

1. INTRODUCTION

Modern object-oriented systems are usually made from severa
frameworks. Each framework addresses a different part of the
system, such as security, persistence, transaction management, or
user interface. The system provides the glue that coordinates the
components and customizes the frameworks. Thus, developers
spend alot of time instantiating and configuring frameworks.

Different types of frameworks require different instantiation
techniques. Black-box frameworks are instantiated by specifying
parameters that will produce the desired behavior. White-box
frameworks, on the other hand, are instantiated by adding code to
an existing class sructure [3]. Most appli cations devel oped from
frameworks use both techniques. Extending a framework is a
different scenario, developers need to acquire a profound
knowledge of the design and its domain in order to add rew
classes and methods.

The extension introduced wsually follows the @stractions and
principles that the framework mandates. Note that after the
instantiation step developers are still one step away from
building ared appli cation where the instantiated frameworks are
applied. Developers have to add the code that represent the
application behavior and creae objects from the frameworks.

Although, UML-F has been used for describing variation points
within a framework [2], the gproach does not apply well to
black-box framework where the instantiation of the framework is

based on parameterizing instances of clases provided by the
framework [5][1]. Moreover, UML-F only considers one of the
possble dimensions of concern [6], the instantiation face.

The poster presents an extension to UML (as a UML Prdfile) for
describing aspects of a framework design. Each aspect captures
variation points, domain invariants and other qualifiers of the
framework design. Aspects gstematically capture design
decisions relevant for extending, instantiating and initializing
frameworks.

2. DESIGN ASPECTSOF FRAMEWORKS
UML-F [2] is a UML extension for describing the information
required for framework development and instantiation. UML-F
introduces a set of fix tagged-value describing variation points
and instantiation constraints. The dements introduced can be
applied to different parts of amodel. For example, {appl-clasg
is a tagged-value goplicable to classs that are present after the
framework is instantiated. Other tagged-values include,
{variable} applicable to methods, {extensible} applicable to
classes and {incomplete} applicable to generali zation/redi zation
relationships, {dynamic} is applicable to Extensible Interface,
Classes and Methods when run-time instantiation is required.

UML-F is well suited for describing variation points at the
instantiation face of a white-box framework. The inclusion of
the {dynamic} tag does not provide enough expressve power to
UML to describe instantiation of black-box frameworks.
Instantiation of black-box frameworks depends on scripting
languages or tods. Either way users (in this case the devel opers)
don't need to know about the design of the framework but the
abstractions (offered by the framework) and the legal
rel ationships among them.

Figure 1 shows a simplified version of the design of PAL a
persistence framework for Smalltalk and Java. The class
diagram includes core classes of the framework such as
PersistentObj ect, SesgonManager, DatabaseConnection,
AttributeSpec, TableSpec, and the RDBType hierarchy.
Developers instantiating the framework have to make subclasses
of PersistentObject and implement few operations uch as:
attributeSpec() and oidPrefix().

On the other hand, developers extending the framework for
includng new data types such URL, should crede a new
subclasson the RDBtype hierarchy with the required methods for
mapping the type to the database. These two scenarios are
examples of concerns traversing the framework: instantiating and
extending respectively.

AttributeSpec
-spec * -table
1

TableSpec,

/\

PersistentObject

-columns

+save() : bool
+attributeSpec() : String
+oidPrefix() : unsigned int|

-session

| DBinteger | DBVarChar

N -connection
SessionManager

- D i
-cache : ObjectCache = {empty} atabaseConnection

+save(in object - Objecy) - bool +executeSQL(in sqlStatement : String)

+retrieve(in oid : unsigned int) : Object
+retrieve(in protoObject : Object) : Object

Figure1l Persistence Framework

3. DESIGN ASPECTS OF FRAMEWORKS

WITH UML

A design aspect captures variation points, invariants and other
qualifiers of a framework design. Each aspect is gecificaly
related with one of the dimension (instantiation, extension,
configuration/initialization) in which a framework can be
examined. Design aspects are different from programming
aspects [4] in that design aspects capture the relationship
between elements of a framework design (classes, operations,
atributes, relations) and concerns within the three mayor
dimensions mentioned before. Programming aspects allow
managing variations in the code and flow of control of programs.
Each aspect defines an implementation (between many
dternatives) of a given concern.

The extension proposed in the poster is defined asa UML Profile
caled "Framework Description". The profile introduces
stereotypes (such as: Aspect and crossutting-point), a set of
tagged-values and constraints that complement those introduced
by UML-F. These new tagged-values describe atributes of the
framework that are not variation points. For example, {final} is
a bodean tag applicable to clases and methods, (cfg-constrain)
isan OCL (Object Constrain Language) expresson that captures
invariants at the domain level and {empty} is a bodean tag
appli cable to methods meaning that subclasses has to implement
it. Constrainsintroduced by the extension (cfg-constrain) refer to
incompatibiliti es among the extended set of tagged-values, for
example agiven method within a particular aspect cannot be
labeled as {extensible=true} and {fina=true} or
{incomplete=true} and {extensible=false} (which was legal in
UML-F).

Design aspects do not add rew elements to an existing model as
it is proposed in [6] but they qualify existing elements of the

framework. The gproach does not asuume aty devel opment
process $nce it tries to capture the rational behind the design
instead of producing it.

We ae building a tod that manages aspects of a UML model.
The tod is a wrapper over Visio 200Q it is implemented in
Dolphin Smalltalk and based on COM technol ogy.

Different frameworks are being documented based on these ideas
such as: a framework for developing digital-libraries, the
Observation framework aong with a persistent framework.
These frameworks can be downl caded from:
http://www.uiuc.edu/phvwww/bal aguer.

4. CONCLUSIONS

UML is not sufficient for expressng different concern
dimensions of a framework, but it can be etended to be
sufficient. This poster presents an on-gaing reseach extending
UML with a profile for capturing design aspects of frameworks

5. ACKNOWLEDGMENTS

The reseach project is gonsored by Systems Integration
Technology Center, Toshiba Corporation and University of
Ili nois at Urbana-Champaign.

6. REFERENCES

[1] D. D'Souza A. Cameron Will s. 'Objeds, Components
and Frameworks with UML. The Catalysis Approach'.
Addison-Wedey. 1999

[2] M. Fontoura, W. Pree B. Rumpe. 'UML-F: A
Modéling Language for Objed-Oriented
Frameworks. Proceeadings of ECOOP 200Q Springer
Verlag. 2000

[3] R.Johnson, B. Foat. 'Designing Reusable Classs.
Journal of Objed-Oriented Programming, 1(2):22-25,
June/duly 1988

[4] G.Kickzdeset. a. ‘Asped Oriented Programming’
Proceealings of ECOOP 1997. Springer-Verlang. 1997

[5] M. Markiewicz, C. de Lucena. 'Objed Oriented
Framework Development'. Crosgoads. Isaue 7.4,
Summer 2001 ACM

[6] P.Tarreta. ‘N Degreesof Separation: Multi-
Dimensional Separation of Concerns'. Procealings of
ICSE 1999 ACM. 1999

