Performance Analysis of Parallel Applications
under Message Passing Environments

Marian Bubak!, Wlodzimierz Funika!, Jacek Moéciriski!-2

! Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Krakéw, Poland
2 Academic Computer Centre - CYFRONET, Nawojki 11, 30-950 Krakéw, Poland
email: {bubak,funika, jmosc}Quci.agh.edu.pl

Abstract. We present a view on building a performance analysis tools
for parallel applications running on networked workstations under mes-
sage passing environments (PVM and MPI). Instrumenting a parallel
program’s components is carried out with a graphical tool. An execu-
tion trace is processed using a special trace handling language. A series
of metrics and visualizations help infer about application behavior. We
show the results of applying the environment facilities to performance
analysis of a lattice gas simulation parallel program.

1 Introduction

Parallel applications behavior is usually hard to understand and tune since it is
necessary to take into consideration a number of factors that can significantly
affect an application’s performance. Performance understanding and tuning may
be divided into performance observation and modelling. Usually [1], performance
observation comprises measurement, e.g. monitoring, data storage and analysis,
the latter involves processing and presentation of trace data. Performance mod-
elling aims at expressing performance trends in terms of internal and external
factors of an application’s execution, and the output of performance observation
is used for calibration and validation of models.

One of the most comprehensive source of measurement data is tracing. There
are three main approaches to capturing trace data: hardware, hybrid and soft-
ware as well as a number of problems with them: compensation of perturbation
of an application’s execution, establishment of global time and portability. The
first two approaches manage to minimize perturbation and setup global time,
nevertheless the problem of portability still remains unsolved [2]. The software
approach offers a larger portability that is of great importance for parallel ap-
plications on networked workstations, however, performance is affected by per-
turbations, and it is difficult to establish global time.

Due to indeterminism the behavior and performance of a parallel program
running on networked workstations under message passing environments can
hard be modelled and predicted. Therefore, observation remains the main tool
of getting insight into a program’s behavior and inferring. The main questions,
which are to be answered by observation, are when, where and why, or in other
words, what affects an appplication’s performance. Answering questions when

and where is automated and presented in tabular form or visualized like per-
formance metrics, indices, profiles, diagrams. Answers obtained can be used for
inferring on the causes of poor performance, thus for answering the why question.

Our approach to building a performance analysis environment is a trial to
integrate some important features offered by a number of recently developed
tools and techniques [11]. These features are extensibility, flexibility, portability
and ease of use.

2 Available monitoring and analysis tools

Users who develop parallel distributed applications for networked workstations
have at their disposal a number of monitoring tools. The essential features of
these tools are listed in Tab. 1.

Among them, ParaGraph [3], the first public domain tool, offers a lot of
graphs and performance data, but it is difficult to extend and customize. XPVM
[4], a simple in use monitoring, tool enables tracing PVM application. Its main
disadvantage is that traces it generates represent potentially perturbed appli-
cations due to on-line event message routing by XPVM. The Pablo analy-
sis environment [5] is an example of flexible and powerful toolkit comprised
of generic analysis and visualization modules. Unfortunately, its displays have
mainly statistic character. ParaDyn [6] is an intelligent tool of next generation
exploiting dynamic instrumentation of applications, but its portability is in-
sufficient to be applied on a wide variety of workstation architectures. Medea
[7], one of the recent tools, allows the evaluation of the performance of parallel
programs by processing trace files produced by monitoring tools and applying
various types of statistical techniques along with visualization facilities. It en-
ables filtering, cluster and fitting operations on the data in a number of formats.
However, it lacks space-time and similar dynamic diagrams. VAMPIR [8] is a
newly developed commercial tool for post-mortem analysis of traces generated
by MPI, PVM and PARMACS applications.

3 Design of the performance analysis tool

3.1 Sources of the ideas underlying the design

A number of techniques used in some existing tools served the lines of inves-
tigation we followed. The monitoring facility is based on the monitoring tool
TAPE/PVM [10]. Trace data is expressed in the SDDF meta-format [9] as a
flexible way to store and access trace data. The Pablo environment is used as a
ground for building a visualization environment, being, on one hand, an acting
toolkit, on the other hand a contributor of ideas about what and how should be
processed and presented while analyzing trace data.

Table 1. Monitoring and performance analysis tools for distributed programs

Name type trace |mode|visualization| instrum.
generation
| for PVM and PVM based programs
HeNCE env,d,pt au on,off| g,an,sm,p au
XPVM m,d,pt au on,off| g,an,sm,p au
EASYPVM ctl au off PG au
| environment independent |
Pablo pt u off g,an g, i-a
ParaGraph pt PICL off | g,an,sm,p src
IPS-2 pt au, u off sm,g,p au
JEWEL pt u on,off| sm,g,p,an src
AIMS pt au,tpt off g g, i-a, src
SCOPE pt au,tpt off g src
ParaDyn pt au,dt on g,sm,p exe
VAMPIR pt,d au,tpt |on,off g g, i-a, src
Medea pt au,tpt off g src
| environment dependent
PICL ctl au,u off | ParaGraph | au,src
Express-tools pt au,u off g,sm,p au,src
TOPSYS-tools| d,pt au on,off| g,an,sm,p au
Linda-tools d,pt au on,off| g,an,sm,p au
an animated i-a interactive
au automatically generated m monitoring program
ctl comm. & tracing library off,on off-line, on-line
d debugging tool p performance
di dynamic instrumentation pt performance tool
dt dynamic tool sm summaries
env environment src source
exe executable tpt trace processing tool
g graphical u user-defined

3.2 Trace handling language

In order to facilitate processing trace data processing a trace handling language
(THL) has been designed. THL make it possible to access a trace in SDDF
format, extract any data, process and combine it for output with a few-lines
long program. The language has to be simple in use. The user does not need to
know the SDDF handling functions. THL is used to filter and handle trace data
with simple means without knowing SDDF functions. THL provides the features

common with a normal algorithmic language like C as well as some features
specific to processing trace data. There is a number of built-in functions which
enable to reconstruct the directed acyclic graph of execution of an application.

3.3 The structure of the environment

The whole process of applying the environment facilities to analysis of an ap-
plication is divided into five phases: instrumentation, compilation and linkage,
execution and measurement experiment, analysis, and visualization. In line with
this layout the environment comprises the following parts: instrumentation facil-
ity, trace capture library, monitoring program (spawned by intrumented applica-
tion), trace data access modules, performance analysis modules and visualization
modules. In the course of a monitoring and analysis session static and dynamic
information is generated and used later in the analysis and visualization phases.
The structure of the environment is shown in Fig. 1.

J/—W Tracelibrary
| Instrumentation C&L
facility I nstrgg&z“lted Executable Monitoring

facility
A EE

Static) Analysis Dynam_i c
Information . Information
toolkit

Static Dynamic
Visualization Visualization

\

Fig. 1. The structure of the environment: I- instrumentation, C&L - compilation and
linkage, EE - execution experiment, A - analysis, V - visualization.

3.4 Instrumentation

One of the most arduous tasks while preparing an application for monitoring
is instrumentation. Programmer marks usually points of interest manually and
do this mainly for timing purposes. The instrumentor developed enables instru-
menting an application authomatically by means of a special window editor. The
objects of instrumentation may be application function calls (entry and exit),
communication library functions calls and loops. Instrumenting variables and
source code fragments can be performed made manually with a number of prim-
itives so far. The instrumented objects are supplied with the number of line and
the source code identifier. The data relating to the instrumented source code

File Global_OPs Local _OPs Selecting_OP=

Routines Found In This Program

pum_exit A
divide_inj_lay
init_send
pum_initsend
pun_pkint =1
pum_mcast
puni_pk Long i
o
aamaster.c
/% A
1.9 SEND DATA TO TRANSPORTERS
VERSION 1% TH/PS 15/Feb/92 krakow
*/
i
int. nodd, nrlen, ki
integer j. i, info:
At
[~
GEL + 33
engthysws
At { < Hode_length: i++3
nodd = {(OFfset_t[il/Muxy 2 23 i
N T
—
Trace Ling Clear Ling I

Fig. 2. A sample of instrumention session.

in the database are updated. A sample of instrumentation session is shown in
Fig.2.

3.5 Compilation and execution

After a source code is instrumented it is compiled and linked with the trace
library. The monitoring facility comprises tracing library primitives and a moni-
toring daemon. Primitives provide tracing the objects instrumented. The daemon
monitors the most important events of an application’s execution like spawning,
exiting and killing tasks. The daemon obtains from the master process all the
data indispensible to identify an experiment: program name, experiment date,
architecture of the nodes, options of the experiment. These data are used to form
a unique name of trace file. The name is attributed to a file where trace data
from all nodes involved are collected. The trace file is placed in an individual
directory of an experiment.

3.6 Trace file processing

The first action on a trace file obtained in the course of monitoring is perturba-
tion compensation. Afterward trace data are converted into the SDDF metafor-
mat. Events in trace records are supplied with additional data, e.g. time spent
in individual states. Process numbers are converted into a range of numbers
starting from 0. After that trace data are prepared to analysis phase.

3.7 Performance analysis

Performance analysis resembles a ”cause-effect” inference process which enables
to get insight into an application’s behavior. Analysis is aimed at correlating im-
plementation decision to an application performance. Analysis starts with global
performance metrics such as speedup and efficiency and proceeds with increas-
ingly deeper insights. Observations based on measurement can be roughly di-
vided into summary statistics, tracing application events and generating abstract
events. By providing an average evaluation of an application’s preformance as
a whole, summary statistics are sufficient for understanding performance trends
sometimes. These can be presented as static views. Tracing application events
enables observing an application’s behavior at a more detailed level. The most
usable visualization presenting application events is space-time diagram. This
can be presented as dynamic view developing with time. Abstract events are
synthetic values which represent the occurence of some performance phenom-
ena. They comprise performance metrics, indices and categorization of perfor-
mance phenomena. By the moment we have developed a number of performance
metrics common with parallel programs and their distributions, e.g. utilization,
communication activity, parallelism.

3.8 Static and dynamic visualization.

As it was mentioned above an indispensible part of performance analysis are
statistic visualizations. A number of profiles in the form of time-usage diagrams
are developed: time usage vs. nodes, time usage vs. nodes and functions, time
usage vs. functions.

For dynamic visualization, a communication activity and application events
time-lined diagrams were developed. Now we are working on improving the in-
formative features of these diagrams in order to be able to correlate performance
phenomena, of an application to a source code.

4 Sample of performance analysis session

As an example of performance analysis with our environment we have chosen
a typical application running on networked workstations under PVM - namely
lattice gas automata simulation (LGA) for 480 x 2880 sites.

The experiments were carried out on a heterogenous network of workstations
comprised of HP9000/712 (HP712), IBM RS/6000-520 (RS520), IBM RS/6000-
320 (RS320) and SUN IPX (IPX) as well as on a homogenous network that
consisted of IBM RS/6000-320 (RS320) workstations.

For parallel lattice gas automata (LGA) simulation lattice is divided into do-
mains along the y axis [12]. Master sends to workers the geometrical description
of a system simulated. Workers generate initial states of domains and after the
computation phase send the averaged values to master. Communication among
neighbors can be optionally asynchronous that results in reduced communication
overhead. The communication topology is ring.

[@][Pablo [u]
Flle £ur Configure Module ﬂs\p'

System Status: |Execution complete |
Last Modification Date: [Thu Aug 3115837 1395 |
Configuration Name: |pymGraph |

][Summ_of_Msy_(T|{[@][E] Task_Utilization [®][E] Summ_of_Msy_voETH{[®] G Active_Transmissio]]

Summn_of visg_Counts

Active_Transmissions

Task_Utilization ‘ Summ_of Msg_Volume

Min: 0,000 Min: 0.000 Min 0.000 Hin. 0.000
Mazs: 213,000 Max: 98,837 Mes: 3630080.000 Max: 430192, 000

R
.
- O . |

MO~ EEHHL<DE <0Ew

GamaR M mE s ewa
boan 0 e e

Sending Tasks Sending Tasks Sending Tasks

[@][G] Timestamp ET]|[@][E] Task_activity @& Msg_Volume_vs_Time
TimeStamp | Task_Activity ‘ IMsg_Volume_vs_Time

Min: 0,993 Min; 0.000 Maxdmum: Z0BE3E Scale: 286734
Maze: 100080 Meze: 2 000

Tire Starps of Events State of activizy: BUSY STSTEM IDLE) Il

Fig. 3. Sample of monitoring session of LGA on a heterogenous network.

In Fig. 3 we present a sample of monitoring session with Pablo based dis-
plays for a run on 4 workstations (HP712, RS520, RS320 and IPX). The fol-
lowing performance data are presented: synchronized time of every event in a
parallel program (Time_Stamp), matrix of current connections with the trace of
recent message volume (Active_Transmissions), current computation time spent
by every task between two consecutive barriers (Barrier Mean_Time), cumula-
tive time spent in each state by every task (Task Utilization), cumulative num-
ber of messages sent between tasks (Summ_of Msg_Counts), cumulative volume
of messages sent between tasks (Summ_of_ Msg_Volume), current total volume of
messages in a program as a function of time (Msg_Volume_vs_Time), state (busy,
system, idle) of every task (Task_Activity). We can see that most time is spent
in computing except the first task which is the master.

We studied communication times, variability of the utilization metric across
various configurations and the trends of individual routines’ fractions in the
execution time. Messages are short during evolution while the averaging (< 120
bytes) and long in load-balancing phases (cca. 100 - 200 KB). In Fig. 4 we show
the distribution of send times accross processors on the heterogenous network of
4 machines. Send times vary on different machines for the same message lengths,
e.g. for the length bytes from cca. 0.1 ms on HP712 to cca. 15 ms on RS320. On
HP720 most send times are contained within 3 ms, on RS320 within 4.0 - 15 ms,
on RS520 within 4.5 - 15 ms, on IPX within 0.5 to 7 ms. The most scattered
times are on RS520 and RS320.

In Fig. 6 the time usage of LGA on a heterogenous network for the same
as above configuration is shown. The times across nodes are almost equal, the
send times being much lower than receive blocking times. But one can see that

80 M4 (HP720) 80 M4 (HP720)
60 60
40 40
20 20 |
2 1 L
80 M3 (IPX) 80 M3 (IPX)
60 60
40 40
S 20 S 20 |
> >
(8] (%) 1 I
= c
Q (]
2 80 M2 (RS520) 2 80 M2 (RS520)
£ 60 £ 60
40 40
20 20 |
1
80 M1 (RS320) 80 M1 (RS320)
60 60
40 40
20 20
0 0
0 5 10 15 20 25 30 35 0 100 200 300 400
Time, ms Time, ms

Fig. 4. Distribution of send time for LGA Fig. 5. Distribution of receive time for
on 4 workstations. LGA on 4 workstations.

the structure of these timings varies across nodes. The worst usage is on HP712.
It may seem that something is wrong with load-balancing. The node program
comprises main and the principal unit stepon. As shown in Fig. 7 it can be
seen that stepon procedure is rather good balanced as for its duration as well as
main, but Fig. 8 suggests that percentage of the time spent in stepon decreases
in favour of main.

90,00
80,00
70.00
60.00
50.00

36,00 [main
40,00 2000 T steron 120,00 £ pain
30,00 . 3 stepon
70,00
20,00 60,00 90,00
10,00 -0 i BE220
40.00 val RS520 60,00
0,00 - 30,00 jadaia: PX M 1sb: RS320
rrvijb 20.00 berty: HF712 val RS520
¥ 3 44ae
Bl dle pp]4¢t 10,00 20,00
[Systen zt o000
1y
= Rusy a Bel

rsb:RS320 jadaia: IPX
val: R3520 bemy HPFIZ

Tu s
Ta

Fig.6. Time usage Fig.7. Time usage Fig. 8. Time usage of
by nodes for LGA on by routines for LGA nodes by routines for
on four nodes. on four nodes. LGA on two nodes.

Another view in Fig. 9 enables insight into the time usage of procedures. Here,
it can be seen that the receive and send time percentages on HP712 are due to
main procedure. Now one can conclude that a source of non-productive time is
to be looked for in main procedure. It is obvious that inference process about

the causes of poor performance makes it indispensible that the performance
analysis enviroment facilities could enable wandering about the information of
different level of abstraction starting with speed-up and efficiency and correlating
performance phenomena to implementation decisions, e.g. a source code.

a9, 00 a0, () a5, 0 a9, 00
80,00 80,00 80,00 80,00
70,00 70,00 70,00 70,00
£0,00 B0, () B0, 00 £0,00
50,00 502, () 50,00 50,00
40,00 40,00 40,00 40,00
30,00 20,00 20,00 30,00
20,00 20,000 20,00 20,100 B 1dle
10,00 10,00 10,00 10,00 [systen
0,00 0,00 0,00 0,00 B Busy
m = m = m = m =
a t at a t a t
ie ie ie ie
np npe np np
o [u] o o
n L} n n
node: [R3320] node: [R3520] node: [IPX] node: [HF712]

Fig. 9. Time usage of routines across nodes for LGA on four nodes.

5 Summary and perspectives

We have presented the approach to the development of the performance analysis
environment for parallel applications running on networked workstations under
message passing environments. Instrumentation is carried out with the graphical
tool. The trace data are processed with the trace handling language. Trace anal-
ysis enables to get insight into performance trends. As an example the results of
applying the environment to performance analysis of the lattice gas automata
simulation parallel program were presented.

The environment will be extended to monitor MPI applications. Despite the
difficulties we mentioned in the introduction we will address the issue of per-
formance modelling. Performance losses due to communication, load imbalance,
synchronization, insufficient parallelism as well as the impact of application and
execution environment parameters on application performance will be the sub-
ject of further study.

Acknowledgements.

We are very grateful to Mr Marek Pogoda, Ms Renata Stota and Dr Eric Mail-
let for their valuable help. The contribution of Gregorz Kazior and Radostaw
Gembarowski is gratefully acknowledged.

This research was partially supported by the AGH grant.

References

10.

11.

12.

Jain, R.: The art of computer systems performance analysis, John Wiley & Sons,
1991.

. Hollingsworth, J.K., Lumpp, J.E., and Miller, B.P.: Techniques for performance

measurement of parallel programs, Parallel Computers: Theory and Practice (IEEE
Press), 1995, pp. 225-240.

Heath, M.T. Etheridge, J.A.: Visualizing the performance of parallel programs.
IEEE Software September 1991, pp. 29-39.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V:
PVM: Parallel Virtual Machine. MIT Press, 1994.

Reed, D.A. Aydt, R., Madhyastha, T.M., Noe, R.J., Shields, K.A., and Schwartz,
B.W.: The Pablo Performance Analysis Environment. Technical Report, Dept. of
Comp. Sci., University of Illinois, 1992.

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B.,
Karavanic, K.L., Kunchithapadam, K., and Newhall, T.: The Paradyn Parallel
Performance Measurement Tool, IEEE Computer, vol. 28, No. 11, November 1995,
pp. 37-46.

Calzarossa, M., Massari, L., Merlo, J., Tessera, D.: Parallel Performance Evalu-
ation: The Medea Tool, in: Liddell, H., Colbrook, A., Hertzberger, B., Sloot, P.,
(eds.), Proc. Int. Conf. High Performance Computing and Networking, Brussels,
Belgium, April 1996, Lecture Notes in Computer Science 1067, 522-529, Springer-
Verlag, 1996.

http://www.pallas.de/pages/vampir.htm

Aydt, R. A.: The Pablo Self-Describing Data Format. Technical Report, Dept. of
Comp. Sci., University of Illinois, 1994.

Maillet, E.: TAPE/PVM an efficient performance monitor for PVM applications -
User guide. IMAG, Institut National Polytechnique de Grenoble, 1995.

Bubak M., Funika W., Mosciiski J., Tasak D.: Pablo based monitoring tool for
PVM applications, in: Jack Dongarra, Kaj Madsen, Jerzy Wasniewski (Eds):
PARA95 - Applied Parallel Computing, Springer-Verlag Lecture Notes in Com-
puter Science 1041 (1996) 69-78.

Bubak, M., Moécinski, J., Stota, R., Implementation of parallel lattice gas program
on workstations under PVM, in: Dongarra, J.J., Hansen, P.C, and Wasniewski, J.,
Proc. PARA’94 — Workshop on Parallel Scientific Computing, Lyngby, Denmark,
June 1994, Report UNIC-94-05; and in: Dongarra, J., Wasniewski, J. (Eds.): “Par-
allel Scientific Computing”, Lecture Notes in Computer Science 879, Springer-
Verlag, 1994, pp. 13 6-146.

This article was processed using the IXTgX macro package with LLNCS style

