Analysing Object Oriented Framework Reuse using
Concept Analysis -

Gabriela Arévalo Tom Mens
Software Composition Group Programming Technology Lab
University of Berne Vrije Universiteit Brussel
Bern, Switzerland Brussels, Belgium
arevalo@iam.unibe.ch tommens@vub.ac.be

ABSTRACT ceptsand capture similarities among a setedémentsbased on
This paper proposes the use of the formal techniqu€aicept their commonproperties Mathematically, concepts amaximal
Analysisto analyse how classes in an object-oriented inheritance collections of elements sharing common properti€hey form a
hierarchy are coupled by means of thé@eritanceandinterfaces complete partial order, called @ncept lattice which represents

relationships. To perform our analysis, we use the information pro- the relationships between all the concepts [11, 4].

vided by theself-sendandsuper-sendbehaviour of each class in the

hierarchy. Especially for large and complex inheritance hierarchies, The advantage of CA is that this technique allows us to infer com-
we believe that this analysis can help in understanding the software,monalities between elements based only on the specification of
in particular with how reuse is achieved. Additionally, the proposed simple properties satisfied by each element. Since the user only
technique allows us to identify weak spots in the inheritance hierar- needs to specify the properties of interest on each element, he does
chy that may be improved, and to serve as guidelines for extending not need to think about all possible combination of these properties,
or customising an object-oriented application framework. As afirst since these groupings are made automatically by the CA algorithm.
step, this position paper reports on an initial experiment with the

Magnitudehierarchy in theSmalltalkprogramming language. In this paper, we report on an experiment that uses concept anal-
ysis to analyse an existing inheritance hierarchy with the aim to
Keywords better understand whether and how inheritance is used in practice

concept analysis, inheritance hierarchy, interface, reuse to achieve reuse.

1. INTRODUCTION 2. APPLYING CONCEPT ANALYSIS TO
Understanding a software application implies to know how the dif- INHERITANCE HIERARCHIES

ferent entities are related. In the case of an object-oriented appli- . . .
- . a . We will use the CA technique to analyse classes and their methods
cation framework, our entities are classes. Defining a class in an . . A ; . .
S . . based on their relationships in termsitieritance interfacesand
application requires knowledge about how behaviour and structure . . . ; : o
message sending behavioliheinheritance relationshifndicates

have to be reused using inheritance techniques. It is not trivial to heth | - d d f h h
achieve optimal reuse, especially when the number of classes ise ether a class 1S an ancestor or descen ant of another one. The

) . L . L interface relationshipndicates which methods are exported by the
large or the inheritance hierarchy is deep. In these situatoams,

. . . classes. Thenessage sending behavidndicates which methods

cept analysigan be used as a technique to help us cope with these . .
. -~ ~are called by other methods in a class. Because we are mainly
problems, by analysing the inheritance and interface relationships. . . ;
between the classes in the inheritance hierarchy, interested in reuse of behaviour, we will only looksatf sendsind

super sends

Concept Analysis (CA) is a branch of lattice theory that allows us
to identify meaningful groupings aélementgreferred to aob-
jectsin CA literature) that have commoproperties(referred to
asattributesin CA literature)®. These groupings are calledn-

The CA technique requires us to define glementandproperties

that we wish to reason about. Because we are interested in classes
in a object-oriented hierarchy, together with their methods and the
messages sent by these methods, we define each CA element as a
*In ECOOP 2002: Proceedings of the Inheritance Workshop, pair (Class, selectoryuch that $electoris called (via a self send
A.Black, E.Ernst, P.Grogono and M. Sakkinen (Eds.), pp. 3-9, Uni- or super send) by some method implemented irClass. For the

versity of Jy\askyh, 2002 _ CA properties, we chose a characterisation based on the following
'We prefer to use the termalementand property instead of the classification of predicates:

Classification of the sender
e (Class, selectorjatisfies the predicate
calledViaSelf
if selectoris called via a self send i@lass

termsobjectand attribute in this paper because the termisject
and attribute have a very specific meaning in the object-oriented
programming paradigm.

e (Class, selectoratisfies the predicate
calledViaSuper
if selectoris called via a super send @lass

Classification of the implementation
e (Class, selectoratisfies the predicate
hasConcretelmplementationinotherClass
if selectoris implemented as a concrete methodother-
Class

(Class, selector}atisfies the predicate
hasAbstractimplementationinotherClass

if selectoris implemented as an abstract methodbther-
Class

Classification of the relationship between sender and

implementor classes
e (Class, selectorjatisfies the predicate
isimplementedinAncestorancestorClass
if ancestorClasgs an ancestor class (i.e., a direct or indirect
superclass) oflassthat implementselector

(Class, selector}atisfies the predicate
isimplementedinDescendandescendantClass

if descendantClass a descendant class (i.e., a direct or in-
direct subclass) dflassthat implementselector

(Class, selector}atisfies the predicate
isimplementedLocally

if Classimplementsselector This means that there is an
implementation oelectorin the same class that calls it.

CA properties are then defined as conjunctions obtained by taking
one predicate from each subgroup. For example,

e PropertyconcreteSuperCapturelnClass
is a conjunction of the three predicatealledViaSuperland
hasConcretelmplementationin: Claasd isimplementedI-
nAncestor: Class

PropertyconcreteSelfCaptureLocallyClass

is a conjunction of the three predicateslledViaSelfand
hasConcretelmplementationin: ClaasdisimplementedLo-
cally.

PropertyconcreteSelfCapturelnAncestorClass

is a conjunction of the three predicatealledViaSelfand
hasConcretelmplementationin: Claasd isimplemented|-
nAncestor

PropertyconcreteSelfCapturelnDescendantlass

is a conjunction of the three predicateslledViaSelfand
hasConcretelmplementationin: ClaaadisImplementedin-
Descendant: Class

PropertyabstractSelfCaptureLocallyClass

is a conjunction of the three predicateslledViaSelfand
hasAbstractimplementationin: ClaasdisimplementedLo-
cally.

These are only some of the possible properties resulting from a
conjunction of the predicates presented previously. We only specify
those properties which will be used for the case study.

We use a Boolean table to summarise which properties (specified
in the columns) are specified by which elements (specified in the
rows). An example of such a table is given in Table 1. Using the
information present in this table, we can run the the CA algorithm
to computeconcepts From the abstract example given in Table 1,
the CA algorithm will automatically compute the following con-
cepts (among others):

e Concept 1lhas singleton element s€{(C4, s2) } and prop-
erty set{ concreteSelfCaptureLocally¢'y, concreteSuper-
Captureln:Cs }

This concept means th@y has aself andsupersend of the
selectors;, and this selector is implemented as@ncrete
method in the same cla&s, and in one ancestds.

e Concept 2has element s€t(Cs,), (C4, S5), (C4, Ss), (Ca,
s7), (C4, Ss) } and singleton property s¢tconcreteSelfCap-
tureLocally:Cy4 }

This concept means that only the selec®rsss, ss, Sr and
ss are called via aself send that is captured bgoncrete
method implementations in the claSs.

Concept 3has element s€t(C1, s1), (C2, &2), (Cs, S3), (Cs,
s1), (C4, &), (C4, s2) } and singleton property s¢tconcrete-
SuperCapturelnCs }

This concept means that only the selecwrss;, s3 ands,
are called via aupersend in the class&s;, C;, Cs, C4 and
they are implemented by @ncretemethod in the ancestor
Cs of these classes.

Based on the information given by the concepts, we could under-
stand how the classes are related using different criteria. In our
case, we analyzed two specific features of a class hierairthegr-
itanceandinterface

3. CASE STUDY
3.1 Terminology

We will first introduce some terminology (similar to the one used
in [8]) that will be needed for the rest of the paper:

e Theclient interfaceof a class is the set of all selectors that
are implemented in the class and to which direct sends can
be made[8]. In Java, the client interface is the set of all
public methods. In Smalltalk, the client interface is the
set of all methods (since there is no visibility mechanism in
Smalltalk).

Thesubclass interfacef a class is the set of all selectors that
are implemented in the class and to which self sends can be
made by subclasses. In Java, the subclass interface is the set
of all public andprotected methods. In Smalltalk, the
subclass interface is the set of all methods.

The overriding interfaceof a class is the set of all selectors
that are implemented in the class and to which super sends
can be made by methods implemented in descendants. In
Java, the overriding interface is a subset of the subclass in-
terface, namely all thogeublic or protected methods

that are nofinal , sincefinal methods cannot be over-
ridden in subclasses. In Smalltalk, every method defined in a
class can be overridden.

concreteSelfCaptureLocally’y | concreteSuperCapturel@’s
(Ch, s1) | False True
(Cs, s2) | False True
(Cs, s3) | False True
(Cs, s1) | False True
(C4, s4) | False True
(Cy, s2) | True True
(C4, s5) | True False
(C4, s6) | True False
(C4, s7) | True False
(C4, ss) | True False

Table 1: Elements and their satisfied properties in an inheritance hierarchy

e Theabstract interfacef a class is the set of all selectors that The information about the inheritance hierarchy is extracted from
are defined abstract in the class and are required to be im-the resulting concepts of the CA algorithm. As we said previously,
plemented by a concrete method in descendants. In Java, thethe concepts associate sets of elements with sets of properties. The
abstractinterface is the set of alistract methods, which properties will be a subset df concreteSuperCaptureln: Class,
is a subset of the subclass interface. In Smalltalk, the abstractconcreteSelfCapturelnDescendant: Class, abstractSelfCaptureLo-
interface is a subset of the overriding interface, since abstract cally: Class, concreteSelfCaptureLocally: Class, concreteSelfCap-
methods are modelled Iself subclassResponsib- turelnAncestor: Class, .}. If we abstract the argume@iassout
ility and have to be overridden in subclasses. of these properties, we find that many concepts contain the same

set of properties. This commonality between concepts allows us

e The internal interfaceof a class is the set of all selectors identify patterns of concepts
that are implemented in the class and to which self sends are
made by methods implemented in the same class. 3.3 Concept patterns

A concept patterrconsists of a description, examples related to the

Magnitudeclass hierarchy, a figure that illustrates the pattern and

an analysis about possible implications of the pattern with respect
to software understanding and reude.

e Theactual client/subclass/overriding/abstract interfaziea
class is the set of all selectors that are implemented by a class
and that are actually accessed (via an invocation, self send or
super send, respectively) in the implementation. Obviously

the actual interface of a class is always a subset of the total)
client/subclass/overriding/abstract interface of the class. ~ CONcept Pattern 1: Self sends captured locally
Description. A set of selectorsn,..., m, are called via @elf send

. in a classB and they are implemented in the same class. Figure 1
3.2 Experimental setup shows this concept pattern graphically. It occurs in 21 concepts of
The abstract example explained in section 2 was only intended to the Magnitudeconcept lattice. For exampl&oncept 61has ele-
make the reader understand how the process works. Our actual exments{ (AssociationTreeWithParenexpanded:, depth, parep
periment consists of applying the CA technique to studyMagni- and singleton property s¢toncreteSelfCaptureLocally: Associa-
tudeinheritance hierarchy of Smalltalk in more detallVe decided tionTreeWithPareit
to use theMagnitudehierarchy for our first experiment because:
it is sufficiently large (29 classes, 894 methods); it heavily relies
on code reuse by inheritance (19 abstract methods, 296 self sends,

49 super sends); it is stable and well-documented; it is commonly mo{ ... 1
available for most versions of Smalltalk. Future experiments will r s

be carried out on other well-known Smalltalk hierarchies such as | L
Collection Model ViewandController. coon | melf w }

cviea | 8elf mp)

Based on results provided by the CA algorithm, we analyzed the
relationships between the classes in termisiloéritanceandinter-)
face Compared with the example presented previously, we worked Figure 1: Concept pattern 1

with 248 elements and 73 properties, and the algorithm gave 125

concepts as a result. The elements and properties have been exAnalysis. This concept pattern is useful to document itiernal
tracted with SOUL, a logic meta-programming language built on interfaceof a class, which captures class-specific behaviour. The
top of —and tightly integrated with— Smalltalk [13]. The CA anal- number of elements present in the concept can also be used to give

ysis tool itself, that computes the concept lattice, was implemented 3In the examples section of each concept pattern we use numbers
directly in Smalitalk, and uses the results of the SOUL predicates for the concepts. This number is only an id automatically asso-
as input. ciated to the concept by the algorithm. To make the notation for
concepts more compact, we will group together all selectors be-
2For our experiments, we worked in VisualWorks release 5i4, and longing to the same class. For example if we have in a concept
restricted ourselves to only those classes belonging to the Smalltalkwith the element§(C1, s1), (C1, s2), (Ch, s3), (C2, s4)}, we will
namespaces Core, Graphics, Kernel, and UL. show it as{(C1, {s1, s2, $3}),(C2, s4)}

an indication of to which extent the class is reusing parent methods, find out which method performs the self senligitLengthanddig-

by comparing the number of locally captured self references with itAt: learns us that both self sends are invoked from within the

the number of methods inherited from the parent. implementation of the methatbmpressedh both sibling classes.

Moreover, the implementation of this method is very similar in both

Concept pattern 2: Self sends captured in ancestor cases. Hence, a refactoring might be appropriate to extract this
T -) common behaviour into an auxiliary method that can be pulled up

Description. A set of selectorsn,..., m, are called viself send in into the common superclatargelnteger

the classeé\,..,A, and the selectors are implemented in the class

B, which is a common superclass Af,..,A,. Figure 2 displays

this concept pattern in a general way. It occurs in 9 concepts of the

Magnitudeconcept lattice. Case 2.The selectorsn,...,m, are called in a set of classAs,..,A,.

The selectors are implemented in a common ancéstufrall the
classes. The classés,..,A, may have inheritance dependencies

B l between them. Figure 4 shows this case. For exan@nacept
e LESE R A 78 has element$(LimitedPrecisionReakfloorLog:, truncated}),
m l ‘_R (Float, {quo:, rem3}), (Double, quo:} and sjngleton property set
7 i \ {concreteSelfCapturelnAncestor: NumpetrimitedPrecisionReal
\ I\Al is a common superclass Bfoat and Double They are all sub-
LR classes oNumber
Al | a2 An
co-{ self m) oo medE m } | ... { self 2
WLl f..-d
........ ™
m (T
Figure 2: Concept pattern 2 S ‘
|
Analysis: In general terms, this concept pattern is useful to detect
the actual subclass interfacef a class. This pattern is also useful | 2 |
to find out whether the same set of selectors called in a set of classes coes { self m }
are implemented in a specific superclass, which does not have to be s GANAEL L)
the same for each class-selector pair. This can be more useful for —
finding a common interface for the subclasses. ; PN
Considering the direct/indirect inheritance relationship betwien a1 a2
and A; and among the differem;s, we can distinguish 2 different
cases: ... self ma|}..{ self
coo { selfimp }

. {self

Case 1.The selectorsy,...,m, are called in a set of classas,..,A,.

The selectors are implemented in a common direct superBlass Figure 4: Concept pattern 2 - Case 2

all the classes. The classas,..,A, are sibling classes, i.e., they

have no inheritance dependencies between them. Figure 3 shows\nalysis of case 2.In this specific case, concept 78 captures the

this case. For exampl€oncept 73has element$(LargePositive actual subclass interfacef Numbey which contains all methods

Integer {digitLength, digitAt}), (LargeNegativelntegef,digitLength, i, Numberthat are reused via self sends by at least on of its de-

digitAt:}) } and singleton property s¢toncreteSelfCapturelnAncestorscendants. This is very important information, since in Smalltalk

Largelntege} all methods are public, so it is very difficult to know in practice
which methods are actually being reused in subclasses. In Java, the

. E] | distinction between public, protected and private methods partly

/" B LR solves this problem, but we still don't know which of the public
: S "\I and protected methods are actually reused by subclasses. In princi-
| ' B ' ple, every method in the protected interface should also be present
\ e in the actual subclass interface, since it is of not much practical use

\m P to declare a method protected if it is never called by subclasses.
..f self mi|}..{ self m3 .
E gelf fp {E gelf ﬂp}] Concept pattel’n 3: Super call

Description. A set of selectorsn,..., m, are called via ssuper

send in the classeA,..,A, and the selectors are implemented in
Figure 3: Concept pattern 2 - Case 1 the class®, which is a common ancestor Af,..,A,.. Figure 5 illus-

trates this concept pattern in a general way. It occurs in 8 concepts

Analysis of case 1.This case can also be used to identify com- of the Magnitudeconcept lattice.

mon code in sibling classes that is useful to refactor in the com-

mon superclass. For example, concept 73 implies that, to a certainAnalysis: In general terms, this concept pattern can be used to de-

extent, sibling classelsargePositivelntegeand LargeNegativeln- tect theactual overriding interfacef a class. Considering the di-

tegerreuse the behaviour defined in their superclaagelnteger rect/indirect inheritance relationship betwegand A; and among

in the same way. An investigation of the actual source code to the differentA;s, we can distinguish 2 different cases:

ml { ..]}

Az An |

oo f super|ml §....{ super |m4} .. | super|

Figure 5: Concept Pattern 3 r A

Case 1.The selectoray,...,m, are called in a set of classAs,..,A,. ... self oo self ;n}

The selectors are implemented in a common anc&tafrall the

classes. The class#s,..,A, are sibling classes, i.e., they have no

inheritance dependencies between them. Figure 6 illustrates this Figure 7: Concept pattern 3 - Case 2
case. For examplezoncept 105has elementg(Float, {>, >,

<1), (Double {>, >, <}), (Smallinteger{ >, >, <}), (Largelnte-
ger,{>, >, <})} and singleton property s¢toncreteSuperCaptureln:

Description. A set of selectorsn,,..., m, are called via @elf send

Magnitude in the classA and the selectors are implemented in the classes
A and By,..,B;, which are subclasses & Figure 8 shows this
8 | concept pattern in a general way. It occurs in 31 concepts of the
Magnitudeconcept lattice. For exampl€oncept 69has element
set{(Number{raisedTo:, sqrt, In, truncatgd} and properties set
{concreteSelfCapturelnDescendant: Float, concreteSelfCaptureln-
Descendant: Double, concreteSelfCaptureLocally: Nurhber
...{ super|ml}..{ super|mp } B A)
. {super| mp} / KE::IE@’_%
mo{. ... !/
Figure 6: Concept pattern 3 - Case 1 lf S \
1 i % |
Analysis of case 1.This concept pattern can be used to document \ l\ R T S
and capture thactual overriding interfacef a class. For example, i s /
the overriding interface dflagnitudeis {>, >, < } according to B B2
the information given by the Concept 105. The concept pattern can o ' | om o | } mE] s
also be used to provide guidelines for framework customisation. If L e
we define a new subclass of a given class, it is likely that we have L Wome (o] !) s
to override the methods specified in the overriding interface of the
parent class.

Figure 8: Concept pattern 4

Case 2.The selectoray,...,m, are called in a set of classas,..,A,. . . .
Lo By Analysis. This concept pattern can be used to document which

The selectors are implemented in a common anc&tufrall the ” . .
specific methods are overriden in the subclasses of a common su-

classes. The classés,..,A, have somalirect inheritance depen- . .
dencies between them. Figure 7 illustrates this case. For example,perdass' This means that the superclass defines some common or

Concept 114has element§(LargePositivelnteger, computeGCD:) default behaviour for these methods, and each of the descendants
(Largelnteger{ \\, bitAnd:, bitXor:, bitOr: bitShi{‘t' IessFromInté-, can override this implementation with subclass-specific behaviour.
ger:, =, sumFrominteger:, equalFrominteger:, productFrominte-
ger:}), (Smallinteger{bitShift:, <, //, =})} and singleton property

n rn 5: If send locally with r dele-
set{concreteSuperCaptureln: IntegerLargePositivelntegers a Concept pattern 5: Self send locally with super dele

subclass ot argelntegerand all of them are subclassesiofeger gation _
Description. A set of selectorsn,,..., m, are called via &elf and
Analysis of case 2This case can be used to documiemplemen- supersend in a clas#& and the selectors are implemented in the

tation inheritancg9]. This means that the methodname -where the Same classA) as well as in an ancestor claBsof A. Figure 9
selector is called- and the selector name are the same. In the case dflustrates this concept pattern in a general way. It occurs in 4 con-
Concept 114, we see that this behaviour delegation is not so directcepts of theMagnitudeconcept lattice. In this pattern, we do not
because before trsipersend, there is a statement witpamitive distinguish between different cases because the 4 concepts fulfill-
action. ing this pattern are similar except that in some cases the super-
class is not direct ancestor. For exam@encept 48has elements

. . (Smallinteger{>, >, <})} and properties sdt(concreteSuper
Concept pattern 4: Self send captured locally and in éapturelnAnce{stor: Magjn}itude,concreteSeIEf{CaptureLocaIIy: Small-

descendant Integen

B subclasses that provide a concrete implementation of this interface.
' This information is essential when we want to adcbacretesub-

class of arabstractclass, because it tells us which methods should

be at least be implemented.

In the Magnitudehierarchy, concept pattern 6 only occurs for the

Pl subhierarchies with root classkgegerandArithmeticValue

We can distinguish 2 different subcases of this concept pattern, de-

A pending on how the classélsandB; ... By are related by inher-
f\ itance:
(A ml {._ ek
S Case 1. The selectorsn; ... m, are called with aself send in
S the classA and the selectors are implemented in direct subclasses
) By ... By of A. Figure 11 shows this concept pattern in a gen-
Figure 9: Concept pattern 5 eral way. For exampleConcept 56 has element sef(Integer,

{digitAt:put:, digitLength, digitAt})} and properties s€tabstract-
. . . SelfCaptureLocally: Integer, concreteSelfCapturelnDescendant: Small-
Analysis. This concept pattern documents delegation between methlnteger, concreteSelfCapturelnDescendant: Largelntpger
ods in the same class and with the superclass. Having a look at the

code for the 4 concepts, in all the cases, the method that calls the
selectors; via asuper sendhas the same name as the selectoy. (

2

For example, irSmallintegerthe selector> is called via asuper -oof ella ./}\- 2
sendin the method>. This means that if there is a specific action m '[;a{h:f:;cf o

to be executed (wheself sends called), this behaviour is defined —=| "> {<abstractaf——.

in the superclass, because the message is delegated bypée / /L \
sendcall. The set of properties allows us to see that this pattern (/
is a combination of pattern 1 (where the predicatmcreteSelf- L | /
CaptureLocally: is captured) and pattern 3 (where the predicate Bl | e
concreteSelfCapturelnAncestas. captured). mo{ } mLsf i

Concept pattern 6: Template and hook methods

Description. A set of selectorsn; ... m, are called via aelf Figure 11: Concept pattern 6 - Case 1

send in a classA and the selectors are implemented as abstract

methods in the same classand are implemented as concrete meth- Anqysis of case 11n this case, we can identify a potential problem

ods in descendant classss ... By of A. Figure 10 illustrates e hierarchy. The subclasses do not implement alatigtract

this concept pattern in a general way. It occurs in 7 concepts of the iy e1h6ds of the superclass. This can resultin a subtle error if we call
Magnitudeconcept lattice. amethod in the superclass that callsafstractmethod, especially

in Smalltalk which does not make an explicit difference between
concrete and abstract classes (we can create instances of both).

2
- .| self m
&y -[‘-a{h:frl;t__:' ? Case 2.The selectorsn; ... m, are called with aelf send in the
o mp {<abstractsll classA and the selectors are implemented in the clagses . By,
/ ' ; \ which are indirect descendants &f The descendants have inher-
[omsmrssiMonsmess] itance dependencies between them. Figure 12 shows this concept
L / pattern in a general way. For exampBnncept 31has element set
81 B {(ArithmeticValue{*, - 1)} and properties sdiabstract-
) SelfCaptureLocally: ArithmeticValue, concreteSelfCapturelnDescen-
. (.| dant: Largelnteger, concreteSelfCapturelnDescendant: Fraction,
concreteSelfCapturelnDescendant: Integer, concreteSelfCaptureln-
Descendant: Smallinteger, concreteSelfCapturelnDescendant: Float,
Figure 10: Concept pattern 6 concreteSelfCapturelnDescendant: FixedPoint, concreteSelfCap-
turelnDescendant: Point, concreteSelfCapturelnDescendant: Dou-
Analysis. This concept pattern is essential in understanding an ble}
object-oriented application framework. More specifically, it allows
us to identify thehot spotsin the application framework [7, 2]. Analysis of case 2.This case is a bit tricky, because the results
These hot spots are very often implemented by means of so-calledcan be considered as a combination of two different situations: the
template methodsndhook methodgL2, 3]. In their simplest form, concrete implementation of abstract methods in descendants of a
template methods are methods that perform self sends to abstractlass, and the overriding of these concrete implementations in fur-
methods, which are the hook methods that are expected to be overther descendants. In concept 31, the relationship between classes
ridden in subclasses. This is precisely the information that is cap- ArithmeticValueand Integeris that the abstract methods,-} in
tured by concept pattern 6. ArithmeticValueare implemented by concrete methods in subclass
Seen in another way, the information expressed in this conceptInteger Moreover, these concrete methods are overridden by fur-
pattern identifies thabstract interfaceof a class, as well as the ther descendantSmallintegerand Largelntegerthat optimise the

A application framework should be customised; (2) to identify and
oo sere ml/YN ... document hot spots in an object-oriented application framework;
L (3) to automatically extract and document implicit coding conven-

| m {<abstract> \ tions used while building an inheritance hierarchy; (4) to detect and
ml {
mp {

- f document the type of inheritance used in (parts of) an inheritance

((oa] | :

------ Acknowledgements:We gratefully acknowledge the financial sup-

ml {)

ARG | \ L port of the Swiss National Science Foundation for the project “Tools
e and Techniques for Decomposing and Composing Software” (SNF

\ Project No. 2000-067855.02)

6. REFERENCES

mp { L. [1] W. R. Cook. Interfaces and specifications for the
—_ smalltalk-80 collection classes. Rroc. Int’| Conf.

) Object-Oriented Programming Systems, Languages, and
Figure 12: Concept pattern 6 - Case 2 Applications (OOPSLA '92volume 27(10) oACM
SIGPLAN Noticespages 1-15. ACM Press, October 1992.

implementation by making use of Smalltalk primitives. [2] S. Demeyer. Analysis of overriden methods to infer hot
spots. In S. Demeyer and J. Bosch, edit&GOOP '98
Workshop Readewolume 1543 of_ecture Notes in

4. RELATED WORK Computer Sciencépringer-Verlag, 1998.

Godin and Mili [5, 6] used concept analysis to maintain, under-
stand and detect inconsistencies in the SmallCalkectionhierar- [3] E. Gamma, R. Helm, R. Johnson, and J. Vlissid#ssign

chy. They showed how Cook’s [1] earlier manual attempt to build Patterns: Elements of Reusable Object-Oriented Languages
a better interface hierarchy for this class hierarchy (based on in- and System#ddisson-Wesley, 1994.

terface conformance) could be automated. In C++, Snelting and 4]
Tip [10] analysed a class hierarcy making the relationship between
class members and variables explicit. They were able to detect de-
sign anomalies such as class members that are redundant or that[5] R. Godin and H. Mili. Building and maintaining

B. Ganter and R. WilleFormal Concept Analysis:
Mathematical FoundationsSpringer Verlag, 1999.

can be moved into a derived class. analysis-level class hierarchies using galois latticePrbt.
Int’l Conf. Oject-Oriented Programs, Systems, Languages

All the above approaches only took information into account about and Applications (OOPSLA93)olume 28 ofACM

which selectors are implemented by which classes. More behavioural ~ SIGPLAN Noticespages 394-410. ACM Press, October

information (e.g., based on self and super sends) was not con- 1993.

sidered. Hence, they could only detéaterface inheritancebut

notimplementation inheritanceAs shown in this paper, more be- [6] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and

T.-T. Chau. Design of class hierarchies based on concept
(galois) latticesTheory and Application of Object Systems
4(2):117-134, 1998.

havioural information about how a subclass is derived from its sub-
class is essential to analyse and understand the kind of reuse that is

achieved.

[7]1 R. E. Johnson and B. Foote. Designing reusable cladses.
5. CONCLUSION Object-Oriented Programmingd (2):22-35, Feb. 1988.
In this position paper we proposed to analyse inheritance hierar- [g] J. Lamping. Typing the specialization interface Rroc. Int'l
chies using Concept Analysis. We took into account two main as- Conf. Oject-Oriented Programs, Systems, Languages and
pects among the classes: inheritance and interface relationships. applications (OOPSLA93yolume 28 ofACM SIGPLAN
Based on information about abstract methods, self sends and su- Notices pages 201-214. ACM Press, October 1993.

per sends, we calculated the concept lattice for a well-known in-))]]
heritance hierarchy: the Smalltaltagnitudehierarchy. Then, we [9] B. Meyer.Object-Oriented Software Constructidrentice
analysed the results after classifying the generated concepts into Hall, second edition, 1997.

concept patterns. Each concept pattern allowed us to discover g1g] . Snelting and F. Tip. Reengineering class hierarchies using
number of interesting non-documented relationships (based on self concept analysis. IACM Transactions on Programming

sends and super sends) among classes in a hierarchy. Especially for | anguages and Systems (TOPLAI)08.

large inheritance hierarchies, this information is crucial for under-]))

standing the software. [11] R. Wille. Restructuring lattice theory: An approach based on
hierarchies of concept8rdered Sets, Ivan Rival Ed., NATO

Based on the preliminary results of our experiments, we believe that Advanced Study Institutpages 445-470, September 1981.

Concept Analysis is a promising technique in software understand- [12] R. Wirfs-Brock, B. Wilkerson, and L. WieneResigning

ing and re-engineering. Obviously, it is only a first step. One pos- Object-Oriented Softward@rentice Hall, 1990.
sible avenue of research is the refinement of the technique and the

focus on more specific relationships and more behavioural infor- [13] R. Wuyts. Declarative reasoning about the structure of
mation to get more specific results. We think that the technique can object-oriented systems. RFroc. Int'l Conf. TOOLS USA'98
help us: (1) to provide guidelines on how a given object-oriented pages 112-124. [EEE Computer Society Press, 1998.

