Groupware Toolkits for
Synchronous Work

SAUL GREENBERG AND MARK ROSEMAN Department of Computer Science, Uni-
versity of Calgary

ABSTRACT

Groupware toolkits let developers build applications for synchronous and distributed
computer-based conferencing. This chapter describes four components that we believe
toolkits must provide. Aun-time architectureautomatically manages the creation, inter-
connection, and communications of both centralized and distributed processes that com-
prise conference sessions. A segofupware programming abstractiorsdlows develop-

ers to control the behaviour of distributed processes, to take action on state changes, and
to share relevant dat&roupware widgettet interface features of value to conference par-
ticipants be added easily to groupware applicati@esssion managelst people create

and manage their meetings and are built by developers to accommodate the group’s work-
ing style. We illustrate the many ways these components can be designed by drawing on
our own experiences with GroupKit, and by reviewing approaches taken by other toolkit
developers.

1.1 INTRODUCTION

Building groupware for synchronous, distributed conferencing can be a frustrating experience.
If only conventional single-user GUI toolkits are available, implementing even the simplest
systems can be lengthy and error-prone. A programmer must spend much time on tedious
but highly technical house-keeping tasks, and must recreate interface components to work
in a multi-user setting. Aside from the normal load of developing a robust application, the
programmer of groupware must also attend to the setup and management of distributed pro-
cesses, inter-process communication, state management and process synchronization, design
of groupware widgets, creation of session managers, concurrency control, security, and so on.
Consequently, a variety of researchers have been exploring groupware toolkits. Their pur-
pose is to provide tools and infrastructures powerful enough to let a programmer develop

A version of this paper will appear ifrends in CSC\WEdited by Michel Beaudouin-Lafon
© 1996 John Wiley & Sons Ltd

2 SAUL GREENBERG AND MARK ROSEMAN

robust, high quality groupware with reasonable effort. Some in-roads have been made, but we
are far from a complete solution. Realistically, most of today’s groupware toolkits are best
seen as breakthrough research systems used to either explore particular architectural features
of groupware toolkits, or as platforms to build experimental groupware prototypes. While they
have not reached the maturity of single-user GUI toolkits, these pioneering efforts have laid a
foundation for the next generation of toolkit design.

This chapter examines the technical foundations of groupware toolkits. The toolkits we
consider are those that construct real-time distributed multi-point groupware applications,
where two or more people in different locations would be able to visually share and manip-
ulate their on-line work. Typical applications produced by these systems would be electronic
whiteboards, games, multi-user text and graphics editors, distributed presentation software,
textual chat systems, and so on. The discussion is heavily influenced by our experiences with
our own groupware toolkit called GroupKit [62, 66, 29] as well as the issues raised by other
researchers doing similar work.

The chapter highlights four critical features that such toolkits should provide to reduce
implementation complexity:

¢ Run-time architecturesan automatically manage processes, their interconnections, and
communications.

e Groupware programming abstractioean be used by a programmer to synchronize inter-
action events and the data model between processes as well as the views presented across
displays.

e Groupware widgetgan let programmers add generic groupware constructs of value to
conference participants.

e Session managersrafted by programmers, can let end-users create, join, leave and man-
age meetings.

An important omission from this list are the audio and video links necessary for the inter-
personal communication channel between conference participants. This is a large area in of
itself. For simplicity, we will assume that audio and video are handled out of band, where
toolkits can include hooks to bring up other audio/video systems. However, we do point the
reader to Hiroshi Ishii's chapter in this book, which provides an excellent example of an
integrated audio/video/computational space. It should go without saying that future toolkits
must incorporated audio and video as first-class building blocks.

1.2 RUN-TIME ARCHITECTURES

Real time distributed groupware systems are almost always composed of multiple processes
communicating over a network. Because this can be complex to create, we feel strongly that
toolkits should provide not only programming facilities for creating groupware, but also the
run-time architecture for managing the run-time system. In this section, we will concentrate
only on the tension between centralizedreplicated architectures, and its impact on the de-
sign of toolkits. In his chapter in this book, Dewan will continue this theme by revisiting the
issues and by explaining further architectural differences possible in collaborative applica-
tions.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 3

1.2.1 Centralized vs. Replicated Architectures

Groupware researchers have long argued the merits of centralized vs. replicated architectures
[1, 22, 45, 46, 56, 28, 79, 37, 55, 12, 2@entralizedarchitectures use a single applica-

tion program, residing on one central server machine, to control all input and output to the
distributed participants. Client processes residing at each site are responsible only for pass-
ing requests to the central program, and for displaying any output sent to it from the central
program. The advantage of a centralized scheme is that synchronization is easy—state infor-
mation is consistent since it is all located in one place, and events are always handled from
the client processes in the same order because it is serialized by the Repleratedarchi-
tectures, on the other hand, execute a copy of the program at every site. Thus each replica
must coordinate explicitly both local and remote actions, and must attend to synchronizing all
copies so they do not get out of step.

Because of its simplicity at handling concurrency and of maintaining a single state model,
centralized architectures for groupware has had many advocates [1, 22, 45, 79, 37, 20], and
one may wonder why a replicated approach would ever be considered. The main issues are
latency, bottlenecks, and heterogeneous environments. First, a centralized scheme implies
sequential processing, where user input is transmitted from the remote machine to the central
application, which must handle it and update the displays (if necessary) before the next input
request can be dealt with. If the system latency is low, this is not a problem. But if it is
high, the entire system will become sluggish. While sluggishness is annoying when others’
actions are delayed, it is devastating when the system is unresponsive to a person’s own local
actions, especially in highly interactive applications. Second, the central system can become
a performance bottleneck. Highly interactive and graphical applications can push even the
fastest CPUs to their limits when several screens must be updated. Similarly, the relaying of
all activities to and from a single process can create a traffic jam in some environments. Third,
centralized architectures will have problems dealing with heterogeneous environments, as it is
unlikely that a single process can update properly remote clients running on (say) a Windows
95 and a Macintosh environment, as they a.ll have a different look and feel.

A replicated scheme, on the other hand, implies parallel processing, where the handling
of interactions and screen updates can occur in parallel at each replication. If done properly,
communication is efficient as replicas need only exchange critical state information to keep
their models up to date. While remote activities may still be delayed, a person’s local activities
can be processed immediately. Process bottlenecks are less likely—each replica is responsible
for drawing only the local view, unlike the central model which must update the graphics of
all screens. Consequently, heterogeneous environments are easily handled, for the communi-
cation protocol can act as a device-independent graphics layer, and views can be drawn using
the native look and feel.

The cost of replication is increased complexity. We are now programming and synchro-
nizing a distributed system, and must handle issues such as concurrency control. Different
replicated toolkits handle this in a variety of ways. For example, Share-Kit [40] has no di-
rect concurrency control, and it must be programmed infrom scratch if a programmer requires
it. Others do provide concurrency capabilities. DistEdit [43] uses atomic broadcasts. Object-
World’s shareable objects have the ability to detect messages that have arrived out of order,
and allow programmers to do non-optimistic locking [76]. GroupKit [62] can force serializa-
tion for some actions by funneling selected activities through one of the replicated processes.

Somewhere in-between are semi-replicated hybrid architectures that contain both central-

4 SAUL GREENBERG AND MARK ROSEMAN

ized and replicated components. For example, Patterson [58] advocates a cemuilfied

tion serverwhose sole job is to maintain shared state, to respond to state change requests by
clients, and to notify others when state has changed. It would be up to the replicas to decide
what the view should look like, and to update the display accordingly.

1.2.2 Impact on Toolkit Design

System designers often argue that a good toolkit will hide implementation and architectural
concerns, leaving the programmer to concentrate on the semantics of the task. Yet architec-
tures cannot be completely hidden in groupware toolkits, for the type of architecture may
have profound impacts on the way programmers code their systems, and on the system per-
formance. For example, centralized systems often have performance limitations that must be
well understood, so that they can be mitigated by the application programmer. Similarly, repli-
cated architectures are distributed systems, and programmers must be concerned with issues
such as concurrency control, communications, and fault tolerance.

The runtime architecture also affects the programming paradigm style. For example, many
toolkits separate the underlyinigta abstractiorfi.e. the data model) from the way a graphical
viewof that data is generated on the display [44, 36] (discussed further in Section 1.3). Figure
1.1 illustrates this. The abstract data model here is an array with three numbers, and the view
is generated separately from this abstraction. Views of the abstract model may differ. In this
case, two participants view the data as a bar chart, and the third participant sees it as a pie chart.
Whenever a value in the data model is changed, the views are regenerated to keep themselves
consistent with it. In terms of the run-time architecture, the way the abstraction and views are
dealt with depend upon how they are distributed across the system. For example, we could
have the data abstraction and view generation done wholly by a central process. Alternatively,
the abstraction may be centralized, and the mechanisms to create the views replicated. Or
perhaps all components are replicated. Whichever variation is used, the abstract data model
should be kept consistent across the entire groupware system, and synchronization must be
maintained between the model and the individual views generated from it. This means that
the infrastructure to support a separate abstraction and view, as well as the nature of the
programming API provided by the toolkit, are highly dependent on the nuances of the run-
time architecture.

A good toolkit will provide programmers with high level constructs to deal with all the
issues mentioned above, but not mask them [11, 12, 20, 52]. To illustrate this point, the
rest of this section will show why programmers need to know about concurrency control,
synchronization of abstract models and views, communications, and fault tolerance.

1.2.2.1 Concurrency control

Greenberg and Marwood [28] argue that no generic concurrency control scheme can handle
all groupware applications, simply because the user is an active part of the process. For exam-
ple, conservative locking and serialization schemes that block processing until concurrency
can be guaranteed can have deleterious effects on highly interactive user actions due to pro-
cessing delays and latency, while optimistic schemes have problems when on-going events
have to be undone. They also argue that some conflicting interactions are best left to the users
to solve by social means, implying that some feedback of conflicting actions be shown within
the interface.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 5

Uiger 1 Uiger 2 User 3
Fy
Bar chart view Fig chart view
of the model af the model
Array
20

............... An array as an
abstract data modal

Figure 1.1 An example of an abstract data model, and views generated from the model.

Because of this, toolkits should provide a variety of concurrency control schemes and feed-
back mechanisms, and programmers must explicitly decide which of them to deploy when
designing the application. Note that this argument becomes moot when latency is not perceiv-
able, since the users would not notice any effects of concurrency control. In this case, either
a centralized approach and its implicit serialization of events, or a replicated approach using
hidden concurrency control would work well.

Many groupware researchers have investigated concurrency control. While it is beyond the
scope of this chapter to do a comprehensive survey, readers are referred to the surveys by
Greenberg and Marwood [28], and the earier work of Ellis and Gibbs [16]. Further discus-
sions of consistency and concurrency control are found within three other chapters in this
book, by Prakash, by Dourish, and by Dewan.

1.2.2.2 Synchronization

As mentioned earlier, specific architectures usually lend themselves to particular ways of sep-
arating the underlying abstract data model from the graphical views generated from it. A
centralized system keeps both model and view in the same place, so synchronization is easy.
In contrast, replicated architectures maintain copies of both the data state and the view at all
sites. In-between is Patterson’s [58] Notification Server, which keeps the abstract data model
in a central server, with replicas deciding how to display the view of that information when
state changes are transmitted to them. At the toolkit level, this division of model and view as
well as its distribution across processes is usually visible to the programmer—the program-
ming abstractions provided are used by them to update the abstract model or the view, and
to synchronize replicas when needed. Similarly, the way the toolkit provides the abstractions
to process user events and to synchronize models and views often depends upon the way the
model and the views are distributed in the architecture. This topic will be taken up again in
more detail in Section 1.3: Programming Abstractions.

6 SAUL GREENBERG AND MARK ROSEMAN

1.2.2.3 Communication

Inter-process communication can be a complex task, especially when efficiency is a concern.
Centralized models are particularly vulnerable to communications bottlenecks, as the server
must not only handle input from the client, but update all displays as well. Replicated archi-
tectures can be more efficient, for the events sent across the network can be short messages
containing semantic changes to state. At the toolkit level, the programmer would rarely want

to deal with all the annoyances of setting up communications connections. However, they
should have the means to decide what to communicate between processes for efficiency pur-
poses, and also the means to decide priorities. For example, consider a drawing application
containing telepointers, where the telepointers are not supplied as a widget. In terms of what to
communicate, the complete telepointer graphics need not be shipped. Instead, a message can
be sent specifying the pointer shape, with subsequent messages sending out a pointer id and its
x-y coordinates. In terms of priority, when a pointer is moved the programmer should be able

to specify that only that last pointer location need be transmitted if there is a communications
bottleneck, and that this should have a lower priority than (say) a drawing message.

1.2.2.4 Fault tolerance

Because almost all groupware systems are distributed in one way or another, fault tolerance
becomes a concern. At the toolkit level, the programmer should be able to determine the
system’s response to particular faults. These include degradation or complete loss of commu-
nications between processes, excessive delays, and so on. This implies that the toolkit must
have a notification mechanism that indicates faults to the program. It also implies that the
programmer is aware of the faults that are inherent in the particular architectural design.

1.2.3 Examples
1.2.3.1 WScrawl: a centralized architecture that leverages X Windows

WScrawl [79] is a multi-user sketchpad built using the X Window system. While WScrawl is
not a toolkit, the author describes how his program leverages the communications and display
capabilites of X Windows, as well as its client/server architecture [67]. X Windows allows

a programmer to open several displays, to read input from each workstation, and to write
graphics to the screen. Groupware such as WScrawl is created by tracking the display and
input stream for each user, all within a single program. Each stream is monitored for input
events. For every input event (such as a mouse move that initiates a draw line action), the
event is processed, and all displays can be updated accordingly. For example, the pseudo-
code below handles a trivial conference of two users, each using separate displays named
Displayl and Display2, where the conference just draws a point on each display [79]:

display[1] = XOpenDisplay ("Displayl1");
display[2] = XOpenDisplay ("Display2");
for (i=1; i<=2; i++) {
XDrawPoint (display[i], 20, 100);
XCloseDisplay(displayf[il);

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 7

1.2.3.2 Rendezvous: a centralized architecture

The Rendezvous groupware toolkit [37, 57, 56, 36] is heavily modeled on the idea of main-
taining a single abstract data model that is shared by everyone. As mentioned earlier, multiple
views of that model can be drawn differently on each person’s display. Rendezvous places
both the single abstraction and the view models on a single processor. Its developers claim
that the single abstraction always contains the correct state of the application. Consequently,
all copies or view updates derived from this abstraction will be correct. The problem is that
Rendezvous is slow, because all views run off the same processor. Its designers suggest, but
have not implemented, a semi-replicated approach that keeps that shared abstraction at a cen-
tral site, with views being replicated at other sites.

1.2.3.3 The Notification Server: a centralized component of a hybrid architecture

Patterson, one of the authors of Rendezvous, revisited the idea of a semi-replicated hybrid
architecture [58]. He is now constructing a centralized “Notification Server” that could be
provided as a toolkit component in an otherwise replicated architecture. Its job is to provide
a central service for managing common state information, akin to the shared abstraction seen
in Rendezvous. While the natural use of the server is to centralize the abstract data model, the
choice of what state information to centralize is ultimately up to the designer.

The Notification Server contains two kinds of objects: Places and Thigsesidentify
what common states are accessed by which applications. Clients who enter a particular place
are notified about any state changes in that plabegsare the actual objects that maintain
state, and are essentially property-value pairs extended to contain attributes that specify access
control and types of notifications triggered (e.g., on creation, change or deletion). What is
important here is that the server has no understanding of application semantics. Virtually any
state can be represented, as long as it can be described as a property-value pair. It is left up to
the replica how to deal with state changes upon notification.

Patterson argues that this centralized Notification Server simplifies concurrency control
because locking is done in one place through a Thing’s attributes, and that serialization is
a natural consequence of centralization. He also argues that the availability of a consistent,
centralized state makes it easier to update newcomers—participants who have just entered
a conference that is already in progress. Finally, this dedicated server model implies that
attention can be devoted to making it efficient and robust—in Patterson’s words, “a lean,
mean notification machine.”

1.2.3.4 GroupKit: a mostly replicated architecture

The GroupKit groupware toolkit [62, 29] includes a mostly replicated run-time infrastruc-
ture. It actively manages the creation, location, interconnection, and teardown of distributed
processes; communications setup, such as socket handling and multicasting; and groupware-
specific features such as providing the infrastructure for session management and persistent
conferences. Its infrastructure consists of a variety of distributed processes arranged across
a number of machines. Figure 1.2 illustrates an example of the processes running when two
people are communicating to each other through two conferences ‘A’ and ‘B’. The three large
boxes represent three different workstations, the ovals are instances of processes running on
each machine, and the directed lines joining them indicate communication paths. Three types

8 SAUL GREENBERG AND MARK ROSEMAN

A "iel-known" Workstation

Conference
A

Session
Manager

Cohference
B

Session
Manager

' Conference

5 eorge

George'sWoarkstation M ary's Workstation

Figure 1.2 An example of GroupKit's run-time architecture and process model.

of GroupKit processes are shown: a single registrar, session managers, and conference appli-
cations.

Theregistrar (top box in Figure 1.2) is a centralized process that acts as a connection point
for a community of conference users. Its address is “well-known” in that other processes
know how to reach it. This is the only centralized process required by GroupKit's run-time
infrastructure. Theession manages a replicated process, one per participant (side boxes).

It provides both a user interface and a policy dictating how conferences are created or deleted,
how users are to enter and leave conferences, and how conference status is presented (see Sec-
tion 1.5: Session Management). When session manager processes are created, they connect
to the registrar. The registrar maintains a list of all conferences and the users in each con-
ference. It thus serves as an initial contact point to locate existing conference processes and
their addresses. Finally,@nference applicatiois a GroupKit program (e.g., shared editor,

game) invoked by the user through the session manager. Conference applications typically
work together as replicated processes, in that a copy of the program runs on each participant’s
workstation. They are connected via peer to peer communication channels. Two conferences,
each with two distributed replicas, are shown in Figure 1.2.

GroupKit programmers build both session managers and conference applications, and the
two are separate from one another. Programmers are aware that they are building distributed
applications, and must attend to issues such as concurrency control, fault-tolerance, and syn-
chronization. The programming abstractions let the programmer choose and mix several styles
of coding: view synchronization through multicast RPCs, or state synchronization of a repli-
cated abstract data model (see Section 1.3: Programming Abstractions). The toolkit provides a
few simple concurrency control schemes for the programmer to choose from, mostly available
within the shared data model. Communications are mostly hidden away; while it is possible
to massage communication events for efficiency, this is mostly done by working around the
system rather than with it. Fault tolerance is done by primitive events that notify a program-
mer when participants have “left” the conference and when a conference has “died”. However,
they are not notified nor can they easily handle performance degradation.

This run-time infrastructure is maintained entirely by GroupKit. The conference applica-

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 9

tion code does not need to take any explicit action in process creation or communication
set-up. Instead, the application may just ask to be notified through an event when particu-
lar session activities occur. The conference processes that comprise a conference session can
also co-ordinate with each other through the high-level programming abstractions provided
by GroupKit, as discussed in Section 1.3.

1.2.3.5 Clock: a flexible architecture

The main goal of the Clock language and ClockWorks programming environment [18] is
to support the development of groupware applications at a very high-level, hiding all details
of the underlying implementation architecture. This high level has two consequences. First,
programmers do not need to be concerned with the details of distribution, networking and
concurrency control. Second, implementations of Clock are free to use any implementation
architecture, as long as the semantics of the Clock language are preserved. (Unlike other
languages for groupware development, Clock has precisely defined semantics, independent of
any implementation [17].)

Theabstract architecturef Clock programs is developed using the visual ClockWorks pro-
gramming environment. This abstract architecture captures the structure of Clock programs,
but does not specify how the program will be implemented in a distributed context. The ab-
stract architecture language is based on separating the abstract model from its views, similar to
Rendezvous [36] and the Model-View-Controller (MVC) paradigm used in SmallTalk [44].
Because of its high-level, the architecture language supports rapid development and easy mod-
ification of groupware programs [21].

Abstract architectures can be mapped into a variety of implementation architectures. By
locating the complete architecture on a server machine and using the X window system to
post windows on different client machines, a centralized architecture can be obtained. By
locating the shared components of the Clock architecture on a server machine and replicating
private components on client machines, a semi-replicated hybrid architecture is obtained. By
replicating both shared and private components, a replicated architecture can be obtained.
Currently, Clock programs can be implemented as either centralized or semi-replicated.

There are several advantages with the Clock approach to flexible implementation architec-
tures. Since the run-time system is completely responsible for implementing network com-
munication and concurrency control, complex optimizations may be built into the system that
would be too hard to develop on a per-application basis [20]. Also, programmers can eas-
ily experiment with what kind of architecture is most appropriate for their application without
having to extensively modify the program. The primary disadvantage of the Clock approach is
that programmers give up control over precisely how different components are going to com-
municate. For example, the Clock semantics demand that concurrency control be pessimistic,
which is not practical over networks with very bad latency.

1.2.4 Discussion

There is no real answer to whether a centralized or replicated scheme works best for group-
ware. Rather, it is a set of trade-offs that revolves around the way they handle latency, the ease
of program startup and connection, programming complexity, synchronization requirements,
processor speed, the number and location of participants expected, communication capacity
and cost, and so on. For example, a centralized system would likely work just fine for a very

10 SAUL GREENBERG AND MARK ROSEMAN

small group of users (e.g., pairs), given a high bandwidth, low latency network and an applica-
tion that makes only modest demands of the processor. Replicated systems are probably better
for larger groups, for slower networks, and for applications that demand local responsiveness.

Because these situations are neither static or universal, no single solution will suffice. Per-
haps what is required is a “dynamic and reactive” groupware architecture, where the decision
of what parts of the architecture should be replicated or centralized can be adjusted to fit the
needs of particular applications and site configurations. We have already seen that Clock com-
ponents can be configured to run as centralized or semi-replicated objects [20]. O’'Grady [52]
takes this one step further in his design of GEN, a prototype groupware toolkit based upon
distributed objects that allows a high degree of run-time configuration. GEN not allows ap-
plication designers to chose whether individual objects are centralized or replicated, but also
allows designers to create their own strategies for data distribution and concurrency control.
For example, GEN was altered to allow for object migration, where centralized objects are
automatically moved to the site that uses them the most frequently. In parallel work, Dour-
ish’s chapter in this book presents his design of Prospero, a groupware toolkit that also allows
decisions on data distribution and other aspects to be made on the fly [11, 12]. Essentially,
toolkits such as GEN and Prosepero are designed to be highly flexible. Not only can devel-
opers choose between a variety of strategies, but they can also extend the toolkit to cover
situations not envisaged by the original toolkit creators.

1.3 PROGRAMMING ABSTRACTIONS

Groupware toolkits must provide programmers with abstractions for coordinating multiple
threads and distributed processes, for updating a common abstract data model, and for con-
trolling the view derived from that model. The actual abstractions supplied usually depend
upon the run-time architecture (as described in Section 1.2), as well as the schemes used to
share state information.

Patterson [55] argues that the degree to which abstract data models are separated from the
views generated from them lead to several different shared state architectures, with conse-
guences to the programming abstractions provided.

1. In an unshared system, neither data nor view model are shared. It is up to the programmer
to maintain the underlying data models (if any exists), the graphical views, and the links
between the views and the model (if any).

2. In a shared model, the data model is shared by the entire system. Programming abstrac-
tions allow one to access and change the shared model, and to specify how the (possibly
different) unshared views are to be created from the shared model.

3. In a shared view, both views and models are shared. Programming abstractions are avail-
able to change the view or the model, with changes automatically propagating from one to
the other.

This section describes several programming abstractions that are now common: multicast
remote procedure calls, events and notifiers, shared data, and shared data and views. Each
lends themselves to the three architectures mentioned above.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 11

File Collaboration Help

Saul : Hiya, Mary. How goes?

Mary : Pretty well. What are you working on?
Saul : I'm working on a book chapter

Mary : Oh? How did that come about?

I'was asked by the editor to | Transmit

Figure 1.3 Using multicast RPCs for a simple chat application.
1.3.1 Multicast Remote Procedure Calls

With replicated processes, replicas can communicate, share information, and trigger common
program execution through multicasimote procedure callRPCs). As with conventional
RPCs, a programmer specifies the procedure and arguments that should be executed in remote
processes. It is multicast because several processes can be designated in a single call.
Through this simple yet powerful abstraction, any unshared system can be synchronized.
For example, traditional callbacks to a user’s input can be replaced by a multicast RPC that
causes the resulting action to be performed in all processes. The following pseudo-code il-
lustrates this by showing how the simple text chat system shown in Figure 1.3 can be imple-
mented. The main window contains the dialog transcript, and is common across all displays.
Each participant types their text into their private text input field at the Figure’s bottom. When-
ever a person presses the “transmit” button, their name and the text they composed are sent to
all others for insertion into the transcript.

Set this_user to the name of the local user
When transmit button is pressed
Set message to the contents of the input field
Multicast to everyone:
Insert into your chat box "this_user: message"
Clear the input field

In the above example, there is no data model. Only the view is synchronized by explicitly
manipulating the widgets in the view. Data can be synchronized as well by multicast RPCs,
although it is the programmer’s responsibility to do all the house-keeping and to generate the
view from the data model.

1.3.1.1 Examples

Several systems use multicast RPCs as its sole programming abstraction. Share-Kit [40] uses
C and the Unix RPC mechanism to build its multicast layer; its programmers must register
a procedure and its argument formats as an RPC and use special keywords to invoke them.
The Conference Toolkit [6] uses a routing table to let developers specify the routing of data
between application instances, that is, how commands from one replica are directed to other
replicas. The Notification Server [58] provides a “back door” that allows programmers to
channel multicast messages between clients; these messages could be constructed in a way
that simulates multicast RPCs.

GroupKit [62, 29] simplifies multicast RPCs by allowing RPCs and arguments to be spec-

12 SAUL GREENBERG AND MARK ROSEMAN

ified in the same way as normal procedure calls, and by hiding routing and communications
details. To do this, GroupKit's run-time system tracks the addresses and existence of other
application processes, and decides how to multicast the RPCs to some or all conference pro-
cesses. This means that the programmer does not have to track details such as the file descrip-
tors, socket management, and so on. GroupKit provides three forms of RPCs, and each differs
in who the messages are sent to. The first, cajledoAll , multicasts the procedure to all
conference processes in the session, including the local user. This results in the same proce-
dure being executed everywhere. The second, cghetbOthers , multicasts a command
execution to all other remote conference processes in the session except the local process that
generated the call, which is useful when local actions differ somewhat from remote ones. The
third form directs the command to a particular conference process. This is valuable for han-
dling special cases, such as updating a new arrival to an on-going conference about the current
state of the application. Additionally, GroupKit's RPCs are non-blocking. Once the request
for an RPC invocation is made, the local program continues its execution without waiting
for a reply from remote processes. This ensures that conference processes are not delayed or
blocked in the event of network latency or crashes on remote machines.

As an example, we implemented the simple text chat system shown in Figure 1.3 in
GroupKit (which extends the Tcl/Tk scripting language by John Ousterhaut [53]) using the
gk_toAll RPC. The complete code is shown below, excluding a few minor bits that for-
mat the widgets on the display. What is important to realize is that only a few lines of code
are required to make this program group-awgkeinitConf initialize the runtime archi-
tecture for the conferencgk _defaultMenu includes GroupKit's menu widgefsers
local.username] retrieves the name of the local user, gikdtoAll multicasts the RPC
to insert the user’'s name and text into the chat box. All other lines are just the standard Tcl/Tk
code necessary to create the interface.

gk_initConf $argv # Initialize the conference

#== Create widgets

gk_defaultMenu .menubar # Add the default groupkit pulldown menu bar
listbox .chat # The shared chat box is actually a listbox
entry .input # User type there text into this entry box

button .b -text Transmit \ # Create a button labelled 'Transmit’
-command “"broadcastLine" # and attach a callback to it

#== Not shown: code to format widgets on the display
#== This callback multicasts an RPC to all replicas (using gk_toAll)

#== along with this user's name and text
proc broadcastLine {} {

gk_toAll doAddLine \ # Multicast the doAddLine RPC + arguments
[users local.username] \ # 1st argument: the user’s name
[.input get] # 2nd argument: the text

.input delete 0 end # Now clear the input field

}

#==This is executed as an RPC at all sites.
#==It inserts the name and text into the chat box
proc doAddLine {name text} {

.chat insert end [concat $name " " S$text]
}

While simple, GroupKit's multicast RPC model provides a powerful yet flexible approach
to distributed programming. The programmer does not have to know the addresses of other

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 13

conference processes or track process creation and destruction as people enter and leave the
session. The calls work the same way whether one user or twenty users are in the conference
session.

1.3.2 Events and Notifiers

A second programming abstraction allows a programmer to synchronize changes to either
views or models by specifying interesting events and how others are notified when these
events occur. Because events can be tied to anything, they can serve both unshared and shared
systems.

An eventprovides a way for conference applications to track when various things happen.
Events can be generated automatically by the run-time architecture, such as when participants
join or leave the conference session, or from (say) communications failures. They can also be
generated directly from the programmer in application-specific circumstances. Either way, the
programmer can take action on a specific event by attachimifier to it, which typically
executes a callback whenever the event occurs (notifiers are also known as handlers in some
systems).

1.3.2.1 Examples

Patterson’s Notification Server [58], described previously in Section 1.2, illustrated an archi-
tecture that supports notification. Here, events are simply changes in the state of the underly-
ing data (“Things”). Notification is controlled by the attribute field of the Thing, and occurs
automatically whenever a state changes.

GroupKit contains an event/notifier mechanism as well as events automatically maintained
and generated by the run-time infrastructure [62]. Events are typically used to handle arriv-
ing and departing participants, updating latecomers, synchronizing distributed processes, and
noticing changes to shared data. Events consist of an event type and a set of attribute/value
pairs that provide information about the event. While in some ways similar to Patterson’s
Notification Server, state information is replicated rather than centralized. Programmers trap
particular events by attaching a notifier, with desired actions specified through callbacks that
are automatically executed when the event occurs.

GroupKit's run-time infrastructure automatically sends three different event types to confer-
ence processes. The first two event types are generated when users join and leave the session,
as a conference process may want to take special action when this happens. For example, the
code fragment below tells everyone that a new participant has arrived by printing a message
on all screens. The first line attaches a notifier to a “newUserArrived” event, which is au-
tomatically generated by GroupKit when a new user joins the conference. This will trigger
execution of the subsequent lines.

gk_bind newUserArrived { # Attach code to this event
set new_user_name [users remote.%U.username] # Get the new person’s name
puts "$new_user_name just arrived!"} # Print message to the screen

The third event automatically generated by GroupKit is used to handle latecomers to con-
ferences that are already in progress. When a latecomer arrives, its conference process is
brought up to date by one of the other conference processes in the session, usually by sending
it the existing state of the conference. Details of how to update the newcomer is left up to the
programmer by having them create an appropriate callback.

14 SAUL GREENBERG AND MARK ROSEMAN

Finally, application developers can generate their own custom events. This can be useful
in more complex applications, where a change being handled in one part of the program can
generate an event to notify other parts of the program (or other processes) of the change. For
example, a programmer can create a shared data model and use events to generate views from
it. Changes to the model’s state can be attached to events, with notifiers created to update the
view accordingly. Different views are handled by attaching different callbacks to the notifiers.

A variety of other toolkits use some type of event/natification scheme e.g., Rendezvous
[36], Chiron-1 [74], and Weasel [19]. However, these are typically tied to directly linking the
shared views with a data model, discussed next.

1.3.3 Shared Models and Views

While multicast RPCs and events can be used to co-ordinate conference replicas, they do de-
mand more housekeeping as the application becomes complex. Consequently, several group-
ware toolkits provide programming abstractions to maintain and update a shared data model,
and some means for attaching a view to the model.

The idea of separating a data model from its view originated in Smalltalk’s model-view-
controller [44], later extended to groupware [56, 36, 19, 76]. In most implementations, the
system maintains a consistent shared data model (i.e., by handling concurrency and synchro-
nization), and either notifies processes of changes to the data or automatically updates views
whenever changes occur.

1.3.3.1 Examples

GroupKit provides a shared data model calle@avironmenta dictionary-style data structure
containingkeysand associatedalues[62]. While instances of environments run on different
processes, the run-time system makes sure that changes to one instance are propagated to
other instances. What makes GroupKit's environments powerful are that changes to an envi-
ronment’s state can be tracked as events that trigger natifiers (as discussed previously). The
programmer can bind callbacks to an environment, and receive notification when a new piece
of information is added to it, when information is changed, or when information is removed.
Corresponding actions are then triggered at all sites.

This scheme can generate different views from the same data abstraction. Events can be
monitored by the interface code, and the view adjusted to reflect the state of the data model
contained in the environment. For example, the code fragment below creates a shared environ-
ment called “data”, which contains a field called “number”. A groupware button is displayed
that shows the current value of the number, incremented whenever any user presses the button.
gk_newenv -bind -share data # "Data" is a shared environment
button .button -command \ # Create a button. Whenever it is

[data number [expr [data number]+l] # pressed, increment "number”, a
key in the "data" environment

data bind changeEnvinfo { # Update the view of the number in the
.button configure -text [data number]}# button whenever its value changes
data number 0 # Initialize "number" to 0

A programmer uses GroupKit's environments to implement synchronized views and mod-
els. In contrast, the Rendezvous toolkit treats views, models and the links between them as
first class citizens [37]. The system encourages developers to create groupware applications
using its powerfubbstraction-link-view(ALV) model [36], whose constructs are:

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 15

¢ ashared underlying data abstraction,

e aview of the abstracted entity that may differ for each user,

e a constraint (called a link) that automatically adjusts the view when the data abstraction is
changed.

Rendezvous differs architecturally from GroupKit, in that the data model and the prop-
agation of constraints are centralized. As well, constraints are more powerful than the
event/notifier scheme, because complex relationships are automatically maintained by the sys-
tem through a one-way constraint solver. The Clock system [21] also uses constraints to link
views with the underlying model.

A variety of other systems also have a strong notion of maintaining the relation between a
model and a view. The Chiron-1 user interface system has abstract data types (abstractions),
dispatchers (links) and views; however, a simpler event-based architecture rather than con-
straints are used to propagate changes [74]. While Chiron-1 was not explicitly designed to
be a groupware toolkit, a multi-user Tetris game was developed to show the flexibility of
its architecture. In Weasel [19], programmers use a special declarative language called RVL
to specify the relations between abstractions and views, how views are customized, and the
co-ordination required.

Populated virtual environments also use an abstract model/view paradigm. The model is
the 3-d abstraction, while the rendered views of the model are perspectives generated from
a particular (x,y,z) viewpoint into the model. The model is typically spatial. People enter the
spatial environment, where they are represented as 'avatars’ to others (icons or even video
images of themselves). They can move through the space and manipulate artifacts within it.
They are usually aware of the presence and (perhaps pseudo-) identity of others, can see where
others are attending, and can begin text or voice based communications with them. Examples
are Dive [7] and Moondo [38].

1.3.4 Discussion

Programming abstractions such as the ones described above ease considerably a programmer’s
task of building groupware. For example, since multicast RPCs are a natural extension of the
way normal callbacks are used, novice GroupKit programmers were able to create simple
groupware applications with minimal training. The event/notifier and shared data abstractions
are more elegant, but demand that the programmer learn a new coding style, for it usually
takes more planning and initial coding to separate the data model from its view.

However, groupware programming abstractions do not eliminate all coding complexity. The
programmer must consider the interaction between the processes that are being coordinated
by multicast RPCs, by events, and by shared data; unconsidered side effects can cause the
unexpected to happen. There is also a craft to using the programming constructs effectively.
For example, multicast RPCs usually demand that the programmer consider what local actions
should be taken and what variables should be set before the procedure and arguments are
multicast. The shared data abstractions have their own problems. When data model and views
are separated, the programmer has to handle exceptions that often occur when most, but not
all of the view is identical. When views intentionally differ (such as when one person sees
an array as a bar chart and the other as a pie chart, as in Figure 1.1), the programmer has to
make difficult interface design decisions that will allow people to interact over disjoint views.

16 SAUL GREENBERG AND MARK ROSEMAN

In all cases, debugging can be hard when problems do occur, because the interaction between
conference processes can be non-deterministic and difficult to envisage.

1.4 GROUPWARE WIDGETS

Perhaps the greatest benefit of today’s graphical user interface toolkits is their provision of
tried and tested interface widgets. Programmers can typically configure and position them
in a few lines of code, perhaps with the help of an interface builder. When done properly,
pre-packaged widget sets provide a consistent look and feel to the interface. Because widgets
are often designed by interface experts, the everyday programmer can insert them into the
application with some assurance that they are usable.

Because many groupware applications will be graphical, groupware programmers have the
same need for widgets. The toolkit should therefore make it easy for programmers to add
groupware features to applications that conference participants will find valuable. However,
groupware widgets differ from normal widgets. They have different semantics; actions per-
formed on them must be reflected across displays; and novel widgets have to be designed that
address needs specific to groupware. In this section, we consider two classes of groupware
widgets: groupware versions of single user widgets, and group-specific widgets that support
activities found only in group work.

1.4.1 Groupware Versions of Single User Widgets

Some researchers have created multi-user analogues of conventional single-user widgets, such
as buttons, menus and simple text editors, and investigated how to make the sharing of wid-
gets between conference participants flexible enough to fit different applications and group
situations.

To highlight several issues, let us consider the problems we face when redesigning a button
widget to fit groupware. Buttons are simple devices in conventional interfaces. When a user
presses the button, its look changes to reflect that it is being selected. Upon release, the button
shape returns to normal and an action is executed. If the cursor is moved off the button during
a mouse press, the button reverts back to its original appearance and the release will have no
effect.

When the button is redesigned as groupware, several issues arise.

1. When should feedback of one user’s actions be shown to their partnfrsdikrough
Should feedthrough be shown for every interface action (e.g., highlighting that matches
button presses and releases), or only for the final action (that the button press resulted in
an action)? Should feedthrough appear graphically identical to the local user’s feedback,
or should it be stylized to communicate only the essence of the other’s actions?

2. How does the button handle multiple and simultaneous access? Does it contain an idea of
ownership, so only one person is allowed to press it? If so, how is access control handled?
Or does the button implement turn-taking so that only one person can press it at a time,
and if so, how does it show another that they cannot press the button? If simultaneous
access is allowed, what are the semantics of simultaneous presses, and how is feedthrough
displayed?

3. How are resulting actions handled? For example, are attached callbacks automatically in-

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 17

voked in all replicas on one person’s button press, or must the programmer distribute its
effects explicitly?

4. What happens when people are viewing different parts of the display? If one person can-
not see the button because they have scrolled to another area, is feedthrough shown in a
different manner, and if so, how?

5. Ifdifferentrepresentations are used (e.g., two differing native look and feels because group-
ware is running across two different platforms), how can the interface syntax of one button
be translated to the perhaps different syntax of the other button?

These issues become much more problematic when we move to multi-user equivalents of
complex widgets that have a high interaction component, such as list boxes, text entry fields,
graphical canvases and so on. None of these problems have trivial solutions, and designers of
groupware toolkits have to make hard decisions on what to do in each case. Part of the design
space includes how much flexibility they can provide the programmer to allow them to make
their own application-specific decisions.

A few researchers have begun to address these issues by creating generic programming at-
tributes for groupware widgets. Several have concentrated on a widget's coupling level and
access control. Others have tried to redesign conventional widgets to make them more appro-
priate to groupware settings.

1.41.1 Coupling

Dewan [9, 10] defines coupling as the means by which interface components share interaction
state across different users. In tight coupling, state is shared by all aspects of the interface
component, and a person’s actions in one display results in immediate update on another
display. In loose coupling, one person’s actions propagate over to another display only when
a critical event is performed; the final state is the same, but intermediate states are not seen.
For example, a tightly-coupled button would appear identical on all displays as it was being
pressed, moved across, and released. A loosely-coupled button would only show the release
action, with intermediate feedthrough eliminated.

Dewan and Choudhary [10] argue that flexible coupling is important for a variety of rea-
sons. First, groupware programs range from fully synchronous, to nearly synchronous, to
asynchronous; coupling is just another way of setting synchronicity. For example, we can ar-
gue that the only difference between a real time text program that shows characters as they
are being typed (text chatys. complete messages (email) is their coupling level! Second,
tightly coupled actions showing intermediary steps may be annoying to users in situations
where they are pursuing their own individual work. Alternatively, tightly coupled systems are
critical during highly-interactive exchanges between people [73]. Third, loosely coupled sys-
tems exchange state less frequently, which means there are less performance demands on the
system. Finally, coupling can control the degree that people work in private spaces, and how
and when they wish to make that space public.

Dewan and Choudhary [10] implemented coupling in their Suite groupware toolkit by al-
lowing programmers and users to seupling attributeghat are associated with individual
interaction entities (although these can be arranged in a multiple inheritance structure). At-
tributes indicate the level of coupling, as well as how they should be applied selectively to
members of a group. Suite also divides interaction entities into disjoint coupling sets. For ex-
ample, the data state, the view state, and a format state can be coupled independently (the later

18 SAUL GREENBERG AND MARK ROSEMAN

allows the view of the data to be formatted in different ways across displays). Furthermore,
action coupling can be set to determine how the commands (or callbacks) attached to user
actions are executed at other sites.

Reconsider the button example. The coupling levels can define: the way button presses are
tied to underlying data models by coupling data state; the level of feedthrough desired in
the view by coupling views; and how callbacks are invoked by coupling actions. Ideally, the
groupware programmer would consider coupling levels to be just another set of attributes that
can be configured when creating the button. The same idea can be applied to more complex
widgets, and Suite has several examples of how coupling can be applied to complex editing
and form-filling systems.

Coupling is available in other toolkits as well. The Rendezvous toolkit [37] allows flexible
coupling because of the way views are separated from data. Because the links in Rendezvous’
ALV model specify how views and models are synchronized [36], different levels of coupling
can be specified by the programmer. The difference is that the programmer has to code the
way coupling is achieved, rather than simply set the attributes of a widget.

1.4.1.2 Access control

Access control determines who can access a widget and when. Access control may be required
for several reasons. First, people may wish to have their own “private” widgets, where only
they can manipulate (or even view) them. An example is a text field in an groupware outliner,
where the person editing the field wishes to maintain ownership of it, perhaps just for the
duration of the edit or for the length of the session. Second, it may not make sense for users
to simultaneously manipulate some widgets. Perhaps only one person at a time should be able
to press a button, manipulate a scroll bar (to prevent “scroll wars”), or insert text into a field.
As with coupling, the demands for access control may be highly dependent on the particular
interface being constructed, and groupware programmers need to be able to control this.

Few groupware toolkits let programmers manipulate access control in a light-weight, fine-
grained fashion. If anything, they group it into concurrency control, with access being me-
diated by locks and other tedious mechanisms. The notable exception is again Suite. In it,
Shen and Dewan [68] associate the fine-grained data displayed by a groupware application
with a set of “collaboration rights”, where the rights are specified by either programmer or
user through a multi-dimensional, inheritance-based structure. Collaboration rights include
read and write privileges, viewing privileges, and coupling. Through the inheritance structure,
access control can be specified at both a group and individual level. Sets of objects can be
clustered together, with specific access definitions overriding general ones.

Smith and Rodden’s [70] “shared interface object layer” SOL, an architectural layer rather
than a toolkit, considers how shareable versions of single-user widgets such as buttons and
text entry fields can be created. They provide a set of generic access control mechanisms that
determine what people could do with these shareable objects. Settable options include who
can see the widget, who can use it, who can move it, and so on. The same group has created a
more generalized shared object service called Cola [77].

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 19

S=——— Calliope
Hle Tools Collaboration Help

Writing is essentially Writing tog

is = process of negotiation for the content znd meaning o
which comes to reflect the consensus of the group. This
communication around and through the text. Tools to supp
writing need to tzke into consideration the communicative
writing process. 0]

This thesis explores the conmunicative nature of
writing, and attempts to use this to inform the design of
collaborative writing systems. An extended field study w
out to explore collshorative writing in a situated contex
look at this case study of collsborative writing from the
regotiation for attention and control of discourse, and
of this negotiation to the process of writing together in
text workspace. I will be looking specifically at how th
choice of control mechanisms influences the social aspect
together.

Greenhery
Follow this user

Figure 1.4 The Calliope multi-user editor, with permission from Alex Mitchell.
1.4.1.3 Widget redesigns

Most single user widgets should be completely redesigned to fit their groupware settings,
because they would otherwise be too limiting. While there is no recipe for doing this, we can
illustrate by example several groupware redesigns of single user widgets.

Our first example is thenulti-user scrollbar first seen in the SASSE text editor [2]. It
differed from conventional scrollbars in that two thumbs (the selectable box) are displayed.
Participants are allowed to scroll independently, and the thumbs’ positions would reflect each
person’s relative position in the document. While SASSE'’s scrollbar was hard-wired into the
editor, GroupKit developers turned it into a real multi-user widget that can be attached to
any scrollable object in one or two lines of code [62, 29]. As shown on the right side of
Figure 1.4, the right half of the scrollbar is a normal single-user scrollbar, allowing the user to
move within the document. To its left are vertical bars showing the relative location of each
conference user, identified by a unique colour. The bar’s position and size is continuously
updated as participants scroll through the document or change their window size. Additionally,
the name of the bar's owner is displayed as a popup by mousing over it, and a “Follow this
user” option allows participants to toggle the coupling status from independent scrolling to
linked scrolling.

Our second example is a multi-user text widget. Single user text widgets are simple text
editors, while a true multi-user text editor should have features that allow simultaneous edit-
ing. Mitchell [51] used GroupKit [62] to create Calliope, a multi-user text editor. While not
packaged as a widget, Calliope does indicate how such a widget could behave. As seen in
Figure 1.4, Calliope provides a window displaying a shared text editor, and people can scroll
independently through the text through GroupKit's multi-user scrollbars. Access control is
user-selectable via a “sharing” menu option, and can range from the selection, word, line,
paragraph or document level. As a region is selected, the lock request is automatically made.
When another person attempts to select a locked region, the cursor changes to show conflict
(the lock icon in Figure 1.4). Calliope also has extra tools, such as the ability to attach ex-
ternal notes to text for commentary that can be seen by others, to create private text which
is added to the shared view only when desired, and access to a shared whiteboard for brain-

20 SAUL GREENBERG AND MARK ROSEMAN

|-|togged in User .| || |- =

Logged in Users

Mark Roseman

Fesearch Associate
Dept. of Computer Science
University of Calgary

Carl Gutwin

Saul Greenberg

Mark Roseman Telephione 403-220-7259 Crurent information
Fi¥ 403-284-47007 Location M5 618

> E rosernan@cpsc ucalgary ca
Dismiss | i hittp e cpse ucalgary caf~rosemand Okay |

Figure 1.5 GroupKit’s Participants widget.

storming activities. Text can also be queried to find who wrote it and when it was written, and
colour-coded to show authorship.

1.4.2 Group-specific Widgets

While group-aware versions of single-user widgets should be a part of any groupware toolkit,
they are not enough. Toolkits should strive to provide novel widgets that support particular as-
pects of group work. In this section, we show several examples of group-specific widgets that
are implemented or prototyped in GroupKit [62, 29]. These include widgets for participant
status, telepointers, and awareness.

1.4.2.1 Participant status

As people enter and leave a conference, other participants should be able to see their comings
and goings, much in the same way that we can see people arrive into a room. Because these
people may be strangers, it can be useful to find out some information about them. GroupKit
provides a rudimentarparticipants widgetillustrated in Figure 1.5, that can be included

in any application. It lists all participants in the current conference session (left side), and
the list is automatically updated as people enter and leave. When a participant is selected, a
“business card” containing further information about them is displayed. This could include
contact information (as shown), a picture of the person, and any other material that person
wished to pass on about themselves.

An experimental variation of this widget displays participants in several ways, dependent
on the information available about them: charicatures, still photos, and (if available) video
shapshots whose images are updated every ten to twenty seconds. The video snapshots im-
plement our version of the Portholes system [14]. These widgets also include the ability to
monitor the activity of participants, such as whether they are actively using their computer.
This is useful for facilitating contact between partners [8, 30].

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 21

1.4.2.2 Telepointers

Studies of small face to face groups working together over a shared work surface reveal that
gesturing comprises about 35% of the group’s activities [72]. Gestures are a rich communi-
cation mechanism. Through them, participants indicate relations between the artifacts on the
display, draw attention to particular artifacts, show intentions about what they are about to do,
suggest emotional reactions, and so on. Many groupware systems now use telepointers (also
known as multiple cursors) to provide a simple but reasonably effective mechanism for com-
municating gestures [35]. Unfortunately, modern window systems are tied to the notion of
a single cursor, and application developers must go to great lengths (and suffer performance
penalties) to implement multiple cursors. By supplying telepointers as widgets that can be
attached to a view with a few lines of code, a programmer’s burden is decreased significantly,
and they are more likely to include this important feature within their application. For exam-
ple, GroupKit programmers can add telepointers to an application with two lines of code:

gk_initializeTelepointers
gk_specializeWidgetTreeTelepointer .canvas

GroupKit's telepointers can partially handle displays where people may not see exactly the
same thing because widgets laid out in different locations. Instead of tying a telepointer to a
window, a programmer can attach it to particular widgets and their children (this is the purpose
of line 2, which adds telepointers only to the “canvas” widget). The telepointer is always
drawn relative to the widget, rather than the application window. Similarly, we have applied
telepointers to groupware text widgets that may format their contents differently on different
displays. The telepointer in this case is tied to the position of the underlying text, rather than
the Cartesian coordinates of the window. To illustrate the value of this approach, we applied
these techniques to GroupWeb, a groupware web browser [27]. Because people have different
sized windows, the HTML text and images can be laid out quite differently across participant’s
displays. However, their telepointers are always on top of the correct character or image.

An experimental version of GroupKit's telepointers allows them to be overloaded with se-
mantic information to provide participants a stronger sense of awareness of what is going on,
with little consumption of screen real estate. Because telepointers tend to focus participants’
attention, any information attached to them is probably noticed quickly. For example, we al-
low programmers to overload telepointers to indicate identity information (such as people’s
names), state information (such as what mode each participant is in), and action information
(such as what action a person is taking). Figure 1.6 illustrates an example of how a telepointer
can be overloaded with both action and identity information. The left window shows partici-
pant Carl’s display, where he is navigating through a pop-up menu. We see a second cursor on
the bottom of the display, which identifies its owner ‘Saul’. The right window shows Saul’'s
display. Showing the complete menu that Carl has popped up on Saul’s display could be an-
noying, especially if Saul were working in the area immediately underneath it. Instead, Carl's
telepointer image and labels are altered to indicate a menu selection is being made (the mode),
and what item is being selected (the action). In this case, the same semantic information of a
menu action is shown on other displays concisely and with little loss of meaning.

1.4.2.3 Workspace awareness

In real life working situations, we are kept aware of what others are doing, sometimes by
speech, and sometimes by seeing what others are working on through our peripheral vision

22 SAUL GREENBERG AND MARK ROSEMAN

E [.
#of = zemantic
Ytelepointer. In
Hthis partcular
Mcase, the
Ntelepointer is

Joverloaded to show:
ng that the

Quit CSO0 s other person 3 !
I-m—_ru—l-rrn—_l 1-.1111RSE.U| m.:ulc"i'nrrp:u 'n11‘|‘|k-
a) Carl selects an item b Saul's view of it

Save ticular

=]
save As L. -

ed to show:
Print O

Figure 1.6 Overloaded telepointers, showing both action and identity information.

and through glances. This helps us co-ordinate our work. These cues may not be available in
the groupware channel, especially when people are allowed to have different viewports into a
large workspace. Consequentlorkspace awarenesgidgets must be provided that inform

a participant about where other people are working in the shared work-surface and what they
are doing [13, 30, 34, 31]. We should mention that workspace awareness does not have the
same meaning as collaboration awareness (mentioned in other chapters by Dewan and by
Prakash): workspace awareness concentrates on how a person’s up to the moment awareness
of what others are doing can be supported by representations and extensions of the actual
shared workspace, which is a more restrictive definition.

An example of awareness widgets are radar overviews [71, 2]. These displays present a
miniature overview of the document overlaid by coloured areas that show the actual viewport
of each participant in the session. GroupKit contains several widget prototypes based on this
idea [30, 34, 31]. The radar overview shown in Figure 1.7 is one example. It includes an
overview of a large shared workspace containing a concept map (a graph of ideas). Viewport
outlines, one for each participant, contain portraits identifying their owners, and indicates
what each can see. In addition, telepointers are displayed. The overview is tightly coupled
to the main view of the document (not shown), and any changes are immediately reflected.
A usability study has shown radar overviews to be an effective way for people to maintain
awareness of others in a spatial layout task [33]. They see changes as they occur, they know
where others are working, and telepointers in the overview are used for deictic references.

We have developed a variety of other prototype widgets supporting workspace awareness.
Detail views are miniatures showing exactly what another can see [34, 31]. The Headup Lens
combines an overview with a person’s main viewing area as transparent layers, one on top of
the other [25]. The Fisheye Lens uses a fisheye view with multiple focal points to show where
others are in the global context, and to magnify their area of work on all displays [24]. These
and other awareness widgets are illustrated in two videos [23, 32].

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 23

m
o

Figure 1.7 A miniature overview of a concept mapping system built in GroupKit, showing other’s
viewports, portraits, and telepointers. System created by Carl Gutwin, with permission.

1.4.3 Discussion

The design of groupware widgets is still a young area. While many interface components exist
in groupware applications that have potential as widgets, much work remains to be done in
generalizing and packaging them as self contained widgets that are easily added to any appli-
cation. We need strong programming abstractions, such as the notions of coupling and access
control, to provide a programmer with the flexibility to specify a widget’s behaviour in differ-

ent groupware settings. We need to redesign today’s single-user widgets into reasonable yet
powerful groupware counterparts. Finally, we need to create the next generation of groupware
widgets, which includes refining their design and testing their worth through usability testing.

On the technical side, there is the issue of how widgets can be created by toolkit developers.
Current tools are poor or non-existent. Rendezvous and Clock creators, for example, had to
build all their widgets from scratch from graphical primitives [37, 18]. GroupKit creators
constructed a rudimentary “class builder” and were thus able to use and extend the existing
GUI widgets supplied by the Tcl/Tk toolkit [62]. However, the class builder is awkward to
use, and suffers run-time efficiency problems which can affect the performance of highly
interactive widgets.

Finally, programmers of groupware could still benefit from interface builders as found in
conventional GUI toolkits, which greatly eases the task of widget placement and attribute set-
ting. Unfortunately, most groupware toolkits now available do not provide interface builders,
with the exception of Visual Oblig [4]. Similar to most modern conventional toolkits, group-
ware applications in Visual Obliq are created by designing the interface with an interface
builder and then embedding callback code in an interpreted language. The resulting applica-
tion can be run from within the interface builder for rapid turnaround time.

24 SAUL GREENBERG AND MARK ROSEMAN

1.5 SESSION MANAGEMENT

Groupware developers often concentrate on building applications, such as multi-user sketch-
pads, games, and text editors. While it is important for developers to provide good groupware
once people are connected and working together, it is just as important to provide a com-
munity with “session managers” for actually establishing their groupware connections. We
firmly believe that toolkits must allow developers to construct or select from a large library
of session management interfaces in a flexible enough fashion to accommodate the diverse
requirements of different communities. Unfortunately, most of today'’s toolkits force a single,
often rudimentary, session management interface onto its applications.

A session manager typically controls and presents an interface to the following tasks [64]:

creating new conferences,

naming conferences,

deleting conferences,

locating existing conferences,

finding out who is in a conference,

joining people to conferences,

access control to conferences,

allowing latecomers,

allowing people to leave them, and

deciding whether conferences persist when all users exit.

For example, the interface of the session manager could present these as explicit steps that a
user takes to begin and maintain the collaboration. These could also be implicit actions, where
(say) the act of jointly editing an artifact automatically initiates the collaboration [15].

Being able to provide different interfaces for session management is an important aspect of
supporting the working patterns of a group. We believe that one of the obstacles to groupware
use is the difficulty of starting up a groupware session [8]. The obstacle may be in terms of
usability (e.g., the system is difficult to initiate) or social (e.g., the policy the system imposes
is not acceptable to the group). Session management must be more than an afterthought added
to the applications, and should be tuned to the needs and collaboration patterns of the target
user group.

1.5.1 Policies and Metaphors for Session Management

Session managers can implement and provide a broad variety of policies to users, as illustrated
by the examples in this section.

1.5.1.1 Rudimentary Policy

When session managers are not attended to, users are forced to handle session manager aspects
themselves. Thatis, it is entirely up to the user to decide who to connectto, often by specifying
low-level addressing such as Internet host names and TCP/IP port numbers. An example of
this is the session manager for early versions of the NCSA Collage groupware system, which
presents a form asking the user to supply one’s login name, the IP address of the collage
server, and the server port number.

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 25

| ri
JM

File Conferences Collahoration Help
Conferences Farticipants
Post It | Mark Roseman | %\
GroupVeh Can Gutwin
Linda Tauscher

_""r 1| Mark Roseman has invited you to
| You are: |5aul Greenbery join GroupWeb.

Accept Send Reqgrets

Figure 1.8 The Open Door session manager. Two conference sessions are shown, with three partici-
pants present in the “Post It” conference.

1.5.1.2 Open Door

The basic session manager provided by GroupKit [62, 29] offers an “Open Door” permis-
sive policy of creating and joining conferences, where people think in terms of conferences
and participants instead of IP addresses. Figure 1.8 shows an example. Each conference con-
tains a single groupware application (the application windows are not shown in the figure). In
the “Conferences” pane, the local person (Saul Greenberg) sees that two conferences are in
progress: “Postlt” and “Design Session”. By selecting one of them, he can then see who is in
a particular conference (the list in the “Participants” pane).

Conferences are entered in several ways: joins, invitations, and creation. First, Sairl can
a conference by double clicking any conference name. This adds him to the list of participants
and causes the particular application to appear on the display. Second, a person already in a
conference caimvite Saul into the session via a menu option, and a dialog will appear on the
screen asking him if he wishes to join in. An example of this is shown in the figure. Third,
Saul carcreatea new conference via the “Conference” menu: when he selects from a list of
applications, a window running the application appears on the display and others are informed
of its availability through the Conferences pane. This session manager also handles departure,
and exiting attendees disappear from the Participants pane. When the last one leaves, that
person is asked if the conference application should persist i.e., that its state should be saved
so it can be re-entered later with its contents intact.

1.5.1.3 Rendezvous Points

A quite different policy provides common rendezvous points. People go to a “place”, and
are automatically connected to all others in that place. The best known example of these
are the popular Multi-User Dungeons (MUDs). When a person connects to a MUD via a

26 SAUL GREENBERG AND MARK ROSEMAN

well-known Internet address, they enter one of several rooms where they can engage in a text-
based chat dialog with all others in the room. TeamRooms [63] carries the ideas of MUDs

to graphical groupware by a rooms-based metaphor. Users of a community can create virtual
meeting rooms, and stock them with groupware meeting tools. To create opportunities for
collaboration, anyone can see what rooms are available, who is around, what rooms they are
in, and how active they are. People can freely move between rooms. When they enter a room
they are joined to all the conferencing tools located in the room; when they leave the room,
any tools used in the room are left behind. If only one person is in a room, then it behaves as a
single-user system. If no one is in a room, the tools and groupware artifacts remain available
as they are treated as persistent conference sessions. This system could serve the needs of
collaborators working on many tasks over a period of time, allowing them to easily move
between tasks. It also serves as a meeting place, where people can see who is around in what
room, and converse with them after entering the room. We expect place-based systems such
as TeamRooms to have wide appeal, and other researchers are also pursuing this policy [75].
For example, Lee, Prakash and Jaeger [47] are developing a general software architecture and
API to such systems.

1.5.1.4 Other Policies

Many other session managers are possible. For example, a facilitated meeting session man-
ager has been implemented in GroupKit, where a chairperson has complete control over what
applications are part of a meeting, and who can participate. Other policy examples follow the
model of telephone calls, or the way conference calls are established through a central switch-
ing point. A session manager can also be document-centric. For example, if a person opens
a file that is currently being edited by someone else, the groupware connection can be made
automatically. The point is that a developer requires the tools to modify packaged session
managers or create new ones that fit the community.

1.5.2 Building Blocks for Session Managers

Most toolkits provide only rudimentary and hard-wired session management facilities. Share-
Kit, for example, provides only basic connection facilities, although it does allow information
about participants and about the session to be transmitted to others upon connection. Simi-
larly, Rendezvous has a built-in session manager which they call a startup architecture [57].
There have been a few investigations into architectures for flexible session management e.g.,
Intermezzo [15, 47] but these are not really toolkits. Excepting GroupKit, most toolkits do
not let programmers build both applications and session managers, or do not separate the two
concepts.

Because few toolkits support session management as a first class entity, we are a long way
from knowing exactly what primitives and API should be provided to the developer. In our
own experiences with GroupKit, we have developed flexible session management facilities
around the idea abpen protocolg65]. Briefly, the Registrar central server (Figure 1.2) pro-
vides a replicated data structure that tracks meetings and attendees, but specifies no policy for
how the data structure is to be used. Session managers are clients to the Registrar, and specify
the policy by the selection of operations they perform. Maximum flexibility is achieved by
providing open access to the Registrar’s data structure via a protocol or interface of small but

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 27

powerful operations (e.g., add or delete conference). Clients may be different, as long as they
are well behaved with respect to each other and to the policy.

In terms of programming session managers, programmers can trap session manager events
and take actions upon them via callbacks. Different session managers will use these in dif-
ferent ways to create their policy. To ease the programmer’s chore, GroupKit also provides
default callbacks to handle routine operations. The programmer can over-ride these when nec-
essary. Using these events, the programmer can create different access control mechanisms,
start new applications or end existing ones, and build the interface in a way that shows the
user what is going on. Examples of some of the events are described below.

¢ userRequestNewCorifie user has requested that a new conference be created

¢ newConfApprovednddeleteConfApprovedhe request for a new conference or termina-
tion of an existing one has been approved

¢ foundNewConfandfoundDeletedConfa new conference has been created, or an existing

one has been removed.

foundNewUseandfoundDeletedUsela user has entered or left a conference.

newUserApprovedhe user’s admittance into the conference has been approved

lastUserLeftConfthe last user in a conference has left

conferenceDieda conference process we created has terminated

1.5.3 Discussion

Both good groupware applications and good session managers are needed for groupware to
succeed. Without good session managers, it is hard to make electronic contact and get group-
ware started; many opportunities for collaboration will likely fall by the wayside. We believe
that next generation toolkits will, like GroupKit, include session management as an important
building block. At the very least, the toolkit should provide a reasonable set of stock session
managers that implement a broad range of policies. If adequate primitives are provided, the
programmer should be able to modify existing session managers and create new ones to fit
the particular needs of a work community.

It is even possible that session management toolkits can be developed that are completeley
independent from the application component and its run-time architecture. As evidence, the
GroupKit session manager was recently repackaged as a stand-alone toolkit. Since then, it
has been adapted to work with the Clock groupware development tool [18] to manage both
centralized and semi-replicated sessions. While minor code changes were required, it works
well in spite of the radical differences between the run-time system and underlying language
of Clock and GroupKit.

1.6 CONCLUSION

This chapter has presented four components that we believe toolkits must provide to group-
ware programmers. A run-time infrastructure automatically manages the creation, intercon-
nection, and communications of the distributed processes that comprise conference sessions,
greatly simplifying a programmer’s job of managing a distributed system. Groupware pro-
gramming abstractions allow developers to control the behaviour of distributed processes, to
take action on state changes, to share relevant data, and to generate views. Groupware widgets
let a programmer quickly add interface features of value to conference participants. Session

28 SAUL GREENBERG AND MARK ROSEMAN

managers that let users create and manage their meetings are built by developers to accom-
modate the group’s working style. Examples were taken from a variety of different toolkits to
illustrate how these components can be provided in practice.

The class of groupware toolkits considered in this chapter consider only real time dis-
tributed applications. This is just a subset of groupware, and many groupware toolkits address
disparate application domains. For example, ConversationBuilder [41] and Strudel [69] are
used for constructing speech act protocols. Oval is used to build semi-structured messag-
ing and information management systems [49]. Lotus Notes, although not a programming
toolkit, lets people develop and tailor a wide variety of asynchronous applications (Lotus
Inc.). Even toolkits within the domain of real-time interaction handle different niche prob-
lems. Dewan and Choudhary’s Suite toolkit [10] applies only to highly structured text objects
and investigates how flexible access control mechanisms are incorporated into them. Knister
and Prakash’s [43] DistEdit provides groupware primitives that could be added to existing
single user text editors to make them group aware. DistView, produced by the same group,
is oriented towards a fairly strict view-sharing approach to sharing window components and
underlying data via an object replication scheme [61]. Smith and Rodden’s SOL considers
design features for making single user widgets shareable [70].

The chapter also limited its discussion to four components. While we believe these are
fundamental building blocks, there are certainly other components that must be included in a
commercial, robust groupware toolkit. A few examples follow (see Urnes and Nejabi [78] for
a further list of features).

e Security and privacyGroupware could be a large security hole unless great care is taken
in determining that only the right people are allowed in a meeting, and that permissions to
execute actions at sites other than their own does not compromise the system. Similarly,
communication channels should be encrypted in case the conference deals with sensitive
information. These should all be supplied as part of the stock toolkit.

¢ Audio and video supporiost of the toolkits mentioned do not directly support audio and
video. Yet almost all real time groupware requires at least audio. These can be provided out
of band, through telephones, video conferencing systems, and media spaces. Still, there is
a trend in application design to integrate audio, video, and computational groupware. The
ClearBoard system described in Ishii's chapter, for example, allows participants to see
through their computational space to a video image that portrays correct eye gaze position
and hand gestures relative to the surface (see also [39]). There is also the problem of
synchronizing audio/video with actions in the computational space, for even a few seconds
of delay between the two can be disconcerting to the group members. A further discussion
on multimedia in groupware can be found in Dourish’s chapter.

e Communication channel and networkdl groupware systems depend upon communica-
tion channels. Ideally, the underlying network will be tuned to support the performance
demands of groupware, and the API should reflect the programmer’s needs. Example ex-
tensions to standard networks are MBONE [48], an Internet multicast backbone that lets
one send multimedia on wide area networks such as the Internet, and Isis [5], which guar-
antees correct serialization of events over the network.

¢ Fault tolerance As network loads increase and connections become less reliable, fault tol-
erance becomes increasingly important. Groupware toolkits must include facilities to allow
the application to degrade gracefully, to checkpoint failed conferences for later resumption,

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 29

and to seek alternate communication paths when a channel fails. Dourish also addresses
some of these issues in his chapter.

¢ Versioning and downloadingdn replicated architectures, problems arise when one site is
missing software or has a different version of it. The system should be able to check ver-
sions, and download software when necessary.

e Session capture and replaecords of meetings are sometimes crucial. While capturing
video is straightforward, capturing computational actions is more difficult [50]. The chal-
lenge remains on how to capture automatically the highlights of lengthy meetings in a
concise manner.

e Multi-user undoMany single user systems contain undo facilities. Yet undo in groupware
is a hard problem. While a few researchers have been working in this area [60, 3], we
still have a long way to go before we can package undo facilities so that groupware pro-
grammers can include it easily within their application. The chapter by Prakash contains a
detailed discussion of the role of undo in a group editor.

e Concurrency controlWhile mentioned as part of the run-time architecture, concurrency
control in groupware is a sub-field in its own right. Much work remains to be done crafting
appropriate tools, architectures, and abstractions that make concurrency control easy for
the programmer, while minimizing its impact on the end-user’s interface.

¢ Application domaindn all probability, some groupware toolkits will have to be specialized
to handle the nuances of particular real-time applications domains. DistEdit, for example,
concerns itself only with text editing [43]. Others will deal with the structured meetings
found in group support systems [59], or with extending capabilities of existing single-user
systems e.g., primitives to make thmacgext editor group-aware [54].

¢ Alternate modelsThe separation of model and view is only one of the many ways that
groupware can be configured. For example, Karsenty and Beaudouin-Lafon [42] have de-
fined the seven-layer SLICE model. Some of these layers are: an abstract document (the
model), a document layer (the displayed view), a direct manipulation layer (the means to
interact with the view); a view representation layer (to control how views are displayed);
and a cursor layer that tracks the mouse and shows telepointers. Dewan'’s chapter in this
book considers other architectural models as well.

e Development environmentall the toolkits mentioned have inadequate development en-
vironments. For example, debugging groupware is hard because it is a distributed system,
and we need appropriate debuggers. Interface builders are lacking. Appropriate tools for
testing are non-existent.

e The WebThe recent popularity of the World Wide Web, as well as the network and multi-
platform properties of the Java programming language, implies that the Web could be-
comethe delivery vehicle for real time groupware. While the Web, Java and the Internet
itself have particular features that lend themselves towards groupware (e.g., its ubiquity,
its client/server model, its telecommunications constructs), it also includes constraints that
may challenge the design of groupware toolkits (e.g., security, performance, session man-
agement styles). While the Web does provide incredible opportunities for groupware (some
are surveyed in the chapter by Dourish), we may find ourselves compromised by its tech-
nical constraints and by the way it is commonly used.

While the next generation of toolkits are now being built, groupware systems still have a
long way to go to catch up to their single-user counterparts. We look forward to the day when

30 SAUL GREENBERG AND MARK ROSEMAN

all toolkits will incorporate multi-user features. When that day comes, the artificial distinction
between constructing single and collaborative systems will disappear.

Acknowledgments.

Carl Gutwin and Ted O’Grady participated in many discussions about what is required for
groupware toolkits, and helped influence the contents of this paper. Prasun Dewan, Nicholas
Graham, and John Patterson reviewed versions of this manuscript. They contributed both con-
structive comments and further system description. Comments by anonymous referees helped
improve this document. Funding by the National Science and Engineering Research Council
of Canada, and by Intel Corporation are gratefully appreciated.

References

[1] Ahuja, S.R., Ensor, J.R. and Lucco, S.E. (1990) “A comparison of applications sharing mecha-
nisms in real-time desktop conferencing systemsPioceedings of the ACM COIS Conference
on Office Information Systens238-248, Boston, April 25-27.

[2] Baecker, R., Nastos, D., Posner, I. and Mawby, K. (1993) “The user-centered iterative design
of collaborative writing software.” irProceedings of ACM InterCHI'93 Conference on Human
Factors in Computing Systens399—-405, Amsterdam, The Netherlands, April 24—29.

[3] Berlage, T. (1994) “A selective undo mechanism for graphical user interfaces based on command
objects.”ACM Transactions on Computer-Human Interacti(8), p269—294, September.

[4] Bharat, K. and Brown, M. (1994) “Building distributed, multi-user applications by direct manipu-
lation.” in Proceedings of the ACM UIST'94 Symposium on User Interface Software and Technol-
ogy, p71-80, Marina del Rey, California, November 2—4.

[5] Birman, K.P. (1993) “The process group approach to reliable distributed compu@ingimuni-
cations of the ACM36(12), p37-53, December.

[6] Bonfiglio, A., Malatesta, G. and Tisato, F. (1989) “Conference Toolkit: A framework for real-
time conferencing.” ilProceedings of the EC-CSCW ’89 First European Conference on Computer
Supported Cooperative Worg303—-316, Gatwick, London, UK, September 13-15.

[7] Carlsson, C. and Hagsand, O. (1993) “DIVE — A Platform for Multi-User Virtual Environments.”
Computers and Graphic47(6).

[8] Cockburn, A. and Greenberg, S. (1993) “Making contact: Getting the group communicating with
groupware.” inProceedings of the ACM COOCS’93 Conference on Organizational Computing
Systems, p31-41Milpitas, California, November 1-4.

[9] Dewan, P. (1991) “Flexible user interface coupling in collaborative system$taneedings of
the ACM CHI'91 Conference on Human Factors in Computing Syste#$:-48, New Orleans,
Louisiana, April 28—May?2.

[10] Dewan, P.and Choudhary, R. (1992) “A high-level and flexible framework for implementing multi-
user user interfacesACM Transaction on Information Systeri®(4), p345-380.

[11] Dourish, P. (1995) “Developing a reflective model of collaborative systeASIM Transactions
on Computer-Human Interactio@(1), p40-63, March.

[12] Dourish, P. (1996) “Consistency guarantees: Exploiting application semantics for consistency
management in a collaboration toolkit.” Proceedings of the ACM CSCW’'96 Conference on
Computer Supported Cooperative WaBqston, Mass., November 16-20, in press.

[13] Dourish, P. and Bellotti, V. (1992) “Awareness and coordination in shared workspac&sgd-in
ceedings of the ACM CSCW'’92 Conference on Computer Supported Cooperatiyp 103114,
Toronto, Canada, October 31-November 4.

[14] Dourish, P. and Bly, S. (1992). “Portholes: Supporting awareness in a distributed work group.” in
Proceedings of the ACM CHI'92 Conference on Human Factors in Computing Syge4is-547,
Monterey, California, May 3-7

[15] Edwards, W.K. (1994) “Session management for collaborative applicatiorBroreedings of the
ACM CSCW’'94 Conference on Computer Supported Cooperative, W828—330, Chapel Hill,

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 31

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

North Carolina, October 22—26.

Ellis, C.A. and Gibbs, S.J. (1989) “Concurrency control in groupware system®ideeedings

of the ACM SIGMOD International Conference on the Management of, [p&89-407, Seattle,
Washington, USA.

Graham, T.C.N. (19959peclarative development of interactive systeW@ume 243 of Berichte

der GMD, R. Oldenbourg Verlag, Munich, July.

Graham, T.C.N., Morton, C.A. and Urnes, T. (1996). “ClockWorks: Visual programming of
component-based software architecturéstirnal of Visual Languages and Computidgly, Aca-

demic Press.

Graham, T.C.N. and Urnes, T. (1992) “Relational views as a model for automatic distributed im-
plementation of multi-user applications.” Proceedings of the ACM CSCW’92 Conference on
Computer Supported Cooperative Waqpk9—66, Toronto, Canada, October 31-November4.
Graham, T.C.N., Urnes, T. and Nejabi, R. (1996) “Efficient distributed implementation of semi-
replicated synchronous groupware.Hroceedings of the ACM UIST '96 User Interface Software
and TechnologySeattle, Washington, November 6-8, In press.

Graham, T.C.N. and Urnes, T. (1996). “Linguistic support for the evolutionary design of software
architectures.” inProceedings of the ICSE’18 Eighteenth International Conference on Software
Engineering p418-427, March, IEEE Press.

Greenberg, S. (1990) “Sharing views and interactions with single-user applicatiofaddaed-

ings of the ACM COIS Conference on Office Information Syste22y—-237, Boston, Mass., April
25-27.

Greenberg, S. and Gutwin, C. (1996) “Applying distortion-oriented displays to groupware.” in
Video Proceedings of the ACM CSCW'96 Conference on Computer Supported Cooperative Work
Boston, Mass., November 16-20. Videotape available from ACM Press.

Greenberg, S., Gutwin, C. and Cockburn, A. (1996) “Awareness through fisheye views in relaxed-
WYSIWIS groupware.” IrProceedings of Graphics Interface’9628—38, Toronto, Ontario, May.
Distributed by Morgan-Kaufmann.

Greenberg, S., Gutwin, C. and Cockburn, A. (1996) “Using distortion-oriented displays to support
workspace awareness.” In A. Sasse, R.J. Cunningham, and R. Winder, (E&¢asle and Com-
puters Xl (Proceedings of the HCI'9§)299-314, Springer-Verlag. Conference held at Imperial
College, London, August 20-23.

Greenberg, S. Gutwin, C. and Roseman, M. (1996) “Semantic telepointers for groupware.” in
Proceedings of OZCHI '96: The Sixth Australian Conference on Computer-Human Interaction
Hamilton, New Zealand, November 24-27. In press.

Greenberg, S. and Roseman, M. (1996) “GroupWeb: A WWW Browser as Real Time Groupware”.
in ACM SIGCHI'96 Conference on Human Factors in Computing System, Companion Proceed-
ings p271-272, Vancouver, Canada, April 13-18.

Greenberg, S. and Marwood, D. (1994) “Real time groupware as a distributed system: Concur-
rency control and its effect on the interface.”®Pnoceedings of the ACM CSCW’'94 Conference on
Computer Supported Cooperative WopR07—217, Chapel Hill, North Carolina, October 22—26.
Greenberg, S. and Roseman, M. (1994) “GroupKitAbM SIGGRAPH Video Revigigsue 108,
Videotape available from ACM Press.

Gutwin, C., Greenberg, S. and Roseman, R. (1996). “Supporting awareness of others in group-
ware.” inACM SIGCHI'96 Conference on Human Factors in Computing System, Companion Pro-
ceedingsp205-215, Vancouver, Canada, April 13-18.

Gutwin, C., Greenberg, S. and Roseman, M. (1996) “Workspace awareness in real-time distributed
groupware: Framework, widgets, and evaluation.” in A. Sasse, R.J. Cunningham, and R. Winder,
(Editors), People and Computers Xl (Proceedings of the HCI,9$)81-298, Springer-Verlag.
Conference held at Imperial College, London, August 20-23.

Gutwin, C., Greenberg, S. and Roseman, M. (1996) “ Staying aware in groupware workspaces.” in
Video Proceedings of the ACM CSCW'96 Conference on Computer Supported Cooperative Work
Boston, Mass., November 16—20, Videotape available from ACM Press.

Gutwin, C., Roseman, M., and Greenberg, S. (1996) “A usability study of awareness widgets in
a shared workspace groupware system.Phoceedings of the ACM CSCW’'96 Conference on
Computer Supported Cooperative WaBaston, Mass., November 16-20, in press.

Gutwin, C., Stark, G. and Greenberg, S. (1995) “Support for workspace awareness in educational

32

[35]
[36]

[37]

(38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]
[54]

SAUL GREENBERG AND MARK ROSEMAN

groupware.” inProceedings of the CSCL'95 Conference on Computer Supported Collaborative
Learning p147-156, Bloomington, Indiana, October 17-20. Distributed by Lawrence Erlbaum
Associates.

Hayne, S., Pendergast, M. and Greenberg, S. (1994) “Implementing gesturing with cursors in
Group Support SystemsJournal of Management Information Systert@(3), p43-61.

Hill, R.D. (1992) “The Abstraction-Link-View paradigm: Using constraints to connect user inter-
faces to applications.” ifProceedings of the ACM SIGCHI'92 Conference on Human Factors in
Computing Systemp335-342, Monteray, California, May 3-7.

Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F. and Wilner, W. (1994) “The Rendezvous archi-
tecture and language for constructing multi-user applicatioh€M Transactions on Computer-
Human Interaction1(2), p81-125, June.

Intel Corporation. Software available through the world wide web,
http://www.intel.com/iaweb/moondo/index.html.

Ishii, H. and Kobayashi, M. (1992) “ClearBoard: A seamless medium for shared drawing and
conversation with eye contact.” Proceedings of the ACM CHI'92 Conference on Human Factors

in Computing Systemp525-532, Monterey, California, May 3-7.

Jahn, P. (1995) “Getting started with Share-Kit.” Tutorial manual distributed with Share-Kit ver-
sion 2.0. Communications and Operating Systems Research Group, Department of Computer
Science, Technische Universitat, Berlin, Germany. Available via anonymous ftp from ftp.inf.fu-
berlin.de:/pub/misc/share-kit.

Kaplan, S.M., Tolone, W.J., Bogia, D.P. and Bignoli, C. (1992) “Flexible, active support for col-
laborative work with conversation builder.” Proceedings of the ACM CSCW’92 Conference on
Computer Supported Cooperative WquB,78—385, Toronto, Canada, October 31-November 4.
Karsenty, A. and Beaudouin-Lafon, M. (1995) “Slice: A logical model for shared editors.” In
Groupware for Real Time Drawing, A Designer's Guiélited by S. Greenberg, S. Hayne and R.
Rada, p156-173, McGraw-Hill Europe.

Knister, M.J. and Prakash, A. (1990) “DistEdit: A distributed toolkit for supporting multiple group
editors.” inProceedings of ACM CSCW'’90 Conference on Computer Supported Cooperative Work,
p343-355, Los Angeles, California, October 7-10.

Krasner, G.E. and Pope, S.T. (1988) “A cookbook for using the model-view-controller user in-
terface paradigm in Smalltalk-80Journal of Object Oriented Programminy3), p26-49, Au-
gust/September.

Lauwers, J.C. and Lantz, K.A. (1990) “Collaboration awareness in support of collaboration trans-
parency.” inProceedings of the ACM SIGCHI'90 Conference on Human Factors in Computing
Systemgp303-211, Seattle, Washington, April 1-5.

Lauwers, J.C., Joseph, T.A,, Lantz, K.A. and Romanow, A.L. (1990) “Replicated architectures for
shared window systems: A critique.” Proceedings of the ACM COIS’90 Conference on Office
Information System$249-260, Boston, Mass., April 25-27.

Lee, J.H., Prakash, A., Jaeger, T. and Wu, G. (1996) “Supporting multi-user, multi-applet
workspaces in CBE.” ifProceedings of the ACM CSCW’96 Conference on Computer Supported
Cooperative WorkBoston, Mass., November 16-20, in press.

Macedonia, M.R., Brutzman, D.P., (1994). “MBone provides audio and video across the Inter-
net.IEEE Computer27(4), p30-36, IEEE Press.

Malone, T.W., Lai, K.Y. and Fry, C. (1992) “Experiments with Oval: A radically tailorable tool
for cooperative work."Proceedings of the ACM CSCW’92 Conference on Computer Supported
Cooperative Workp289—297, Toronto, Canada, October 31-November 4.

Manohar, N.R. and Prakash, A. (1995) “The session capture and replay paradigm for asynchronous
collaboration.” inProceedings of the ECSCW’95 Fourth European Conference on Computer Sup-
ported Cooperative Worl149-164, September.

Mitchell, A.(1996) “Communications and shared understanding in collaborative writing” M.Sc.
Thesis, Department of Computer Science, University of Toronto, Canada.

O’Grady, T. (1996) “Flexible data sharing in a groupware toolkit.” M.Sc. Thesis, Department of
Computer Science, University of Calgary, Calgary, Alberta, Canada. November.

Ousterhout, J. (1994) “Tcl and the Tk Toolkit.” Addison Wesley.

Patel, D. and Kalter, S.D. (1995) “Commercializing a real-time collaborative toolkit.” In S. Green-
berg, S. Hayne and R. Rada, Edito@&poupware for Real Time Drawing, A Designer's Guide

GROUPWARE TOOLKITS FOR SYNCHRONOUS WORK 33

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

p198-208, McGraw-Hill Europe.

Patterson, J.F. (1994) “A taxonomy of architectures for synchronous groupware applications.” Pa-
per presented to thé/orkshop on Software Architectures for Cooperative Systeeid as part of

the ACM CSCW’'94 Conference on Computer Supported Cooperative Work.

Patterson, J.F. (1991) “Comparing the programming demands of single-user and multi-user appli-
cations.” inProceedings of the UIST'92 Symposium on User Interface Software and Technology
p87-94, Hilton Head, South Carolina, November 11-13.

Patterson, J. F., Hill, R. D., Rohall, S. L., and Meeks, W. S. (1990). “Rendezvous: An architecture
for synchronous multi-user applications”. Rroceedings of the CSCW’90 Conference on Com-
puter Supported Cooperative Wotlos Angeles, California, October 7-10.

Patterson, J.F., Day, M. and Kucan, J. (1996) “Notification servers for synchronous groupware.”
in Proceedings of the ACM CSCW’'96 Conference on Computer Supported Cooperative Work,
Boston, Mass., November 16-20, in press.

Pendergast, M. (1995) “GroupGraphics: Prototype to product.” In S. Greenberg, S. Hayne and R.
Rada, EditorsGroupware for Real Time Drawing, A Designer’'s Guig209-227, McGraw Hill
Europe.

Prakash, A. and Knister, M.J. (1992) “Undoing actions in collaborative Worlrateedings of

the ACM CSCW'92 Conference on Computer-Supported Cooperative pa#8—280, Toronto,
Canada, October 31-November 4.

Prakash, A. and Shim, H.S. (1994) “DistView: Support for building efficient collaborative appli-
cations using replicated objects.” Rroceedings of the ACM CSCW’94 Conference on Computer-
Supported Cooperative Wqrg153—-164, Chapel Hill, North Carolina, October 22—-26.

Roseman, M. and Greenberg, S. (1996) “Building real time groupware with GroupKit, a group-
ware toolkit.” ACM Transactions on Computer-Human Interacti8(i,), p66—106, March.

Roseman, M. and Greenberg, S. (1996). “TeamRooms: Network places for collaborati®ro® In
ceedings of the ACM CSCW'96 Conference on Computer Supported CooperativeBdgidn,

Mass., November 16—20, in press.

Roseman, M. and Greenberg, S. (1994) “Registration for real time groupware.” Research Report
94/533/02, Department of Computer Science, University of Calgary, Alberta, Canada.

Roseman, M. and Greenberg, S. (1993) “Building flexible groupware through open protocols.” in
Proceedings of the ACM COOCS’'93 Conference on Organizational Computing Syi2n®s;

288, Milpitas, California, November 1-4.

Roseman, M. and Greenberg, S. (1992). “GroupKit: A groupware toolkit for building real-time
conferencing applicationsProceedings of the ACM CSCW’92 Conference on Computer Sup-
ported Cooperative Worlg43-50, Toronto, Canada, October 31-November 4.

Schieffler, R.W. and Gettys, J. (1986) “The X-Windows systeACM Transactions on Computer
Graphics, 5 p79-109.

Shen, H. and Dewan, P. (1992) “Access control for collaborative environmentBrooeedings

of the ACM CSCW’'92 Conference on Computer Supported Cooperative M8aA&8, Toronto,
Canada, October 31-November 4.

Shepherd, A., Mayer, N. and Kuchinsky, A (1990) “Strudel — an extensible electronic conversa-
tion toolkit.” inProceedings of ACM CSCW’90 Conference on Computer-Supported Cooperative
Work,p93-104, Los Angeles, California, October 7-10.

Smith, G. and Rodden T. (1993) “Using an access model to configure multi-user interfaces.” in
Proceedings of the ACM COOCS '93 Conference on Organizational Computing Sp2i@9s,

298, Milpitas, California, November 1-4.

Smith R. B., O'Shea T., O'Malley C., Scanlon E., and Taylor J. (1989). “Preliminary experiences
with a distributed, multi-media,problem environment.”Pnoceedings of the EC-CSCW 89 1st
European Conference on Computer Supported Cooperative, \8atick, U.K., September 13—

15.

Tang, J.C. (1991) “Findings from observational studies of collaborative work.” International Jour-
nal of Man Machine Studies, 34(2), p143-160. Republished under the same title in Saul Green-
berg, editor, “Computer Supported Cooperative Work and Groupware,” Academic Press.

Tatar D. G., Foster G., and Bobrow D. G. (1991). “Design for conversation: Lessons from Cog-
noter.” International Journal of Man Machine Studje34(2), p185-210, February. Republished
under the same title in Saul Greenberg, editor, “Computer Supported Cooperative Work and

34

[74]

[75]

[76]

[77]

(78]

[79]

SAUL GREENBERG AND MARK ROSEMAN

Groupware,” Academic Press.

Taylor, R.N., Nies, K.A., Bolcer, G.A., MacFarlane, C.A., Anderson, K.M. and Johnson, G.F.
(1995) “Chiron-1: A software architecture for user interface development, maintenance, and run-
time support.”ACM Transactions on Computer-Human Interacti@(?), p105-144, June.

Tolone, W., Kaplan, S. and Fitzpatrick, G. (1995) “Specifying dynamic support for collaborative
work within wOrlds.” In Proceedings of the ACM COOCS '95 Conference on Organizational
Computing Systempbh5-67, Mipitas, California, August 13—-16.

Tou, |, Berson, S., Estrin, G., Eterovic, Y. and Wu, E. (1994) “Prototyping synchronous group
applications.”IEEE Computer27(5), p48-56, May.

Trevor, J., Rodden, T. and Mariani, J. (1994) “The use of adaptors to support cooperative sharing.”
in Proceedings of the ACM CSCW’'94 Conference on Computer Supported Cooperatiye Work
p219-230, Chapel Hill, North Carolina, October 22—26.

Urnes, T. and Nejabi, R. (1994) “Tools for implementing groupware: A survey and evaluation.”
Technical report CS-94-03, Department of Computer Science, York University, Toronto, Canada.
Wilson, B. (1995) “WSCRAWL 2.0: A shared whiteboard based on X-Windows.” In S. Greenberg,
S. Hayne and R. Rada, EditoGroupware for Real Time Drawing, A Designer's Gujge29—

141, McGraw Hill Europe.

