
A Case for NOW (Networks of
Workstations)

Thomas E. Anderson

David E. Culler

David A. Patterson

and the NOW team

University of Cahfornia at
Berkeley

Networks of workstations are poised to become the primary computing infrastructure for
science and engineering. NOWs may dramatically improve virtual memory and iile system
performance; achieve cheap, highly available, and scalable file storage; and provide multiple
CPUs for parallel computing. Hurdles that remain include efficient communication hardware
and software, global coordination of multiple workstation operating systems, and enterprise-
scale network file systems. Our 100-node NOW prototype aims to demonstrate practical
solutions to these challenges.

fundamental concept in biology is
the stable food chain: Big Fish eat
smaller fish, which in turn feed on still
smaller fish. Each type o f fish is

adapted to its own ecological niche. Computer
systems also occupy ecological niches of a sort.
Personal computers and workstations are small
systems, designed to provide fast and predictable
interactive performance on jobs of modest size.
Servers and mainframes are iii~)i-e expensive, ori-
ented to more demanding applications and larg-
er numbers of users. Supercomputers aim to
achieve the ultimate in performance at any cost.

The computing food chain seems to operate in
reverse. The sniallest fish, personal computers,
are eating the market for workstations, which in
turn have consumed the market for minicom-
puters and are eating away at the market for larg-
er mainframes and supercomputers. Why is this?
One reason is the effect of volume manufactur-
ing on computer price-to-performance ratios.

The rapid improvement each year in com-
puter system performance does not happen by
accident; it requires a huge investment in engi-
neering and manufacturing. For personal com-
puters and workstations, manufacturers can
amortize this investment over a large sales vol-
ume. With much smaller sales volumes, main-
frames and supercomputers must either forgo
performance advances or obtain them at high-
er per-unit cost. Workstation price/performance

ratios are improving at 80 percent per year,
while those of supercomputers are improving xt
only 20 to 30 percent. Given that desktop com-
puters offer the best price/performance trade-
o f f in this era of sustained rapid change, why
would anyone buy a supercomputer? One rea-
son is that there may he no choice: The task at
hand may be bigger than will feasibly run on a
workstation.

How can we exploit this transformation of the
technology base toward small computers? We
argue that the ongoing technological conver-
gence o f local area networks and massively par-
allel processor interconnections will allow NO\Xls
to replace the entire computer food chain. (We
iise the term workstation to refer gt'nerically t o
the computer system designed for the desktop.
High-end personal computers have acquired all
the capabilities that once distinguished worksta-
tions, which include local area networking m d
a full-function operating system.)

Instead of small computers for interactive use
and larger computers for demanding sequential
and parallel applications, we propose using
NOWs for all the needs of computer users. In
particular, the Berkeley NOW project tries to har-
ness all the computers in a building to satisfy the
needs of both desktop computing and applica-
tions that require a hundredfold more comput-
ing resources than any single machine within that
building can provide.

0740-7475/95/$04.00 Q 1995 IEEE

Technology trends
For most of the VLSI generation. a handful of dominant

technological forces have shaped computer systems design.
Microprocessor performance has improved by j 0 to 100 per-
cent per year. DRAM memory and disk capacities have
quadrupled roughly every three years.' These trends provide
the basis for many abstract cost metrics and analyses o f what
is practical at various points in time. However, if we abstract
too far away from the industry that produces the technolo-
gy, we run the risk of losing sight of two critical constraints:
volume and dollars.

Cheaper computers are attractive to a larger market.
Personal computers are manufactured in much larger
volumes than workstations or servers, which in turn are man-
ufactured in much larger volumes than mainframes or super-
computers. Larger volume means that manufacturers can
amortize the massive development costs required to sustain
the rate of technological innovation over a larger number of
units. Other economies of scale further contribute to the
improved cost/perforniance ratio.

Gordon Bell summarized these effects with a rule of
thumb: Doubling the volume reduces the unit cost to 90 per-
cent. For example. over the past five years the volume of
personal computers shipped per supercomputer has been
about 30.000:l. Thus, Bell's rule predicts a fivefold cost
advantage for the smaller system. Looking at one compara-
ble component of these systems, we see that inJanuary 1994
the cost per megabyte of DRAM was $40 for a personal com-
puter and $600 for the Cray M90 family, a price multiplier of
15. The bottom line is that smaller computers offer a better
cost/performance ratio than larger ones.

The interesting question is what do these cost/perfor-
mance trends mean if we need more processor cycles. mem-
ory, or disk than a small system can reasonably provide? Must
we buy a single computer big enough for the biggest task we
ever need to run and pay a huge premium for the addition-
al capacity? Indeed, there is a market for servers, mainframes,
and supercomputers. even though they offer worse codper-
formance ratios than workstations or personal computers.
Most engineering workstations have a huge amount of mem-
ory and very fast processors, both of which sit idle most of
the time. While building large computing systems out of
small, mass-produced computers is clearly attractive, we must
also make sure that we can deliver to a single task far more
resources than fit in one box.
Lessons from massively p d e l processors. Analyses

simi1a.r to those just described led many in the mid 1980s to
spetulate that the "killer micro" would take over high-
performance computing.' Today, supercomputing is led by
MPPs-machines constructed as a large collection of work-
station-class nodes connected by a dedicated, loa7-latency
network. It would seem that these do exploit the commodi-
ties of "killer" technologies: a fast microprocessor. its sophis-

Table 1. Comparison of MPPs and workstations with
the same or comparable microprocessor. .

I Node MPP Year of equivalent 1 MPP processor year processor

T3D 150-MHz Alpha 1993-94 1992-93
Paragon 50-MHz i860 1992-93 1991
CM-5 32-MHz SS-2 1991-92 1989-90

3.5

2.5 -
'F
L e 2.0

5 1.5

1 .o

0.5

0.0

- -I
I n

0 Display Eil C

r I
128 64 32 16 8 CM-5+

SSlOI1 SS1012 SS1014 SC1000 SC2000 128-X,
+64 X +96X +128 X +128 X switch

~~~ ~~ 

Figure 1. January 1994 price comparison (at discount) for 
a range of equivalent 128-processor systems. 

ticated cache, and large, inexpensive DRAM. What has h i -  
ited their success? Examining the strengths and weaknesses 
of MPPs will help us understand the key constraints under 
which NOW must achieve its goals. 

One key weakness with MPPs is engineering lag time. With 
the performance of commodity components increasing rapid- 
ly, any delay between freezing the design and shipping the 
system Subtracts from performance. As Table 1 indicates, 
MPP systems tend to lag one to two years behind w-orksta- 
tions built from comparable parts. At 50-percent performance 
improvement per year, a two-year lag costs more than a fac- 
tor of two in the bottom-line computational performance. 

The increased engineering effort of a highly integrated sys- 
tem exacerbates the cost/perfomance disadvantage of low- 
volume manufacturing. This is not unique to MPP systems; it 
applies to multiprocessor servers as well. For example. Figure 
1 shows the price charged to universities for a range of sys- 
tems, all providing 128 40-MHz SuperSparc processors, 128x32 
Mbytes of memory, 128 Gbytes of disk, 128 screens (X- 
terminals for multiprocessor configurations), and a scalable 
interconnection. The first three systems are Sparcstation- 10s 
with one. two, or four processors. Next are SparcCenter-1000 

February 1995 55 



and SparcCenter-2000 servers that can contain up to H and 20 
processors. Last comes a 128-node MIJP. either the Thinking 
Machines CM-5 o r  the Meiko CS-2. The latter systems include 
a large engineering effort, lieyond that o f  the commodity pans, 
which a relatively small volume of  sales must hear. The price 
is twice as high fbr either the large multiprocessor servers or 
MPPs compared to the most cost-effective workstation. 

These figures indicate the trade-offs in multiprocessor sys- 
tem integration. Repackaging the chips on the desktop moth- 
erboard improves system density and potentially reduces 
parts costs. It may provide access to internal buses for the 
network connection, which tends to allow for better com- 
munications perforniance than standard peripheral points. 
However, the integration effort extends product lag time and 
increases development costs. (Our experience is that it also 
increases the per-node maintenance cost.) By increasing lag 
time, it degrades computational performance. Since the final 
performance of any task depends on both the communica- 
tion and computation rates. the advantages of integration 
clearly have limits. 

An often unappreciated weakness is the high cost MPPs 
incur in changing the operating system and other comtnod- 
ity software. \X’orkstation vendors invest as much in operat- 
ing-system development as they do in microprocessor 
design. plus a vast body of applications depends directly on 
the operating-system interface. Early MPPs had t o  provide 
custom message-passing kernels, and applications had to be 
modified for each new machine. More recent machines offer 
a ful l  Llnix on each node: however: repackaging the chips 
and eliminating typical devices (local disk, serial port, and 
Ethernet 1 has forcecl a split from the commodity operating- 
system development path. This divergence results in less 
functionality, lower reliability. and further increases lag time. 

The final weakness is that the niche occupied by MPPs is 
too narrow. The): successfully delivered ven7 high perfor- 
mance in certain applications domains, where rewriting the 
application was tractable. They have not: however, provid- 
ed a versatile tool delivering high throughput on general- 
purpose tasks, such as file senrice, nor have they provided 
fast and predictable interactive performance. 

Nevertheless, as a collection o f  workstation-class com- 
puters, MPPs provide two main advances we need in a NOW: 
communication performance and a global system view. 
Current MPP systems provide a dedicated. high-bandwidth 
network that scales with the number of processors. In dis- 
cussing communication perfonnmct., we must distinguish 
t$ time spent in the actual network hardware, called laten- 
cy. from time spent in the processor preparing to send or 
receive a message, called overhead. Network latency can 
potentially overlap with computation, while overhead is CPU 
time that is unavailable for computation. 

MPP communication performance derives from several 
factors. The routing components are fast, single-chip switch- 

es employing cut-through routing with short wire delays and 
wide links. The network interface is close to the processor. 
typically on the processor-memory bus, rather than on a stin- 
dard I/O bus. Even with this high-quality communication 
hardware, the overhead for conventional message passing 
on MPP systems is typically- a few thousand processor cycles.’ 
Although this is an order of magnitude better than typical 
LAN overheads, it is still substantial. Using lean communi- 
cation layers, especially Active Messages,’ reduces this soft- 
ware overhead by an order of magnitude. For example. on 
the ( 3 - 5 ,  which provides user-level network access, the 
processor overhead for sending and handling a small mes- 
sage is about 50 processor cycles each (25 instructions. 1.7 
p), The network latency is less than 130 cycles (4 ps) across 
a 1.024-processor machine. 

The global system view means that a single parallel pro- 
gram runs on a large collection of nodes as a single entity. 
rather than as an arbitrary collection of processes. Job con- 
trol pertains to the entire collection. Files are uniformly acces- 
sible across all the nodes. Most importantly. the processes 
are scheduled as a single unit, so the constituents of a par- 
allel program actually run in parallel. 

Although the networking advances in MPPs represent a 
key breakthrough, the MPP experience shows that it is not 
enough to exploit commodity components. One needs to 
exploit the full desktop building block, including the oper- 
ating system and applications. The challenge is to make NOW 
a win for all users. It should deliver at least the interactive 
performance of a dedicated workstation, while providing the 
aggregate resources of the network for demanding sequen- 
tial and parallel programs. These demands require a resource 
allocation policy that explicitly preserves interactive perfor- 
mance, while allowing use of dedicated and unused resources 
throughout the network by demanding applications: 1)RAbI 
for memory-intensive programs, disks for I/O bound pro- 
grams, and CPUs for CPU-bound programs. 

Why NOW now? The idea of using idle resources over a 
network has been around nearly since computers became 
networked; parallel computing on clusters of workstations is 
hardly new.5,6 What is new is the convergence of technolo- 
gies and systems concepts that together make NOW-s more 
attractive than ever before. 

%e “killer” network. Switched LANs allow bandwidth 
to scale with the number of processors, while low- 
overhead communication protocols have enabled very 
fast communication over a LAN. These technologies 
h n e  worked very effectively in MPP systems that span 
several tens of meters. They are emerging in the LAN 
arena, with asynchronous transfer mode and other 
recent alternatives, including the blyrinet presented in 
this issue of  IEEEMZC~O.~ 
The “killer” workstation. Workstations have become 

56 IEEE Micro 



extraordinarily powerful. A top-end 1994 workstation 
provides roughly one third the performance of a Cray 
C90 processor and exceeds C90 capacity in many 
respects. In addition to processor performance, a typi- 
cal workstation offers large memory and disk capacity. 
Therefore, the resources on a desktop are more worth- 
while to recruit than ever before. The key to doing so 
is the network hardware and software. 
7%e VO bottleneck. Processors are getting much faster, 
but disks are improving mostly in capacity, not perfor- 
mance. If current trends continue, further increases in 
processor performance will yield little improvement for 
the end user, since more and more time will be lost wait- 
ing for I/O. NOWs offer a better alternative. A huge pool 
of memory potentially exists on the network; this mem- 
ory can be accessed far more quickly than local-disk 
storage. Furthermore. when I/Os are required, they can 
be striped across multiple workstation disks, much as in 
a RAID (redundant array of inexpensive disks). The key 
enabling technology is again the network. 

Clearly, NOWs offer advantages not just for parallel com- 
puting. They focus a large collection of resources on a sin- 
gle program: large memory, large disk, or large processing. 
The time has come to concentrate on building large systems 
out of high-volume hardware and software components. and 
to raise the level at which we research systems. Taking this 
approach will let us tailor fuure high-volume components 
as better building blocks for such large-scale systems. 

Opportunities for NOW 
A NOW offers a wide range of advantages when imple- 

mented on a building-wide scale of hundreds of machines. 
The pool of resources in a NOW include memory, disks, and 
processors. In each case. we need to ask how a NOW sys- 
tem can be more to the end user than simply a bunch of 
machines on a fast network. 

Memory. Fast network communication makes it attrac- 
tive to use a NOWs aggregate DRAM as a giant cache for 
disks. In the past, this has not been practical on Ethernet 
because it would consume too much of the shared-media's 
bandwidth. Also, even on an idle Ethernet, fetching data 
across the network is only marginally quicker than a local- 
disk access. Emerging switch-based LANs provide ample 
bandwidth. however, and the remote memory access time 
is an order of magnitude faster than that of disk. 

T,&le 2 shows a conservative estimate of the time for an 
8-Kbyte access on a DEC AXP 3000i400 on both Ethernet 
and ATM using standard network drivers. There is even a 
bigger benefit with the low-overhead network hardware and 
software described later in the discussion of low-overhead 
communication and in von Eicken et By using the idle 
DRAM on a NOW. we can dramatically reduce the number 

Table 2. Time to service a file system cache miss 
from remote memory or disk to Ethernet and for 

155-Mbps ATM. 

Ethernet 155-Mbp~ ATM 
Remote Remote Remote Remote 
memory disk memory disk 

(P5) (PS) (PS) (PS) 

Memorycopy 250 250 250 250 
Net overhead 400 400 400 400 
Data transfer 6,250 6,250 400 400 
Disk - 14,800 - 14,800 
Total time 6,900 21,700 1,050 15,850 

of disk accesses, mitigating the I/O bottleneck, and greatly 
improving user-visible performance. There are two applica- 
tions of this idea: virtual memory and file caching. 

Netxlork RAM. Virtual memory was introduced to run prob- 
lems much bigger than main memory. The idea was to auto- 
matically migrate data between main memory and slower. 
cheaper storage, giving the illusion of a large, inexpensive 
memory. Unfortunately, as the performance gap between 
processor and disk widened. this illusion has broken down. 
Today, people arrange never to run problems bigger than 
the physical memory of the machine. To run a larger pro- 
gram, typically one needs to buy more DRAM or. if no more 
will fit, find a bigger (and less cost-effective) computer that 
can hold more DRAM. This happens despite the presence of 
gigabytes of idle DRAM on the network. 

Network RAM can fulfill the original promise of virtual 
memory. With high-bandwidth, low-latency networks and 
system software that can recognize when machines are idle, 
we can page effectively across the network. Simulations, such 
as the one shown in Figure 2 (next page), suggest that pro- 
grams run 10 to 30 percent slower using network RAM than 
if the program fits entirely in local DRAM. Using network 
M I ,  however, is 5 to 10 times faster than thrashing to disk. 

Cooperutztefile caching. Analogously, we can improve file 
system performance by cooperatively managing the file caches 
on each client workstation. Traditionally, network file systems 
reduce network accesses by caching files in local client mem- 
ory; they reduce disk accesses by caching files in server mem- 
ory. In a building-wide NOW, the aggregate client memoqi 
far outstrips the memory the server can feasibly contain. 

Cooperatively managing this large client memory has tw-o 
benefits. First, more than one client uses a number of files, 
such as executables and font files. On a cache miss, the sys- 
tem can fetch files from another client's memory, instead of 
going to the server's disk. Second, active clients can effec- 
tively increase the size of their cache by using the memory 
of idle clients. 

February 1995 57 



600 

500 

8 400 

300 

h 

I 

v 

E" 200 
F 

100 

32 Mbytes then 
pages to disk 

32 Mbytes then pages / to network RAM 

/ AllDRAM / 
I I ,  

0 I I I 

Problem size (Mbytes) 
0 50 100 150 

_ _ _ _ ~  ~~ ~~ ~ ~~~ 

Figure 2. Estimated execution time as the size of the 
multigrid problem increases running on three systems: a 
workstation with 32 Mbytes of DRAM plus disk; one with 
128 Mbytes of DRAM; and one with 32 Mbytes plus pag- 
ing to  DRAM on other machines on the network. 

Table 3. Impact of cooperative caching: 42 
workstations, 16-Mbytes/workstation, 128 

M bytesherver. 

Cache miss Read response 
rate (percent) time (ms) 

Client server 
Cooperative caching 1.6 

We have investigated the potential benefits of cooperative 
caching in file systems by examining a two-day trace o f  file 
system activity on a cluster of 42 workstations at Berkeley. 
Table 3 shows the simulated results for a practical imple- 
mentation of cooperative caching, including the overhead 
of coordinating the contents of the various caches. Assuming 
each client workstation has 16 Mbytes of file cache and the 
server cache is 128 Mbytes, cooperative caching reduces disk 
reads by a factor of two, improving file read performance 
by 80 p e r ~ e n t . ~  

Redundant arrays of workstation disks. RAID systems 
deliver higher bandwidth, capacity, and availability than a 
single large disk can achieve by hooking together arrays of 
small disks. However, RAID systems suffer from some draw- 
backs. The cost per byte of disk storage is often worse than 
single disks by a factor of two, due to the hardware needed 
to manage the RAID. Further, the RAID must connect to a 
host computer, which is often a performance and availabil- 
ity bottleneck. Although RAID systems use redundant stor- 
age to ensure a large mean time t o  failure, if the host 
computer crashes, the RAID becomes unavailable. 

NOWs let us address these issues. Instead of building the 
RAID in hardware, we can build it in software. writing data 
redundantly across an array of disks in each of the network's 
workstations. Effectively, the fast network needed for net- 
work RAM and cooperative file caching can also serve as the 
I/O backplane of a RAID system. By striping across enough 
disks, each workstation can appear to have disk bandwidth 
limited only by the network link bandwidth. I%rallel pro- 
grams can achieve the aggregate disk bandwidth of the entire 
cluster. Availability of a software RAID on a NOW could be 
better than in a hardware RAID system, because there is no 
central host to be a single point of failure. If one workstation 
in the NOW crashes, any other can take its place in control- 
ling the RAID. 

Parallel computing. NOWs also let us support high- 
performance parallel applications within an everyday com- 
puting infrastructure. For many real-world applications, we 
need processors capable o f  high, sustained floating-point 
performance, networks with bandwidth that scales with the 
number of processors, parallel file IiO, and low-overhead 
communication. One example is the NASA AmesiUCLA 
chemical tracer model called Gator;"' it models atmospher- 
ic chemistry in the Los Angeles basin and has served for 
detailed air pollution studies. 

Denimel and Smith'" have developed a model of Gator's 
execution time as a function of various input parameters 
(grid resolution, number of chemical species) and system 
parameters (CPU floating-point performance, number of 
CPUs, message bandwidth and overhead, file 11'0 band- 
width). Studies have validated the predicted wall-clock 
times for the computation portion of the application to with- 
in 30 percent against measured times on a 16-node Cray C- 
90, a 64-node CM-5, and a 9-node DEC Alpha workstation 
farm. 

Table 4 shows the results of this model for several machine 
configurations. The transport phase is communication inten- 
sive, while the ordinary differential equation phase (ODE) is 
highly parallel. The computation involves 36 billion floating- 
point operations; the run needs 3.9 Gbytes of input; and 51 
Mbytes of output result. We consider a 16-node C-90 (300- 
Mflops and lO-Mbytes/s disk per CPU), a 256-node Paragon 
(12-Mflops and a 2-Mbytesis disk per node), and a number of 
hypothetical 256-node RS/6000 NOWs (40-Mflops and a 2- 
Mbytes/s disk per node). The baseline NOW system assumes 
Ethernet, PVM (Parallel Virtual Machines, a popular message- 
passing system for workstations), and a sequential file system. 
The performance of this system is dreadful, taking three orders 
of magnitude longer than the Paragon or C-90. 

Sharing a single Ethernet among a large number of high- 
performance processors limits the performance. Upgrading 
to a higher bandwidth ATM network dramatically improves 
performance of the transport phase, improving overall per- 
formance by an order of magnitude. But the bandwidth of 

58 IEEEMicro 



the sequential file system (2 Mbytes/s) still limits us. 
Adding a parallel file system that delivers 80 percent 
of the aggregate bandwidth of the workstation disks 
improves overall performance by yet another order 
of magnitude. Finally, replacing PVM with a low-over- 
head, low-latency communication system further 
reduces the execution time by an order of magnitude, 
to where performance on the NOW competes suc- 
cessfully with the C-90 at a fraction of the cost. The 
performance is better than on the Paragon, because 
the floating-point performance of commercial work- 
stations greatly exceeds that of a single node on an 
MPP In summary, we need good floating-point per- 
formance, scalable network bandwidth, a parallel file 
system, and low-overhead communication to deliver 
high performance for this application. 

Workloads of a building-wide system. The mea- 

Table 4. Predicted execution time in seconds for 12-hour 
Gator simulation on a Vector Supercomputer, MPP 

supercomputer, and four versions of NOW. 

C-90 (1 6) 7 4 16 27 30 
Paragon (256) 12 24 10 46 10 
RS-6000 (256) 4 23,340 4,030 27,374 4 
RS-6000 + ATM 4 192 2,015 2,211 5 
RS-6000 + parallel 

file system 4 192 10 205 5 

overhead msgs 4 8 10 21 5 
RS-6000 + IOW- 

surements just discussed suggest that NOWs can work well 
as dedicated systems. We can also use the infrastructure sup- 
porting interactive work for demanding applications. The 
key question is whether a NOW can run large programs with 
the performance of a dedicated large computer and run small 
programs with the interactivity of a dedicated workstation. 
To investigate this combination, we simulated the impact 
that sequential workstation and MPP jobs may have on one 
another. ' I  

We collected traces from a local cluster of 53 DECstation 
5000/133s with 64 Mbytes of memory used by electrical engi- 
neering graduate students. Two user-level daemons logged 
information every two seconds on CPU, memory, disk, key- 
board, and mouse activity. We collected data for two months, 
resulting in roughly 3,000 workstation-days of traces. We ran- 
domly selected the workstation traces used in our simula- 
tions from different weekday traces, allowing us to simulate 
a cluster of more than 53 workstations. For our parallel- 
machine trace, we obtained a month's worth of data on par- 
allel jobs from a CM-5 at Los Alamos National Laboratories. 
The trace consist5 of a mix of production, and development 
runs on a 32-node system. 

We found that even during the daytime hours, more than 
60 percent of workstations were available 100 percent of the 
time. (We call a machine availableif there is no user activi- 
ty or active jobs for one minute.) This finding runs directly 
counter to the popular belief that idle machines are only 
available during off hours. Since idle workstations are avail- 
able, the question then is how many workstations does 
someone need to run the MPP workload without interfering 
with the workstation users? Figure 3 shows that for these 
traces, assuming equal network and CPU performance in the 
KOW and the MPP, the parallel workload of a 32-node MPP 
runs only 10 percent slower when running on 64 worksta- 
tions that are handling a typical sequential workload as well. 
This is like getting almost a CM-5 for free. 

1.6 

1.0 I I I , I , I , I I I , 
44 46 48 50 52 54 56 58 60 62 64 66 

Total workstations 

Figure 3. Slowdown of 32-node MPP workload from LANL 
running on a NOW running a sequential workload as the 
number of workstations in NOW increases. 

Summary of opportunities. A NOW system offers more 
than a collection of workstations on a fast network. It affords 
the opportunity to make advances in traditional system func- 
tions, such as virtual memory and file systems, as well as 
parallel computing. In obtaining higher performance from a 
NOW, our approach may differ from that typically found with 
MPPs. 

In our approach, we would avoid going to disk by using 
all the DRAM on the network. 
If the application were still not fast enough, we would 
try using all the disks on the network to speed up the 
remaining I/O. 
If it were still not fast enough, we would parallelize the 
computational portion. 

This layered approach seems more attractive than the tracli- 
tional first step required of MPP users: completely rewriting 
the program before seeing any benefit from the machine. 

February 1995 59 



The Berkeley NOW project 
Recognizing the rapid advance and tremendous invest- 

ment in such technologies, the Berkeley NOW project has 
used commercial, off-the-shelf systems wherever possible in 
realizing the opportunities of NOW. As a research vehicle. 
following this principle affords two additional advantages: 
The implementation is quicker if we avoid reinvention, and 
exploiting mostly off-the-shelf technology will simplify the 
transfer of new ideas and technology. 

Low-overhead communication. Bandwidth is the wide- 
ly advertised metric of communication performance. 
However, network latency and processor overhead can be 
just as important, despite their low profile in product litera- 
ture. This is a peculiar oversight because processor overhead 
is the dominant factor determining the communications per- 
formance of real programs. 

Several studies have examined the communications char- 
acteristics of parallel programs. As in the earlier Gator exam- 
ple, many important programs transfer inany small messages 
and are sensitive to communications overhead. What is per- 
haps more surprising is that many conventional LAN appli- 
cations exhibit similar characteristics. 

We obtained a trace of network file system traffic over one 
week from 230 clients of our departmental file servers. 
Although file transfers are performed in large blocks, we 
found that 95 percent of the NFS messages are less than 200 
bytes, due to queries to the file system metadata. Moreover, 
these queries must complete before file data can be trans- 
ferred, so NFS performance is directly coupled to the round- 
trip message t ime-the overhead and latency. 

On Sun Sparcstation-10s connected by Ethernet, we mea- 
sured 4 56 ps of processor overhead plus (unloaded) net- 
work latency on a single message and a peak bandwidth of 
9 Mbps through TCPLP. With the same processors and a 
Synoptics ATM network, the bandwidth increases to 78 Mbps, 
but the overhead plus latency also increases to 626 ps. (Note 
that the Synoptics performance is within 20 percent of most 
other ATM networks. The network latency component varies 
for different switches from about 10 to 100 ps, depending 
on the specific configuration. The network interface adapter 
adds as much as 100 ps to the latency, but the largest frac- 
tion of the time is the processor overhead resulting from the 
system software.) 

If we apply these coefficients to our trace, the eightfold 
increase in bandwidth reduces the data transmission time 
component dramatically but the overall improvement is just 
20 percent because the overhead plus latency component 
remains large. This example illustrates that emerging high- 
bandwidth network technologies will provide a major 
advance only if they are accompanied by corresponding 
reductions in latency and processor overhead. 

Our target is to perform user-to-user communication of a 
small message among one hundred processors in 10 ps. This 

goal is technologically feasible, but leaves very little room 
for compromise. For example, that target figure equals the 
processor overhead plus network latency on the current CM- 
5, plus a single serialization delay of an ATM cell. Several 
aspects of a NOW make us optimistic about meeting this 
goal, while others make it quite challenging. In NOW we 
will have faster processors, but greater constraints on where 
the network connects to the node. We will have somewhat 
higher link bandwidth, but may have greater routing delay 
and uncertain reliability. The nodes support a full Unix sys- 
tem, with relatively rigid device and scheduling interfaces. 

Our work focuses on the network interface hardware and 
the interface into the operating system. To meet our goal, the 
user must transmit directly into and receive from the network, 
without operating-system intervention. Therefore, the oper- 
ating system must map data and control access to the network 
interface into the user address space. The network interface 
must establish the communication protection domain, which 
it can do by inserting a network process ID into each outgo- 
ing message and checking each incoming message. It also 
needs the ability to deliver data and notification directly into 
the user process, at least for the currently running process. If 
the message is going to awaken a process, other aspects of the 
notification process will dominate. We do need to buffer mes- 
sages properly in the meantime, however. Furthermore, the 
network interface hardware will likely need to assist in sup- 
porting message loss as an infrequent case. 

One initial prototype is a cluster of HP9000/735s using an 
experimental Medusa FDDI network interface that connects 
to the graphics bus and provides substantial storage in the 
network interface. As Martin describes,’* using user-level 
Active Messages provides a processor overhead of 8 ps, 
including time-out and retry support. This overhead figure 
also includes almost 3 ps of processing that is entirely an 
FDDI artifact. The network and adapter latency adds an addi- 
tional 8 )LS. 

We obtain the full link bandwidth for large transfers and 
half of the peak bandwidth on 175-byte messages, compared 
to 760-byte messages for single-copy TCP and 1,350 for stan- 
dard TCP. Constructing conventional sockets on top of this 
layer. we see a one-way message time of about 25 ps, near- 
ly an order of magnitude faster than TCP or single-copy TCP 
on the same hardware. 

Our final demonstration system will use either a second- 
generation ATM LAN or a retargeted MPP network, such as 
the Myrinet.’ We are currently evaluating a spectrum of 
design alternatives for the network interface card, which will 
connect either at an emerging high-speed external bus, such 
as PCI, the memory bus, or the graphics bus, depending on 
our final choice of workstation platform. 

The key differences in this work, compared to traditional 
LAN interfaces, are the low-overhead, low-latency communi- 
cation orientation; the quality of the interconnection itself and 

60 IEEEMicro 



the simplicity that derives from that; and the recognition that 
we have some control over all the nodes that attach to the net- 
work and thus can make strong assertions about the endpoints. 

GLUnix: A globallayer Unix. The second key challenge 
is effective management of the pool of resources within a 
NOW. The idea of globally managing network resources has 
been around for a long time, yet the most widely used com- 
mercial systems do not provide this service. This lack of 
progress results in part from two significant impediments: 
implementing global services in the context of existing com- 
mercial operating systems and the sociology of global 
resource sharing. 

GLUnix structure. Recall that the hardware argument for 
NOWs is that we should build large-scale computer systems 
by networking together small, yet complete, mass-produced 
commercial systems. The same is true for software. There is 
a tremendous advantage to leveraging the hundreds of mil- 
lions of dollars invested each year in commercial operating- 
system development, not to mention the billions invested in 
application development for these systems. 

Nevertheless, the typical first step for operating-systems 
research projects is to throw out the commercial system and 
start from scratch. This is often conceptually easier because 
it avoids cumbersome artifacts of a working body of code, 
but building a real working system means reimplementing a 
huge amount of incidental code (device drivers, virtual mem- 
ory management, process dispatching, and so on) that 
already works in commercial systems. 

Instead, our approach provides the global services of  a 
NOW' by gluing together local Unixes running on each work- 
station on the network. As much as possible, our approach 
builds this GLUnix as a layer on top of unmodified com- 
mercial Unixes. (Although we are implementing GLUnix as 
a layer on top of Unix, nothing in our approach depends on 
Unix as a building block. We could as easily build GLUnix 
as a layer on top of personal computer operating systems, 
such as Windows NT or even DOS.) By leveraging the com- 
plete workstation, including the local operating system, we 
had a working prototype of GLUnix after only a three-month 
effort. This layered approach also better lends itself to track- 
ing advances in the underlying commercial system. The chal- 
lenge, of course, is performance. 

A key technology that allows us to layer efficiently on top 
of existing systems is software fault isolation.'j Traditionally, 
operating-system kernels (other than on personal computers) 
use hardware virtual memory to enforce firewalls between 
user applications. Recent work demonstrates that we can 
efficiently implement the same firewalls in software, by mod- 
ifying the application object code to insert a check before 
every store m d  indirect branch instruction. By applying 
aggressive compiler optimization techniques, the overhead 
of enforcing firewalls in software can fall to between 3 and 
7 percent on several of today's RISC processors. For the same 

overhead, we can insert a protected virtual operating-systern 
layer into any Unix application entirely at the user level. This 
layer catches and translates the applications system calls, to 
provide the illusion of a global operating system. For exam- 
ple, we use software fault isolation to implement complete- 
ly transparent process migration and glohal resource 
scheduling. 

Of course, providing all the global services a user might 
want with absolutely no kernel changes is impossible. Our 
goal is to look for the minimal set of changes necessary to 
make existing commercial systems NOW ready. One exam- 
ple is replacing the kernel communication software with a 
low-overhead implementation. Another is using network 
RAM within the virtual-memory system; we can implement 
this most easily by replacing the swap device driver, an oper- 
ation supported at the user level by some, but not all, mod- 
ern Unix systems. As long as the required changes are small, 
it is feasible to get them included in commercial systems. For 
example, despite the lack of a compelling market for paral- 
lel programs. several years ago industry added synchro- 
nization operations (such as test&set) to processor instruction 
sets to make their hardware "parallel ready." 

GLUnix sociology Perhaps the largest roadblock to the 
success of NOW is the sociology of sharing computing 
resources. Interactive users look suspiciously at NOW, fear- 
ing that demanding applications will Steal resources and hurt 
their interactive response time. After all, one of the principal 
henefits of the move from timesharing to desktop comput- 
ers a decade ago was the guarantee of a computer to each 
user. At the same time, supercomputer users also look sus- 
piciously at NOW> fearing that interactive users will have pri- 
ority and demanding applications will only be allowed to 
run at night. Like anyone else, supercomputer users work 
during the daytime and therefore need good response time 
even during the daytime." GLUnix needs to address both of 
these concerns, along with being tolerant of individual node 
failures. We discuss each of these issues in turn. 

We guarantee at least the performance of a stand-alone 
workstation to every active user. by migrating external 
processes off an idle machine when the user returns.'* The 
key to making this approach practical is to consider not only 
CPU cycles, but memory contents as an interactive resource. 
On current Unix systems, if a demanding application runs on 
an idle workstation, it will eventually flush out its virtual- 
memory pages and file cache contents. When the user returns, 
the workstation's response time will visibly slow as its work- 
ing set pages back in from disk. (We know of one site where 
a system was in place to use idle machines for distributed 
compiles, and people would tap their keyboards periodical- 
ly simply to keep their memory contents from disappearing!) 

Instead, we intend to explicitly save the idle machine's 
memory contents before using it, so that we can return the 
machine to the exact state it was in before it went idle. This 

February 1995 61 



180 1 
I 

160 i P 
Cholesky - - 
Sample -a-- 

40 *---.---.---.-- 

20 

0 

. a ' "  

1 1.5 2 2.5 3 3.5 4 

Number of parallel jobs running 
~~~~~ ~ ~ 

Figure 4. Impact of local scheduling on parallel-program
performance referenced to coscheduling.

is feasible because of the combination of technologies in
NOW. With ATM bandwidth and a parallel file system, 64
Mbytes of DRAM can be restored in under 4 seconds. To fur-
ther reduce complaints by interactive users, we explicitly
limit the number of times per day external processes can
delay any interactive user.

We also need to deliver a large portion of the system's
aggregate capacity to demanding applications. One issue is
that MPP operating systems are typically specialized for sched-
uling parallel applications, whereas NOWs have independent
Unix kernels on each processor. This local scheduling,
employed by parallel environments such as PVM, requires
no system support. However, it leads to unacceptable per-
formance for processes that communicate frequently.

For example, Figure 4 shows the slowdown with local
scheduling, compared to coscheduling all processes of a par-
allel application,'j as the number of competing parallel jobs
increases. Two of the applications send many small mes-
sages to random processors, but as long as enough buffer-
ing exist5 on the destination processor, the sending processor
is not significantly slowed. The Column benchmark test runs
slowly even though it communicates infrequently, because
it overflows the buffers on the destination. Em3d suffers from
delays encountered at synchronization points and Connect
performs very poorly because processors frequently require
data from other processors.

Because many parallel programs run as slowly as their
slowest process, a machine running the parallel job while
simultaneously serving for interactive computing can also
compromise parallel performance. Thus, we need to migrate
demanding jobs off no longer idle machines to preserve both
interactive and parallel performance. Fortunately, our mea-

surements, along with those of others, indicate that a large
fraction of workstations are idle, even at the busiest times of
the day. Consequently, there will usually be a machine to
which the evicted process can migrate.

The ability to quickly move processes between machines,
along with their memory state, is important for parallel-
program performance as well as reducing delay for the inter-
active user. While one process is migrating, the rest of the
parallel program is unlikely to make much progress. The
study we discussed earlier indicates that by implementing
fast process migration and choosing idle machines that are
likely to stay idle, we can overlay a typical 32-processor par-
allel workload on a 64-workstation cluster used for interac-
tive jobs without significantly sacrificing the performance of
either. An organization with a more demanding workload
would simply have to extend the capacity of its NOW with
additional noninteractive machines.

A final consideration in GLUnix is that the system must
continue to operate in the face of individual node crashes,
new resources being added or deleted from the network,
and even operating-system software upgrades. On today's
multiprocessors, if any CPU fails (or its operating-system soft-
ware crashes), users must reboot the entire system. Similarly,
they must take the entire multiprocessor out of service to
upgrade its hardware or software.

This situation makes it impractical to use an MPP or large
server as the sole computing infrastructure for a building,
since any small thing going wrong would inconvenience all
users. If a workstation fails in our model, it only affects the
programs using that CPU: those programs can restart from
their last checkpoint, while programs running on other CPUs
continue unaffected. We are also structuring our software to
tolerate hot-swap upgrades of hardware and sofhare.

Many consider security to be the Achilles' heel of NOWs.
If malicious users can compromise the local operating sys-
tem on any machine in the NOW, they can corrupt any
process or data migrated to that machine. However, many
organizations enforce physical security at the level of the
entire building, rather than the individual machine. We
assume that resource sharing within a NOW will only be
used within a single administrative security domain. In addi-
tion. a small amount of hardware in the network interface
can ensure that the correct operating system is booted on a
machine, before allowing it to connect into the NOW. When
tighter security is required, users can always remove the col-
lection of machines from the desktop and place it in the
machine room, with X-terminals on the desktop. But the
same basic problems remain no matter where the worksta-
tions are physically located. Unlike the mainframes of the
past, we must guarantee as good performance as a stand-
alone workstation to interactive users by retaining their
cached state, and we must provide effective scheduling of
parallel applications.

62 IEEE Micro

x F S : Serverless network file service. Client-server com-
puting has become a popular way of structuring distributed
systems. In most network file systems, a central server
machine provides the abstraction of a single file system
shared among the users logged into a number of client work-
stations. Disks at the server store files; clients can access them
via requests made over the network.

IJnfortunately, a central server design has performance,
availability, and cost drawbacks. Any centralized resource
will become a bottleneck with enough users. In traditional
network file systems, even if clients cache frequently used
files, all cache misses and all modified data go to the server,
ultimately limiting scalability. Furthermore, any client DRAM
and disk storage only benefits a single user. Partitioning the
file system among multiple servers will let the system sup-
port more users, but this requires the system manager to
effectively become part of the file system, moving users, vol-
umes, and disks between servers to balance the load.
Similarly, a central server is a single point of failure, requir-
ing the expense of replicating the server to provide good
availability. Perhaps most importantly, as Figure 1 showed,
server machines are expensive: Memory and disks are cheap-
er in a workstation, even ignoring the cost of server replica-
tion for high availability.

In the NOW project. we are addressing these problems by
building a completely serverless network file system, called
xFS. In place of a centralized server (or set of replicated
servers), client workstations cooperate in all aspects of the
file system storing data, managing metadata, and enforcing
protection. The xFS goal is high-performance, highly avail-
able network file service that can scale to an entire enter-
prise, at low cost.

To achieve this goal, xFS combines four features not found
in other file systems:

Any piece of the file system data, metadata, and con-
trol can dynamically migrate between clients and
between storage levels; this vastly simplifies both load
balancing and failure recovery (any client can take over
for any failed client).
We use shared-memory niultiprocessor-style cache
coherence, specifically a write-back ownership protocol,
to maximize locality of control and data.
We store file data and metadata in a software RAID, a
much simpler and cheaper approach to high availabil-
ity than server replication, at the same time delivering
high-bandwidth disk 11'0 to sequential and parallel
applications (see the discussion of redundant arrays of
workstation disks).
We cooperatively manage client caches as a giant cache
for disk and client disk as a giant cache for robotic tape
storage, to reduce the I/O bottleneck (see the discus-
sion of cooperative file caching).

THE DRAMATIC RATE OF ADVANCE in small desk-
top systems dominates computer system design today,
because only these systems offer the large volume and effi-
ciency of production to support a massive, ongoing invest-
ment in architectural innovation. Thus, large-scale systems
must exploit the desktop system hardware and software as
a building block, rather than compete with it. The key
enabling technology for this higher order style of' design is
a scalable, high-bandwidth, low-latency network and a Ion,-
overhead network interface. Coupled with a global operat-
ing system layer, the speed of the network allows us to view
the vast collection of resources on the network processors,
memories, and disks as a shared pool. This view opens up
new approaches to traditional system services, including vir-
tual memory, file caching, and disk striping, as well oppor-
tunities for large-scale parallel computing within an everyday
computing infrastructure.

The challenge is to provide the individual user with the
fast and predictable response time of a dedicated workst:i-
tion, while allowing tasks that are too large for the desktop
to recruit resources throughout the network. Thc raw per-
formance of the network provides part of the solution, but
we must pay careful attention to memory as an interactive
resource and to scheduling assumptions in parallel programs.
Examination of typical usage characteristics of dedicated
workstations and of dedicated MPPs indicates that the two
kinds of workloads can combine in complementary ways,
given the ability to detect idle resources and to migrate
processes judiciously and quickly. The latter depends criti-
cally on a fast network and a parallel file system built out of
the workstation disks on that network. By exploiting this
confluence o f technological advances, we believe NOWs will
be the systems of choice for large-scale computing within a
decade. R

Acknowledgments
The NOW team includes Remzi Arpaci, Satoshi Asanii,

Tony Chan, Mike Dahlin, Andrea Dusseau, Doug Ghorinley,
Seth Goldstein, Kim Keeton, Lok Liu. Steve Lunietta, Ken
Lutz, Cedric Krumbein, Alan Mainwaring, Rich Martin, Jeanna
Neefe, Steve Rodrigues, Drew Roselli, Amin Vahdat. Keith
Vetter, Randy Wang, Kristin Wright, and Chad Yoshikawa.
We are indebted to Terry Lessard-Smith, Bob Miller, and Eric
Fraser for terrific administrative and technical support.

The US Advanced Research Projects Agency (F-30602-95-
C-00141, the National Science Foundation (CDA-9401156),
and the California Micro program have supported the NOW
project. NSF Presidential Faculty Fellowships support Tom
Anderson and David Culler. Hewlett-Packard, IBM, Sun
Microcomputer, Digital Equipment Corp., Intel, Thinking
Machines, Synoptics, Cisco, Xerox. AT&T, Siemens, Fujitsu.
and Exabyte have also provided valued support.

February 7995 63

References
1 . D.A. Patterson and J.L. Hennessy, ComputerArchitecture: A Quantitatwe

Approach. Morgan Kaufmann, San Mateo, Calif, 1990.
2. E.D. Brooks 111, "Massive Parallelism Overcomes Shared-Memory

Limitations," Computers in Physics, No. 2, Mar. 1992, pp 139-145
3. D.E. Culler et al., "LogP: Towards a Realistic Model of Parallel Computa-

tion," Proc. Fourth ACMSIGPLAN Symp. Principles and Practice of Parallel
Programming, Assn. for Computing Machinery. New York, 1993.

4. T. von Eicken et al., "Active Messages: A Mechanism for Integrated Com-
munication and Computation," Proc 19th Ann. Int'l symp. Computer
Architecture, IEEE Computer Society Press, Los Alamitos, Calif., May

5. M. Mutka and M. Livny, "The Available Capacity of a Privately Owned
Workstation Environment," Performance Evaiuation, Vol. 12, No. 4, July

S . Zhou et al , "Utopia: A Load Sharing Facilityfor Large, Heterogeneous
Distributed Computing Systems,'' Tech. Report CSRI-257, University of
Toronto, Ontario, 1992.
N. Boden et al., "Myrinet A Gigabit per Second LAN," /€€E Micro, this

issue, pp. 29-36.
8. T. von Eicken, A. Basu. and V. Buch, "Low-Latency Communication over

ATM Networks Using Active Messages," /€€€Micro, this issue, pp. 46-54.
9. M . Dahlin et al.. "Cooperative Caching: Using Remote Client Memory

to Improve File System Performance," Proc. first USENIXSymp. Operating

Systems Design and Implementation, 1994, pp. 267-280.
J. Demmel and S. Smith, "Parallelizing a Global Atmospheric Chemical Trb

cer Model, " Symp. High Performance Computing and Communications,
1994.
R. Arapaci et al.. "The Interaction of Parallel and Sequential Workloads
on a Network of Workstations," Tech. Report, UC Berkeley Computer

Science Dept., 1994.
R. Martin, "HPAM: An Active Message Layer for a Network of HP

Workstations," Hot Interconnects 1 1 , Aug. 1994, available from authors.
R. Wahbe et al., "Efficient Software-Based Fault Isolation," Proc. 14th

ACM Symp. Operating System Principles, ACM, 1993, pp. 203-21 6.
M. Theimer, K. Landtz, and D. Cheriton, "Preemptable Remote Execution

Facilities for the V System," Proc. 70th ACM Symp. Operating system
PrincipIes, ACM, 1985, pp. 2-12.
J. Ousterhout, "Scheduling Techniques for Concurrent Systems," Proc.

Third h t l Conf Distributed Computing Systems, CS Press, 1982, pp 22-30.

1992, pp. 256-267.

1991, pp. 269-284.
6.

7.

10.

11.

12.

13.

14.

15.

Thomas E. Anderson is an assistant pro-
fessor in the Computer Science Division
at the University of California, Berkeley.
His interests include operating systems,
computer architecture, high-speed net-
works, massive storage systems, and com-
puter science education. He received a

PhD from the University of Washington. In 1994, he won the
NSF Presidential Faculty Fellowship and the Alfred P. Sloan
Research Fellowship. He has coauthored award papers at

the Sigmetrics Conference, the Symposium on Operating Sys-
tems Principles, the Conference on Architectural Support for
Programming Languages and Operating Systems, and the
Winter and Summer Usenix Conferences. He is a member of
the IEEE Computer Society and the ACM.

David E. Culler teaches computer archi-
tecture and parallel processing at the Uni-
versity of Califomia, Berkeley. His research
addresses parallel computer architecture,
parallel programming languages, and high
performance communication structures. He
has worked extensively on resource man-

agement in dataflow systems, compilation of lenient parallel
languages using a Threaded Abstract Machine, fist communi-
cation on modern parallel machines using Active Messages,
and Split-C. Culler received his PHI from MIT. He was a NSF
Presidential Young Investigator and received the Presidential
Faculty Fellowship. He is a member of the IEEE. ACM, and
Sigma Xi. He was program cochair for Hot Interconnects I1 and
is a guest editor of this issue of Micro.

David A. Patterson holds the E.H. and
M.E. Pardee Chair of Computer Science
at the University of California, Berkeley.
He currently chairs both the Computing
Research Association and the ACM
Special Interest Group in Computer Archi-
tecture. He received the ACM Out-

standing Educator Award and the University of California
Distinguished Teaching Award. At Berkeley, he led the
design and implementation of RISC I, which became the
Sparc architecture, and also led the RAID project. His cur-
rent research interests are in large-scale computing using
KOWs. Patterson received a PhD in computer science from
the University of California, Los Angeles. He is a member of
the National Academy of Engineering and is a Fellow of both
the IEEE and the ACM.

Direct questions concerning this article t o David A.
Patterson, Computer Sciences Division, University of Cali-
fornia, Berkeley, CA 94720; patterson@cs.berkeley.edu;
http://now.cs. berkeley .e&.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 168 Medium 169 High 170

64 IEEE Micro

http://now.cs

