
Web application models are more than conceptual models

Gustavo Rossi (1*), Daniel Schwabe2, Fernando Lyardet1

(1) LIFIA, Departamento de Informática, UNLP. Argentina
E-mail: [gustavo,fer]@sol.info.unlp.edu.ar
(2) Depto de Informática, PUC-Rio, Brazil.

E-mail: schwabe@inf.puc-rio.br
(*) also at CONICET and UNLM

Abstract
In this paper we argue that web applications are a particular kind of hypermedia

applications and show how to model their navigational structure. We motivate our paper
discussing the most important problems in the design of complex Web applications. We
argue that if we need to design applications combining hypermedia navigation with
complex transactional behaviors (as in E-commerce systems), we need a systematic
development approach. We next present the main ideas underlying the Object-Oriented
Hypermedia Design Method (OOHDM). We show that Web applications are built as views
of conceptual models. We next present the abstraction primitives we use to design the
conceptual and navigational structure of Web applications and describe the view definition
language. We introduce navigational contexts as the structuring mechanism for the
navigational space. Some further work on designing Web applications with OOHDM is
finally presented.

1-Introduction: Web applications are Hypermedia applications

The emergence of the World Wide Web has made the hypertext paradigm more
popular than ever. Web applications combine navigation through a heterogeneous
information space with operations querying or affecting that information.

The WWW is based on the hypertext paradigm, inasmuch as it is composed of
pages (in HTML) which can be linked to each other through URLs (links). Regardless of
how a reader has reached a page, he will normally have the option of accessing the pages
linked to the current page; by choosing a particular link, he will cause the page pointed to
by the link to be exhibited; this process can repeats itself indefinitely. This succession of
steps is know as “navigation”, and is intrinsic to hypertext, and hence to the WWW.

However, this second generation of hypermedia applications is rather different from
the first one, in which applications, usually delivered in CD-ROMs, were not supposed to
be updated and, in general, were not critical for any organization. Web applications, on the
other hand, are constantly modified, are permanently enriched with new services, and new
navigation and interface features are added, e.g., according to the organization’s marketing
policy.

In this paper we argue that good Web applications should be, first of all, good
hypermedia applications, i.e. they should provide easy navigational access to large
information resources, preventing users from being lost in the cyberspace, and providing
consistent navigation operations even when other kind of transactional behavior is
involved. As navigation problems have been largely discussed in hypertext literature (see



for example [Nielsen90]) we should be able to reuse existing knowledge on building good
Web applications.

Unfortunately, state-of-the art conceptual modeling approaches neglect navigation
modeling as they do not provide useful abstractions capable of easing the task of specifying
applications that embody the hypertext metaphor. For example, they do not provide any
notion of linking and very little is said about how to incorporate hypertext into the
interface. For example, we could easily model the domain of an electronic commerce
application using UML [UML97]. However we can not specify critical aspects for this kind
of application, such as which nodes will be navigated or which paths or indexes the
application will contain. Even if we specify all this hypermedia functionality using UML
primitives, we will be using low-level primitives whose semantics were not intended to
model navigation.

At the same time, we could model this kind of applications by considering
navigation as just another kind of interface behavior; this is the approach followed by some
recent (object-oriented) tools like VisualWave [Vwave96]. In this case, applications built
using the well-known model-view-controller interface metaphor are published in the Web
by just translating views into HTML pages; only some aspects related with concurrent
access with shared databases are taken into account. However this approach fails to
consider the most powerful feature of the Web: its linking capabilities.
 If we want to profit from the potential of the Web platform we need to consider both
aspects of Web applications: navigation and transactional (or other kind of conventional)
behaviors.

Web applications provide a powerful mechanism for building different views (in
fact navigational views) to corporate databases. For example, while customers access the
Amazon.com bookstore using a particular Web interface, managers or technical staff can
access the same information resources through a different Web application (and obviously
different access rights) in an Intranet. However, these views are more than simple database
views as they involve different navigation paths, indexes, etc. In this paper we show how to
design Web applications as views of (shared) conceptual models. In addition, it will be
argued that the links provided for navigation are more than a representation of conceptual
relations, as a more naive approach would suggest.

To summarize the discussion above, we can intuit that there are distinguishing
features in Web applications that present new design requirements vis-a-vis traditional
systems. In a broad sense, we can categorize them in three groups. The first group of design
issues has to do with navigation, addressing questions such as:

• What constitutes an “information unit” with respect to navigation?

• How does one establish what are the meaningful links between information units?

• Where does the user start navigation?

• How does one organize the navigation space, i.e., establish the possible sequences
of information units the user may navigate through?

• If we are adding a WWW interface to an existing system, how do we map the
existing data objects onto “information units”, and what relationships in the
problem domain should be mapped onto links?



The second group of design issues has to do with the organization of the interface,
addressing questions such as

• What interface objects the user will perceive? How do these objects relate to the
navigation objects?

• How will the interface behave, as it is exercised by the user?

• How will navigation operations be distinguished from interface operations and
from “data processing” (i.e., application operations)?

• How will the user be able to perceive his location in the navigation space?

The third group of design issues has to do with implementation, addressing questions
such as:

• How are information units mapped onto pages?

• How are navigation operations implemented?

• How are other interface objects implemented?

• How are existing databases integrated into the application?

In this paper we will concentrate on discussing our approach for solving the first
group. A discussion on the third group of issues can be found in [Segor99].

The rest of this paper is structured as follows: we first introduce the Object-Oriented
Hypermedia Design Method. We next discuss how we build navigational models as views
on conceptual models; then we introduce navigational contexts as a structuring mechanism
for navigation. Finally, we discuss some ongoing work on mining navigation patterns and
present some further work on designing and implementing these kind of systems.

2-The OOHDM design framework

The Object-Oriented Hypermedia Design Method [Schwabe 98, Schwabe 96] is a
model-based approach for building large hypermedia applications. It has been used to
design different kinds of applications such as: Web sites and information systems,
interactive kiosks, multimedia presentations, etc.

OOHDM comprises four different activities namely, Conceptual Design,
Navigational Design, Abstract Interface Design and Implementation. During each activity a
set of object-oriented models describing particular design concerns are built or enriched
from previous iterations.

Considering conceptual, navigational and interface design as separate activities
allows us not only to concentrate on different concerns at a time, but mainly to obtain a
framework for reasoning about the design process, encapsulating design experience specific
to each activity. As we explain below, navigational design is a key activity in the
implementation of Web applications and it must be explicitly separated from conceptual
modeling

OOHDM design primitives can be mapped onto non object-oriented implementation
settings using some simple heuristics [Schwabe98].  We next discuss the first three
activities in more detail.



2.1 Conceptual Modeling

During this step we build a model of the application domain, using well known
object-oriented modeling principles and primitives similar to those in UML [UML 97]. The
product of this step is a class schema built out of Sub-Systems, Classes and Relationships.
The major differences with UML are the use of multiple-valued attributes, and the use of
directions explicitly in the relationships. Aggregation and generalization/specialization
hierarchies are used as abstraction mechanisms.

Conceptual Modeling is aimed at capturing the domain semantics as “neutrally” as
possible, with little or no concern for the types of users and tasks. When the application
involves some sophisticated behavior in conceptual objects, it may evolve into an object
model in the implementation environment. However it can be implemented in a
straightforward way in current Web platforms combining for example a relational database
with some stored procedures. The main thesis in this paper is that the conceptual model
may not reflect the fact that the application will be implemented in the WWW environment,
since the key application model will be built during navigational design. This view allows
using the same strategy for implementing “legacy” applications in the Web, by considering
their conceptual model as the product of this OOHDM activity.

Classes in the conceptual model will be mapped to nodes in the navigational model
using a viewing mechanism and relationships will be used to define links among nodes. It
will also be shown that there are other links that do not correspond to relationships in the
conceptual model.

Using a behavioral object-oriented model for describing different aspects of Web
applications allows to express a rich variety of computing activities, such as dynamic
queries to an object-base, on-line object modifications, heuristics-based searches, etc. The
kind of behavior required in the conceptual model depends upon the desired features of the
application. For many Web applications, in particular those implementing plain browsing
(i.e. read-only) functionality, class behavior beyond linking functionality is unnecessary
and does not need to be specified.

Figure 1 shows the Conceptual Schema for an Academic Department Web site.
Perspectives (multiple valued attributes) are denoted by enumerating the possible types,
with a + next to a default type. Thus, description: [text+, image] means that attribute
description has a text perspective (always present), and may have also an image
perspective.



Name: string

Equipment

Name: string
UrlSponsor: string

Sponsor

Name: string
Description: string
Budget: real

Research Project

Name: string
Description: string

Area of Research

OnLineContent: string

Students Production

Name: string
Description: string

Laboratory

N

advises

funds

conducted in

0..N

0..N
belongs

0..N

participates N

0..N

belongs
N

N

N

belongs

N

related

belongs

N

produces

N

produces
NN

Semester: string
Schedule: string
Classroom: string

Course Offering

OnLineContent: string
Location: string

Complementary Material

N

teaches
1

N

attend
N

N

Name: string
Description: string
NumberOfCredits: integer
SuggestedPeriod : string
Syllabus : text

Course

offered

1

N

belongs
N

N 1

N

requires
0..N 0..N

Name: string
RequiresAmount : integer
ElectivesAmount : integer

Degreehas elective

has required

N

N

N

N

N

pursues

requires

requires

requires

1

1 1

1

1

N

Degree: string

Student

StudentID: integer
BeginningDate: date
EndingDate: date

AdministrativeTechnicalAcademic

Thesis

MScPhD

Graduation
Project

PhDMSc

Graduate Undergraduate

0..N

Slide WorkBook Exercise

Evaluation: integer

N

N N

belongs

N
N

N

Title: string
PublicationDate: date
Abstract: text
Autors: set of string

Research Result

Edition: string
Publishing: string

Book

Code: string
OnLineContent: string

Technical Report

BiblioReference: string
OnLineContent: string

Paper

UrlConference: string

Conference Paper

UrlJournal : string

Journal Paper

OnLineContent: string

Software

N

Hardware

0..N

1

Name: string
Degree: string
Description: [text+, image]
Email: string
HomePage: string

Personel

Rank: string

Professor

Figure 1: Conceptual Schema of the Academic Department Site

2.2 Navigational Design

In OOHDM, an application is seen as a navigational view over the conceptual
model. This reflects the major innovation of OOHDM, which recognizes that the objects
(items) the user navigates are not the conceptual objects, but other kinds of objects that are
“built” from one or more conceptual objects.

For each user profile we can define a different navigational structure that will reflect
objects and relationships in the conceptual schema according to the tasks this kind of user
must perform. The navigational class structure of a Web application is defined by a schema
containing navigational classes. In OOHDM there is a set of pre-defined types of



navigational classes: nodes, links, anchors and access structures. The semantics of nodes,
links and anchors are the usual in hypermedia applications. Access structures, such as
indexes, represent possible ways for starting navigation.

Different applications (in the same domain) may contain different linking topologies
according to the user’s profile. For example, in the Academic Web site we may have a view
to be used by students and researchers, and another view for use by administrators. In the
second view, a professor's node may contain salary information, which would not be visible
in the student’s  view. In section 3 we detail how we specify nodes and links using a view
definition language.

The most outstanding difference between our approach and others using object
viewing mechanisms is that while the latter consider Web pages mainly as user interfaces
that are built by “observing” conceptual objects, we clearly favor an explicitly
representation of navigation objects (nodes and links) during design.

2.3 Abstract Interface Design

In the Abstract Interface Design activity we specify which interface objects the user
will perceive and how the interface will behave. For each node’s attribute (either contents
or anchors) we must define its appearance. By distinguishing between navigation and
interface design we can build different interfaces for the same application and besides
achieve implementation independence.

During this activity we define the way in which different navigational objects will
look like, which interface objects will activate navigation, the way in which multimedia
interface objects will be synchronized and which interface transformations will take place.
In OOHDM, we use the Abstract Data View (ADV) design approach for describing the
user interface of a hypermedia application [Cowan95]. Though not completely related with
the aim of this paper, it is important to stress that building a formal model of the interface
of Web applications is a rewarding activity as user interfaces tend to change even faster
than navigation topologies. We clearly need a precise design specification to be able to
support changes smoothly. A complete description of our approach for specifying user
interfaces can be found in [Rossi95].

2.4 Implementation

During the implementation activity we map conceptual, navigation and interface
objects onto the particular runtime environment being targeted. When the target
implementation environment is not fully object-oriented, we have to map the conceptual,
navigational and abstract interface objects into concrete objects, i.e. those available in the
chosen implementation environment. This may involve defining HTML pages (or, for
example, Toolbook objects in non Web-based environments), scripts in some language,
queries to a relational database, etc. Notice that even in object-oriented environments like
VisualWave [Vwave96] there may be no significative difference among conceptual and
navigation objects which will act as models of Smalltalk’s interfaces. Meanwhile, in a more
“hybrid” environment, conceptual objects will be mapped to a persistent store (files or
relational databases) while the interface and navigation objects will be implemented as
conventional Web pages.



In the following sections we discuss the OOHDM approach for defining the
navigational structure of Web applications.

3-Specifying Navigational Objects as views on the conceptual schema

One of the cornerstones of the OOHDM approach is the fact that navigational
objects (nodes and links) are explicitly defined as views on conceptual objects and
according to each different user profile. These views are built using an object-oriented
definition language that allows to “copy and paste” and/or filter attributes of different
(related) conceptual classes into the same Node class and to create Link classes by selecting
the appropiate relationships.

In the academic site example we may want that nodes representing Courses contain
an attribute with the name of the Professor that teaches that course, an eventually use that
name as an anchor to the Professor’s home page. It is clear that in the conceptual model the
name of the professor is an attribute of Class Professor and should not be included in Class
Course. Meanwhile, in a different view, we may want to filter some attributes (such as the
professor’s salary, for example) or include new relationships as links.

 Node classes are defined using a query language similar to the one in [Kim 94].
Nodes possess single typed attributes, link anchors, and may be atomic or composite.
Anchors are instances of Class Anchor (or one of its sub-classes) and are parameterized
with the type of Link they host. The object-oriented nature of nodes and anchors allow re-
defining their opening and activation semantics allowing customization to different
application domains.

 The syntax for defining Node classes is shown next:
 



 NODE name [FROM className: varName] [INHERITS FROM nodeClass]

 attri: type1   [SELECT  name1] [FROM class1:varName1, classj: varNamej

 WHERE logical expression]

 attr2: type2   [SELECT  name2]...

 ...,
 attrn: typen [idem]

 ....
 anch1: Anchor [linkType1]

 anch2: Anchor [linkType2]

 ...
 
 END

 Where

• name  is the name of the class of nodes we are creating.

• className  is the name of a Conceptual Class (from which the node is being mapped). It is called
the Subject class.

• nodeClass  is the name of the super-class

• attri  are the names of attributes for that class,  typei the attribute’s types.

• namei  are the subjects for the query expression and  vari  are mute variables used to express
logical conditions.

• -logical expression allows defining classes whose instances are a combination of objects defined in
the conceptual schema when certain conditions on their attributes and/or relationships hold.

• -anchi are names of anchor variables. Anchor is the abstract class for all anchors

• linkTypei is a link type qualifying anchors.

Nodes implement a variant of the Observer design pattern [Gamma95] as they
express a particular view on application objects. Changes in conceptual objects are
broadcasted to existing observers while nodes may communicate with conceptual objects to
forward them events generated in the interface.

As an example we would define the Node class CourseOffering including as one of
its attributes the name of the professor who teaches it and an anchor for the link that
connects both nodes. We say that the conceptual class CourseOffering is the subject of
Node class CourseOffering. Notice that in OOHDM we defer the decision of defining the
anchor’s appearance until the abstract interface design activity.

NODE CourseOffering [FROM CourseOffering:C]

professor: String   [SELECT Name] [FROM Professor:P  WHERE P teaches C]

....  (other attributes “preserved” from the conceptual class CourseOffering}

taughtBy: Anchor  [TaughtBy]

 
 Links connect navigational objects and may be one-to-one or one-to-many. The

result of traversing a link is expressed by either defining the navigational semantics
procedurally as a result of the link's behavior, or by using an object-oriented state transition
machine similar to Statecharts. Since Web applications usually implement simple



navigation semantics (closing the source node and opening the target), we do not discuss
this issue further.

 Access structures (such as indices or guided tours) are also defined as classes and
present alternative ways for navigation in the application. Links are also defined as views
on conceptual relationships. Access structures are usually defined in Navigational Contexts
(see Section 4), and they are specified by defining the target navigational objects and the
selectors (usually attributes of the targets). The syntax for defining Link classes is shown
below (we avoid describing link’s attributes and behavior for the sake of simplicity)

 

LINK  name

SOURCE: sourceNode: sourceVar

TARGET: targetNode: targetVar

WHERE logical expresion

END

• name indicates the name of the Link Class

• sourceNode  is the name of the source Node class

• targetNode is the name of the target Node class

• sourceVar, targetVar are mute variables used in the logical expression

• logical expression indicates a  condition that involves the Subjects of Source, Target and perhaps
other conceptual classes.

 
Using the syntax above we may define the Link class TaughtBy as shown below

(the qualifier “S.” indicates the subject of the corresponding node classes, in this case
CourseOffering and Professor). Notice that the conceptual relationship “taught by” between
CourseOffering and Professor may not exist in the conceptual schema and we should
carefully plan the final implementation of this view.

LINK TaughtBy

SOURCE: CourseOffering: c

TARGET: Professor: p

WHERE  S.p teaches S.c

END

The navigational schema contains a diagrammatic description of the relationships
among nodes. Each navigational schema represents the model of a different Web
application.

It is important to stress the similarities and differences among the conceptual and
navigational schema. They are similar because both are abstract and implementation
independent and they represent concepts of the underlying application domain using
objects. However, while the former should be neutral with respect to navigation, the latter
expresses a particular user’s view (in the navigation sense) that is strongly influenced by
the tasks he is supposed to perform.



OOHDM enforces a clear separation between the specification of navigation and
other application’s behavior. However in complex Web applications it may be necessary to
integrate both kind of behaviors (electronic stores are a good example of this need). As
nodes implements Observers they can communicate easily with their conceptual
counterpart in order to delegate actions they can not perform (as for example modifying a
persistent store).

Nodes and Links are the basic primitives of Web applications.  However we need
higher level abstractions to build meaningful and usable navigation structures. We next
introduce Navigational Contexts, a powerful structuring mechanism for the navigational
space.

4-Structuring the navigational space: Navigational Contexts

Web applications usually contain collections of pages dealing with similar concepts,
e.g.: books from an author, CDs performed by a group, hotels in a city, etc. These
collections may be explored in different ways, according to the task the user is performing.
For example, in an electronic bookstore he may want to explore books of an author, books
on a certain period of time or literary movement, etc. It is also desirable to give him
different kinds of feedback in different contexts, while allowing him to move easily from
item to item. For example, it is not reasonable that if he wants to explore the set of all
books written by Shakespeare, he has to backtrack to the index (the result of a keyword
search for example) to reach the next book in the set.

As a result of organizing navigation objects into sets, many navigation operations
refer to intra-set navigation, most notably "next", "previous" and "up". Therefore, sets
define links that allow such navigations, and these links have no direct counterparts in the
conceptual model. In other words, there is no conceptual relationship that directly translates
into intra-set navigation links

Unfortunately, most modeling approaches ignore sets as first-class citizens and
therefore operations such as “next” and “previous” are not usual while traversing sets. To
make matters worse, the same node may appear in different sets: e.g. a book written by
Shakespeare may appear in the set of Romantic books or in the set of books written in
England. We may intend to include some comments about the book in the corresponding
context, e.g.: when accessed as a romantic book, some comments about the role of the book
in the romantic period.

OOHDM structures the navigational space into sets, called Navigational Contexts
represented in a Context Schema. Each Navigational Context is a set of nodes and it is
described by indicating its internal navigational structure (e.g. if it can be accessed
sequentially), an entry point and associated indexes. Generally speaking, contexts are
defined by properties of its elements, which may be based on their attributes or on their
relations, or both. There are four special cases that occur more frequently when stating such
properties to define contexts in OOHDM:

1-Simple class derived – includes all objects of a class that satisfy some property ranging
over their attributes; e.g., “ professors with rank = associate”, “paintings with painter= Van
Gogh.



Graphically:

2-Class derived group – is a set of simple class derived contexts, where the defining property
of each context is parameterized; e.g. “professors by rank”, “paintings by painter” (rank and
painter can vary).

Graphically:

3-Simple link derived – includes all objects related to a given object; e.g., “courses taught by
Professor Smith”, “exhibitions where Sun Flowers was presented”.  Graphically, same as 1.

4-Link derived group - a set of link derived contexts, each of which is obtained by varying
the source element of the link; e.g. “courses taught, by professor”, “exhibitions by painting”
(professor and painting can vary). Graphically, same as 2.

Besides the context definition forms above, there are the following additional forms:

5-Arbitrary - The set is defined by enumeration. For example, a guided tour showing some
pictures in a museum or some outstanding research projects. Graphically, same as 1.

Contexts may also vary during navigation, either because the reader can create or modify
information elements (navigation objects), thus affecting the elements of a derived context,
or because they can explicitly insert or remove objects to the context. Such contexts are said
to be dynamic; examples are history and shopping baskets.

Graphically:

In any of the above, if there is an access structure defined for it, the corresponding
graphical notation contains a small black square in the upper left corner.

Associated to the contexts, there are access structures (indices). They are denoted
graphically by:

Simple Index:

Dynamic Index:

Index with multiple
orderings:

The Navigational Context Schema represents contexts and their access structures. In
Figure 2 we show the context schema for the academic site. Notice that for each Node class



(i.e. Student, Professor, Research Result, Research Project, Laboratory, etc) we have
indicated different kinds of contexts and indexes, such as the Main Menu, the Personnel
Category Menu, etc. Arrows indicate both navigational relationships and possible transitions
among navigational contexts.

by Research Area

Laboratory

Research Project

by Research Area

by Academic

by Laboratory

for Researchers

Professor

by Laboratory

by Research Project

by Research Area

Student

by Laboratory

by Research Project

Research Area

by Professor

Degree

CourseOffering

Current by Professor

by Course

Technical + Administrative

ResearchResults +
StudentsProductio n

by Research Area

Academic

Personnel
Category

Menu

Research
Production

Laboratories

Employees

Degrees

Professors

Personel

Courses

Research
Areas

Students

CourseStudent
by Student

  Results

Project
RFP’sMain

menu

by Professor

Supervised Student

Current
Offerings

Offerings for
Next Semester

Courses Degrees:

Courses
Menu

by Academic

Project Menu
Projects for
Sponsors

Projects for
Researchers

by Degree

Course

by Requirement

by Research Area

by Degree
 by Query

Alphabetic

Alphabetic

by Semester

Enrollment
Choice

for Sponsors

Alphabetic

Alphabetic

Alphabetic

Alphabetic

Alphabetic

Figure 2: Navigational Contexts in an Academic Web site

When the same node (e.g. Research Project, Professor, etc.) may appear in more
than one set (context) we need to express the peculiarities of this node within each
particular context. We may take as a default that “next” and “previous” anchors and links
are automatically defined for traversing each set; but we may also want that some context-
sensitive information appears when accessing a Professor by research area (for example
giving access to the papers he wrote in that area).

In OOHDM this is achieved with InContext classes; for each Node class and each
Context in which it appears, we can define an InContext class that acts as a Decorator
[Gamma95] for nodes when accessed in that particular context. Decorators provide a good
alternative to sub-classing, and prevent us from defining multiple sub-classes of the base
Node class. InContext Classes are organized in hierarchies with some base classes already
provided by the design framework; for example InContext classes defined as sub-classes of
InContextSequential inherit anchors for sequential navigation and for backtracking to the



context index. When we do not define InContext classes, a default one is assumed
according to the type of context defined.

Notice that the Navigational Contexts schema complements the Navigational
Schema by showing the way in which nodes are grouped into navigable sets. Additional
nodes’ behavior can be implemented in InContext classes; In Amazon.com for example
when we access a book in the context of a query we have an option to move it to the
shopping basket. When we access the same book in the context of the shopping basket we
should have other different operations to perform.

Navigational Objects (nodes, links, contexts, indexes, etc) are documented using a
set of cards (like CRC cards [Wirfs-Brock 90]) that provide complete information for
implementers.

Though OOHDM does not pre-suppose a particular implementation strategy for
mapping Contexts to a run-time setting, there are many alternatives whose main difference
are the amount of “intelligence” in client pages and/or the Web server (see [Schwabe98] for
a discussion). Taking into account the increasing trend towards “object-orienting” the Web
[IEEE99], implementing complex navigational structures in Web applications will be
feasible in the near future  (See for example [Segor99]).

5-Concluding remarks and further work

In this paper we have argued that we need several different design models for
building Web applications. We have presented the OOHDM approach that comprises four
different activities, namely: conceptual modeling, navigational design, abstract interface
design and implementation. We have focused on the design of the navigational structure of
Web applications, and have shown that these applications are built as views on conceptual
models. We have described navigational contexts as a structuring mechanism for improving
navigation. In OOHDM the navigational schema describes which classes will be navigated
and how, whereas the navigational contexts schema provides additional information when
dealing with collections of nodes.

As in most complex design domains, just a method (and a set of modeling
primitives) is not enough for coping with the inherent complexity of Web applications. We
need to understand which recurrent problems we solve and be able to reuse good design
solutions to those problems. Design Patterns [Gamma95] are a good strategy for recording
and communicating design expertise about recurrent problems.

During the last four years we have been mining design patterns in the hypermedia
field: we call them hypermedia patterns [Rossi96, Rossi97, Rossi99b, Rossi99c]. We have
identified many recurrent problems and well known design solutions and have recorded
them in the form of patterns. Using these patterns we can improve our ability to build Web
applications; we also simplify the navigational schema as we can use patterns as higher
level constructs, thus reducing the number of connections we have among navigational
classes. As an example the Landmark navigational pattern indicates that when some sub-
system should be easily reached from every node in the application, we should treat it in an
special way and make it perceivable with a standard interface. Examples of Landmark can
be seen for example in the Book, Music, Gift and Auction subsystems at Amazon.com or in
global navigation bars in most Web applications.

When we identify a Node as being a Landmark it is understood that we would be
able to navigate to that node from every page so we don’t need to define all links pointing



to the Landmark.  In such cases not only do we obtain a well-behaved application, but we
also simplify the navigational schema.

We are now working in a project associated with ACM-SigWeb (the ACM special
interest group on Hypermedia and the WWW) for building an online repository of
hypermedia and Web patterns, together with examples, known-uses, implementations of
those patterns, etc.

We are also enriching OOHDM by introducing the concept of Web applications
frameworks (i.e. set of abstract design structures that can be instantiated for different
applications in the same domain); we are defining a notation for describing and
instantiating frameworks [Schwabe99]. In this way we can build even more abstract
conceptual and navigational schemas that may comprise families of related Web
applications. We believe that our approach may help to obtain greater levels of reuse in the
design of Web applications, and as a consequence this will reduce development times and
costs by simplifying evolution and maintenance.

6-References

[ Alexander77] Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King and S. Angel: "A Pattern
Language". Oxford University Press, New York 1977.

[Bieber97] Bieber, M; Vitali, F.;"Toward Support for Hypermedia on the World Wide Web" IEEE Computer 30(1),
January 1997. Also availabale at
http://www.cs.unibo.it/~fabio/bio/papers/1997/IEEEC97/January/IEEEC0197.html

[Cowan95] D. D. Cowan; C. J. P.Lucena, “Abstract Data Views, An Interface Specification Concept to Enhance
Design for Reuse”, IEEE Transactions on Software Engineering, Vol.21, No.3, March 1995.

[Gamma95] Gamma, R. Helm, R. Johnson and J. Vlissides: "Design Patterns: Elements of reusable object-oriented
software", Addison Wesley, 1995.

[Gellersen97] H. Gellersen, R. Wicke, M. Gaedke: “WebComposition: An Object-Oriented Support System for the
Web Engineering Lifecycle” Electronic Proceedings of The Sixth International WWW Conference,
Santa Clara, USA, April, 1997.

[Hester 97] A.M. Hester; R.C.Borges; R. Ierusalimschy; “CGILua: A Multi-Paradigmatic Tool for Creating
Dynamic WWW Pages”, Proceedings of the XI Brazilian Software Engineering Symposium (SBES’97)
pp.347-360, Fortaleza, Brazil, 1997 (available at http://www.tecgraf.puc-rio.br/~anna/cgilua/
cgilua.ps.gz)

[IEEE99] IEEE Internet Computing. Special issue on Object-Orienting the Web. January/February, 1999.

[Ierusalimschy 96] R. Ierusalimschy, L. H. de Figueiredo and W. Celes, "Lua - an extensible extension language",
Software: Practice & Experience 26 #6 (1996) 635-652. (see also http://www.tecgraf.puc-rio.br/lua/).

[ Kim 94] W. Kim, "Advanced Database systems", ACM Press, 1994.

[Mere96]  M.C. Meré, G. Rossi: “Specifying navigational transformations in hypermedia. A temporal logic
framework”. In Bodo Urban (ed) Multimedia’96. pp. 20-31. Springer Computer Science, Springer
Verlag New York, 1996.

 [Nielsen90] J. Nielsen: “Hypertext and Hypermedia”. Academic Press, 1990.

 [Rossi95] G. Rossi; D. Schwabe; C.J.P. de Lucena; D.D. Cowan, “An Object-Oriented Model for Designing the
Human-Computer Interface of Hypermedia Applications”, Proc. of the International Workshop on
Hypermedia Design (IWHD'95), Springer Verlag Workshops in Computing Series. (available at



<ftp://ftp.inf.puc-rio.br/pub/docs/techreports/ 95_07_rossi.ps.gz>).

 [Rossi96] Rossi, A. Garrido and S. Carvalho: "Design Patterns for Object-Oriented Hypermedia Applications".
Pattern Languages of Programs 2, Vlissides, Coplien and Kerth eds., Addison Wesley, 1996.

 [Rossi97] G. Rossi, D. Schwabe and A. Garrido: “Design Reuse in Hypermedia Applications Development”
Proceedings of ACM International Conference on Hypertext (Hypertext’97), Southampton, April 7-11,
1997, ACM Press.

 [Rossi 99 ] G. Rossi and A. Garrido: "Capturing Hypermedia Functionality in an Object-Oriented Framework", to
appear in Object-Oriented Frameworks, Wiley 1999.

[Rossi99b] G. Rossi, F. Lyardet and D. Schwabe: “Patterns for designing navigable spaces”To appear in Pattern
Languages of Programs 4, Addison Wesley, 1999.

[Rossi99c] G. Rossi, D. Schwabe, F. Lyardet: “Improving Web information systems with navigational patterns”
To appear in International Journal of Computer Networks and Applications, 1999.

[Schwabe 95] D. Schwabe and G. Rossi:, “The Object Oriented Hypermedia Design Model”, Comm. of the ACM,
Vol. 38, #8, pp45-46 Aug. 1995. (available at <http://irss.njit.edu:5080/cgi-
bin/bin/option.csh?sidebars/schwabe.html>).

[Schwabe96] D. Schwabe, G. Rossi and S. Barbosa: "Systematic Hypermedia Design with OOHDM". Proceedings of
the ACM International Conference on Hypertext (Hypertext'96), Washington, March 1996.

[Schwabe98] D. Schwabe, G. Rossi: “An object-oriented approach to web-based application design”. Theory and
Practice of object Systems (TAPOS), October 1998.

[Schwabe99] D. Schwabe: “Just Add Water” Applications: Hypermedia application frameworks. Proceedings of
the 2nd Workshop on Hypermedia Development, Darmstad, February 1999. Available at:
http://ise.ee.uts.edu.au/hypdev/ht99w/submissions/SchwabeHT99Workshop.pdf.

[Segor99] C. Segor, G. Rossi, M. Gaedke and F.Lyardet: “Mapping navigational models to Web applications”.
Submitted to WWWCM’99.

[UML 97] UML Document Set. Version 1.013 January, 1997, Rational, 1997. (available at
http://www.rational.com/uml/references/index.html)

[Varela 95] C. Varela, D. Nekhayev, P. Chandrasekharan, C. Krishnan, V. Govindan, D. Modgil, S. Siddiqui, , D.
Lebedenko, M. Winslett: “DB: Browsing Object-Oriented Databases over the Web”. Proceedings of
the Fourth International World Wide Web Conference. pp. 209-220, 1995.

[Vwork96] The Visual Work Programming Environment. Parc Place-Digitalk, 1996.

[Vwave96] The VisualWave Programming Environment. Parc Place Systems. In
http://www.parcplace.com/products/vwave/vwv_prod.htm.

[Wirfs-Brock90`] R. Wirfs-Brock et al: “Designing Object-Oriented software”. Prentice Hall, 1990.


