
Analysing Object Oriented Framework Reuse using
Concept Analysis ∗

Gabriela Arévalo
Software Composition Group

University of Berne
Bern, Switzerland

arevalo@iam.unibe.ch

Tom Mens
Programming Technology Lab

Vrije Universiteit Brussel
Brussels, Belgium

tommens@vub.ac.be

ABSTRACT
This paper proposes the use of the formal technique ofConcept
Analysisto analyse how classes in an object-oriented inheritance
hierarchy are coupled by means of theinheritanceand interfaces
relationships. To perform our analysis, we use the information pro-
vided by theself-sendandsuper-sendbehaviour of each class in the
hierarchy. Especially for large and complex inheritance hierarchies,
we believe that this analysis can help in understanding the software,
in particular with how reuse is achieved. Additionally, the proposed
technique allows us to identify weak spots in the inheritance hierar-
chy that may be improved, and to serve as guidelines for extending
or customising an object-oriented application framework. As a first
step, this position paper reports on an initial experiment with the
Magnitudehierarchy in theSmalltalkprogramming language.

Keywords
concept analysis, inheritance hierarchy, interface, reuse

1. INTRODUCTION
Understanding a software application implies to know how the dif-
ferent entities are related. In the case of an object-oriented appli-
cation framework, our entities are classes. Defining a class in an
application requires knowledge about how behaviour and structure
have to be reused using inheritance techniques. It is not trivial to
achieve optimal reuse, especially when the number of classes is
large or the inheritance hierarchy is deep. In these situations,con-
cept analysiscan be used as a technique to help us cope with these
problems, by analysing the inheritance and interface relationships
between the classes in the inheritance hierarchy.

Concept Analysis (CA) is a branch of lattice theory that allows us
to identify meaningful groupings ofelements(referred to asob-
jects in CA literature) that have commonproperties(referred to
asattributesin CA literature)1. These groupings are calledcon-

∗In ECOOP 2002: Proceedings of the Inheritance Workshop,
A.Black, E.Ernst, P.Grogono and M. Sakkinen (Eds.), pp. 3-9, Uni-
versity of Jyv̈askyl̈a, 2002
1We prefer to use the termselementand property instead of the

ceptsand capture similarities among a set ofelementsbased on
their commonproperties. Mathematically, concepts aremaximal
collections of elements sharing common properties. They form a
complete partial order, called aconcept lattice, which represents
the relationships between all the concepts [11, 4].

The advantage of CA is that this technique allows us to infer com-
monalities between elements based only on the specification of
simple properties satisfied by each element. Since the user only
needs to specify the properties of interest on each element, he does
not need to think about all possible combination of these properties,
since these groupings are made automatically by the CA algorithm.

In this paper, we report on an experiment that uses concept anal-
ysis to analyse an existing inheritance hierarchy with the aim to
better understand whether and how inheritance is used in practice
to achieve reuse.

2. APPLYING CONCEPT ANALYSIS TO
INHERITANCE HIERARCHIES

We will use the CA technique to analyse classes and their methods
based on their relationships in terms ofinheritance, interfacesand
message sending behaviour. Theinheritance relationshipindicates
whether a class is an ancestor or descendant of another one. The
interface relationshipindicates which methods are exported by the
classes. Themessage sending behaviourindicates which methods
are called by other methods in a class. Because we are mainly
interested in reuse of behaviour, we will only look atself sendsand
super sends.

The CA technique requires us to define theelementsandproperties
that we wish to reason about. Because we are interested in classes
in a object-oriented hierarchy, together with their methods and the
messages sent by these methods, we define each CA element as a
pair (Class, selector)such that “selectoris called (via a self send
or super send) by some method implemented in theClass”. For the
CA properties, we chose a characterisation based on the following
classification of predicates:

Classification of the sender
• (Class, selector)satisfies the predicate

calledViaSelf
if selectoris called via a self send inClass

termsobject andattribute in this paper because the termsobject
andattribute have a very specific meaning in the object-oriented
programming paradigm.



• (Class, selector)satisfies the predicate
calledViaSuper
if selectoris called via a super send inClass

Classification of the implementation
• (Class, selector)satisfies the predicate

hasConcreteImplementationIn:otherClass
if selector is implemented as a concrete method inother-
Class

• (Class, selector)satisfies the predicate
hasAbstractImplementationIn:otherClass
if selectoris implemented as an abstract method inother-
Class

Classification of the relationship between sender and
implementor classes

• (Class, selector)satisfies the predicate
isImplementedInAncestor:ancestorClass
if ancestorClassis an ancestor class (i.e., a direct or indirect
superclass) ofClassthat implementsselector.

• (Class, selector)satisfies the predicate
isImplementedInDescendant:descendantClass
if descendantClassis a descendant class (i.e., a direct or in-
direct subclass) ofClassthat implementsselector.

• (Class, selector)satisfies the predicate
isImplementedLocally
if Class implementsselector. This means that there is an
implementation ofselectorin the same class that calls it.

CA properties are then defined as conjunctions obtained by taking
one predicate from each subgroup. For example,

• PropertyconcreteSuperCaptureIn:Class
is a conjunction of the three predicatescalledViaSuperand
hasConcreteImplementationIn: Classand isImplementedI-
nAncestor: Class.

• PropertyconcreteSelfCaptureLocally:Class
is a conjunction of the three predicatescalledViaSelfand
hasConcreteImplementationIn: ClassandisImplementedLo-
cally.

• PropertyconcreteSelfCaptureInAncestor:Class
is a conjunction of the three predicatescalledViaSelfand
hasConcreteImplementationIn: Classand isImplementedI-
nAncestor.

• PropertyconcreteSelfCaptureInDescendant:Class
is a conjunction of the three predicatescalledViaSelfand
hasConcreteImplementationIn: Classand isImplementedIn-
Descendant: Class.

• PropertyabstractSelfCaptureLocally:Class
is a conjunction of the three predicatescalledViaSelfand
hasAbstractImplementationIn: Classand isImplementedLo-
cally.

These are only some of the possible properties resulting from a
conjunction of the predicates presented previously. We only specify
those properties which will be used for the case study.

We use a Boolean table to summarise which properties (specified
in the columns) are specified by which elements (specified in the
rows). An example of such a table is given in Table 1. Using the
information present in this table, we can run the the CA algorithm
to computeconcepts. From the abstract example given in Table 1,
the CA algorithm will automatically compute the following con-
cepts (among others):

• Concept 1has singleton element set{ (C4, s2) } and prop-
erty set{ concreteSelfCaptureLocally:C4, concreteSuper-
CaptureIn:C5 }
This concept means thatC4 has aself andsupersend of the
selectors2, and this selector is implemented as aconcrete
method in the same classC4, and in one ancestorC5.

• Concept 2has element set{ (C4, s2), (C4, s5), (C4, s6), (C4,
s7), (C4, s8) } and singleton property set{ concreteSelfCap-
tureLocally:C4 }
This concept means that only the selectorss2, s5, s6, s7 and
s8 are called via aself send that is captured byconcrete
method implementations in the classC4.

• Concept 3has element set{ (C1, s1), (C2, s2), (C3, s3), (C3,
s1), (C4, s4), (C4, s2) } and singleton property set{ concrete-
SuperCaptureIn:C5 }
This concept means that only the selectorss1, s2, s3 ands4
are called via asupersend in the classesC1, C2, C3, C4 and
they are implemented by aconcretemethod in the ancestor
C5 of these classes.

Based on the information given by the concepts, we could under-
stand how the classes are related using different criteria. In our
case, we analyzed two specific features of a class hierarchy:inher-
itanceandinterface.

3. CASE STUDY
3.1 Terminology
We will first introduce some terminology (similar to the one used
in [8]) that will be needed for the rest of the paper:

• The client interfaceof a class is the set of all selectors that
are implemented in the class and to which direct sends can
be made[8]. In Java, the client interface is the set of all
public methods. In Smalltalk, the client interface is the
set of all methods (since there is no visibility mechanism in
Smalltalk).

• Thesubclass interfaceof a class is the set of all selectors that
are implemented in the class and to which self sends can be
made by subclasses. In Java, the subclass interface is the set
of all public andprotected methods. In Smalltalk, the
subclass interface is the set of all methods.

• Theoverriding interfaceof a class is the set of all selectors
that are implemented in the class and to which super sends
can be made by methods implemented in descendants. In
Java, the overriding interface is a subset of the subclass in-
terface, namely all thosepublic or protected methods
that are notfinal , sincefinal methods cannot be over-
ridden in subclasses. In Smalltalk, every method defined in a
class can be overridden.



concreteSelfCaptureLocally:C4 concreteSuperCaptureIn:C5

(C1, s1) False True
(C2, s2) False True
(C3, s3) False True
(C3, s1) False True
(C4, s4) False True
(C4, s2) True True
(C4, s5) True False
(C4, s6) True False
(C4, s7) True False
(C4, s8) True False

Table 1: Elements and their satisfied properties in an inheritance hierarchy

• Theabstract interfaceof a class is the set of all selectors that
are defined abstract in the class and are required to be im-
plemented by a concrete method in descendants. In Java, the
abstract interface is the set of allabstract methods, which
is a subset of the subclass interface. In Smalltalk, the abstract
interface is a subset of the overriding interface, since abstract
methods are modelled byself subclassResponsib-
ility and have to be overridden in subclasses.

• The internal interfaceof a class is the set of all selectors
that are implemented in the class and to which self sends are
made by methods implemented in the same class.

• Theactual client/subclass/overriding/abstract interfaceof a
class is the set of all selectors that are implemented by a class
and that are actually accessed (via an invocation, self send or
super send, respectively) in the implementation. Obviously
the actual interface of a class is always a subset of the total
client/subclass/overriding/abstract interface of the class.

3.2 Experimental setup
The abstract example explained in section 2 was only intended to
make the reader understand how the process works. Our actual ex-
periment consists of applying the CA technique to study theMagni-
tudeinheritance hierarchy of Smalltalk in more detail2. We decided
to use theMagnitudehierarchy for our first experiment because:
it is sufficiently large (29 classes, 894 methods); it heavily relies
on code reuse by inheritance (19 abstract methods, 296 self sends,
49 super sends); it is stable and well-documented; it is commonly
available for most versions of Smalltalk. Future experiments will
be carried out on other well-known Smalltalk hierarchies such as
Collection, Model, ViewandController.

Based on results provided by the CA algorithm, we analyzed the
relationships between the classes in terms ofinheritanceandinter-
face. Compared with the example presented previously, we worked
with 248 elements and 73 properties, and the algorithm gave 125
concepts as a result. The elements and properties have been ex-
tracted with SOUL, a logic meta-programming language built on
top of –and tightly integrated with– Smalltalk [13]. The CA anal-
ysis tool itself, that computes the concept lattice, was implemented
directly in Smalltalk, and uses the results of the SOUL predicates
as input.

2For our experiments, we worked in VisualWorks release 5i4, and
restricted ourselves to only those classes belonging to the Smalltalk
namespaces Core, Graphics, Kernel, and UI.

The information about the inheritance hierarchy is extracted from
the resulting concepts of the CA algorithm. As we said previously,
the concepts associate sets of elements with sets of properties. The
properties will be a subset of{ concreteSuperCaptureIn: Class,
concreteSelfCaptureInDescendant: Class, abstractSelfCaptureLo-
cally: Class, concreteSelfCaptureLocally: Class, concreteSelfCap-
tureInAncestor: Class, ...}. If we abstract the argumentClassout
of these properties, we find that many concepts contain the same
set of properties. This commonality between concepts allows us
identify patterns of concepts.

3.3 Concept patterns
A concept patternconsists of a description, examples related to the
Magnitudeclass hierarchy, a figure that illustrates the pattern and
an analysis about possible implications of the pattern with respect
to software understanding and reuse.3

Concept Pattern 1: Self sends captured locally
Description. A set of selectorsm1,..., mp are called via aself send
in a classB and they are implemented in the same class. Figure 1
shows this concept pattern graphically. It occurs in 21 concepts of
theMagnitudeconcept lattice. For example,Concept 61has ele-
ments{(AssociationTreeWithParent,{expanded:, depth, parent})}
and singleton property set{concreteSelfCaptureLocally: Associa-
tionTreeWithParent}

Figure 1: Concept pattern 1

Analysis. This concept pattern is useful to document theinternal
interfaceof a class, which captures class-specific behaviour. The
number of elements present in the concept can also be used to give

3In the examples section of each concept pattern we use numbers
for the concepts. This number is only an id automatically asso-
ciated to the concept by the algorithm. To make the notation for
concepts more compact, we will group together all selectors be-
longing to the same class. For example if we have in a concept
with the elements{(C1, s1), (C1, s2), (C1, s3), (C2, s4)}, we will
show it as{(C1, {s1, s2, s3}),(C2, s4)}



an indication of to which extent the class is reusing parent methods,
by comparing the number of locally captured self references with
the number of methods inherited from the parent.

Concept pattern 2: Self sends captured in ancestor
Description. A set of selectorsm1,..., mp are called viaself send in
the classesA1,..,An and the selectors are implemented in the class
B, which is a common superclass ofA1,..,An. Figure 2 displays
this concept pattern in a general way. It occurs in 9 concepts of the
Magnitudeconcept lattice.

Figure 2: Concept pattern 2

Analysis: In general terms, this concept pattern is useful to detect
theactual subclass interfaceof a class. This pattern is also useful
to find out whether the same set of selectors called in a set of classes
are implemented in a specific superclass, which does not have to be
the same for each class-selector pair. This can be more useful for
finding a common interface for the subclasses.

Considering the direct/indirect inheritance relationship betweenB
andAi and among the differentAis, we can distinguish 2 different
cases:

Case 1.The selectorsm1,...,mp are called in a set of classesA1,..,An.
The selectors are implemented in a common direct superclassB of
all the classes. The classesA1,..,An are sibling classes, i.e., they
have no inheritance dependencies between them. Figure 3 shows
this case. For example,Concept 73has elements{(LargePositive
Integer,{digitLength, digitAt:}), (LargeNegativeInteger,{ digitLength,
digitAt:})} and singleton property set{concreteSelfCaptureInAncestor:
LargeInteger}

Figure 3: Concept pattern 2 - Case 1

Analysis of case 1.This case can also be used to identify com-
mon code in sibling classes that is useful to refactor in the com-
mon superclass. For example, concept 73 implies that, to a certain
extent, sibling classesLargePositiveIntegerandLargeNegativeIn-
teger reuse the behaviour defined in their superclassLargeInteger
in the same way. An investigation of the actual source code to

find out which method performs the self sendsdigitLengthanddig-
itAt: learns us that both self sends are invoked from within the
implementation of the methodcompressedin both sibling classes.
Moreover, the implementation of this method is very similar in both
cases. Hence, a refactoring might be appropriate to extract this
common behaviour into an auxiliary method that can be pulled up
into the common superclassLargeInteger.

Case 2.The selectorsm1,...,mp are called in a set of classesA1,..,An.
The selectors are implemented in a common ancestorB of all the
classes. The classesA1,..,An may have inheritance dependencies
between them. Figure 4 shows this case. For example,Concept
78has elements{(LimitedPrecisionReal,{floorLog:, truncated:}),
(Float, {quo:, rem:}), (Double, quo:)} and singleton property set
{concreteSelfCaptureInAncestor: Number}. LimitedPrecisionReal
is a common superclass ofFloat and Double. They are all sub-
classes ofNumber.

Figure 4: Concept pattern 2 - Case 2

Analysis of case 2.In this specific case, concept 78 captures the
actual subclass interfaceof Number, which contains all methods
in Numberthat are reused via self sends by at least on of its de-
scendants. This is very important information, since in Smalltalk
all methods are public, so it is very difficult to know in practice
which methods are actually being reused in subclasses. In Java, the
distinction between public, protected and private methods partly
solves this problem, but we still don’t know which of the public
and protected methods are actually reused by subclasses. In princi-
ple, every method in the protected interface should also be present
in the actual subclass interface, since it is of not much practical use
to declare a method protected if it is never called by subclasses.

Concept pattern 3: Super call
Description. A set of selectorsm1,..., mp are called via asuper
send in the classesA1,..,An and the selectors are implemented in
the classB, which is a common ancestor ofA1,..,An. Figure 5 illus-
trates this concept pattern in a general way. It occurs in 8 concepts
of theMagnitudeconcept lattice.

Analysis: In general terms, this concept pattern can be used to de-
tect theactual overriding interfaceof a class. Considering the di-
rect/indirect inheritance relationship betweenB andAi and among
the differentAis, we can distinguish 2 different cases:



Figure 5: Concept Pattern 3

Case 1.The selectorsm1,...,mp are called in a set of classesA1,..,An.
The selectors are implemented in a common ancestorB of all the
classes. The classesA1,..,An are sibling classes, i.e., they have no
inheritance dependencies between them. Figure 6 illustrates this
case. For example,Concept 105has elements{(Float, {>, ≥,
≤}), (Double,{>,≥,≤}), (SmallInteger,{>,≥,≤}), (LargeInte-
ger,{>,≥,≤})} and singleton property set{concreteSuperCaptureIn:
Magnitude}

Figure 6: Concept pattern 3 - Case 1

Analysis of case 1.This concept pattern can be used to document
and capture theactual overriding interfaceof a class. For example,
the overriding interface ofMagnitudeis {>, ≥, ≤ } according to
the information given by the Concept 105. The concept pattern can
also be used to provide guidelines for framework customisation. If
we define a new subclass of a given class, it is likely that we have
to override the methods specified in the overriding interface of the
parent class.

Case 2.The selectorsm1,...,mp are called in a set of classesA1,..,An.
The selectors are implemented in a common ancestorB of all the
classes. The classesA1,..,An have somedirect inheritance depen-
dencies between them. Figure 7 illustrates this case. For example,
Concept 114has elements{(LargePositiveInteger, computeGCD:),
(LargeInteger,{ \\, bitAnd:, bitXor:, bitOr:, bitShift:, lessFromInte-
ger:, =, sumFromInteger:, equalFromInteger:, productFromInte-
ger:}), (SmallInteger,{bitShift:,<, //, =})} and singleton property
set{concreteSuperCaptureIn: Integer}. LargePositiveIntegeris a
subclass ofLargeIntegerand all of them are subclasses ofInteger.

Analysis of case 2.This case can be used to documentimplemen-
tation inheritance[9]. This means that the methodname -where the
selector is called- and the selector name are the same. In the case of
Concept 114, we see that this behaviour delegation is not so direct
because before thesupersend, there is a statement with aprimitive
action.

Concept pattern 4: Self send captured locally and in
descendant

Figure 7: Concept pattern 3 - Case 2

Description. A set of selectorsm1,..., mp are called via aself send
in the classA and the selectors are implemented in the classes
A and B1,..,Bk, which are subclasses ofA. Figure 8 shows this
concept pattern in a general way. It occurs in 31 concepts of the
Magnitudeconcept lattice. For example,Concept 69has element
set{(Number,{raisedTo:, sqrt, ln, truncated})} and properties set
{concreteSelfCaptureInDescendant: Float, concreteSelfCaptureIn-
Descendant: Double, concreteSelfCaptureLocally: Number}.

Figure 8: Concept pattern 4

Analysis. This concept pattern can be used to document which
specific methods are overriden in the subclasses of a common su-
perclass. This means that the superclass defines some common or
default behaviour for these methods, and each of the descendants
can override this implementation with subclass-specific behaviour.

Concept pattern 5: Self send locally with super dele-
gation
Description. A set of selectorsm1,..., mp are called via aself and
supersend in a classA and the selectors are implemented in the
same class (A) as well as in an ancestor classB of A. Figure 9
illustrates this concept pattern in a general way. It occurs in 4 con-
cepts of theMagnitudeconcept lattice. In this pattern, we do not
distinguish between different cases because the 4 concepts fulfill-
ing this pattern are similar except that in some cases the super-
class is not direct ancestor. For example,Concept 48has elements
{(SmallInteger,{>, ≥, ≤})} and properties set{(concreteSuper
CaptureInAncestor: Magnitude, concreteSelfCaptureLocally: Small-
Integer}



Figure 9: Concept pattern 5

Analysis. This concept pattern documents delegation between meth-
ods in the same class and with the superclass. Having a look at the
code for the 4 concepts, in all the cases, the method that calls the
selectors1 via asuper sendhas the same name as the selector (s1).
For example, inSmallIntegerthe selector≥ is called via asuper
sendin the method≥. This means that if there is a specific action
to be executed (whenself sendis called), this behaviour is defined
in the superclass, because the message is delegated by thesuper
sendcall. The set of properties allows us to see that this pattern
is a combination of pattern 1 (where the predicateconcreteSelf-
CaptureLocally: is captured) and pattern 3 (where the predicate
concreteSelfCaptureInAncestor:is captured).

Concept pattern 6: Template and hook methods
Description. A set of selectorsm1 . . . mp are called via aself
send in a classA and the selectors are implemented as abstract
methods in the same classA and are implemented as concrete meth-
ods in descendant classesB1 . . . Bk of A. Figure 10 illustrates
this concept pattern in a general way. It occurs in 7 concepts of the
Magnitudeconcept lattice.

Figure 10: Concept pattern 6

Analysis. This concept pattern is essential in understanding an
object-oriented application framework. More specifically, it allows
us to identify thehot spotsin the application framework [7, 2].
These hot spots are very often implemented by means of so-called
template methodsandhook methods[12, 3]. In their simplest form,
template methods are methods that perform self sends to abstract
methods, which are the hook methods that are expected to be over-
ridden in subclasses. This is precisely the information that is cap-
tured by concept pattern 6.
Seen in another way, the information expressed in this concept
pattern identifies theabstract interfaceof a class, as well as the

subclasses that provide a concrete implementation of this interface.
This information is essential when we want to add aconcretesub-
class of anabstractclass, because it tells us which methods should
be at least be implemented.
In the Magnitudehierarchy, concept pattern 6 only occurs for the
subhierarchies with root classesIntegerandArithmeticValue.

We can distinguish 2 different subcases of this concept pattern, de-
pending on how the classesA andB1 . . . Bk are related by inher-
itance:

Case 1. The selectorsm1 . . . mp are called with aself send in
the classA and the selectors are implemented in direct subclasses
B1 . . . Bk of A. Figure 11 shows this concept pattern in a gen-
eral way. For example,Concept 56 has element set{(Integer,
{digitAt:put:, digitLength, digitAt:})} and properties set{abstract-
SelfCaptureLocally: Integer, concreteSelfCaptureInDescendant: Small-
Integer, concreteSelfCaptureInDescendant: LargeInteger}

Figure 11: Concept pattern 6 - Case 1

Analysis of case 1.In this case, we can identify a potential problem
in the hierarchy. The subclasses do not implement all theabstract
methods of the superclass. This can result in a subtle error if we call
a method in the superclass that calls anabstractmethod, especially
in Smalltalk which does not make an explicit difference between
concrete and abstract classes (we can create instances of both).

Case 2.The selectorsm1 . . . mp are called with aself send in the
classA and the selectors are implemented in the classesB1 . . . Bk,
which are indirect descendants ofA. The descendants have inher-
itance dependencies between them. Figure 12 shows this concept
pattern in a general way. For example,Concept 31has element set
{(ArithmeticValue,{*, -})} and properties set{abstract-
SelfCaptureLocally: ArithmeticValue, concreteSelfCaptureInDescen-
dant: LargeInteger, concreteSelfCaptureInDescendant: Fraction,
concreteSelfCaptureInDescendant: Integer, concreteSelfCaptureIn-
Descendant: SmallInteger, concreteSelfCaptureInDescendant: Float,
concreteSelfCaptureInDescendant: FixedPoint, concreteSelfCap-
tureInDescendant: Point, concreteSelfCaptureInDescendant: Dou-
ble}

Analysis of case 2.This case is a bit tricky, because the results
can be considered as a combination of two different situations: the
concrete implementation of abstract methods in descendants of a
class, and the overriding of these concrete implementations in fur-
ther descendants. In concept 31, the relationship between classes
ArithmeticValueand Integer is that the abstract methods{*,-} in
ArithmeticValueare implemented by concrete methods in subclass
Integer. Moreover, these concrete methods are overridden by fur-
ther descendantsSmallIntegerandLargeIntegerthat optimise the



Figure 12: Concept pattern 6 - Case 2

implementation by making use of Smalltalk primitives.

4. RELATED WORK
Godin and Mili [5, 6] used concept analysis to maintain, under-
stand and detect inconsistencies in the SmalltalkCollectionhierar-
chy. They showed how Cook’s [1] earlier manual attempt to build
a better interface hierarchy for this class hierarchy (based on in-
terface conformance) could be automated. In C++, Snelting and
Tip [10] analysed a class hierarcy making the relationship between
class members and variables explicit. They were able to detect de-
sign anomalies such as class members that are redundant or that
can be moved into a derived class.

All the above approaches only took information into account about
which selectors are implemented by which classes. More behavioural
information (e.g., based on self and super sends) was not con-
sidered. Hence, they could only detectinterface inheritancebut
not implementation inheritance. As shown in this paper, more be-
havioural information about how a subclass is derived from its sub-
class is essential to analyse and understand the kind of reuse that is
achieved.

5. CONCLUSION
In this position paper we proposed to analyse inheritance hierar-
chies using Concept Analysis. We took into account two main as-
pects among the classes: inheritance and interface relationships.
Based on information about abstract methods, self sends and su-
per sends, we calculated the concept lattice for a well-known in-
heritance hierarchy: the SmalltalkMagnitudehierarchy. Then, we
analysed the results after classifying the generated concepts into
concept patterns. Each concept pattern allowed us to discover a
number of interesting non-documented relationships (based on self
sends and super sends) among classes in a hierarchy. Especially for
large inheritance hierarchies, this information is crucial for under-
standing the software.

Based on the preliminary results of our experiments, we believe that
Concept Analysis is a promising technique in software understand-
ing and re-engineering. Obviously, it is only a first step. One pos-
sible avenue of research is the refinement of the technique and the
focus on more specific relationships and more behavioural infor-
mation to get more specific results. We think that the technique can
help us: (1) to provide guidelines on how a given object-oriented

application framework should be customised; (2) to identify and
document hot spots in an object-oriented application framework;
(3) to automatically extract and document implicit coding conven-
tions used while building an inheritance hierarchy; (4) to detect and
document the type of inheritance used in (parts of) an inheritance
hierarchy.

Acknowledgements:We gratefully acknowledge the financial sup-
port of the Swiss National Science Foundation for the project “Tools
and Techniques for Decomposing and Composing Software” (SNF
Project No. 2000-067855.02)

6. REFERENCES
[1] W. R. Cook. Interfaces and specifications for the

smalltalk-80 collection classes. InProc. Int’l Conf.
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’92), volume 27(10) ofACM
SIGPLAN Notices, pages 1–15. ACM Press, October 1992.

[2] S. Demeyer. Analysis of overriden methods to infer hot
spots. In S. Demeyer and J. Bosch, editors,ECOOP ’98
Workshop Reader, volume 1543 ofLecture Notes in
Computer Science. Springer-Verlag, 1998.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Languages
and Systems. Addisson-Wesley, 1994.

[4] B. Ganter and R. Wille.Formal Concept Analysis:
Mathematical Foundations. Springer Verlag, 1999.

[5] R. Godin and H. Mili. Building and maintaining
analysis-level class hierarchies using galois lattices. InProc.
Int’l Conf. Oject-Oriented Programs, Systems, Languages
and Applications (OOPSLA93), volume 28 ofACM
SIGPLAN Notices, pages 394–410. ACM Press, October
1993.

[6] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and
T.-T. Chau. Design of class hierarchies based on concept
(galois) lattices.Theory and Application of Object Systems,
4(2):117–134, 1998.

[7] R. E. Johnson and B. Foote. Designing reusable classes.J.
Object-Oriented Programming, 1(2):22–35, Feb. 1988.

[8] J. Lamping. Typing the specialization interface. InProc. Int’l
Conf. Oject-Oriented Programs, Systems, Languages and
Applications (OOPSLA93), volume 28 ofACM SIGPLAN
Notices, pages 201–214. ACM Press, October 1993.

[9] B. Meyer.Object-Oriented Software Construction. Prentice
Hall, second edition, 1997.

[10] G. Snelting and F. Tip. Reengineering class hierarchies using
concept analysis. InACM Transactions on Programming
Languages and Systems (TOPLAS), 1998.

[11] R. Wille. Restructuring lattice theory: An approach based on
hierarchies of concepts.Ordered Sets, Ivan Rival Ed., NATO
Advanced Study Institute, pages 445–470, September 1981.

[12] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.Designing
Object-Oriented Software. Prentice Hall, 1990.

[13] R. Wuyts. Declarative reasoning about the structure of
object-oriented systems. InProc. Int’l Conf. TOOLS USA’98,
pages 112–124. IEEE Computer Society Press, 1998.


