
1

1An Object Oriented Approach to Web-Based Application Design
Daniel Schwabe* and Gustavo Rossi**

(*)Departamento de Informática. PUC-RIO, Brazil
E-mail: schwabe@inf.puc-rio.br

 (**)LIFIA, Fac Cs. Exactas, UNLP, Argentina; CONICET; UNLM
E-mail: gustavo@sol.info.unlp.edu.ar

Abstract

In this paper we discuss the use of an object-oriented approach for web-based applications
design, based on a method named Object-Oriented Hypermedia Design Method (OOHDM).

 We first motivate our work discussing the problems encountered while designing large
scale, dynamic web-based applications, which combine complex navigation patterns with
sophisticated computational behavior. We argue that a method providing systematic guidance to
design is needed. Next, we introduce OOHDM, describing its main activities, namely: conceptual
design, navigational design, abstract interface design and implementation, and discuss how
OOHDM designs can be implemented in the WWW. Finally, related work and future research in this
area are further discussed.

1. Introduction. The problems of hypermedia design

The emergence of the World Wide Web has raised a new generation of information
systems: those combining navigation through a heterogeneous information space with operations
querying or affecting that information. The WWW provides a simple client-server architecture, and,
most importantly, from the point of view of application design, it introduces the hypertext (or
hypermedia) paradigm.

The first hypermedia applications, typically distributed in CD ROMs, were thought of as
unchangeable applications that were not meant to be maintained or modified for new releases,
possibly as a consequence of physical properties of their support media. The evolution of technology,
most notably the phenomenal growth of the WWW, has given rise to applications that are constantly
modified, that are enriched with new services, and new navigation and interface features are added
according to the organization’s marketing policy. As such, we argue that good web-based
applications should be, first of all, be good hypermedia applications; furthermore, the WWW poses
certain constraints that are reflected mostly in the interface and in the architecture of the
implementation.

Traditional software engineering methodologies, or methodologies for developing
information systems using databases, do not contain useful abstractions capable of easing the task of
specifying applications that embody the hypertext metaphor. For example, they do not provide any
notion of linking, and very little is said about how to incorporate hypertext into the interface. In
addition, as the size, complexity and number of applications grows, a systematic approach is needed
that helps dealing with complexity, and allows evolution and reuse of previously gathered design
knowledge.

Producing applications in which the user may benefit from the hypertext paradigm for
navigating through Web-sites, while performing complex transactions over its information base, is a
difficult task [Gellersen97]. In [Bieber97], the authors point out that while many organizations will
embrace the WWW, there is a risk of losing well-known advantages of hypertext in the web.
Meanwhile, if we look carefully at new products supporting the development of Web-applications

To appear in Theory and Practice on Object Systems. Wiley and Sons, October 1998

2

we find that the suggested approach for building these applications is just designing them as if they
were to run in a non-web environment. As exemplified by Parc-Place’s Visual Wave [VWave96] or
Applied Reasoning’s Classic Blend [CBlend96]), only some aspects related with concurrent access to
shared databases are taken into account. Navigation, which is a distinguishing feature of Web-based
applications, is not considered at all.

 What are the inherent complexities in this kind of software? First, navigation poses many
problems, as repeatedly reported in the literature [Nielsen90]. A healthy navigational structure is one
of the keys to success in hypermedia applications. When the user understands where he can go, and
how he can reach a desired target point, he can benefit the most from the application. When
navigation is combined with multimedia data, new problems appear [Hardman93]. For example,
what happens when we navigate (in) to a node with an active multimedia presentation? In addition,
what happens if we leave it?

Building the interface of a web application is also complex; not only do we need to specify
which interface objects should be implemented, but also the way in which those interface objects will
interact with the rest of the application. For example, we need to distinguish when an interface action
causes navigation to another page, when it is just a local interface effect (for example activating a
pop-up menu), etc.

Experience already gathered in building interactive applications shows that using object-
oriented techniques is a key approach, especially in the case of large scale, evolvable applications.
Many companies are now retrofitting existing interactive applications to the WWW (or to intranets
using the WWW protocols), which entails adding hypertext functionality on top of existing
application behavior. The combination of these functionalities is often difficult, since different design
concerns must be accommodated.

As we discuss in section 2, modern design methodologies tend to neglect one of those
dimensions: in general object-oriented design methods do not provide primitives for specifying
navigation, while hypermedia design approaches emphasize structural aspects, ignoring
computational behavior.

The approach presented in this paper is based on the Object-Oriented Hypermedia Design
Method (OOHDM) [Schwabe 96a; Rossi 96d; Schwabe 95 a; Schwabe 95b]; we show that our method
provides high level abstraction and composition mechanisms aimed at solving most of the
previously mentioned problems. We first describe each of the OOHDM underlying design models
and their design concerns. We discuss how OOHDM designs can be implemented in the WWW.
Finally, we compare our work with others in the hypermedia and object-oriented design field and
discuss further research in this area.

2. The Object-Oriented Hypermedia Design Method

There is a growing consensus about the kind of activities that must be performed with
respect to the software product: modeling or analysis, design, implementation, testing and
maintenance. This is true regardless of the different life-cycle models specifying the sequencing of
processes and products involved in the development of an application (e.g. the spiral and waterfall
model). In this respect, the process of building web-based (or more general hypermedia) applications
is not intrinsically different from the one used when building conventional applications.

In the hypermedia domain there are conflicting requirements that must be satisfied in a
unifying framework. On one hand, in the final application, navigation and functional behavior must
be seamlessly integrated. On the other hand, during the design process we should be able to
decouple design decisions related with the application's navigational structure from those related
with the domain model itself. Since most implementation environments do not give full support to
object-oriented concepts, our design models should easily translate into existing platforms.

According to OOHDM, the development of hypermedia applications occurs as a four
activities process – Conceptual Design, Navigation Design, Abstract Interface Design, and

3

Implementation – that are performed in a mix of iterative and incremental styles of development; in
each step a model is built or enriched.

The cornerstones of the OOHDM approach are

1. The notion that navigation objects are views, in the database sense, of conceptual
objects;

2. The use of appropriate abstractions to organize the navigation space, with the
introduction of navigational contexts;

3. The separation of interface issues from navigation issues;

4. An explicit identification that there are design decisions that need only be made at
implementation time.

The starting point is the elaboration of a model of the application domain, which
determines the universe of discourse. This is done during the Conceptual Design phase, using well
known object-oriented modeling principles [Wirfs-Brock 90, Rumbaugh 91] augmented with some
primitives such as attribute perspectives and sub-systems.

The Conceptual Model represents two kinds of objects: those that will be eventually
perceived as nodes in the navigational model (called Entity Objects by Jacobson [Jacobson 92]); and
those that provide computational support for the application, encapsulating behaviors such as
algorithms, access to databases, etc. The resulting model may possible serve as a basis for many
applications, and does not include any navigation specific information.

One essential distinguishing feature of hypermedia applications is the notion of
navigation, in which the user of an application in this domain navigates in a space made out of
objects. These objects are not the same as the conceptual objects, but rather objects customized to the
user’s profile and tasks. This customization is achieved using the view mechanism between objects,
analogously to views in databases.

In this fashion, navigation object attributes are a “cut and paste” of possibly several
different conceptual object attributes, which is indicated by the patterned boxes in Figure 1.
Navigation objects may also have their own behavior, implementing functionalities beyond
browsing and navigation, e.g., updates and computations in general. When a full O-O environment is
used, nodes may be implemented as observers of conceptual objects.

Another step in structuring the Navigation space is provided by collecting the objects of
the navigational space in meaningful sets called Navigational Contexts. There are several possible
criteria for defining such collections of nodes, based on class attributes and relationships. During
Navigational Design we also define the way in which navigation will proceed by specifying
transformations in the navigational space, i.e. the set of accessible navigational objects at a given
time.

Navigation objects are not directly perceived by the user; rather, they are accessed via
interface objects. Accordingly, the Abstract Interface Design specifies interface objects that are
responsible for mediating user interaction with navigation objects. The interface model specifies
which interface objects the user will perceive; which interface objects will activate navigation; how
multimedia interface objects will be synchronized; and the interface transformations that will take
place.

Finally, the Implementation phase is responsible for mapping conceptual objects,
navigation objects and interface objects onto the particular runtime environment being targeted.
When the target implementation environment is not fully object-oriented, we have to map the
conceptual, navigational and abstract interface objects into concrete objects, i.e. those available in the
chosen implementation environment. This may involve defining HTML pages (or, for example,
Toolbook objects in non Web-based environments), scripts in some language, queries to a relational
database, etc; in this way the author produces the actual hypermedia application to be run.

4

Conceptual Model

Interface Model

Interface Model

Interface Model

Interface Model

Navigational Model

Navigational Model

Object-Oriented View

Object-Oriented View

Figure 1 - Relation among Conceptual, Navigational and Interface Objects in
OOHDM. Navigation classes are views over Conceptual Classes;
Interface objects mediate interaction of Navigation objects with the
outside world, including users. (Shaded boxes stand for Class
Attributes).

In this work we will describe each activity in more detail, discussing with concrete
examples the way in which each design formalism helps in gaining understanding of hypermedia,
and in particular web-based, applications. We define how the designer proceeds from Conceptual
modeling through Navigation design to Interface design and Implementation.

2.1 Conceptual Modeling

During this activity, we build a conceptual schema representing objects, their relationships
and collaborations existing in the target domain. In “conventional” hypermedia applications, i.e.
those in which the hypermedia components will not be modified during their execution, we could
use a structural semantic model [Banerjee87]. However, when either the information base may
change dynamically or we intend to perform complex computations or queries on the objects or the
schema, we need a behaviorally richer object-oriented model.

In OOHDM, the conceptual schema is built upon classes, relationships and sub-systems.
Classes are described as usual in object-oriented models, though attributes may be multi-typed
representing different perspectives of the same real-world entity. We use a notation that is similar to
UML [UML 97]. Class and Relationships Cards, similar to CRC cards [Wirfs-Brock 90] are used as a
documentation aid, helping to trace design decisions forward and backwards. Different processes of
object modeling and design are proposed and discussed by object-oriented methodologies and

5

bibliography in the field. However, there are some modeling decisions appearing in any process that
may impact on the navigational structure of hypermedia applications. In this paper, we will focus on
design decisions affecting such structure.

We briefly describe our modeling primitives in the following paragraphs. As most of them
are slight variations of their counterparts in object-oriented modeling and design methods, we do not
elaborate them further. Instead, we will focus on those issues that affect the navigational design
activity.

In OOHDM the class schema consists of a set of classes connected by relationships. Objects
are instances of classes, and thus, when a relationship holds between classes, it abstracts
corresponding object-to-object relationships. Classes will be used later during Navigational Design
to derive Nodes, and Relationships will be used to derive Links.

Figure 2 contains a simple schema for an online magazine. In this model, there are stories,
which can be essays, translations or interviews; an interview is an aggregation of questions and
answers. Every story has an author, and an interview is also related to the person who grants the
interview.

Q&A
Question: string
Answer: string

Essay
Illustration: [Photo+,Video]

Person
Name: string
Bio: string
Address: string
Telephone: string
URL: string
Email: string
Photo: image

Translation
Link to original
Comments

Interview
Sound
Illustration:

[Photo,Video]

Story
Type: string
Title: string
Sub-title: string
Date: date
Summary: string
Text: string
Distribution: {local,

national}

Is Author of

grants

Related to

Figure 2: Conceptual Model for an online Magazine

It should be noted that there is no class “Magazine” in this schema; the magazine as such
will be realized in the Navigational Design phase.

In this Class Schema, we have emphasized relationships over class behavior for simplicity.
Class attributes are typed, and represent the object’s intrinsic properties (e.g., the story’s title, the
author’s name, etc.). Each possible type is called a perspective, similar to HDM’s [Garzotto 93],
exemplified in Figure 3: the attribute Illustration of an Essay may be either a Photo or a Video.
When multiple perspectives exist, the notation "[p1, p2]" is used, and a “+” may be added next to a
perspective to mark it as default, as is the case for Photo of Illustration. Only the default
perspective must be present in all instances, whereas the others may or may not be implemented.

We will refine this specification during Navigational and Abstract Interface Design by
defining which perspective is shown, when and how. Clearly, when we implement classes in the
conceptual model, we need to specify one instance variable for each perspective.

6

Deciding whether to express a relationship as an attribute, a method or a combination of
both is a design issue that has been largely discussed in the object community. In fact current object-
oriented modeling approaches use relationships as “first-class citizens”, thus relegating the
discussion to the design and implementation step. As an alternative, behavioral approaches such as
Wirfs-Brock’s responsibility driven design [Wirfs-Brock 90] favor using collaboration diagrams
instead of relationships in the style of UML.

From the hypermedia design point of view relationships express an important aspect of the
application domain and they should not be hidden in class attributes (at least until we need to
implement those classes). This means that a relationship should be specified whenever an attribute
represents a complex conceptual entity intended to be explored in the final hypermedia. In fact,
when implementing web applications using an object-oriented architecture, providing access to
relationships will be a responsibility of the source class and will be implemented as a method,
perhaps accessing an instance variable. In [Lange94], an extension to the OMT class diagram
[Rumbaugh91] is presented to enhance relationships.

In our design approach, we provide three abstraction constructs for dealing with
complexity: Aggregation, Generalization/Specialization and a packaging concept, Sub-Systems. The
first one is useful for describing complex classes as aggregation of simpler ones and the second for
building Class Hierarchies and using inheritance as a sharing mechanism. Sub-Systems are a
packaging mechanism for abstracting entire domain models.

Part-of relationships (Book chapters, Car parts) are described using aggregation
relationships. Aggregates in a class definition are similar to components in HDM [Garzotto 93].
Implicit relationships exist between a complex object and its parts (and vice versa) and between part
themselves. These are called structural links in HDM. In the example in Figure 4, an Interview is
composed of Q&As (question-answer pairs).

Choosing to use aggregate objects, complex attributes or relationships is a modeling
decision that may vary from application to application. Given that aggregation is an important
structural relationship, we suggest decomposing an object into parts each time these parts are
supposed to be explored in the hypermedia application as non-atomic ones. Existing heuristics in the
object-oriented modeling domain may be used to identify aggregation structures.

We use the same inheritance semantics as in [Rumbaugh 91] i.e. classes inherit attributes,
part-structure, relationships and behavior of their super-classes. In Figure 5, a Story may be either
an Essay or a Translation or an Interview.

Using a behavioral object-oriented model for describing different aspects of a hypermedia
application allows expressing a rich variety of computing activities such as dynamic queries to an
object base, on-line object modifications, heuristics-based searches, etc. The kind of behavior required
in the conceptual model depends upon the desired features of the application. For many web
applications, in particular those implementing plain browsing (i.e. read-only) functionality, class
behavior beyond linking functionality may seem unnecessary. In this case, the behavior amounts to
accessing a multimedia information base by navigating over relationships, and could be “built-in”
into the model itself.

In contrast, in applications in which the underlying information base may change
dynamically as the effect of user actions, or when the hypermedia network is just a component of a
larger corporate application, we may need to define methods that implement this behavior in
conceptual classes. During Navigational and Interface design, we will specify the way in which
interface objects trigger behavior both in the navigational and conceptual models.

Since OOHDM is a design method and not an implementation framework, we shall assume
that methods for getting the value of attributes of an object are automatically generated. When other
computations must be done, corresponding methods should be specified. Using the terminology of
object-oriented methods, we may say that the Conceptual Model will contain features of both
Analysis and Design Models. When the application will run on top of an environment supporting

7

(distributed) objects, classes in the conceptual model will be implemented directly as they are
defined, specifying multiple perspectives as separate attributes. If not, they will serve as design
specifications for the navigational and interface design activities.

2.2 Navigational Design

The first generation of web applications was intended to perform navigation through an
information space using a single hypermedia data model. The simplicity of HTML as the
implementation language and the lack of a hypermedia design culture resulted in web sites in which
users experienced cognitive overhead and dis-orientation while navigating the web. To make matters
worse, there are no good orientation tools for existing browsers, and most existing tools (such as
MAPA, http://www.dynamicdiagrams.com) provide a map of the “node and link” level, which
quickly becomes unwieldy. In addition, such maps are not well defined in the case of dynamically
generated pages.

In spite of these problems being well known in the hypermedia community (see for
example [Nielsen 90]), they have seldom been taken into account by web-site designers. Most of the
design effort has been usually placed in user interface aspects, and the navigation structure is built
on simple hierarchies. Now that web browsers are the interface, and sometimes the host, for different
kinds of applications, there is a risk that navigation be considered just another kind of application
behavior.

In OOHDM, navigation is considered a critical step in the design of a hypermedia
application. A Navigational Model is built as a view over a conceptual model, thus allowing the
construction of different models according to different users profiles. Each navigational model
provides a “subjective” view of the conceptual model [Harrison 93]. While designing the
navigational structure of a web application, we will take into account several aspects such as:

• Which objects will be navigated, which attributes they possess, and what are the relationships
among these objects and the ones defined in the conceptual schema? We will do this by defining
nodes and links as object-oriented views of conceptual objects and relationships.

• What kind of composition structures exist among navigational objects and how are they related?

• What is the underlying structure of navigation? In which contexts will the user navigate? We
will introduce the concept of navigational contexts, an architectural primitive for organizing the
navigation space.

• We need to decide whether navigated objects may look different according to the context in
which they are visited, and we must clearly specify those differences. We shall use InContext
classes to “decorate” navigational objects.

• Which connections and access structures exist among objects that will be navigated (links, paths,
indices, guided-tours, etc.)?

• How does navigation proceed when the user “jumps” from one object to another, i.e., what is the
effect of navigation on the source and target object and possibly on other related objects as well?

 Navigation design is expressed in two schemas, the Navigational Class schema and the
Navigational Context schema. The navigable objects of a hypermedia application are defined by a
navigational class schema, whose classes reflect the chosen view over the application domain. In
OOHDM, similarly to HDM [Garzotto 93] and RMD [Isakowitz 95], there is a set of pre-defined types
of navigational classes: nodes, links, and access structures. The semantics of nodes and links are the
usual in hypermedia applications, and access structures, such as indices and guided tours, represent
possible ways of accessing nodes.

 The Navigational Transformations specification describes the dynamics of the application,
showing the way the navigational space changes when the user navigates, i.e. which nodes are

8

activated and which are deactivated when a link is followed. The default navigational semantics in
OOHDM is that when a link is followed, the source node is deactivated and the target node
activated. This interpretation is the default one commonly found in Web browsers. Since
navigational dynamics that are more complex are hard or infeasible for implementation in the web,
we will not discuss the primitives of the Navigational Transformations schema further. The reader
can refer to [Meré 96, Rossi 96c] to see a temporal logic based specification of navigational
transformations and [Rossi 96d] where a variant of Harel’s Statecharts and Coleman’s Objectcharts
have been used.

 In order to define nodes as object-oriented views of conceptual classes defined during
conceptual design, we use a query language similar to the one in [Kim 94]. We allow a node to be
defined by combining attributes of different related classes in the conceptual schema. Nodes possess
single typed attributes, link anchors, and may be atomic or composite, as in [Gronbaek 94]. Anchors
are instances of Class Anchor (or one of its sub-classes) and are parameterized with the type of Link
they host. The standard navigational behavior when a node receives the message “anchorSelected ()”
is to delegate the message to the corresponding anchor, which in turn activates the corresponding
link. In this way it should be possible to re-define the standard Node or Anchor behavior so as to
perform checks before navigation proceeds.

 In an analogous way, links reflect relationships intended to be explored by the final user
and are also defined as views on relationships in the conceptual schema.

 Links connect navigational objects and may be one-to-one or one-to-many. The result of
traversing a link is expressed by either defining the navigational semantics procedurally as a result
of the link's behavior or by using an object-oriented state transition machine similar to Statecharts
[Rossi 96d]. Access structures (such as indices or guided tours) are also defined as classes and
present alternative ways for navigation in the hypermedia application. In object-oriented
architectural terms, the relationships among nodes and conceptual objects, and among links and
relationships in the schema, are expressed as instances of the Observer design pattern (see
“Observer” pattern in [Gamma 95]). The general syntax for defining a node’s attributes is shown
below (the syntax for links is similar).

 NODE name [FROM className: varName] [INHERITS FROM nodeClass]

 attri: type1 [SELECT name1] [FROM class1:varName1, classj: varNamej

 WHERE logical expression]

 attr2: type2 [SELECT name2]...

 ...,

 attrn: typen [idem]

 END

 Where

• name is the name of the class of nodes we are creating.

• className is the name of a Conceptual Class (from which the node is being
mapped).

• nodeClass is the name of the super-class

• attri are the names of attributes for that class, typei the attribute’s types.

• namei are the subjects for the query expression and vari are mute variables used to
express logical conditions.

• -logical expression allows defining classes whose instances are a combination of
objects defined in the conceptual schema when certain conditions on their attributes
and/or relationships hold.

As an example, consider the online magazine example in Figure 2. With this simple syntax
we can define, for example, a Node Class Story, including as one of its attributes the name and
bio of the Person who wrote it and an anchor of a link to that Person. Note that, in the

9

Conceptual model, the Person’s name and bio are attributes of Class Person. Considering
Nodes and Links as views on the Conceptual Classes allows one to create navigational objects
opportunistically, according to user profiles and tasks, without modifying the conceptual objects.

The example above will result in the following Node definition:

NODE Story [FROM Story:St] [INHERITS FROM Person]

author: String [SELECT Name] [FROM Person:Pr WHERE Pr Is Author of St]

auhtor_bio: String [SELECT Bio] [FROM Person:Pr WHERE Pr Is Author of St]

.... (other attributes “preserved” from the conceptual class Story}

toAuthor: Anchor (Is Author of)

END

Note that the value of the toAuthor attribute is an anchor that is parameterized with the
Link class Is Author of. When defining the interface appearance of Node Class Story we can, for
example, make the anchor appear as an invisible button on top of the name of the author (attribute
author). Though it may seem that both attributes have the same behavior, only the anchor acts in
response to an interface event.

Figure 3 contains a navigational schema for the online magazine. Notice that in this
application it was decided that Persons (cf. Figure 2) should not appear, and therefore the relevant
information was included in class Story, as exemplified in the previous paragraph. The same has
been done to the Person who granted an Interview, which is a sub-class of Story.

Q&A
Question: string
Answer: string

Essay
Illustration: [Photo+,Video]

Translation
Link to original
Comments

Interview
Interviewee:string [SELECT

Name] [FROM Person:Pr WHERE
Pr Grants St]

Recording: Sound
Illustration: [Photo,Video]

Story
Type: string
Title: string
Sub-title: string
Date: date
Summary: string
Author : string [SELECT Name] [FROM

Person:Pr WHERE Pr Is Author of St]
Author_Bio: string[SELECT Bio] [FROM

Person:Pr WHERE Pr Is Author of St]
Text: string
Distribution: {local, national}

Related to

Figure 3 - Navigational Schema of the online Magazine. Notice that class Person
does not appear; the author’s attributes are now part of the Story.
The same happens to the Person who grants an Interview.

Well-designed hypermedia applications must take into account the way in which the user
explores the hypermedia space. Redundant information should be judiciously used and we must be

10

able to help the user to choose the way in which he navigates in a consistent and controlled way.
Unfortunately, nodes and links are not enough to fulfill this goal, even if we allow compositions as in
the Dexter model [Gronbaek 94]. Though the usual solution to this problem is to implement
orientation tools, we also think that higher level architectural navigation primitives must be used –
this is the point where navigational contexts appear.

In OOHDM, the main structuring primitive of the navigational space is the notion of
navigational context (see [Schwabe94, Schwabe 95b, Barbosa 95] for a more extensive discussion). A
navigational context is a set of nodes, links, context classes and other (nested) navigational contexts.
It may be defined intensionally or extensionally, by either defining a property that all nodes and
links in the context possess, or by enumerating its members. The definition of a context also includes
a traversal order of its elements, and the existence or not of associated access structures.

A context can be defined in six basic ways:

1. Simple class based – Objects in this kind of context belong to the same class C and are
selected by giving a property P that must be satisfied by all elements: Context = {e |

P(e), e ∈ C}. A common case is when it includes all instances of a class (P is
identically true) – e.g., all stories.

2. Class based group - Is a set of contexts, each of which is a simple class based context. It
is specified by giving a parameterized property and letting the parameter assume all
possible values (in a finite enumerable domain). For example, Stories by type is a
group of contexts; its elements are simple class based contexts, one for each possible
value of type, containing stories whose “Type” attribute equals type. Group =

{Contexttheme}, Contexttheme = {p | p.type=type, p ∈ Story}.

3. Link based – Objects in this kind of context are of the same class and are selected when
they belong to a 1-to-n relationship. For example, “all Stories by Bob Woodward”.
Context = {p | Is Author Of(Bob Woodward, p), p ∈ Story. Note that a particular
case of this type is the context formed by all elements that are part of a composite
object.

4. Link based group - Is a set of contexts, each of which is a link-based context. It is
specified by giving a 1-to-n relationship and forming the link based contexts for each
possible value of the source of the relationship. For example, “Stories by Author”.
Group = {ContextAuthor}, ContextAuthor = {p | Is Author Of(Author, p), p ∈ Story}.

5. Enumerated - In this kind of context, elements are explicitly enumerated, and may
belong to different classes. A typical example is a Guided Tour.

6. Dynamic - In this kind of context elements are inserted during navigation. An example
of this type of context is the “history” maintained by many browsers. Another example
is a “shopping basket”, which the reader builds while browsing through objects (for
example, books) in other contexts.

Navigational contexts play a similar role as collections [Garzotto 94] and have been
inspired by the concept of nested contexts [Casanova 91].

Navigational contexts organize the navigational space in consistent sets that can be
traversed following a particular order; they should be defined in such a way as to help the user to
perform his intended task.

In Figure 4 we show the Navigational Contexts Schema for the online magazine; notice that
the magazine (issue) is formed by stories that are grouped according to several different criteria.

11

We briefly explain the notation used in the diagram. Indices are indicated by boxes with
bold, dashed lines, such as the “Main Menu”. The simplest type of context (sets of nodes) is denoted
by

Highlights

Figure 4: Notation for highlights

Story

by Author

by Section

by QueryMain
Menu

Index of
Sections

Highlights

Summary

Highlights

Authors Author
Index

by reference

Query
IndexQuery

 Figure 5 - Navigational Context Schema for the online magazine
application

This indicates, in this example, a set of stories that are featured as “highlights” of a given
issue.

In many situations, there will be groups of contexts that encompass nodes of the same
class, according to different criteria. For example, Stories may be organized according to the different
sections or authors. We denote this by

by Author

by Section

Story

Figure 6: Notation for Story

In this case, we have two groups of contexts – one made out of contexts that gather stories
for each section and one that gather stories by each author. The black box on the top left corner
indicates that the group possesses an index to its components. The definition of the context itself will
specify the types of navigation allowed inside the context; typical values are “sequential”, “circular
sequential”, “index” (where it is possible to navigate only from an index to an element and back), or
“index sequential”.

12

The absence of a dashed line between the groups indicates that it is possible to switch
automatically from a context in one group to a context in the other group. This is not the case for
context groups “by reference”, “by query”, and for the simple context “highlights” , which are all
separated by dashed lines in Figure . This means, for example, that if the reader is looking at a story
in a given section, he will be allowed to navigate to either “the next story in this section” or to “the
next story by the same author”. However, he would not be allowed to navigate “to the next
highlight” (which would not even make sense!).

The arrow going from “Story” back to itself indicates that stories may refer to other related
stories. If the reader is looking at a story, and then follows a link to a related story, he will reach the
context in which all related stories are grouped. At this point, he must go back either to the original
story, as indicated by the double arrow, or to the summary index, as indicated by the arrow from
“Story” to the “Index of Sections”.

Nodes are enriched with a set of special classes (we call them InContext classes) that allow
a node to look different and present different attributes (including anchors), as well as methods
(behavior) when navigated within a particular context (see Figure 5). For example, when traversing
“Stories by Bob Woodward”, the author’s bio might not be included as an attribute of the story,
whereas it might be included when traversing “Highlights” – see Figure 6. This enrichment follows
closely the structure of the Decorator Design Pattern [Gamma95].

Node

Decorator

Context
 node

Link

Figure 7 -A node in a context is constructed from a basic node and a decorator.

Story
Type: string
Title: string
Sub-title: string
Date: date
Summary: string
Author : string [SELECT Name] [FROM

Person:Pr WHERE Pr Is Author of St]
Text: string
Distribution: {local, national}

Highlights

Author_Bio: string[SELECT Bio] [FROM
Person:Pr WHERE Pr Is Author of St]

Next: anchor(“next”, “Highlights”)
Previous: anchor(“previous, Highlights”)

Figure 8 Specification of InContext class for “Story” within “Highlights”
contexts. In this case, the author’s bio is only seen when a story is
being accessed within the “Highlights” context.

Notice that the “previous” and “next” links are also attributes that belong to the InContext
class for “Story” in the “Highlights” context. Other contexts, if they have sequential navigation,
would add their own separate “next” and “previous” anchors.

13

2.3 Abstract Interface Design

Once the application’s navigational structure has been defined, we must specify its
interface aspects. This means defining the way in which different navigational objects will appear,
which interface objects will activate navigation and other application functionality, and which
interface transformations will take place and when.

A clean separation between both concerns, navigational and abstract interface design,
allows building different interfaces for the same navigational model, leading to a higher degree of
independence from user-interface technology. In addition, this separation allows a better
understanding of the overall application structure by clearly indicating which transformations in the
interface are also navigational transformations. It also indicates which are simply local interface
transformations that do not affect the state of the navigation and therefore do not require accessing
the web server.

Though it has been argued that the user interface aspect of interactive applications (in
particular web applications) is a critical component, modern methodologies tend to neglect this
aspect. They relegate the specification of the interface to implementation-dependent tools, and
therefore design decisions at this level are seldom documented. Moreover, as implementing the
interface of Web applications is usually done by means of specialized HTML editors, many critical
aspects of the interface may be ignored.

In OOHDM, we use the Abstract Data View design approach for describing the user
interface of a hypermedia application [Cowan 95]. ADVs are objects in that they have a state and an
interface, where the interface can be exercised through messages (in particular, external events
generated by the user). ADVs are abstract in that they only represent the interface and the state, and
not the implementation. ADVs have been used to represent interfaces between two different media
such as a user, a network or a device (a timer, for example) or as an interface between two or more
Abstract Data Objects (ADOs). ADOs are objects that do not support external, user-generated events
[Cowan 95]. From an architectural point of view, ADVs are observers for ADOs, so the
communication protocol among interface and application objects follows the rules described in the
Observer Design Pattern [Gamma 95].

An ADV used in the design of web applications can be viewed as an interface object. It
comprises a set of attributes (and nested interface objects) which define its perception properties, and
the set of events it can handle, such as user-generated events. Examples of user-generated events are
MouseClick, MouseDoubleClick, MouseOn, etc.. ADVs can be easily implemented in object-oriented
environments for the Web (such as VisualWave, Classic Blend or Java’s ones) or may be translated to
HTML documents.

Attribute values may be defined as constants, thereby defining particular styles of
appearance such as position, color, or sound. The ADV interface model allows treating these
features in an abstract way, relegating them to the implementation step. In general, the ADVs specify
the organization and behavior of the interface, but the actual physical appearance or the attributes,
and layout of the ADV on screen real estate is done in the Implementation phase.

A reserved variable, "perceptionContext", is used to indicate modifications to the
perception space (i.e. the set of perceivable objects at a given moment). When we want to make some
object perceivable we add it to perceptionContext, and elements removed from perceptionContext
are no longer perceivable.

In the context of OOHDM, navigational objects such as nodes, and indexes will act as
ADOs, and their associated ADVs will be used for specifying their appearance to the user. We will
use the term ADV for referring to interface classes and objects. When necessary we will talk about
ADV classes.

Different abstraction and composition mechanisms are used in the ADV design approach;
first ADVs may be composed by aggregation or composition of lower-level ADVs, thus allowing the
construction of user-interfaces with nested perceivable objects. Suppose, for example, that we have

14

an application about paintings. ¡Error!No se encuentra el origen de la referencia.7.a
shows how an ADV describing a painting could be made out of three ADVs, containing an image,
text, and a button. Furthermore, ADVs may be organized in generalization/specialization hierarchies
that provide a powerful conceptual framework for defining hierarchies of interface objects. In
¡Error!No se encuentra el origen de la referencia.7.b, we show the use of inheritance in
ADVs.

ADV Painting

ADV ImageField

ADV ButtonADV TextField

 Application

AnchoredText (is a TextField)

Description (is a Button)

Anchors: {Anchor}

Figure 9: ADVs can be aggregations Figure 10: ADVs use inheritance

In ¡Error!No se encuentra el origen de la referencia.7.b, AnchoredText is an
Interface Object that adds a set of anchors (implemented for example as hotwords) to the more
general TextField. Meanwhile Description is a specialized Button by adding a more customized
behavior (not shown in the Figure). When we implement our Web application using an environment
supporting certain particular kinds of interface objects, we may use them as the primitive ADVs for
producing our design specification.

In summary, ADVs, allow us to express:

• the way in which interface objects are structured using aggregation and
generalization/specialization as abstraction mechanisms. ADVs express the static layout
structure that implements the interface metaphor [Hannemann 93]. ADVs allow defining the
interface appearance of navigational objects and other useful interface objects (such as menu
bars, buttons and menus).

• the way in which they are statically related with navigation objects. We use Configuration
Diagrams [Coleman 92] as a diagrammatic tool for expressing these relationships.

• how they behave when reacting to external events; in particular how they trigger navigation
and which interface transformations occur when the user interacts with the application. We
use ADV-Charts [Carneiro 94], a derivative of Statecharts, that adds both structural and
behavioral nesting and a Petri-Net like notation for expressing synchronization issues typical
of multimedia data. For reasons of space, will not elaborate ADV-Charts in this paper.

The modeling constructs we use during navigational and abstract interface design are very
similar – in fact, we use classes and objects with a formal connection model. Consequently, we
obtain a seamless transition between both activities, allowing incremental construction of the
navigational and abstract interface models. At the same time, relevant design decisions are recorded
using a notation that is powerful and concise. In Figure 8 we show an ADV corresponding to the
design of the Portinari web site (http://www.portinari.org.br/) a hypermedia application containing
part of the work and documents related to Candido Portinari, a famous Brazilian painter (see also
Figure 9).

15

Picture
name: String
iImage: Bitmap

ADV Painting

theme: String

date: String

techniqueText

comments: Text

Description

Trajectory

People

ShowDescription ShowReference

ShowHistory

 InContext Theme

Previous Next

Figure 11: ADV Painting in Portinari Web Site

ADV Painting contains some attributes describing certain aspects of the painting and many
nested ADVs such as Picture, Description, Trajectory and People. In the notation of Figure 9
Description, Trajectory and People are not intended to be shown at the same time and so their ADVs
are overlapped. ADVs ShowDescription, ShowReference and ShowHistory are active controls
allowing to show one of the previously mentioned ADVs. ADV InContext_Theme implements the
interface of the InContext Class Theme and provides navigation controls inside the Navigational
Context: Paintings of a Theme. Similar ADVs must be specified for other Navigational Contexts such
as Paintings of a Technique.

While the above diagram shows the static nature of Painting’s interfaces, the dynamics are
described using ADV-charts. In a slight variation of Statecharts, we specify that when
ShowDescription is clicked, it sends the message display to Description and the same occurs for
ShowReference and ShowHistory. Note that this is a pure interface effect not involving navigating to
another node. Meanwhile, when the Previous interface object is clicked, it sends the message
anchorSelected (previous) to the corresponding ADO, in this case an InContext Object that
communicates with the corresponding anchor and thus we navigate to another painting. Even when
the implementation is not object-oriented, this communication model is easy to implement in most
platforms, as discussed in section 2.4.

To end this section we show in Figure 9 the real interface of Portinari web site and how
abstract interface objects are related with their implemented counterparts.

16

Picture
name: String
iImage: Bitmap

ADV Pai n t i ng

t hem e: St r ing

dat e: St r ing

t echni queTex t

com m ent s: T ex t

Des cr i pt i on

Tr aj ect or y

Peopl e

Show Desc r i pt ion Show Tr aj ect or y

Show People

 InCont ex t Them e

Pr ev i ous Nex t

Figure 12: ADVs and their relationship with “real” interface objects

2.4 Implementation

In this phase, the designer will actually implement the design. Up to now, all models were
deliberately constructed in such a way as to be independent of the implementation platform; in this
phase the particular runtime environment is taken into account. We will concentrate on how
OOHDM designs can be implemented in the WWW, taking care not to fix a single alternative, since
there are many possible approaches through which this can be achieved.

When the implementation phase is reached, the designer has already defined the
information items that are part of the problem domain. He also has identified how these items
should be organized according to the user’s profile and tasks; he has decided what the interface will
look like, and how it will behave. In order to implement all of this in the WWW environment, the
designer has to decide how the information items (both conceptual and navigation objects) will be
stored. He must also decide how the interface appearance and behavior will be realized using HTML
and possibly use some extensions. Notice that, in general, the actual appearance will be defined by a
graphics design professional that should be part of the design team.

Although OOHDM is cast in terms of OO models, it does not require an OO
implementation environment; an implementation based on an OODMBS (O2) (but not on the web) is
described in [Milet 96]; Java-based implementations are under development. Section 3 contains a
brief description of other implementation approaches.

2.4.1 Mapping Information Items

The information items (which correspond to the ADOs in the Abstract Interface Model)
may be stored in files or in a database. Due to the nature and complexity of the types of applications
for which OOHDM is most suited, we strongly recommend using a database to store the Conceptual
and Navigation objects. Since the majority of DBMSs available on the market today are relational, a
mapping of the OO models onto equivalent relational models must be made. There are several
techniques and heuristics for doing this – see for example, [Keller 97]. The methods associated with
the classes are implemented as a set of procedures that access the database to perform their
computations.

17

To illustrate the type of design decisions, we will briefly discuss one mapping alternative.
Each class in the OO model to be implemented is mapped onto a table, where each column stores an
attribute, and each row corresponds to an object of that class. A distinguished attribute may be used
as a database key, or an internal identifier, which corresponds to an object handle, can be generated
and used as a key.

For attributes whose type is not supported directly in the DBMS (e.g. multimedia data), a
separate auxiliary table must be implemented, and the object’s attribute stores the Id of a row in the
corresponding auxiliary table. Alternatively, it stores the name of a file in the operating system,
which contains the actual value. Both alternatives have shortcomings; for instance, the first requires
extra joins, and the second is vulnerable to changes outside the control of the DBMS. Unfortunately,
this can only be avoided if the DBMS offers support for complex data types, as is becoming more
common in the latest generation of products reaching the market.

In section 2.2 it was stated that the Navigation Model is a view over the Conceptual model.
The designer has the option of reflecting this organization in the databases corresponding to each
model. In other words, he may define the database containing the Navigation objects (nodes, links,
etc...) as a view, supported by the DBMS, of the database corresponding to the Conceptual model. In
the case where the DBMS does not directly support the view mechanism, or for efficiency reasons,
the designer has the option of computing the view by hand. In this case, he will only implement the
Navigation model, since it is the one the user will be accessing. Evidently, this alternative has
shortcomings in terms of schema evolution, which become evident when the same Conceptual
database is used as the basis for several applications. This is the case, for example, when companies
have sites in their intranets, and part of these sites is visible (usually with a different interface) in the
WWW.

In addition to mapping class definitions into whatever database model (relational, OO,
etc...) being used, it is also necessary to implement “InContext” classes, which function as decorators
for objects within particular contexts. Typically, this entails enriching the data model used in the
database to account for the added attributes, and defining control functions that make these
attributes accessible in the appropriate contexts. If the implementation is based directly on the file
system, these control functions will access additional files containing the contextual information.

Once the databases are defined, they must be integrated in the WWW environment. There
are many ways in which this can be done [Hunter 95, Varela 95], and we will not elaborate this
further; it suffices to say that any of these techniques may be employed. In this respect, the criteria for
choosing the integration method are the same as other applications, as discussed in the literature.

2.4.2 Implementing Contexts

Whereas the mapping of ADO’s into implementation objects is somewhat obvious, the
implementation of contexts is more complicated. The supporting database model or set of files must
also contain the context definitions. With the exception of arbitrary contexts (whose specification is
essentially an enumeration of its members), other types of contexts include a query or function
specification that must be evaluated to compute the members of the context.

Navigation operations within contexts require keeping state information. For example, to
determine “what is the next story by this author” requires knowing which story the user is currently
looking at, which stories make up the referenced context (“Stories by author”), and what is the
ordering defined for that context.

In terms of the WWW, this means that either this state information is kept within the
database or file structure being used, or special control information is kept on the side to represent
the navigation state. In this case, any of the better known techniques for keeping state in the WWW
may be employed: passing state information within URLs, from page to page; keeping state
information in hidden fields passed on from page to page; or using cookies. All of these techniques
require using CGI scripts to implement navigation, which poses no additional requirements since
CGI scripts are most likely already being used for database integration.

18

A different technique that has also been employed is to represent ADOs using frames and
Javascript. The ADVs are mapped onto framesets, and the root frame contains variables that store
both instance data for the ADOs, and context information, as well as scripts to manipulate them.
These scripts also implement navigation operations within documents, which are stored in other
frames in the frameset. The advantage of this approach is that state maintenance is done entirely
within the client machine; the disadvantage is that it breaks down for large systems as one reaches
the limits in size for Javascript programs. It should be noted that this technique to distribute
computation to clients might also be used in combination with the previously mentioned ones.

2.4.3 Implementation of the Interface

The actual interface organization and behavior is specified in the ADVs, and the physical
layout and appearance must be defined in this phase. Client interfaces in the WWW may be
implemented using several alternatives – plain HTML, HTML with Javascript, HTML with plugins,
HTML with Java, pure Java, etc... – but we will concentrate on the first two.

The implementation of ADVs requires defining page layouts in HTML that are consistent
with the ADV specifications. In those cases when the values of instance variables are computed at
runtime, pages must be generated dynamically, based on HTML templates previously specified by
the designer. These templates usually contain a mixture of HTML code and calls to functions in some
scripting language. The execution of these functions will retrieve or compute the instance data to fill
in the missing data that make up the final HTML page.

We have designed and implemented an environment based on the scripting language Lua
[Ierusalimschy 96] and on the CGILua environment [Hester 97] called OOHDM-Web [Pontes97]. This
environment implements templates that are a mixture of plain HTML and calls to functions in a
library giving access to the Navigation objects. These objects are stored in a relational database
accessed via ODBC using an approach similar to what has been described in section 2.4.1. Figure 10
contains a schematic representation of the architecture of the OOHDM-Web environment. Other
commercial examples of the use of templates are Cold Fusion [http://www.allaire.com] and
StoryServer [http://www.vignette.com]; however, they are not integrated with any methodology or
model.

HTML Pages

Browser

Interface Appearance OOHDM Navigation SchemaOOHDM-Web
Environment

 - Tables describing navigation
classes

- Tables identifying contexts
- Tables describing contexts

Template mixing
HTML with
commands using
OOHDM-Web library
functions and CGI-
Lua HTTP Server

Figure 13 - The structure of the OOHDM-Web Environment

As a brief illustration, consider the table in Figure 1, which would be a simplified
implementation of class Story in Figure 3.

19

Class Story

#key title text image
gov Governo aposta nos

pequenos
 bla bl bla

part participação é tímida no no no
balc Balcões SEBRAE bla no no

Figure 14 A relational table implementing the class “Researcher”

In Figure 2, we show a screen of an index to the “Story by Section” context (see Figure 4).
This screen is actually generated from the template shown in Figure 3 where one can see the function
calls to the OOHDM-Web library functions ”Index” and “Vertical”.

Dynamically
Generated

Figure 15 Index of Stories by Section

In this example, the “Index” function call will generate a list of Story titles, in alphabetical
order, accessing the table in Figure 1, and display it using the function “Vertical”. This function, in
turn, generates a one-column HTML table where each element of the list is in a separate row. It
should be noted that in this example, the designer had to define the contexts by creating the
appropriate entries in the database, populate the databases with class instances, and define the
HTML templates for presentation. The rest of the implementation is automatically generated by
functions in the OOHDM-Web environment.

20

$| Index {context =
‘Story_by_Section’,
anchor = ‘title’,
grouping_attribute =
‘image’ , funtion =
‘Vertical()’} |$

Figure 16: An uninterpreted template for the page shown in Figure . Notice the
call to OOHDM-Web library functions “Index” and “Vertical”.

There are several implementation decisions that must be made regarding the design of
page layouts. We briefly discuss a few in order to illustrate the set of tasks the designer must
undertake. One of the first decisions to be made is whether anchors will be inserted within the
contents of nodes, or will be kept separate. The first alternative usually requires insertion by hand;
the second alternative is more amenable for either automated or semi-automated processing of link
authoring,

For example, many sites carrying news stories, such as CNET’s http://www.news.com, or
ZDNet’s AnchorDesk (http://www.anchordesk. com) show links in a separate area , except for links
to companies appearing within the text, which are likely to be generated automatically. Some
authors also argue that putting anchors inside the text stimulates users to navigate away from the
site, so this technique encourages users to focus on the node’s contents before looking for other
places to go.

A second type of decision has to do with dealing with screen real estate. Quite frequently,
the amount of information to be displayed is much bigger than what is possible to show without
cluttering the screen. In such situations, a common solution is to use the “Information on Demand”
design pattern (see [Rossi 97]), whereby only the most important information is shown up front, and
the rest is only shown on demand by the user.

For more complex interface behavior, current basic browser capabilities are somewhat
limited. For example, the ADV-chart may specify that an anchor (active ADV) be highlighted when
it is the focus of attention, i.e. when it receives the external event MouseOn; its reaction is to send
itself the message highlight. To achieve such effects, the browser functionality can be extended with
functions in Javascript; an example can be seen in http://www.reference.com/javascript. Similarly
and other extensions to browser functionality can be obtained using Java applets or plugins such as
Macromedia’s Flash or Shockwave. Many features may also implemented using Cascading Style
Sheets and Dynamic HTML, although only the most recent generation of browsers supports it.

The use of templates for generating pages has many advantages. First, it is more consistent
with the modeling approach, reducing the gap between design steps. Second, it makes it very easy to
change the appearance of an entire application without extensive recoding of individual pages.
Third, it allows the incorporation of other types of approaches that extrapolate plain HTML, such as
the ones mentioned in the previous paragraph.

21

The constant evolution of standards, highlights the need to factor out as many design
decisions as possible, to allow an application to change its implementation of the interface, taking
advantages of newly available functionalities. This separation minimizes the amount of re-coding
that must be done in the implementation when new functionalities are used in the runtime
environment, as a consequence, for example, of new standards.

2.4.4 Statically versus Dynamically Generated Sites

The use of databases to store information items and context information, and the use of
templates, seem to indicate that applications using this approach must necessarily be implemented
as dynamically generated sites. These are sites where pages do not exist as files, but are the result of
computations triggered every time a document is requested from the server. While this may often be
the case, it is not always true.

Take for example an application domain in which all the information items are known
before application deployment - in fact, most sites that are currently in the WWW are of this kind.
This means that, even if the data is stored in databases, these databases do not change (or change
very infrequently) over time. In this case, entire sites defined using the approach described in the
previous sub-sections may be “compiled” before application deployment, pre-computing and
generating static pages and storing them in files that are directly accessed by the server. Accordingly,
all links are represented as static URLs, and it is not necessary to use any of the mechanisms
previously mentioned.

 This solution keeps the advantages in terms of application maintenance and evolution,
without paying the performance price. This approach is used in the NetObjects Fusion tool
[http://www.netobjects.com]

There are, of course, cases in which this approach is not feasible, either because the data
changes very frequently (e.g., a news site such as http://www.news.com), or because it depends on
user input (e.g., an online store such as http://www.amazon.com). Even in such cases, it might be
worthwhile to partition the site into sub-sites, such that the dynamically generated part is in one sub-
site, and the rest, which can be static, is in another sub-site(s)

3. Using OOHDM

The models used in the four phases discussed in the previous section are sufficient to allow
the design of most web-based information systems. Nevertheless, as with any method, there is
additional knowledge that is gathered by designers in practice, which is not part of the method itself.
The research around OOHDM includes several developments in this direction that are being carried
out, but are not reported here for reasons of space; we briefly outline them to give an overall picture
of OOHDM and related research.

One approach that has been recently used to capture design knowledge, especially in the
OO field, is the use of Design Patterns, which systematically name, explain and evaluate important
and recurrent designs in software systems. They describe problems that occur repeatedly, and
describe the core of the solution to that problem, in such a way that we can use this solution many
times in different contexts and applications. Looking at known uses of a particular design pattern, we
can see how a successful designer solves recurrent problems. In this way, we claim that using design
patterns designers can profit from design knowledge that exists in several communities, such as
hypermedia or user interface design

We have been collecting design patterns suitable for hypermedia application design [Rossi
97]. Our objective is to develop a system of inter-related patterns dense enough to be able to express
complete designs as the successive application of patterns in this system. We have structured these
patterns in three sub-groups, namely architectural, navigation and interface patterns.

Architectural patterns give guidelines for implementing software substrates for
hypermedia applications. These patterns are quite similar to patterns in [Gamma 95], since they

22

address problems such as decoupling navigation from other kinds of behaviors, organizing
hierarchies of link and node types, decoupling link activation from the process of determining the
link end-point. More details can be found in [Rossi96a, Garrido 97].

Patterns in the navigation category help the organization of the navigational structure of a
hypermedia application to make it clear and meaningful for the intended readers. They address
recurrent problems whose solution determines the degree of success of hypermedia applications. An
interesting example of a navigation pattern is the “Active Reference” pattern, whose goal is to
provide a perceivable and permanent reference about the current status of navigation. It combines an
orientation tool with an easy way to navigate to a set of related nodes, at the same or higher position
in the navigation structure. This pattern helps in building simple path viewers currently not
provided by current WWW browsers.

The “Active Reference” pattern has been used in many web-sites for improving navigation.
For example, in http://city.net/countries/ brazil/rio_de_janeiro, there is a bar with a representation
of the logical path from the root to the current node. The reader has a simple way to understand
where he is, where he can go next while accessing data about a city, in this case Rio de Janeiro. See
[Rossi 97] for a complete description of this pattern.

Interface patterns are meant for hypermedia GUI designers. They are abstract and therefore
independent of the environment used for the implementation. Graphical interface design is a
complex task, concerned mainly with finding the right combination of elements (both in quantity and
in their spatial relations), in such way that those elements interact for an effective presentation of the
information.

Patterns in this group can be also applied outside the realm of hypermedia applications, in
the broader context of GUI design. For example the “Information/Interaction decoupling” design
pattern is aimed at solving the problem of how to make the interaction between the application and
the user clearer, at the graphical interface of a node. This pattern is particularly useful in web sites
when pages are generated dynamically and we cannot define link anchors as hotwords embedded in
the text.

The “Information/Interaction Decoupling” pattern gives clear guidelines with respect to
the physical placement of navigation anchors. The “Behavioral Grouping” design pattern helps the
designer build an interface in such a way that the user can easily understand the kind of operations
he is allowed to perform in the interface. This pattern solves the problem of organizing the interface
when many different kinds of transactional, navigation and interface functionalities must be
provided simultaneously. A deeper description of interface patterns can be found in [Garrido 97].

Although we have stated that Navigation Design should be done taking into account user
profiles and tasks, OOHDM itself does not provide, so far, any indication on how this should
actually be done. We have been investigating [Barroso 98] the use of user-centered scenarios to help
identify user classes and typical tasks to be supported by the application.

The proposed method starts with a preliminary conceptual model drawn by the designer
from his understanding of the domain. Looking at scenarios described by different classes of users,
the designer builds partial navigation trails, and partial Navigation Class schemas. After all
scenarios have been analyzed, the designer begins a process of merging partial trails and schemas,
which culminates with a Navigation Context diagram and an updated Navigation Class schema.

In the course of this research, we have extended OOHDM to incorporate a security model
to allow controlled access to objects. This model takes into account user classes and contexts, and
defines mechanisms for specifying certain kinds of dynamic contexts that are built as a result of
specified user actions.

Another important issue is building software environments for supporting the method; we
have followed two different approaches:

23

• We have built a CASE environment that allows a designer to describe the conceptual,
navigational and interface models using the OOHDM notation and provides him with
automated documentation about those models. He can next generate implementation templates
for different settings, such as Asymetrix’s Toolbook or HTML. (See [Lyardet 96]).

• We have designed and implemented an object-oriented framework (OONavigator) for enhancing
object-oriented information systems, improving the access to their information resources by
adding a “navigational” front-end, seamlessly integrating this navigation functionality with the
application’s own computations. In OONavigator, hypermedia concepts (nodes, links, indices,
and contexts) are modeled as components that are interleaved with application objects and their
interface. Application classes play the role of OOHDM conceptual classes, while framework
objects (nodes and links) comprise the navigational component of the application. We have
enriched the standard MVC interface paradigm [Krasner 88] with anchoring facilities in such a
way that nodes interfaces support the “point and click” hypertext interface metaphor. The
interface can be published in Web browsers using tools like VisualWave. Using OONavigator, a
designer can enrich an object-oriented application with hypertext features by following OOHDM
guidelines. In this case the designer instantiates hypermedia and interface classes (using a visual
tool) and connects them to his application classes to allow navigation through the application’s
information space. (See [Garrido 96, Rossi 98a, Rossi98b])

4. Concluding Remarks

4.1 Related Work

As we previously said, methodologies for Web applications design are still in their infancy
(provided the Web also is); existing approaches tend to neglect either the navigation or the
behavioral aspects of Web applications.

In [Takahashi 97] the authors propose using an extension of RM [Izakowitz 95] as the
supporting method for building web information systems. They enrich the Entity-Relationship based
model with scenarios showing the interactions among entities, agents and products. While we find
their proposal appealing, it suffers the same problems of existing behavioral extensions to
structured information models; instead of using objects they build the application’s behavior in an
artificial way by separating static and dynamic models. Similar approaches for separating static from
dynamic and functional aspects, even in the context of object-oriented modeling such as
Rumbaugh’s OMT [Rumbaugh 91], have failed and have been discarded by their proponents (see for
example the UML notation in [UML 97]). This happens because they result in systems that are
difficult to extend and maintain. From the hypermedia point of view, our approach is stronger
because it provides higher level design primitives, such as Navigational Contexts, which allow a
better organization of the hyperspace. Besides, separating the user-interface design aspect of these
applications allows defining a language that we can share with interface experts. Our interface
design patterns are a step in that direction.

From an architectural point of view, separating concerns among conceptual, navigational
and interface objects helps to produce applications that are easier to extend and/or maintain. This
happens because relationships among objects in different levels follow the kind of collaborations in
well-proven design patterns (such as the Observer),

In [Gellersen 97], an object-oriented support system for the development of Web
applications is proposed. Our methodology can be used as a design front-end for this engineering
tool. In addition, as we have discussed in this paper, the underlying philosophy behind OOHDM is
that it yields design artifacts that can be implemented even using non object-oriented or hybrid tools.

Finally, as we mentioned previously, OOHDM provides a design dimension that is usually
neglected in object-oriented environments and methodologies: the navigational design activity. Good
object-oriented products for web applications, such as VisualWave or ClassicBlend, can be used with
modern methodologies such as OOSE [Jacobson92] or UML [UML 97]. However, they fail to consider

24

navigation as a design problem, and applications are built using the usual two level design partition
of the MVC model. The only difference is that interfaces are generated as a combination of HTML
and Java applets.

As another case in point, there are a number of more recent tools in the market, such as
NetObjects “Fusion”, that look at WWW based applications (“sites”) as more than an unstructured
collection of HTML pages. They allow the definition of (visual) styles (templates) to be uniformly
applied to pages in the site, which is a step in the right direction. However, they still confuse the
navigation topology with the physical directory structure used to store the pages in the site.
Therefore, a given page can only have one “next” page (or one “parent” page), independently of the
way the reader has arrived in it.

We consider, similarly to [Bieber 97], that designing the hypermedia features of a Web
application is as critical as the behavioral ones and both must be considered as “first class” problems.
Furthermore, we firmly believe that interface design must be done separately from navigation
design.

4.2 Summary and future work

We have presented an object-oriented method for designing and implementing web
applications. OOHDM supports the design of applications ranging from simple Web sites to more
complex applications; it is also well suited as the navigational design front-end for other object-
oriented methods such as UML [UML 97]. We have discussed the main issues involved in
implementing OOHDM designs in the WWW, showing the main decision items and discussing
alternatives.

We have designed and implemented many web applications, ranging from simple ones to
quite elaborate ones where pages are generated dynamically depending on the context in which they
are accessed, and retrieving data from databases. The use of OOHDM and the design patterns has
reduced the overall development time, and has allowed us to discuss designs before actually having
running implementations. Another benefit of the OOHDM models has been improving
communication both with clients and with other non-computer science professionals such as
graphics designers and marketing specialists that are part of the design team.

We are now pursuing several lines of research, as outgrowth or continuation of the
research reported here:

• development of a rich and dense set of design patterns that will allow complete designs to be
expressed almost entirely in terms of pattern compositions and instantiations;

• development of a direct manipulation language that will allow rapid prototyping of interface
specifications for HTML documents;

• design and implementation of a set of tools that will constitute a development environment
based on OOHDM, for web-based applications, so that designers are able to deal with entire sites
at the more appropriate level of abstraction; a first component in this environment is OOHDM-
Web, mentioned in section 2.4.1;

• design and implementation of a Java-based substrate to support direct implementation of
OOHDM designs;

• extension of OOHDM to incorporate user models and tasks, a security model and definition of
dynamic contexts;

• extension of OOHDM to support groupware, and investigation on support for distributed group
authoring using OOHDM.

25

5. References

[Alexander77] Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King and S.
Angel: "A Pattern Language". Oxford University Press, New York 1977.

[Barroso 98] Barroso, N.G.; “User centered design of hypermedia applications”, MSc thesis,
Dept. of Informatics, PUC-Rio, 1998 (in Portuguese)

 [Banerjee87b] J. Banerjee et al, “Data model issues for object oriented applications", ACM
TOIS 5, 1987.

[Barbosa 95] S. Barbosa de Oliveira : “Modeling and Specification of Navigation in
Hypermedia Applications”, Master Dissertation, PUC-RIO, 1995, (in
Portuguese).

[Beck97] K. Beck: “Smalltalk Best Practice Patterns”. Prentice Hall, NJ, 1997

[Bieber97] Bieber, M; Vitali, F.;"Toward Support for Hypermedia on the World Wide
Web" IEEE Computer 30(1), January 1997. Also availabale at
http://www.cs.unibo.it/~fabio/bio/papers/1997/IEEEC97/January/IEEEC0
197.html

[C Blend96] Classic Blend. Applied Reasoning Systems, 1996. http://www.arscorp.com.

[Carneiro 94] Carneiro, L.M.F.; Coffin, M.H.; Coewan, D.D.; Lucena, C.J.P.L; “ADVCharts:
a Visual Formalism for Highly Interactive Systems”, in M.D. Harrison, C.
Johnson, eds, Software Engineering in Human-Computer Interaction, Cambridge
University Press, 1994.

[Coleman92] D. Coleman; F. Hayes; S. Bear, “Introducing Objectcharts or How to use
Statecharts in Object-Oriented Design”, IEEE Transactions on Software
Engineering, 18(1), 9-18, January 1992.

[Cowan93] D. D. Cowan; R. Ierusalimschy; C.J.P. Lucena; T.M. Septien, “Abstract Data
Views”, Structured Programming, 14(1):1-13, January 1993.

[Cowan95] D. D. Cowan; C. J. P.Lucena, “Abstract Data Views, An Interface Specification
Concept to Enhance Design for Reuse”, IEEE Transactions on Software
Engineering, Vol.21, No.3, March 1995.

[Gamma95] Gamma, R. Helm, R. Johnson and J. Vlissides: "Design Patterns: Elements of
reusable object-oriented software", Addison Wesley, 1995.

[Garrido96] A. Garrido, G. Rossi: “A framework for extending object-oriented applications
with hypermedia functionality”. The New Review of Hypermedia and
Multimedia, pp. 25-42. 1996,

[Garrido97] A. Garrido, G. Rossi, and D. Schwabe: “Patterns Systems for Hypermedia”.
Submitted to PLoP’97, Pattern Language of Program, 1997.

[Garzotto93] Garzotto, D. Schwabe and P. Paolini: “HDM - A Model Based Approach to
Hypermedia Application Design”. ACM Transactions on information
Systems, 11 (1), Jan. 1993, pp. 1-26.

[Garzotto94] Garzotto, L. Mainetti and P. Paolini: “Adding Multimedia Collections to the
Dexter Model”. In Proc. ECHT’94-ACM Conference on Hypermedia
Technology. Edinburgh, UK, Sept. 1994.

[Garzotto96] Garzotto, L. Mainetti and Paolo Paolini: “Information reuse in hypermedia

26

applications”. Proceedings of Hypertext’96, Washington, 1996, pp. 93-104.

[Gellersen97] H. Gellersen, R. Wicke, M. Gaedke: “WebComposition: An Object-Oriented
Support System for the Web Engineering Lifecycle” Electronic Proceedings of
The Sixth International WWW Conference, Santa Clara, USA, April, 1997.

[Gronbaek94] Gronbaek: "Composites in a Dexter-Based Hypermedia framework".
Proceedings of the ACM European Conference on Hypertext, (ECHT'94),
Edinburgh 1994, pp. 59-69.

[Halasz94] Halasz e M. Schwartz: "The Dexter Hypertext Reference Model". Comm., of
the ACM, February 1994, pp. 30-39.

[Hardman 93] L. Hardman; D. Bulterman; G. Van Rossum, “Links in Hypermedia, the
Requirements for Context", Proceedings Hypertext'93, ACM, pp. 183-191.

 [Hannemann93] J. Hannemann, M. Thuring, “What matters in developing interfaces for
hyperdocument presentation?”, Workshop in Methodological Issues on the
Design of Hypertext-based User Interfaces, Darmstadt, Germany, July 1993.

[Harrison93] W. Harrison and H. Ossher. “Subject-Oriented Programming (a critique of
pure objects). In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’93), pp. 411-
428, Washington, September 1993.

[Hester 97] A.M. Hester; R.C.Borges; R. Ierusalimschy; “CGILua: A Multi-Paradigmatic
Tool for Creating Dynamic WWW Pages”, Proceedings of the XI Brazilian
Software Engineering Symposium (SBES’97) pp.347-360, Fortaleza, Brazil,
1997 (available at http://www.tecgraf.puc-rio.br/~anna/cgilua/ cgilua.ps.gz)

[Hunter 95] A. Hunter, I. Ferguson, S. Hedges: “Swoop: An application generator for
Oracle/WWW Systems”. Proceedings of the Fourth International World Wide
Web Conference. pp. 185-194, 1995.

[Ierusalimschy 96] R. Ierusalimschy, L. H. de Figueiredo and W. Celes, "Lua - an extensible
extension language", Software: Practice & Experience 26 #6 (1996) 635-652.
(see also http://www.tecgraf.puc-rio.br/lua/).

 [Izakowitz95] Izakowitz, E. Stohr and P. Balasubramaniam: "RMM: A methodology for
structured hypermedia design". Comm. of the ACM, October 1995, pp. 34-44.

[Jacobson 92] Jacobson, I; Christerson, M.; Jonsson, P., Övergaard, G.; “Object Oriented
Software Engineering - A Use Case Driven Approach”, Addison Wesley, 1992.

[Keller 97] Keller, W.; “Mapping Objects to Tables – A Pattern Language”, Proc. Of
European Conference on Pattern Languages of Programming Conference
(EuroPLOP)’’97, Bushman, F. and Riehle, D.; (eds), Irsee, Germany, 1997.
(http://www.sdm.de/g/arcus/publicat/index.phtml#Mapping_Objects_To_
Tables)

[Kim 94] W. Kim, "Advanced Database systems", ACM Press, 1994.

[Kirste93] T. Kirste: "Some issues of defining a user interface with general purpose
hypermedia toolkits". Workshop in Methodological Issues on the Design of
Hypertext-based User Interfaces, Darmstadt, Germany, July 1993.

 [Krasner 88] G. Krasner, S. Pope. " A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80". Journal of Object-Oriented programming,
1(3), pp. 26-49, August/September, 1988.

27

[Lange94] D. Lange. “An Object-Oriented Design Method for Hypermedia Information
Systems”. Proceedings of the 27th. Annual Hawaii International Conference
on System Science, Hawaii, Jan., 1994.

[Lyardet 96] F. Lyardet and G. Rossi "Enhancing productivity in the development of
hypermedia applications". Proceedings of the 7th workshop on the next
generation case tools, Heraklion, Crete, Greece, May, 1996.

[Mere96] M.C. Meré, G. Rossi: “Specifying navigational transformations in
hypermedia. A temporal logic framework”. In Bodo Urban (ed)
Multimedia’96. pp. 20-31. Springer Computer Science, Springer Verlag New
York, 1996.

[Milet 96] J.Renato Milet; D. Schwabe; R. S. G. Lanzelote, “Hypermidia Application
Authoring Using Object Oriented Databases”, Proc. of the XI Brazilian
Symposium on Databases (SBBD), SBC, São Carlos, Oct. 1996 (in Portuguese).

 [Nielsen90] J. Nielsen: “Hypertext and Hypermedia”. Academic Press, 1990.

[Pontes 97] Pontes, R.C.A., “An Environment to Support Hypermedia Applications in the
WWW”, MSc thesis, PUC-Rio, 1997 (in Portuguese).

 [Rossi95a] G. Rossi; D. Schwabe; C.J.P. de Lucena; D.D. Cowan, “An Object-Oriented
Model for Designing the Human-Computer Interface of Hypermedia
Applications”, Proc. of the International Workshop on Hypermedia Design
(IWHD'95), Springer Verlag Workshops in Computing Series, forthcoming.
(available at <ftp://ftp.inf.puc-rio.br/pub/docs/techreports/
95_07_rossi.ps.gz>).

 [Rossi96a] Rossi, A. Garrido and S. Carvalho: "Design Patterns for Object-Oriented
Hypermedia Applications". Pattern Languages of Programs 2, Vlissides,
Coplien and Kerth eds., Addison Wesley, 1996.

[Rossi96b] Rossi, D. Schwabe and A. Garrido: "Towards a Pattern Language for
Hypermedia Applications". Proceedings of the 3rd. Annual Conference on
Pattern Languages of Programs, Monticello, Illinois, September 1996.

[Rossi96c] G. Rossi, M.C. Meré: “A Temporal Logic framework for representing
knowledge about navigation in hypermedia applications”. Proceedings of the
Workshop on Knowledge Representation for Interactive Multimedia Systems
in the European Conference on Artificial Intelligence (ECAI’96), pp. 66-71. G.
Vouros (editor), Budapest, 1996.

[Rossi96d] G. Rossi: “An Object-Oriented Method for Designing Hypermedia
Applications”. PHD Thesis, Departamento de Informática, PUC-Rio, Brazil,
July 1996 (in Portuguese).

[Rossi97] G. Rossi, D. Schwabe and A. Garrido: “Design Reuse in Hypermedia
Applications Development” Proceedings of ACM International Conference on
Hypertext (Hypertext’97), Southampton, April 7-11, 1997, ACM Press.

[Rossi 98 a] G. Rossi, A. Garrido and D. Schwabe: "Navigating between Objects: Lessons
from an Object-Oriented Framework Perspective", to appear in ACM
Computing Surveys.

 [Rossi 98 b] G. Rossi and A. Garrido: "Capturing Hypermedia Functionality in an Object-
Oriented Framework", to appear in Object-Oriented Frameworks, Wiley 1998.

28

[Rumbaugh91] Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W.Lorensen: "Object
Oriented Modeling and Design", Prentice Hall Inc. 1991.

[Schmidt95] D. Schmidt: "Using Design Patterns to develop reusable object-oriented
communication software" Comm. of the ACM, October 1995, 38(10), pp. 65-74.

[Schwabe94b] D. Schwabe; S. D. J. Barbosa, “Navigation Modeling of Hypermedia
Applications”, Technical Report MCC 42/94, Departamento de Informática,
PUC-Rio, 1994 (available at <ftp://ftp.inf.puc-rio.br/pub/docs/techreports/
94_42_barbosa.ps.gz>)

[Schwabe95a] D. Schwabe and G. Rossi, “Building Hypermedia Applications as
Navigational Views of Information Models”, Proc. of the Hawaii International
Conference on System Sciences, Hawaii, Jan. 1995. (available at
<ftp://ftp.inf.puc-rio.br/pub/docs/techreports/ 94_41_schwabe.ps.gz>)

[Schwabe 95b] D. Schwabe and G. Rossi:, “The Object Oriented Hypermedia Design Model”,
Comm. of the ACM, Vol. 38, #8, pp45-46 Aug. 1995. (available at
<http://irss.njit.edu:5080/cgi-bin/bin/option.csh?sidebars/schwabe.html>).

[Schwabe96] Schwabe, G. Rossi and S. Barbosa: "Systematic Hypermedia Design with
OOHDM". Proceedings of the ACM International Conference on Hypertext
(Hypertext'96), Washington, March 1996.

[Takahashi 97] K. Takahashi, E. Liang: “Analysis and Design of Web-based information
systems” Electronic Proceedings of The Sixth International WWW Conference,
Santa Clara, USA, 1997.

[UML 97] UML Document Set. Version 1.013 January, 1997, Rational, 1997. (available at
http://www.rational.com/uml/references/index.html)

[Varela 95] C. Varela, D. Nekhayev, P. Chandrasekharan, C. Krishnan, V. Govindan, D.
Modgil, S. Siddiqui, , D. Lebedenko, M. Winslett: “DB: Browsing Object-
Oriented Databases over the Web”. Proceedings of the Fourth International
World Wide Web Conference. pp. 209-220, 1995.

[Vives 97] Francisco Vives, Pablo Zanetti, Alejandra Garrido "Adding Hypermedia
Functionality to Object Oriented Applications". To be presented in the 4th
International Conference. Hypertexts and Hypermedia: Products, Tools and
Methods. 25th & 26th September 1997. Paris, France.

[Vwork96] The Visual Work Programming Environment. Parc Place-Digitalk, 1996.

[Vwave96] The VisualWave Programming Environment. Parc Place Systems. In
http://www.parcplace.com/products/vwave/vwv_prod.htm.

[Wirfs-Brock90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener: “Designing Object-Oriented
Software”. Prentice Hall, Englewood Cliffs, NJ, 1990.

