
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998 71

Abstractions for Portable, Scalable
Parallel Programming

Gail A. Alverson, William G. Griswold, Member, IEEE, Calvin Lin,
David Notkin, Member, IEEE, and Lawrence Snyder, Fellow, IEEE

Abstract —In parallel programming, the need to manage communication, load imbalance, and irregularities in the computation puts
substantial demands on the programmer. Key properties of the architecture, such as the number of processors and the cost of
communication, must be exploited to achieve good performance, but coding these properties directly into a program compromises the
portability and flexibility of the code because significant changes are then needed to port or enhance the program. We describe a parallel
programming model that supports the concise, independent description of key aspects of a parallel program—including data distribution,
communication, and boundary conditions—without reference to machine idiosyncrasies. The independence of such components
improves portability by allowing the components of a program to be tuned independently, and encourages reuse by supporting the
composition of existing components. The isolation of architecture-sensitive aspects of a computation simplifies the task of porting
programs to new platforms. Moreover, the model is effective in exploiting both data parallelism and functional parallelism. This paper
provides programming examples, compares this work to related languages, and presents performance results.

Index Terms —MIMD, parallel, portable, programming model, scalable.

—————————— ✦ ——————————

1 INTRODUCTION

HE diversity of parallel architectures puts the goals of
performance and portability in conflict. Programmers

are tempted to exploit machine details—such as the inter-
connection structure and the granularity of parallelism—to
maximize performance. Yet, software portability is needed to
reduce the high cost of software development, so program-
mers are advised to avoid making machine-specific assump-
tions. The challenge, then, is to provide parallel languages
that minimize the tradeoff between performance and port-
ability.1 Such languages must allow a programmer to write
code that assumes no particular architecture, allow a com-
piler to optimize the resulting code in a machine-specific
manner, and allow a programmer to perform architecture-
specific performance tuning without making extensive modi-
fications to the source code.

In recent years, a parallel programming style has evolved
that might be termed aggregate data-parallel computing. This
style is characterized by

• Data parallelism. The program’s parallelism comes from
executing the same function on many elements of a
collection. Data parallelism is attractive because it allows

parallelism to grow—or scale—with the number of data
elements and processors. SIMD architectures exploit
this parallelism at a very fine grain.

• Aggregate execution. The number of data elements
typically exceeds the number of processors, so multi-
ple elements are placed on a processor and manipu-
lated sequentially. This is attractive because placing
groups of interacting elements on the same processor
vastly reduces communication costs. Moreover, this
approach uses good sequential algorithms locally,
which is often more efficient than simply multiplex-
ing parallel algorithms. Another benefit is that data
can be passed between processors in batches to amor-
tize communication overhead. Finally, when a com-
putation on one data element is delayed waiting for
communication, other elements may be processed.

• Loose synchrony. Although strict data parallelism ap-
plies the “same” function to every element, local
variations in the nature or positioning of some ele-
ments can require different implementations of the
same conceptual function. For instance, data elements
on the boundary of a computational domain have no
neighbors with which to communicate, but data par-
allelism normally assumes that interior and exterior
elements be treated the same. By executing a different
function on the boundaries, these exceptional cases
can be easily handled.

These features make the aggregate data-parallel style of
programming attractive because it can yield efficient pro-
grams when executed on typical MIMD architectures.
However, without linguistic support, this style of pro-
gramming promotes inflexible programs through the em-
bedding of performance-critical features as constants, such
as the number of processors, the number of data elements,

1045-9219/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• G.A. Alverson is with the Tera Computer Co., 2815 Eastlake Ave. East,
Seattle, WA 98102.

• W.G. Griswold is with the Department of Computer Science and Engineering,
0114, University of California at San Diego, La Jolla, CA 92093-0114.

• C. Lin is with the Department of Computer Sciences, University of Texas,
Taylor 2.124, Austin, TX 78712. E-mail: lin@cs.utexas.edu.

• D. Notkin and L. Snyder are with the Department of Computer Science and
Engineering, Box 352350, University of Washington, Seattle, WA 98195-2350.

Manuscript received 24 Feb. 1994.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100768.

T

1. We consider a program to be portable with respect to a given machine
if its performance is competitive with machine-specific programs solving
the same problem [2].

72 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

boundary conditions, the processor interconnection, and
system-specific communication syntax. If the machine, its
size, or the problem size changes, significant program
changes to these fixed quantities are generally required. As
a consequence, several languages have been introduced to
support key aspects of this style. However, unless all as-
pects of this style are supported, performance, scalability,
portability, or development cost can suffer.

For instance, good locality of reference is an important
aspect of this programming style. Low-level approaches
[25] allow programmers to hand-code data placement. The
resulting code typically assumes one particular data de-
composition, so, if the program is ported to a platform that
favors some other decomposition, extensive changes must
be made or performance suffers. Other languages [4], [5],
[15] give the programmer no control over data decomposi-
tion, leaving these issues to the compiler or hardware. But,
because good data decompositions can depend on charac-
teristics of the application that are difficult to determine
statically, compilers can make poor data placement deci-
sions. Many recent languages [6], [22] provide support for
data decompositions, but hide communication operations
from the programmer and, thus, do not encourage locality
at the algorithmic level. Consequently, there is a reliance on
automated means of hiding latency—multithreaded hard-
ware, multiple lightweight threads, caches, and compiler
optimizations that overlap communication and computa-
tion—which cannot always hide all latency. The trend to-
ward relatively faster processors and relatively slower
memory access times only exacerbates the situation.

Other languages provide inadequate control over the
granularity of parallelism, requiring either one data point
per process [21], [43], assuming some larger fixed granular-
ity [14], [29], or including no notion of granularity at all,
forcing the compiler or runtime system to choose the best
granularity [15]. Given the diversity of parallel computers,
no particular granularity can be best for all machines.
Computers such as the CM-5 prefer coarse granularities;
those such as the J Machine prefer finer granularity; and
those such as the MIT Alewife and Tera computer benefit
from having multiple threads per process. Also, few lan-
guages provide sufficient control over the algorithm that is
applied to aggregate data, preferring instead to multiplex
the parallel algorithm when there are multiple data points
on a processor [43], [44].

Many language models do not adequately support loose
synchrony. The boundaries of parallel computations often
introduce irregularities that require significant coding ef-
fort. When all processes execute the same code, programs
become riddled with conditionals, increasing code size and
making them difficult to understand, hard to modify, and
potentially inefficient. Programming in a typical MIMD-
style language is not much cleaner. For instance, writing a
slightly different function for each type of boundary proc-
ess is problematic, because a change to the algorithm is
likely to require all versions to be changed.

In this paper, we describe language abstractions—a pro-
gramming model—that fully support the aggregate data-
parallel programming style. This model can serve as a foun-
dation for portable, scalable MIMD languages that preserve

the performance available in the underlying machine. Our
belief is that, for many tasks, programmers—and not com-
pilers or runtime systems—can best handle the perform-
ance-sensitive aspects of a parallel program. This belief
leads to three design principles.

First, we provide abstractions that are efficiently imple-
mentable on all MIMD architectures, along with specific
mechanisms to handle common types of parallelism, data
distribution, and boundary conditions. Our model is based
on a practical MIMD computing model called the Candi-
date Type Architecture (CTA) [45].

Second, the insignificant but diverse aspects of com-
puter architectures are hidden. If exposed to the pro-
grammer, assumptions based on these characteristics can
be sprinkled throughout a program, making portability
difficult. Examples of characteristics that are hidden in-
clude the details of the machine’s communication style
and the processor (or memory) interconnection topology.
For instance, one machine might provide shared memory
and another message passing, but either can be imple-
mented with the other in software.

Third, architectural features that are essential to per-
formance are exposed and parameterized in an architec-
ture-independent fashion. A key characteristic is the speed,
latency, and per-message overhead of communication rela-
tive to computation. As the cost of communication in-
creases relative to computation, communication costs must
be reduced by aggregating more processing onto a smaller
number of processors, or by finding ways to increase the
overlap of communication and computation.

The result is the Phase Abstractions parallel programming
model, which provides control over granularity of parallel-
ism, control over data partitioning, and a hybrid data and
function parallel construct that supports the concise de-
scription of boundary conditions. The core of our solution
is the ensemble construct that allows a global data structure
to be defined and distributed over processes, and allows
the granularity—and the location of data elements—to be
controlled by load-time parameters. The ensemble also has
a code form for describing what operations to execute on
which elements and for handling boundary conditions.
Likewise, interprocessor connections are described with a
port ensemble that provides similar flexibility. By using
ensembles for all three components of a global operation—
data, code, and communication—they can be scaled to-
gether with the same parameters. Because the three parts of
an ensemble and the boundary conditions are specified
independently, reusability is enhanced.

The remainder of this paper is organized as follows. We
first present our solution to the problem by describing our
architectural model and the basic language model—the
CTA and the Phase Abstractions. Section 3 then gives a de-
tailed illustration of our abstractions, using the Jacobi Itera-
tion as an example. To demonstrate the expressiveness and
programmability of our abstractions, Section 4 shows how
simple array language primitives can be built on top of our
model. Section 5 discusses the advantages of our program-
ming model with respect to performance and portability,
and Section 6 presents experimental evidence that the
Phase Abstractions support portable parallel programming.

ALVERSON ET AL.: ABSTRACTIONS FOR PORTABLE, SCALABLE PARALLEL PROGRAMMING 73

Finally, we compare Phase Abstractions with related lan-
guages and models, and we close with a summary.

2 PHASE ABSTRACTIONS

In sequential computing, languages such as C, Pascal, and
Fortran have successfully combined efficiency with port-
ability. What do these languages have in common that
make them successful? All are based on a model where a
sequence of operations manipulate some infinite random-
access memory. This programming model succeeds be-
cause it preserves the characteristics of the von Neumann
machine model, which itself has been a reasonably faith-
ful representation of sequential computers. While these
models are never literally implemented—unit-cost access
to infinite memory is an illusion provided by virtual
memory, caches, and backing store—the model is accurate
for the vast majority of programs. There are only rare
cases, such as programs that perform extreme amounts of
disk I/O, where the deviations from the model are costly
to the programmer. It is critical that the von Neumann
model capture machine features that are relevant to per-
formance: If some essential machine features were ig-
nored, better algorithms could be developed using a more
accurate machine model. Together, the von Neumann ma-
chine model and its accompanying programming model
allow languages such as C and Fortran to be both portable
and efficient.

In the parallel world, we propose that the Candidate
Type Architecture (CTA) play the role of the von Neumann
model,2 and the Phase Abstractions the role of the pro-
gramming model. Finally, the sequential languages are re-
placed by languages based on the Phase Abstractions, such
as Orca C [32], [34].

The CTA. The CTA [45] is an asynchronous MIMD model.
It consists of P von Neumann processors that execute inde-
pendently. Each processor has its own local memory, and
the processors communicate through some sparse but oth-
erwise unspecified communication network. Here “sparse”
means that the network has a constant degree of connectiv-
ity. The network topology is intentionally left unbound to
provide maximum generality. Finally, the model includes a
global controller that can communicate with all processors
through a low bandwidth network. Logically, the controller
provides synchronization and low bandwidth communica-
tion, such as a broadcast of a single value.

Although it is premature to claim that the CTA is as ef-
fective a model as the von Neumann model, it does appear
to have the requisite characteristics: It is simple, makes
minimal architectural assumptions, but captures enough
significant features that it is useful for developing efficient
algorithms. For example, the CTA’s unbound topology
does not bias the model towards any particular machine,
and the topologies of existing parallel computers are typi-
cally not significant to performance. On the other hand, the
distinction between global and local memory references is
key, and this distinction is clear in the CTA model. Finally,

2. The more recent BSP [48] and LogP [8] models present a similar view
of a parallel machine and, for the most part, suggest a similar way of pro-
gramming parallel computers.

the assumption of a sparse topology is realistic for all
existing medium and large scale parallel computers.

The Phase Abstractions extend the CTA in the same way
that the sequential imperative programming model extends
the von Neumann model. The main components of the
Phase Abstractions are the XYZ levels of programming and
ensembles [1], [19], [46].

2.1 XYZ Programming Levels
A programmer’s problem-solving abilities can be improved
by dividing a problem into small, manageable pieces—
assuming the pieces are sufficiently independent to be con-
sidered separately. Additionally, these pieces can often be
reused in other programs, saving time on future problems.
One way to build a parallel program from smaller reusable
pieces is to compose a sequence of independently imple-
mented phases, each executing some parallel algorithm that
contributes to the overall solution. At the next conceptual
level, each such phase is comprised of a set of cooperating
sequential processes that implements the desired parallel
algorithm. Each sequential process may be developed sepa-
rately. These levels of problem solving—program, phase,
and process, also called the Z, Y, and X levels—have direct
analogies in the CTA.

The X level corresponds to the individual von Neumann
processors of the CTA, and an X level program specifies the
sequential code that executes in one process. Because the
model is MIMD, each process can execute different code.

The Y level is analogous to the set of von Neumann proc-
essors cooperating to compute a parallel algorithm, forming
a phase. The Y-level may specify how the X-level programs
are connected to each other for interprocess communica-
tion. Examples of phases include parallel implementations
of the FFT, matrix multiplication, matrix transposition, sort,
and global maximum. A phase has a characteristic commu-
nication structure induced by the data dependencies among
the processes. For example, the FFT induces a butterfly,
while Batcher’s sort induces a hypercube [1].

Finally, the Z level corresponds to the actions of the
CTA’s global controller, where sequences of parallel phases
are invoked and synchronized. A Z level program specifies
the high level logic of the computation and the sequential
invocation of phases (although their execution may overlap)
that are needed to solve complex problems. For example,
the Car-Parrinello molecular dynamics code simulates the
behavior of a collection of atoms by iteratively invoking a
series of phases that perform FFT’s, matrix products, and
other computations [49]. In Z-Y-X order, these three levels
provide a top-down view of a parallel program.

2.1.1 Example: XYZ Levels of the Jacobi Iteration
Fig. 1 illustrates the XYZ levels of programming for the
Jacobi Iteration. The Z level consists of a loop that invokes
two phases, one called Jacobi(), which performs the over-
relaxation, the other called Max(), which computes the
maximum difference between iterations that is used to test
for termination.

74 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

Each Y level phase is a collection of processes executing
concurrently. Here, the two phases are graphically depicted
with squares representing processes and arcs representing
communication between processes. The Jacobi phase uses a
mesh interconnection topology, and the Max phase uses a
binary tree. Other details of the Y level, such as the distri-
bution of data, are not shown in this figure, but will be ex-
plained in the next subsection.

Finally, a sketch of the X level program for the two
phases is shown at the right of Fig. 1. The X level code for
the Jacobi phase assigns to each data point the average of its
four neighbors. The Max phase finds, for all data points, the
largest difference between the current iteration and the
previous iteration.

A Z level program is basically a sequential program that
provides control flow for the overall computation. An X
level program, in its most primitive form, can also be
viewed as a sequential program with additional operations
that allow it to communicate with other processes. Al-
though parallelism is not explicitly specified at the X and Z
levels, these two levels may still contain parallelism. For
example, phase invocation may be pipelined, and the X
level processes can execute on superscalar architectures to
achieve instruction-level parallelism.

It is the Y level that specifies scalable parallelism and
most clearly departs from a sequential program. Ensembles
support the definition and manipulation of this parallelism.

2.2 Ensembles
The Phase Abstractions use the ensemble structure to de-
scribe data structures and their partitioning, process
placement, and process interconnection. In particular, an

ensemble is a partitioning of a set of elements—data,
codes, or port connections—into disjoint sections. Each
section represents a thread of execution, so the section is a
unit of concurrency and the degree of parallelism is
modulated by increasing or decreasing the number of
sections. Because all three aspects of parallel computa-
tion—data, code, and communication—are unified in the
ensemble structure, all three components can be reconfig-
ured and scaled in a coherent, concise fashion to provide
flexibility and portability.

A data ensemble is a data structure with a partitioning.
At the Z level, the data ensemble provides a logically
global view of the data structure. At the X level, a portion
of the ensemble is mapped to each section and is viewed
as a locally defined structure with local indexing. For ex-
ample, the 6 � 6 data ensemble in Fig. 2 has a global view
with indices [0 : 5] � [0 : 5], and a local view of 3 � 3
subarrays with indices [0 : 2] � [0 : 2]. The mapping of the
global view to the local view is performed at the Y level
and will be described in Section 3. The use of local index-
ing schemes allows an X level process to refer to generic
array bounds rather than to global locations in the data
space. Thus, the same X level source code can be used for
multiple processes.

A code ensemble is a collection of procedures with a parti-
tioning. The code ensemble gives a global view of the proc-
esses performing the parallel computation. When the pro-
cedures in the ensemble differ, the model is MIMD; when
the procedures are identical, the model is SPMD. Fig. 3
shows a code ensemble for the Jacobi phase in which all
processes execute the xJacobi() function.

Fig. 1. XYZ illustration of the Jacobi iteration.

 (a) (b)

Fig. 2. (a) A 6 × 6 array and, (b) its corresponding data ensemble for a 2 × 2 array of sections.

ALVERSON ET AL.: ABSTRACTIONS FOR PORTABLE, SCALABLE PARALLEL PROGRAMMING 75

Fig. 3. Illustration of a code ensemble.

Finally, a port ensemble defines a logical communication
structure by specifying a collection of port name pairs. Each
pair of names represents a logical communication channel
between two sections, and each of these port names is
bound to a local port name used at the X level. Fig. 4 de-
picts a port ensemble for the Jacobi phase. For example, the
north port (N) of one process is bound to the south port (S)
of its neighboring process.

Fig. 4. Illustration of a port ensemble.

A Y level phase is composed of three components: a code
ensemble, a port ensemble that connects the code ensem-
ble’s processes, and data ensembles that provide arguments
to the processes of the code ensemble. The sections of each
ensemble are ordered numerically, so that the ith section of
a code ensemble is bound to the ith section of each data and
port ensemble. This correspondence allows each section to
be allocated to a processor for normal sequential execution:
The process executes on that processor, the data can be
stored in memory local to that processor, and the ports de-
fine connections for interprocessor communication. Conse-
quently, the ith sections of all ensembles are assigned to the
same processor to maintain locality across phases. If two
phases share a data ensemble but require different parti-
tionings for best performance, a separate phase may be
used to move the data.

The Z level logically stores ensembles in Z level vari-
ables, composes them into phases, and stores their results.
The phase invocation interface between the Z and X levels
encourages modularity, because the same X level code can
be invoked with different ensemble parameters in the same
way that procedures are reused in sequential languages.

The ensemble abstraction helps hide the diversity of par-
allel architectures. However, to map well to individual ar-
chitectures, the abstraction must be parameterized, for ex-
ample, by the number of processors and the size of the prob-
lem. This parameterization is illustrated in the next section.

3 ENSEMBLE EXAMPLE: JACOBI

To provide a better understanding of the ensembles and the
Phase Abstractions, we now complete the description of the
Jacobi program. We adopt notation from the proposed Orca
C language [30], [32], but other languages based on the
Phase Abstractions are possible (see Section 4).

3.1 Overall Program Structure
As shown in Fig. 5, a Phase Abstractions program consists
of X, Y, and Z descriptions, plus a list of configuration pa-
rameters that are used by the program to adapt to different
execution environments. In this case, two runtime parame-
ters are accepted: Processors and shape. The first pa-
rameter is the number of processors, while the second
specifies the shape of the processor array. As will be dis-
cussed later, the program uses a 2D data decomposition, so
by setting shape to Rows (Cols) we choose a horizontal
strips (vertical strips) decomposition. (The function Parti-
tion2D() computes values of rows and cols such that
(rows cols) = Processors and the difference between
rows and cols is minimized.) With this configuration
computation, this program can, through the use of different
load time parameters, adapt to different numbers of proces-
sors and assume three different data decompositions. The
configuration computation is executed once at load time.

3.2 Z Level of Jacobi
After the program is configured, the Z level program is
executed, which initializes program variables, reads the
input data and, then, iteratively invokes the Jacobi and
Max phases until convergence is reached, at which point
an output phase is invoked. The data, processing, and
communication components of the Jacobi and Max phases
are specified by defining and composing code, data, and
port ensembles as described below.

3.3 Y Level: Data Ensembles
This program uses two arrays to store floating point values
at each point of a 2D grid. Parallelism is achieved by parti-
tioning these arrays into contiguous 2D blocks:
partition block[r][c] float p[rows][cols],

float newP[rows] [cols];

This declaration states that p and newP have dimensions
(rows cols) and are partitioned onto an (r c) section
array (process array). The keyword partition identifies
p and newP as ensemble arrays, and block names this
partitioning so that it can be reused to define other en-
sembles. This partitioning corresponds to the one in Fig. 2,
when rows = �, cols = �, r = 2, and c = �, and this en-
semble declaration belongs in the <data ensembles> meta-
code of Fig. 5. (Section 5 shows how an alternate decom-
position is declared.)

The values of r and c are assumed to be specified in the
program’s configuration parameter list. Each section is im-
plicitly defined to be of size (s t), where s rows

r
 and

t cols
c

 . (If r does not divide rows evenly, some sections

will have s rows
r

 , while others will have s rows
r

 .)

Consequently, X level processes contain no assumptions
about the data decomposition except the dimension of the

76 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

subarrays, so these processes can scale in both the number
of logical processors and in the problem size.

3.4 Jacobi Phase
3.4.1 Port Ensemble
The Jacobi phase computes for each point the average of its
four nearest neighbors, implying that each section will
communicate with its four nearest neighbor sections (see
Fig. 4). The following Y level ensemble declaration defines
the appropriate port ensemble:
Jacobi.portnames <��> N, E, W, S

/* North, East, West, South */

Jacobi[i][j].port.N <��> Jacobi[i-1][j].port.S

where 1 <= i < r, 0 <= j < c

Jacobi[i][j].port.W <��> Jacobi[i][j-1].port.E

where 0 <= i < r, 1 <= j < c

The first line declares the phase’s port names so the subse-
quent bindings can be specified. The second and third lines
define a mesh connectivity between Y level port names.
This port ensemble declaration does not specify connec-
tions for the ports that lie on the boundaries. In this case,
these unbound ports are bound to derivative functions,
which compute boundary conditions using data local to the
section. The following binds derivative functions to ports
on the edges of Jacobi.
Jacobi[0][i] .port.N receive <��> RowZero,

where 0 <= i < c

Jacobi[i][c-1] .port.E receive <��> ColZero,

where 0 <= i < r

Jacobi[i][0] .port.W receive <��> ColZero,

where 0 <= i < r

Jacobi[r-1][i] .port.S receive <��> RowZero,

where 0 <= i < c

RowZero and ColZero are defined as:

double RowZero()

{

static double row[1:t]

/* default initialized to 0�s */

return row;

}

double ColZero()

{

static double col[0][1:s]

/* default initialized to 0�s */

return col[0];

}

The values of s and t are determined by the process’ X
level function—in this case xJacobi().

In the absence of derivative functions, X level programs
could check for the existence of neighbors, but such tests
complicate the source code and increases the chance of in-
troducing errors. As Section 5 shows, even modestly com-
plicated boundary conditions can lead to a proliferation of
special case code.

#define Rows 1 /* Constants to define the shape */

#define Cols 2 /* of the logical processor array */

#define TwoD 3

program Jacobian (shape, Processors)

switch (shape){ /* Configuration Computation */

case Rows: rows = Processors;

cols = 1;

break;

case Cols: rows = 1;

cols = Processors;

break;

case TwoD: Partition2D(&rows, &cols, Processors);

break;

}

(rows, cols, Processors) /* Configuration Parameter List */

<data ensemble definitions>; /* Y Level */

<port ensemble definitions>;
<code ensemble definitions>;
<process definitions>; /* X Level */

begin /* Z Level */

Input();

while (tolerance > delta)

{

Jacobi(p, newP);

tolerance = Max(p, newP);

tempP = p; /* Swap p and newP to prepare for */

p = newP; /* the next iteration */

newP = tempP;

}

Output();

end

Fig. 5. Overall Phase Abstraction program structure.

ALVERSON ET AL.: ABSTRACTIONS FOR PORTABLE, SCALABLE PARALLEL PROGRAMMING 77

3.4.2 Code Ensemble
To define the code ensemble for Jacobi, each of the r c
sections is assigned an instance of the xJacobi() code:
Jacobi[i][j].code <��> xJacobi();

where 0 <= i < r, 0 <= j < c

Because Jacobi contains heterogeneity only on the
boundaries, which, in this program, is handled by deriva-
tive functions, all the functions are the same. In general,
however, the only restriction is that the function’s argu-
ment types and return type must match those of the phase
invocation.

3.4.3 X Level
The X level code for Jacobi is shown in Fig. 6. It first sends
edge values to its four neighbors, then receives boundary
values from its neighbors, and, finally, it uses the four point
stencil to compute the average for each interior point. Sev-
eral features of the X level code are noteworthy:

• parameters—The arguments to the X level code estab-
lish a correspondence between local variables and the
sections of the ensembles. In this case, the local value
array is bound to a block of ensemble values.

• communication—Communication is specified using the
transmit operator (�), for which a port name on the

left specifies a send of the righthand side, and a port
on the right indicates a receive into the variable on the
lefthand side. The semantics are that receive opera-
tions block, but sends do not.

• uniformity—Because derivative functions are used,
the xJacobi() function contains no tests for
boundary conditions when sending or receiving
neighbor values.

• border values—The values s and t, used to define the
bounds of the value array, are parameters derived
from the section size of the data ensemble. To hold
data from neighboring sections, value is declared to be
one element wider on each side than the incoming ar-
ray argument. This extra storage is explicitly specified
by the difference between the local declaration,
x[0:s+1][0:t+1], and the formal declaration,
x[1:s][1:t], where the upper bounds of these array
declarations are inclusive.

• array slices—Slices provide a concise way to refer to
an entire row (or in general, a d-dimensional block)
of data. When slices are used in conjunction with
the transmit operator (�), the entire block is sent
as a single message, thus reducing communication
overhead.

xJacobi(value[1:s][1:t], newvalue[1:s][1:t])

double value[0:s+1][0:t+1]; /* extra storage on all four sides */

double newvalue[0:s+1][0:t+1];

port North, East, West, South;

{

double newvalue[0:s+1][0:t+1];

int i, j;

/* Send neighbor values */

North <== value [1][1:t]; /* 1:t is an array slice */

East <== value[1:s][t];

West <== value[1:s][1];

South <== value[s][1:t];

/* Receive neighbor values */

value[s+1][1:t] <== South;

value[1:s][0] <== West;

value[1:s][t+1] <== East;

value[0][1:t] <== North;

for (i=1; i<=s; i++)

{

for (j=1; i<=t; i++)

{

newvalue[i][j] = (value[i][j+1] +value[i][j-1] +

 value[i+1][j] + value[i-1][j])/4;

}

}

for (i=1; i<=s; i++)

{

for (j=1; i<=t; i++)

{

value[i][j] = newvalue[i][j];

}

}

}

Fig. 6. X level code for the Jacobi phase.

78 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

3.4.4 The Complete Phase
To summarize, the data ensemble, the port ensemble, and
the code ensemble collectively define the Jacobi phase.
Upon execution, the sections declared by the configuration
parameters are logically connected in a nearest-neighbor
mesh, and each section of data is manipulated by one
xJacobi() process. The end result is a parallel algorithm
that computes one Jacobi iteration.

3.5 Max Phase
The Max phase finds the maximum change of all grid
points, and uses the same data ensemble as the Jacobi
phase. The port ensemble is shown graphically in Fig. 8 and
is defined below.
Max.portnames <��> P, L, R

/* Parent, Left, Right */

Max[i].port.R <��> Max[2*i].port.P

where 0 <= i < r*c/2 � 1

Max[i].port.L <��> Max[2*i+1].port.P

where 0 <= i < r*c/2 � 1

The derivative functions for this phase are bound so that a
receive from a leaf section’s Left or Right port will return
the value computed by the Smallest_Value() function,
and a send from the root’s unbound Parent port will be a
no-op.
Max[i].port.L receive <��> SmallestValue()

where r*c/2 � 1 <= i < Processors

Max[i].port.R receive <��> SmallestValue()

where r*c/2 -� 1 <= i < Processors

Max[i].port.P send <��> NoOp()

where i = 0

The Smallest_Value() derivative function simply returns
the smallest value that can be represented on the architecture.
The code ensemble for this phase is similar to the Jacobi
phase, except that xMax() replaces xJacobi(). (See Fig. 7.)

With applications that are more complicated than Jacobi,
the benefit of using ensembles increases, while their cost is
amortized over a larger program. The cost of using ensem-
bles will also decrease as libraries of ensembles, phases,
derivative functions, and X level codes are built. For exam-
ple, the Max phase of Jacobi is common to many computa-
tions and would not normally be defined by the programmer.

4 HIGH LEVEL PROGRAMMING WITH THE PHASE
ABSTRACTIONS

Phase Abstractions are not a programming language, but
rather a foundation for the development of parallel pro-
gramming languages that support the creation of efficient,
scalable, portable programs. Orca C, used in the previous
section, is a literal, textual instantiation of the Phase Ab-
stractions. It clearly shows the power of the Phase Abstrac-
tions, but some may find it too low-level and tedious.

In fact, a departure from the literal Orca C language is
not required to achieve an elegant programming style. By
adopting certain conventions, it is possible to build reusable
abstractions directly on top of Orca C. By staying within the
Orca C framework, this solution has the advantage that
different sublanguages can be used together for a single
large problem that requires diverse abstractions for good
performance. As an example, consider the design of an
APL-like array sublanguage for Orca C.3

Recall that an X level procedure receives two kinds of
parameters—global data passed as arguments and port
connections—that support two basic activities: computa-
tions on data and communication. However, it is possible
to constrain X level functions to perform just one of these
two tasks—a local computation or a communication opera-
tion. That is, there could be separate computation phases
and communication phases. For example, there can be X
level computation functions for adding integers, computing
the minimum of some values, or sorting some elements.

3. Since the submission of this paper, an array sublanguage known as
ZPL has been developed to support data parallel computations [35], [47],
[31], [37]. While its syntax differs significantly from Orca C, ZPL remains
true to the Phase Abstractions model. It provides a powerful Z level lan-
guage that hides all of the X and Y level details from the user.

xMax(value[1:s][1:t], new[1:s][1:t],

double value[1:s][1:t];

double newvalue[1:s][1:t];

port Parent, Left, Right;

{

int i, j;

double local_max;

double temp;

/* Compute the local maximum */

local_max = -1;

for (i=1; i<=s; i++)

{

for (j=1; j<=t; j++)

{

temp = abs(value[i][j] �

newvalue[i][j]);

localmax = Max(temp, local_max);

}

}

/* Compute the global maximum */

temp <== Left; /*receive*/

local_max = Max(temp, local_max);}

temp <== Right; /*receive*/

local_max = Max(temp, local_max);

Parent <== local_max; /* send */

}

Fig. 7. X level code for the Max phase.

Fig. 8. Illustration of a tree port ensemble.

ALVERSON ET AL.: ABSTRACTIONS FOR PORTABLE, SCALABLE PARALLEL PROGRAMMING 79

There can be X level communication functions for shifting
data cyclically in a ring, for broadcasting data, or for com-
municating up and down a tree structure. Reductions,
which naturally combine both communication and com-
putation, are notable exceptions where the separation of
communication from computation is not desirable. For such
operations, it suffices to define a communication-oriented
phase that takes an additional function parameter for com-
bining the results of communications.

To illustrate, reconsider the Jacobi example. Rather than
specify the entire Jacobi iteration in one X level process,
each communication operation constitutes a separate phase
and the results are combined by Z level add and divide
phases. The convergence test is computed at the Z level by
subtracting the old array from the new one and performing

a maximum reduction on the differences. The program
skeleton in Fig. 9 illustrates this method, providing exam-
ples of X level functions for + (referred to as operator+ in
the syntactic style of C++), shift, and reduce; the Z level
code shows how data ensembles are declared and how
phase structures for add, left-shift and reduce are initial-
ized. The divide and subtract phases are analogous to add,
and the other shift functions are analogous to the left-shift.

There are three consequences of this approach. First, the
interface to a phase is substantially simplified. Second, some
problems are harder to describe because it is not possible to
combine computation and communication within a single X
level function. Finally, X level functions (and the phases that
they comprise) are smaller and are more likely to perform
just one task, increasing their composability and reusability.

xproc TYPE[1:s][1:t] operator+(TYPE x[1:s][1:t], TYPE y[1:s][1:t])

{

TYPE result[1:s][1:t];

int i, j;

for (i=1; i<=s; i++)

for (j=1; j<=t; i++)

result[i][j] = x[i][j] + y[i][j];

return result;

}

begin Z

xproc void shift(TYPE val[1:s][1:t])

port write_neighbor, double X[1:J][1:K], OldX[1:J][1:K];

read_neighbor; ...

{ phase operator+;

TYPE temp[1][1:t]; phase Left;

int i; phase Reduce;

...

write_neighbor <== val[1];

operator+.code = operator+;

temp <== read_neighbor;

for (i=2; i<=t; i++) Left.code = shift;

val[i-1] = val[i]; Left.port = WriteLeft(Zero);

...

val[s] = temp;

} Reduce.code = reduce;

Reduce.port = Tree(No_Op, Largest_Value,

 Largest_Value);

...

do

xproc int reduce(TYPE val[1:k], TYPE*()op) {

port Parent, OldX = X;

Child[1:n]; X := (Left(X) + Right(X) + Up(X) + Down(X))/4;

{ } while (Reduce(X - OldX, max) > tolerance);

int i;

TYPE accum; end Z

accum = val[1];

for (i=2; i<=k; i++)

accum = op(accum,val[i]);

for (i=1; i<=n; i++)

accum = op(accum,Child[i]);

Parent <== accum;

}

Fig. 9. Jacobi written in an array style using Orca C.

80 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

Although the array sublanguage defined here is similar to
APL, it has some salient differences. Most significantly, the
Orca C functions operate on subarrays, rather than individual
elements, which means that fast sequential algorithms can be
applied to subarrays. So, while this solution achieves some of
the conciseness and reusability of APL, it does not sacrifice
control over data decompositions or lose the ability to use
separate global and local algorithms. This solution also has the
advantage of embedding an array language in Orca C, allow-
ing other programming styles to be used as they are needed.

5 DISCUSSION

The power of the Phase Abstractions comes from the decom-
position of parallel programs into X, Y, and Z levels, the en-
coding of key architectural properties as simple parameters,
and the concept of ensembles, which allows data, port, and
code decompositions to be specified and reused as individual
components. The three types of ensembles work together to
allow the problem and machine size to be scaled. In addition,
derivative functions allow a single X level program to be
used for multiple processes even in the presence of boundary
conditions. This section discusses the Phase Abstractions
with respect to performance and expressiveness.

5.1 Portability and Scalability
When programs are moved from one platform to another,
they must adapt to the characteristics of their host machine
if they are to obtain good performance. If such adaptation is
automatic or requires only minor effort, portability is
achieved. The Phase Abstractions support portability and
scalability by encoding key architectural characteristics as
ensemble parameters and by separating phase definitions
into several independent components.

Changes to either the problem size or the number of
processors are encapsulated in the data ensemble declara-
tion. As in Section 3, we relate the size of a section (s t),
the overall problem size (rows cols), and the number of
sections (r c) as follows:

s = rows/r

t = cols/c

The problem size scales by changing the values of rows and
cols, the machine size scales by changing the values of r
and c, and the granularity of parallelism is controlled by
altering either the number of processors or the number of
sections in the ensemble declaration. This flexibility is an
important aspect of portability because different architec-
tures favor different granularities.

While it is desirable to write programs without making
assumptions about the underlying machine, knowledge of
machine details can often be used to optimize program per-
formance. Therefore, tuning may sometimes be necessary.
For example, it may be beneficial for the logical communi-
cation graph to match the machine’s communication
structure. Consider embedding the binary tree of the Max
phase onto a mesh architecture: Some logical edges must
span multiple physical links. This edge dilation can be
eliminated with a connectivity that allows comparisons
along each row of processors and, then, along a single col-
umn (see Fig. 10).

To address the edge dilation problem, the fixed binary tree
presented in Section 3 can be replaced by a new port ensem-
ble that uses a tree of variable degree. Such a solution is
shown in Fig. 11, where the child ports are represented by an
array of ports. This new program can use either a binary tree
or the “rows and columns” approach. The port ensemble
declaration for the latter approach is shown below.
/* Rows and Columns communication structure */

Max[i][j].port.P <��> Max[i][j-1] port.C[0]

where 0 <= i < r, 1 <= j < c

Max[i][0].port.P <��> Max[i-1][0].port.C[1]

where 1 <= i < r

With the code suitably parameterized, this program can
now execute efficiently on a variety of architectures by se-
lecting the proper port ensemble.

5.2 Locality
The best data partitioning depends on factors such as the
problem and machine size, the hardware’s communication
and computation characteristics, and the application’s com-
munication patterns. In the Phase Abstractions model,
changes to the data partitioning are encapsulated by data
ensembles. For example, to define a 2D block partitioning on
P processors, the configuration code can define the number
of sections to be r P , c P . If a 1D strip partitioning is
desired, the number of sections can simply be defined to be r
= 1, c = P. This strip decomposition requires that each proc-
ess have only East-West neighbors instead of the four neigh-
bors used in the block decomposition. By using the port en-
sembles to bind derivative functions to unused ports—in this
case the North and South ports—the program can easily ac-
commodate this change in the number of neighbors. No other
source level changes are required.

The explicit dichotomy between local and nonlocal ac-
cess encourages the use of different algorithms locally and
globally. Batcher’s sort, for example, benefits from this ap-
proach (see Section 1). This contrasts with most approaches
in which the programmer or compiler identifies as much
fine-grained parallelism as possible and the compiler ag-
gregates this fine-grained parallelism to a granularity ap-
propriate for the target machine.

5.3 Boundary Conditions
Typically, processes on the edge of the problem space must
be treated separately.4 In the Jacobi Iteration, for example, a

4. Although we discuss this problem in the context of a message passing
language, shared memory programs must also deal with these special
cases.

Fig. 10. Rows and columns to compute the global maximum.

ALVERSON ET AL.: ABSTRACTIONS FOR PORTABLE, SCALABLE PARALLEL PROGRAMMING 81

receive into the East port must be conditionally executed
because processes on the East edge have no eastern neigh-
bors. Isolated occurrences of these conditionals pose little
problem, but in most realistic applications, these lead to
convoluted code. For example, SIMPLE can have up to nine
different cases—depending on which portions of the
boundaries are contained within a process—and these con-
ditionals can lead to code that is dominated by the treat-
ment of exceptional cases [18], [41].

For example, suppose a program with a block decompo-
sition assumes in its conditional expression that a process is
either a NorthEast, East, or SouthEast section, as shown
below:

if (NorthEast)

{

/* special case 1 */

}

else if (East)

{

/* special case 2 */

}

else if (SouthEast)

{

/* special case 3 */

}

A problem arises if the programmer then decides that a
vertical strips decomposition would be more efficient. The
above code assumes that exactly one of the three bound-
ary conditions holds. But, in the vertical strips decompo-
sition, there is only one section on the Eastern edge, so all
three conditions apply, not just one. Therefore, the change

in data decomposition forces the programmer to rewrite
the above boundary condition code.

Our model attempts to insulate the port and code en-
sembles from changes in the data decomposition: Processes
send and receive data through ports that in some cases in-
volve interprocess communication and, in other cases, in-
voke derivative functions. The handling of boundary con-
ditions has, thus, been decoupled from the X level source
code. Instead of cluttering up the process code, special
cases due to boundary conditions are handled at the prob-
lem level where they naturally belong.

5.4 Reusability
The same characteristics that provide flexibility in the Phase
Abstractions also encourage reusability. For example, the
Car-Parrinello molecular dynamics program [49] consists of
several phases, one of which is computed using the Modi-
fied Gram-Schmidt (MGS) method of solving QR factoriza-
tion. Empirical results have shown that the MGS method
performs best with a 2D data decomposition [36]. However,
other phases of the Car-Parrinello computation require a 1D
decomposition, so, in this case, a 1D decomposition for
MGS yields the best performance, since it avoids data
movement between phases. This illustrates that a reusable
component is most effective if it is flexible enough to ac-
commodate a variety of execution environments.

5.5 Irregular Problems
Until now, this paper has only described statically defined
array-based ensembles. However, this should not imply
that Phase Abstractions are ill suited to dynamic or un-
structured problems. In fact, to some extent, LPAR [28], a
set of language extensions for irregular scientific computa-
tions (see Section 7), can be described in terms of the Phase
Abstractions. The key point is that an ensemble is a set with
a partitioning; to support dynamic or irregular computa-
tions, we can envision dynamic or irregular partitionings
that are managed at runtime.

Consider first a statically defined irregular problem such
as finite element analysis. The programmer begins by de-
fining a logical data ensemble that will be replaced by a
physical ensemble at runtime. This logical definition in-
cludes the proper record formats and an array of port
names, but not the actual data decomposition or the actual
port ensemble. At runtime, a phase is run that determines
the partitioning and creates the data and port ensembles:
The size and contents of the data ensemble are defined, the
interconnection structure is determined, and the sections
are mapped to physical processors. We assume that the
code ensemble is SPMD, since this obviates the need to as-
sign different codes to different processes dynamically.
Once this partitioning phase has completed, the ensembles
behave the same as statically defined phases.

Dynamic computations could be generalized from the
above idea. For example, a load balancing phase could
move data between sections and also create revised data
and port ensembles to represent the new partitioning.
Technical difficulties remain before such dynamic ensem-
bles can be supported, but the concepts do not change.

xMax (value[1:s][1:t], new[1:s][1:t],

numChildren)

double value[1:s][1:t];

double new_value[1:s][1:t];

port temp;

{

int i,j;

double local_max;

double temp;

/*Compute the local maximum*/

local_max = 1;

for (i=1; i<=s; i++

{

for (j=1; i<=t; i++)

{

temp = abs(value[i][j]

-new_value[i][j]);

local_max =

Max(temp, local_max);

}

}

/*Compute the global maximum*/

for (i=0; i<numChildren; i++)

{

temp <== Child[i]; /*receive*/

local_max = Max(temp, local_max);

}

Parent <== local_max; /*send*/

}

Fig. 11. Parametized X level code for the Max Phase.

82 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

5.6 Limits of the Non-Shared Memory Model
The nonshared memory model encourages good locality
of reference by exposing data movement to the program-
mer, but the performance advantage for this model is
small for applications that inherently have poor locality.
For example, direct methods of performing sparse Chole-
sky factorization have poor locality of reference because
of the sparse and irregular nature of the input data. For
certain solutions to this problem, a shared memory model
performs better because the single address space leads to
better load balance through the use of a work queue
model [38]. The shared memory model also provides no-
tational convenience, especially when pointer-based
structures are involved.

6 PORTABILITY RESULTS

Experimental evidence suggests that the Phase Abstrac-
tions can provide portability across a diverse set of MIMD
computers [32], [33]. This section summarizes these re-
sults for just one program, SIMPLE, but similar results
were achieved for QR factorization and matrix multipli-
cation [30]. Here, we briefly describe SIMPLE, the ma-
chines on which this program was run, the manner in
which this portable program was implemented, and the
significant results.

SIMPLE is a large computational fluid dynamics bench-
mark whose importance to high performance computing
comes from the substantial body of literature already de-
voted to its study. It was introduced in 1977 as a sequential
benchmark to evaluate new computers and Fortran compil-
ers [7]. Since its creation, it has been studied widely in both
sequential and parallel forms [3], [9], [13], [16], [17], [23],
[24], [40], [42].

6.1 Hardware
The portability of our parallel SIMPLE program was in-
vestigated on the iPSC/2 S, iPSC/2 F, nCUBE/7, Sequent
Symmetry, BBN Butterfly GP1000, and a Transputer
simulator. These machines are summarized in Table 1.
The two Intel machines differ in that the iPSC/2 S has a
slower Intel 80387 floating point coprocessor, while the
other has the faster iPSC SX floating point accelerator.
The simulator is a detailed Transputer-based nonshared
memory machine. Using detailed information about
arithmetic, logical, and communication operators of the
T800 [24], this simulator executes a program written in a
Phase Abstraction language and estimates program exe-
cution time.

6.2 Implementation
The SIMPLE program was written in Orca C. Since no com-
piler exists for any language based on the Phase Abstractions,
this program was hand-compiled in a straight-forward fash-
ion to C code that uses a message passing substrate to sup-
port the Phase Abstractions. The resulting C code is machine-
independent, except for process creation, which is dependent
on each operating system’s method of spawning processes.

Fig. 12a shows that similar speedups were achieved on
all machines. Many hardware characteristics can affect
speedup, and these can explain the differences among the
curves. In this discussion, we concentrate on communica-
tion costs relative to computational speed, the feature that
best distinguishes these machines. For example, the iPSC/2 F
and nCUBE/7 have identical interconnection topologies,
but the ratio of computation speed to communication speed
is greater on the iPSC/2 [11], [12]. This has the effect of re-
ducing speedup, because it decreases the percentage of
time spent computing and increases the fraction of time
spent on noncomputation overhead. Similarly, since mes-
sage passing latency is lowest on the Sequent’s shared bus,
the Sequent shows the best speedup. This claim assumes
little or no bus contention, which is a valid assumption con-
sidering the modest bandwidth required by SIMPLE.

Fig. 12b shows the SIMPLE results of Hiromoto et al. on
a Denelcor HEP, using 4,096 data points [23], which indi-
cate that our portable program is roughly competitive with
machine-specific code. The many differences with our re-
sults—including different problem sizes, different archi-
tectures and, possibly, even different problem specifica-
tions—make it difficult to draw any stronger conclusions.

As another reference point, Fig. 12b compares our results
on the iPSC/2 S against those of Pingali and Rogers’ paral-
lelizing compiler for Id Nouveau, a functional language
[42]. Both experiments were run on iPSC/2s with 4MB of
memory and 80,387 floating point units. All other parame-
ters appear to be identical. The largest potential difference
lies in the performance of the sequential programs on
which speedups are computed. Although these results are
encouraging for proponents of functional languages, we
point out that our results do not make use of a sophisti-
cated compiler: The type of compiler technology developed
by Pingali and Rogers can likely improve the performance
of our programs as well.

Even though the machines differ substantially—for ex-
ample, in memory structure—the speedups fall roughly
within the same range. Moreover, this version of SIMPLE
compares favorably with machine-specific implementa-
tions. These results suggest, then, that portability has been
achieved for this application running on these machines.

TABLE 1
MACHINE CHARACTERISTICS

Machine Sequent Intel Intel nCUBE BBN Transputer
model Symmetry A iPSC/2 S iPSC/2 F nCUBE/7 Butterfly GP1000 simulator
nodes 20 32 32 64 24 64

processors Intel 80386 Intel 80386 Intel 80386 custom Motorola 68020 T800
memory 32MB 4 MB/node 8 MB/node 512 KB/node 4 MB/node N/A
cache 64KB 64 KB 64KB none none

network bus hypercube hypercube hypercube omega mesh

ALVERSON ET AL.: ABSTRACTIONS FOR PORTABLE, SCALABLE PARALLEL PROGRAMMING 83

7 RELATED WORK

Many systems support a global view of parallel computa-
tion, SPMD execution, and data decompositions that are
similar to various aspects of the Phase Abstractions. None,
however, provide support for an X-level algorithm that is
different from the Z-level parallel algorithm. Nor do any
provide general support for handling boundary conditions
or controlling granularity. This section discusses how some
of these systems address scalability and portability in the
aggregate data parallel programming style.

7.1 Dataparallel C
Dataparallel C [21] (DPC) is a portable shared-memory
SIMD-style language that has similarities to C++. Unlike
the Phase Abstractions, DPC supports only point-wise par-
allelism. DPC has point-wise processor (poly) variables that
are distributed across the processors of the machine. Unlike
its predecessor C* [43], DPC supports data decompositions
of its data to improve performance on coarse-grained ar-
chitectures. However, because DPC only supports point-
wise communication, the compiler or runtime system must
detect when several point sends on a processor are destined
for the same processor and bundle them. Also, to maintain
performance of the SIMD model on a MIMD machine, extra
compiler analysis is required to detect when the per-
instruction SIMD synchronizations are not necessary and
can be removed. Because each point-wise process is identi-
cal, edge effects must be coded as conditionals that deter-
mine which processes are on the edge of the computation. It
is hard to reuse such code, because the boundary condi-
tions may change from problem to problem. Constant and
variable boundary conditions can be supported by ex-
panding the data space and leaving some processes idle.

7.2 Dino
Dino [44] is a C-like, SPMD language. Like C*, it constructs
distributed data structures by replicating structures over proc-
essors and executing a single procedure over each element of

the data set. Dino provides a shared address space, but re-
mote communication is specified by annotating accesses to
nonlocal objects by the # symbol, and the default semantics
are true message-passing. Parallel invocations of a proce-
dure synchronize on exit of the procedure. Dino allows the
mapping of data to processes to be specified by program-
mer-defined functions. To ensure fast reads to shared data,
a partitioning can map an individual variable to multiple
processors. Writes to such variables are broadcast to all
copies. Dino handles edge effects in the same fashion as C*.
Because Dino only supports point-wise communication, the
compiler or runtime system must combine messages.

7.3 Mehrotra and Rosendale
A system described by Mehrotra and Rosendale [39] is
much like Dino in that it supports a small set of data dis-
tributions. However, this system provides no way to con-
trol or precisely determine which points are local to each
other, so it is not possible to control communication costs
or algorithm choice based on locality. On the other hand,
this system does not require explicit marking of external
memory references, as in Dino. Instead, their system in-
fers, when possible, which references are global and
which are not. In algorithms where processes dynamically
choose their “neighbors,” this simplifies programming.
Also, programs are more portable than those written in
Dino. The communication structure of the processor is not
visible to the programmer, but the programmer can
change the partitioning clauses on the data aggregates.
SPMD processing is allowed, but there are no special fa-
cilities for handling edge effects.

7.4 Fortran Dialects
Recent languages such as Kali [26], Vienna Fortran [6], and
HPF [22] focus on data decomposition as the expression of
parallelism. Their data decompositions are similar to the
Phase Abstractions notion of data ensembles, but the over-
all approach is fundamentally different. Phase Abstractions

 (a) (b)

Fig. 12. (a) SIMPLE speedup on various machines, (b) SIMPLE with 4,096 points on the iPSC/2 S.

84 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

require more effort from the programmer, while this other
approach relies on compiler technology to exploit loop level
parallelism. This compiler-based approach can guarantee
deterministic sequential semantics, but it has less potential
for parallelism since there may be cases where compilers
cannot transform a sequential algorithm into an optimal
parallel one.

Kali, Vienna Fortran, and HPF depart from sequential
languages primarily in their support for data decomposi-
tion, though some of these languages do provide mecha-
nisms for specifying parallel loops. Vienna Fortran pro-
vides no form of parallel loops, while the FORALL statement
in HPF and Kali specifies that a loop has no loop carried
dependencies. To ensure deterministic semantics of updates
to common variables by different loop iterations, values are
deterministically merged at the end of the loop. This con-
struct is optional in HPF; the compiler may attempt to ex-
tract parallelism even where a FORALL is not used.

HPF and Vienna Fortran allow arrays to be aligned with
respect to an abstract partitioning. These are very powerful
constructs. For example, arrays can be dynamically re-
mapped, and procedures can define their own data distri-
bution. Together, these features are potentially very expen-
sive because, although the programmer helps in specifying
the data distribution at various points of the program, the
compiler must determine how to move the data. In addition
to data distribution directives, Kali allows the programmer
to control the assignment of loop iterations to processors
through the use of the On clause, which can help in main-
taining locality.

7.5 LPAR
LPAR is a portable language extension that supports
structured, irregular scientific parallel computations [28],
[27]. In particular, LPAR provides mechanisms for de-
scribing nonrectangular distributed partitions of the data
space to manage load-balancing and locality. These parti-
tions are created through the union, intersection, and set
difference of arrays. Because support for irregular decom-
positions has a high cost, LPAR syntactically distinguishes
irregular decompositions so that faster runtime support can
be used for regular decompositions.5 Computations are
invoked on a group of arrays by the foreach operator,
which executes its body in parallel on each array to yield
coarse-grained parallelism. LPAR uses the overlapping in-
dices of distributed subarrays to support sharing of data
elements. Overlapping domains provide an elegant way of
describing multilevel mesh algorithms and computations
for boundary conditions. There is an operator for redistrib-
uting data elements, but LPAR depends on a routine writ-
ten in the base language to compute what the new decom-
position should be.

The Phase Abstraction’s potential to support dynamic, ir-
regular decompositions is discussed in Section 5. For multi-
grid decompositions, a sublanguage supporting scaled parti-
tionings and communication between scaled ensembles
would be useful. The Phase Abstractions’ support for loose
synchrony naturally supports the use of refined grids in
conjunction with the base grid.

5. Scott Baden, personal communication.

7.6 Split-C
Split-C is a shared-memory SPMD language with memory
reference operations that support latency-hiding [10]. Split-
C procedures are concurrently applied in an “owner-
computes” fashion to the partitions of an aggregate data
structure, such as an array or pointer-based graph. A proc-
ess reads data that it does not own with a global pointer (a
Split-C data type). To hide latency, Split-C supports an
asynchronous read—akin to an unsafe Multilisp future
[20]—that initiates a read of a global pointer but does not
wait for the data to arrive. A process can invoke the sync()
operation to block until all outstanding reads complete.
There is a similar operation for global writes. These opera-
tions hide latency while providing a global namespace and
reducing the copying of data in and out of message queues.
(Copying may be necessary for bulk communication of
noncontiguous data, such as the column of an array.) How-
ever, these operations can lead to complex programming
errors because a misplaced reference or synchronization op-
eration can lead to incorrect output but no immediate failure.

Array distribution in Split-C is straightforward but
somewhat limited; some number of higher order dimen-
sions can be cyclically distributed, while the remaining di-
mensions are distributed as blocks. Load balance, locality,
and irregular decompositions may be difficult to achieve
for some applications. Array distribution declarations are
tied to a procedure’s array parameter declarations, which
can limit reusability and portability because these declara-
tions and the code that depends on them must be modified
when the distribution changes. This coupling can also incur
a performance penalty because the benefit of an optimal
array distribution for one procedure invocation may be offset
by the cost of redistributing the array for other calculations
that use the array. Split-C provides no special support for
boundary conditions. The usual trick of creating an enlarged
array is possible; otherwise, irregularities must be handled by
conditional code in the body of the SPMD procedures.

8 CONCLUSION

Parallelism offers the promise of great performance but
thus far has been hampered by a lack of portability, scal-
ability, and programming convenience that unacceptably
increase the time and cost of developing efficient programs.
Support is required for quickly programming a solution
and easily moving it to new machines as old ones become
obsolete. Rather than defining a new parallel program-
ming paradigm, the Phase Abstractions model supports
well-known techniques for achieving high-performance—
computing sequentially on local aggregates of data ele-
ments and communicating large groups of data as a
unit—by allowing the programmer to partition data across
parallel machines in a scalable manner. Furthermore, by
separating a program into reusable parts—X level, Y level,
Z-level, ensemble declarations, and boundary conditions—
the creation of subsequent programs can be significantly
simplified. This approach provides machine-independent,
low-level control of parallelism and allows programmers to
write in an SPMD manner without sacrificing the efficiency
of MIMD processing.

ALVERSON ET AL.: ABSTRACTIONS FOR PORTABLE, SCALABLE PARALLEL PROGRAMMING 85

Message passing has often been praised for its effi-
ciency but condemned as being difficult to use. The con-
tribution of the Phase Abstractions is a language model
that focuses on efficiency while reducing the difficulty of
nonshared memory programming. The programmability
of this model is exemplified by the straight-forward solu-
tion of problems, such as SIMPLE, as well as the ability to
define specialized high-level array sublanguages. Because
the Phase Abstractions model is designed to be structur-
ally similar to MIMD architectures, it performs very well
on a variety of MIMD processors. This claim is supported
by tests on machines such as the Intel iPSC, the Sequent
Symmetry, and the BBN Butterfly.

REFERENCES

[1] G. Alverson, W. Griswold, D. Notkin, and L. Snyder, “A Flexible
Communication Abstraction for Non-Shared Memory Parallel
Computing,” Proc. Supercomputing ’90, Nov. 1990.

[2] G. Alverson and D. Notkin, “Program Structuring for Effective
Parallel Portability,” IEEE Trans. Parallel and Distributed Systems,
vol. 4, no. 9, pp. 1,041-1,059, Sept. 1993.

[3] T.S. Axelrod, P.F. Dubois, and P.G. Eltgroth, “A Simulator for
MIMD Performance Prediction–Application to the S-1 MkIIa
Multiprocessor,” Proc. Int’l Conf. Parallel Processing, pp. 350-358,
1983.

[4] G.E. Blelloch, “NESL: A Nested Data-Parallel Language,” Techni-
cal Report CMU-CS-92-103, School of Computer Science, Carnegie
Mellon Univ., Jan. 1992.

[5] N. Carriero and D. Gelernter, “Linda in Context,” Comm. ACM,
vol. 32, no. 4, pp. 444-458, Apr. 1989.

[6] B. Chapman, P. Mehrotra, and H. Zima, “Vienna Fortran–A For-
tran Language Extension for Distributed Memory Multiproces-
sors,” Technical Report 91-72, Inst. for Computer Applications in
Science and Engineering, Sept. 1990.

[7] W. Crowley, C.P. Hendrickson, and T.I. Luby, “The Simple
Code,” Technical Report UCID-17715, Lawrence Livermore Labo-
ratory, 1978.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. San-
tos, R. Subramonian, and T. von Eiken, “LogP: Towards a Realis-
tic Model of Parallel Computation,” Proc. Fourth Symp. Principle
and Practice of Parallel Programming, pp. 1-12, May 1993.

[9] D.E. Culler and Arvind, “Resource Requirements of Dataflow
Programs,” Proc. Intl’l Symp. Computer Architecture, pp. 141-150,
1988.

[10] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S.
Lumetta, T. von Eicken, and K. Yelick, “Parallel Programming in
Split-C,” Proc. Supercomputing ’93, pp. 262-273, Nov. 1993.

[11] T. Dunigan, “Hypercube Performance,” Proc. Second Conf. on Hy-
percube Architectures, pp. 178-192, 1987.

[12] T. Dunigan, “Performance of the Intel iPSC/860 and NCUBE 6400
Hypercubes,” Technical Report ONRL/TM-11790, Oak Ridge
Nat’l Laboratory, 1991.

[13] K. Ekanadham and Arvind, “SIMPLE: Part I, An Exercise in Fu-
ture Scientific Programming,” Technical Report 273, MIT CSG,
1987.

[14] W. Fenton, B. Ramkumar, V. Saletore, A. Sinha, and L. Kale,
“Supporting Machine Independent Programming on Diverse Parallel
Architectures,” Proc. Int’l Conf. Parallel Processing, vol. II, pp. 193-201,
1991.

[15] J. Feo, D.C. Cann, and R. Oldehoeft, “A Report on the Sisal
Language Project,” J. Parallel and Distributed Computing, vol. 10,
pp. 349-366, Dec. 1990.

[16] D. Gannon and J. Panetta, “SIMPLE on a CHiP,” Technical Report
469, Computer Science Dept., Purdue Univ., 1984.

[17] D. Gannon and J. Panetta, “Restructuring Simple for the CHiP
Architecture,” Parallel Computing, vol. 3, pp. 305-326, 1986.

[18] K. Gates, “SIMPLE: An Exercise in Programming in Poker,” tech-
nical report, Applied Mathematics Dept., Univ. of Washington,
1989.

[19] W. Griswold, G. Harrison, D. Notkin, and L. Snyder, “Scalable
Abstractions for Parallel Programming,” Proc. Fifth Distributed
Memory Computing Conf., Charleston, S.C., 1990.

[20] R.H. Halstead, “Multilisp: A Language for Concurrent Symbolic
Computation,” ACM Trans. Programming Languages and Systems,
vol. 7, no. 4, pp. 501-538, 1985.

[21] P.J. Hatcher, M.J. Quinn, R.J. Anderson, A.J. Lapadula, B.K.
Seevers, and A.F. Bennett, “Architecture-Independent Scientific
Programming in Dataparallel C: Three Case Studies,” Proc. Super-
computing ’91, pp. 208-217, 1991.

[22] High Performance Fortran Specification, High Performance Fortran
Forum, Nov. 1994.

[23] R.E. Hiromoto, O.M. Lubeck, and J. Moore, “Experiences with the
Denelcor HEP,” Parallel Computing, vol. 1, pp. 197-206, 1984.

[24] T.J. Holman, “Processor Element Architecture for Non-Shared
Memory Parallel Computers,” PhD thesis, Dept. of Computer Sci-
ence, Univ. of Washington, 1988.

[25] iPSC/2 User’s Guide. Intel Corp., Oct. 1989.
[26] C. Koelbel and P. Mehrotra, “Compiling Global Name-Space

Parallel Loops for Distributed Execution,” IEEE Trans. Parallel and
Distributed Systems, vol. 2, no. 10, pp. 440-451, Oct. 1991.

[27] S.R. Kohn and S.B. Baden, “Lattice Parallelism: A Parallel Pro-
gramming Model for Non-Uniform, Structured Scientific Com-
putations,” Technical Report CS92-261, Dept. of Computer Sci-
ence and Eng., Univ. of California, San Diego, Sept. 1992.

[28] S.R. Kohn and S.B. Baden, “An Implementation of the LPAR Par-
allel Programming Model for Scientific Computation,” Proc. Sixth
SIAM Conf. Parallel Processing for Scientific Computing, Mar. 1993.

[29] M.S. Lam and M.C. Rinard, “Coarse-Grained Parallel Program-
ming in Jade,” Third ACM SIGPLAN Symp. Principles and Practice
of Parallel Programming, Apr. 1991.

[30] C. Lin, “The Portability of Parallel Programs Across MIMD Com-
puters,” PhD thesis, Dept. of Computer Science and Eng., Univ. of
Washington, 1992.

[31] C. Lin, “ZPL Reference Manual,” Technical Report 94-10-06, Dept.
of Computer Science and Eng., Univ. of Washington, 1994.

[32] C. Lin and L. Snyder, “A Portable Implementation of SIMPLE,”
Int’l J. Parallel Programming, vol. 20, no. 5, pp. 363-401, 1991.

[33] C. Lin and L. Snyder, “Portable Parallel Programming: Cross Ma-
chine Comparisons for SIMPLE,” Proc. Fifth SIAM Conf. Parallel Proc-
essing for Scientific Computing, J. Dongarra, K. Kennedy, P. Messina,
D.C. Sorenson, and R.G. Voigt, eds., pp. 564-569. Siam, 1992.

[34] C. Lin and L. Snyder, “Data Ensembles in Orca C,” Languages and
Compilers for Parallel Computing, U. Banerjee, D. Gelernter, A. Ni-
colau, and D. Padua, eds., pp. 112-123. Springer-Verlag, 1993.

[35] C. Lin and L. Snyder, “ZPL: An Array Sublanguage,” Languages
and Compilers for Parallel Computing, U. Banerjee, D. Gelernter, A.
Nicolau, and D. Padua, eds., pp. 96-114. Springer-Verlag, 1993.

[36] C. Lin and L. Snyder, “Accommodating Polymorphic Data De-
compositions in Explicity Parallel Programs,” Proc. Eighth Int’l
Parallel Processing Symp., pp. 68-74, 1994.

[37] C. Lin and L. Snyder, “SIMPLE Performance Results in ZPL,”
Languages and Compilers for Parallel Computing, K. Pingali, U. Ban-
erjee, D. Gelernter, A. Nicolau, and D. Padua, eds., pp. 361-375.
Springer-Verlag, 1994.

[38] C. Lin and W.D.Weathersby, “Towards a Machine-Independent
Solution of Sparse Cholesky Factorization,” Proc. Parallel Com-
puting ’93, 1993.

[39] P. Mehrotra and J. Rosendale, “Compiling High Level Constructs
to Distributed Memory Architectures,” Technical Report ICASE
Report 89-20, Inst. for Computer Applications in Science and
Eng., Mar. 1989.

[40] J.M. Meyers, “Analysis of the SIMPLE Code for Dataflow Com-
putation,” Technical Report MIT/LCS/TR-216, MIT, 1979.

[41] D. Notkin, D. Socha, M. Bailey, B. Forstall, K. Gates, R. Greenlaw,
W. Griswold, T. Holman, R. Korry, G. Lasswell, R. Mitchell, P.
Nelson, and L. Snyder, “Experiences with Poker,” Proc. ACM
SIGPLAN Symp. Parallel Programming: Experience with Applications,
Languages, and Systems, July 1988.

[42] K. Pingali and A. Rogers, “Compiler Parallelization of SIMPLE for
a Distributed Memory Machine,” Technical Report 90-1084,
Cornell Univ., 1990.

[43] J. Rose and G.L. Steele Jr., “C*: An Extended Language for Data
Parallel Programming,” Proc. Second Int’l Conf. Supercomputing,
Mar. 1987.

86 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 1, JANUARY 1998

[44] M. Rosing, R. Schnabel, and R. Weaver, “The Dino Parallel Pro-
gramming Language,” Technical Report CU-CS-457-90, Dept. of
Computer Science, Univ. of Colorado, Apr. 1990.

[45] L. Snyder, “Type Architecture, Shared Memory and the Corollary
of Modest Potential,” Ann. Rev. Computer Science, vol. I, pp. 289-
318, 1986.

[46] L. Snyder, “The XYZ Abstraction Levels of Poker-like Lan-
guages,” Languages and Compilers for Parallel Computing, D.
Gelernter, A. Nicolau, and D. Padua, eds., pp. 470-489. MIT Press,
1990.

[47] L. Snyder, “A ZPL Programming Guide,” Technical Report 94-12-
02, Dept. of Computer Science and Eng., Univ. of Washington,
1994.

[48] L. Valiant, “A Bridging Model for Parallel Computation,” Comm.
ACM, vol. 33, no. 8, pp. 103-111, 1990.

[49] J. Wiggs, “A Parallel Implementation of the Car-Parrinello
Method,” technical report general exam, Dept. of Chemistry,
Univ. of Washington, June 1993.

Gail Alverson received her BSc (Honors) from
Queen’s University at Kingston, Ontario in 1986,
and her PhD in computer science from the Uni-
versity of Washington in 1991. After receiving
her PhD, she joined Tera Computer Company in
Seattle, Washington, where she is now the proj-
ect leader of the Debugger and Application Li-
braries group. Her technical interests include
runtime support, performance, and correctness
debugging for multithreaded systems.

William Griswold received his PhD in computer
science from the University of Washington in
1991, and his BA in mathematics from the Uni-
versity of Arizona in 1985. He is an associate
professor in the Department of Computer Sci-
ence and Engineering at the University of Cali-
fornia, San Diego. He is a member of the pro-
gram committee for the International Conference
on Software Engineering in 1997 and 1998. His
research interests include software evolution and
design, compiler technology, and programming

languages. He is a member of the IEEE.

Calvin Lin received his BSE from Princeton
University in 1985 and his PhD in computer sci-
ence from the University of Washington in 1992.
He is an assistant professor in the Department of
Computer Sciences at the University of Texas at
Austin. His research interests are in languages
and compilers for portable and efficient parallel
programming. He is the codesigner of the ZPL
programming language.

David Notkin received an ScB from Brown Uni-
versity and his PhD from Carnegie Mellon Uni-
versity, both in computer science. He is a pro-
fessor of computer science and engineering at
the University of Washington. His research inter-
ests are in software engineering, with a focus on
software evolution. His current projects include
work on software model checking, software de-
sign, and software tools and techniques. He is a
member of the IEEE, ACM, and Sigma Xi.

Lawrence Snyder , professor of computer sci-
ence and engineering at the University of
Washington, received his bachelor’s degree from
the University of Iowa in mathematics and eco-
nomics, and, in 1973, received a PhD from
Carnegie Mellon University in computer science.
He joined the University of Washington in 1983
after serving on the faculties at Purdue and Yale.

Dr. Snyder’s research has ranged from the
design and development of a 32-bit single chip
(CMOS) microprocessor, the Quarter Horse, to

proofs of the undecidability of properties of programs. He created the
Configurable Highly Parallel (CHiP) architecture, the Poker Parallel
Programming Environment, and is coinventor of Chaotic Routing. He is
a codeveloper of the Take/Grant Security Model and cocreator of several
new algorithms and data structures. He is inventor of the CTA, and is
codesigner of Phase Abstractions and the ZPL programming language.

He has been an editor of the IEEE Transactions on Parallel and Dis-
tributed Systems and the Journal of the ACM. He has served on many
advisory committees for the U.S. National Science Foundation, has
chaired two National Research Council committees, and is on the board
of the Computer Research Association. He is a fellow of IEEE and ACM.

