
X-Ray Views on a Class using Concept Analysis∗

Gabriela Aŕevalo, St́ephane Ducasse, Oscar Nierstrasz
Software Composition Group

Institut fur Informatik und angewandte Mathematik
University of Bern

3012 - Bern, Switzerland
{arevalo@iam.unibe.ch, ducasse, oscar}@iam.unibe.ch

Abstract

Within object oriented software, the minimal unit of de-
velopment and testing is a class. So understanding how
a class is defined and behaves is important. Considering
that a class is composed of instance variables and meth-
ods, the process is not so easy to achieve because we must
decide which different viewpoints can help us to detect fea-
tures of a class. These viewpoints can include identifying
groups of methods accessing a (set of) instance variable(s),
groups of methods that interact among themselves to pro-
vide a functionality or groups of methods that behave as
interface. Thus, with these different groups, we are able
to know the different hidden characteristics of a class. In
this position paper, we propose to apply Concept Analysis
to generate the different groups of (collaborating) entities
and use these groups to define different views. These views
will help us to get the main features of a class.

1. Introduction

Analyzing or reusing an object oriented system implies
understanding how the different classes are built and work-
ing, and how the classes interact together to provide the dif-
ferent functionalities of the system. The functionality of a
class is defined in terms of its state (instance variables) and
behavior (methods). Thus the way a class is working de-
pends on the dependencies between these entities. In this
position paper, we propose to identify these dependencies
grouped inviewsand characterize the class based on them.
We propose to identify the dependencies between entities
using Concept Analysis, and to provide an interpretation of
the views to characterize a class. This paper is structured as

∗In Proceedings of WOOR 03 (4th International Workshop on Object
Oriented Reengineering) colocated in ECOOP 2003, pp. 76-80, University
of Antwerp, 2003

follows: First, we introduce which are the different aspects
we can take into account to understand a class. Second,
we introduce our approach defining briefly what is Concept
Analysis and how we use it in our study context. Third,
we define several dependencies and we group them to build
the views. Finally, we show the validation on theSmalltaltk
class OrderedCollection and the conclusions we get from
this experiment.

2. Class Understanding

Within object oriented software, the minimal unit of de-
velopment and testing is aclass. Usually, a class is com-
posed ofinstance variablesused to represent the state, and
methodsused to represent the behaviour. Then, understand-
ing how a class works means identifying several aspects
[2, 3]:

• how the methods are interacting together (coupling be-
tween methods)

• how the instance variables are working (or not) to-
gether in the methods (coupling between instance vari-
ables)

• which methods are using (or not) the state of the class

• if there are methods that form a cluster and define to-
gether a precise behaviour of the class

• which methods are considered as interfaces

• which methods are used as entry points (methods that
are considered as interfaces and communicate with
other methods defined in the class)

• which methods and instance variables represent the
core of the class

• which methods are using all the state of the class



These aspects are not explicit and not simple to detect
and manage. Identifying clear criteria to classify the dif-
ferentdependenciesamong the instance variables or meth-
ods allows to get a characterization of the class and under-
stand how the class is working and collaborating with other
classes in a system. We callview the group of dependen-
cies.

3. Our approach: Definition of Views

Our approach is based on two main aspects:identifica-
tion and grouping of dependencies inviewsin the class and
interpretation of theviewsapplied in a class. The following
sections explain these different aspects. First we explain
briefly the main concepts ofConcept Analysis, which is the
technique we use to identify the different dependencies, and
how we apply it in our approach. Secondly, we give a nota-
tion for these dependencies to avoid any case of ambiguity.
Following we propose 2views based on grouping of de-
pendencies and an interpretation of them applied on a class.
Finally, as a validation we show how we can apply the views
on theSmalltalkclass OrderedCollection

4. Concept Analysis

Concept Analysis (CA) is a branch of lattice theory that
allows us to identify meaningful groupings ofelements(re-
ferred to asobjects in CA literature) that have common
properties (referred to asattributes in CA literature) 1.
These groupings are calledconceptsand capture similari-
ties among a set ofelementsbased on their commonprop-
erties. Mathematically, concepts aremaximal collections of
elements sharing common properties. They form a com-
plete partial order, called aconcept lattice, which repre-
sents the relationships between all the concepts [1, 5, 4].
To use the CA technique, one only needs to specify the
properties of interest on each element, and does not need
to think about all possible combination of these properties,
since these groupings are made automatically by the CA
algorithm. The possibility of capturing similarities of ele-
ments in groups (concepts) -based on the specification of
simple properties- allows to identify common features of
the elements. In the specific case of software reengineer-
ing, the system are composed of a big amount of different
entities (classes, methods, modules, subsystems) and there
are different kinds of relationships among them. When we
are able to characterize the entities in terms of properties,
and we can detect if these characteristics are repeated in the
system, then we can reduce the amount of information to

1We prefer to use the termselementandpropertyinstead ofobjectand
attribute because the latter terms have a specific meaning in the object-
oriented paradigm.

analyze and we can have an abstraction of the different parts
of a system. These abstractions helps us to start to see how
the parts are working, how they are defined and how they
are connected to others parts of the system. In our specific
case, we are interested in seeing how the class is structured
internally in terms of instance variables and methods. Then,
CA will give us groups(concepts)that allows us to analyze
different dependencies inside the class.

4.1. Use of Concept Analysis: Definition of Ele-
ments and Properties

First we need to define the elements and the properties
that are used to calculate theconceptsby the CA algorithm.
In the specific case of our case study, we are focused on the
analysis of the class as a sole unit, thus the elements are the
instance variables and the methods defined in the class, and
the properties are how they are related between themselves.
Consider that we have the set of instance variables{A, B},
and the set of methods{P, Q, X, Y} defined in a class, the
properties we use are:

• B is used by Pmeans that the methodP is accessing
directly or through an accessor/mutator to the instance
variableB.

• Q is called in Pmeans that the methodQ is called in
the methodP via aself-call

The predicates presented previously represent directde-
pendenciesbetween the involved entities. But the interest-
ing/curious point is to consider anindirect dependencybe-
tween two entities, for example the instance variableB is
read by Xand thatX is called in P. If we consider this case,
we say that obviouslyB is read by Xbut also indirectlyB
is read by Ptoo. With these kinds of dependencies we will
be able to identify not only groups of direct accesses/uses
of entities, but also indirect ones that will help us to mea-
sure the impact of the changes and the level of dependency
between instance variables and methods in a class.

4.2. Notation

We introduce a notation to define the dependencies men-
tioned previously without ambiguity. As we said previously,
these dependencies are the contents of the concepts calcu-
lated by the Concept Analysis algorithm.

• {E1, ..,En} R {M1, ..,Mp} means that the entities
{E1, .., En} depend exclusivelyon{M1, ..,Mp}. This
means that{M1, ..,Mp} are the only entities that are
related through the propertyR to {E1, ..,En}.

• {E1, ..,En} R {M1, ..,Mp} means that the entities
{E1, ..,En} donot depend exclusivelyon{M1, ..,Mp}.



This means that{M1, ..,Mp} is a subset of all the en-
tities that are related through the propertyR to {E1,
..,En}.

• {E1, ..,En} R
∗ {M1, ..,Mp} means that the entities

{E1, ..,En} depend exclusively and transitivelyon
{M1, ..,Mp}. This means that{M1, ..,Mp} are the
only ones that are related to{E1, ..,En} through the
propertyR andR1, whereR1 is an intermediate prop-
erty, because there is a set{N1, ..,Nk} such that:{E1,
..,En} R {N1, ..,Nk} R1 {M1, ..,Mp}

• {E1, ..,En} R∗ {M1, ..,Mp} means that the entities
{E1, ..,En} do not depend exclusively but transitively
on{M1, ..,Mp}. This means that{M1, ..,Mp} are not
the only ones that are related to{E1, ..,En} through
the propertyR andR1, whereR1 is an intermediate
property, because there is a set{N1, ..,Nk} such that:
{E1, ..,En} R{N1, ..,Nk} R1 {M1, ..,Mp}

• A special case:{E1, ..,En} ¬R {M1, ..,Mp} means
that the entity{E1, ..,En} has any dependencieson
{M1, ..,Mp}. This is only applicable onexclusive de-
pendencies.

4.3. Dependencies: Definition and Interpretation

Based on the proposed notation, we define the different
dependencies we can have in a class:

Direct ”Accessors”: We consider a method asdirect ac-
cessorwhen the method uses a specific instance variables
directly or through aself-callto the method accessor or mu-
tator of the instance variable. And it is represented with a
non-exclusive dependency as:

• {Ij} is used by{M1, ..,Mk}

This dependency allows us a simple classification of the
methods according which instance variables use. As it is
a non-exclusive dependency, if there is a method that uses
several instance variables, this method will be in the set of
methods of each instance variable where it has influence.

Exclusive Direct ”Accessors”: Similar to the previous
defined dependency, but we consider a method asexclusive
direct accessor”when the method uses only a specific in-
stance variable directly or through aself-call to the method
accessor or mutator of the instance variable. As it is repre-
sented with a exclusive dependency as:

• {Ij} is used by {M1, ..,Mk}

Similarly to the previous dependency, we classify the meth-
ods according which instance variables use. But in this

case, we consider exclusive dependency, this means that the
groups of methods are disjoint among them. If there is a
method that access several instance variables, it will not ap-
pear in this dependency.

Exclusive Indirect ”Accessors”: We consider a method
asexclusive indirect accessorwhen the method calls adi-
rect accessormethod of a specific instance variable. It is
represented with an exclusive dependency as:

• {Ij}is used by{Mk+1, ...Mp}
if {Ij}is used by{M1, ...Mk}is called in{Mk+1, ...Mp}

This dependency helps us to distinguish those methods that
define the behavior of a class without using at all the state
from those that use the state of the class.

Collaborating instance variables: This dependency ex-
presses which instance variables are being used at the same
time in a (set of) method(s). It is represented with anexclu-
sive dependencyas:

• {I1, .., Ij}is used by
∗{M1, ..,Mk}

Although the definition seems to be similar to the previous
ones, the main difference is that in this case, we are focusing
on having set of instance variables working together. This
dependency helps to identify potentially which are the func-
tionalities that sets of instance variables are providing inside
the class. We are not limited to methods that access directly
to the instance variables, but we are focused on identifying
all the methods that can affect the state of a class.

Interface methods: This dependency expresses which
methods are not used at all inside the class. It is represented
with anexclusive dependencyas:

• {M1, ..,Mj}¬is called in
∗{Mj+1, ..,Mk}

This dependency helps us to define which are the methods
that are used as interface to the class. We consider that if
they are not used inside the class, these methods are called
outside the scope of the class.

Internal Behavior: This dependency expresses which
methods are used inside the class. It is represented with
anexclusive dependencyas:

• {M1, ..,Mj}is called in
∗{Mj+1, ..,Mk}

if{I1, .., Ij}¬is used by{M1, ..,Mj}

Clearly, this dependency is complementary to theInter-
face methods, and helps to identify methods that are defin-
ing internally the behaviour of the class but this behaviour
is not related to modifying/accessing the state of the class.



Externally Used State : This dependency expresses
which methods areexclusive direct accessorsandinterface
methods. It is represented with anexclusive dependencyas:

• {M1, ..,Mj}¬is called in
∗{Mj+1, ..,Mk}

if {Ij}is used by
∗{M1, ..,Mj}

This dependency helps us to define which are the methods
that are used as interface to the class and accessing directly
to the state of the class.

5. Views and Validation

Based on the dependencies defined previously, we intro-
duce two views that can be applied in a class:Core At-
tributes and Public Interface. They are simple but show
how useful the combination ofdependenciesis.

We show a validation on theSmalltalkclass Ordered-
Collection. It represents a collection of elements explic-
itly ordered by the sequence in which objects are added
and removed. The elements are accessible by external
keys that are indices. This class has two instance variables
{firstIndex, lastIndex} to manage the indexes of the first and
last elements in the collection. Its behavior is defined in 56
methods.

5.1. View: Core Attributes

Description: Cluster methods according to their access to
instance variables

Used dependencies:

• exclusive direct accessors,

• exclusive indirect accessors, and

• collaborating instance variables

Rationale: Instance variables represent the state of an ob-
ject. Understanding how the state of an object is accessed
provides key information regarding the class structure and
behavior. In particular the distribution of the groups regard-
ing the number of instance variables helps understanding
how the class is internally built.

Validation on OrderedCollection: When we identify the
dependencies, we have:

• {firstIndex} is used by{before, removeAtIndex:,
addFirst:, add:beforeIndex:, removeFirst, remove-
First:, first}

• {lastIndex} is used by{removeIndex:, after:, add-
LastNoCheck:, removeLast, addLast:, removeLast:,
last,}

• {firstIndex, lastIndex} is used by
1

{makeRoomAtFirst, changeSizeTo:, removeAll-
SuchThat:, makeRoomAtLast, do:, notEmpty:,
keysAndValuesDo:, detect:ifNone:, changeCapac-
ityTo:, isEmpty, size, remove:ifAbsent:, includes:,
reverseDo:, find:, setIndices, insert: before:, at:,
at:put:, setIndicesFrom:}

• {firstIndex} is used by
∗ {addAllFirst:}

• {lastIndex} is used by
∗ {addAllLast:, add:}.

• {firstIndex, lastIndex} is used by
∗ {add:before:,

add:after:}

Discussion: According to these results we see that most
of the methods access directly to the state of the class,
and only a few ones are accessing indirectly to the class.
This means that the behavior of the class is not used inter-
nally, and most of it is directly in terms of the instance vari-
ables. In this particular case, we see that the core attributes
{firstIndex, lastIndex} have nopure accessorsor mutators.
This means that the state is used only internally and it is not
exported at all outside the class.

5.2. View: Public Interface

Description: Identify methods that behave as the public
interface of the class

Used dependencies:

• interface methods

• externally used state

Rationale: Methods define the internal and external be-
havior of a class. Classifying them in terms of this feature
helps us to identify which is theinterfacefor the class

Validation on OrderedCollection: In Ordered Collec-
tion, as we saw in the previous view that most of the meth-
ods are behaving as interface methods.

Discussion: In this particular case we see that it almost
does not exist methods focused on internal functionalities
of the class, and most of the methods are exported to be
used as interfaces.



6. Conclusions and Future Work

In this position paper, we propose a technique to under-
stand how a class itself is defined and working. Thus, we
identify known (e.g.,instance variable A is used by method
M) but also unknown dependencies (e.g.,instance variable
A is used indirectly by method M) between instance vari-
ables and methods using Concept Analysis. Afterwards, we
group these dependencies inviewsand we give an interpre-
tation of the meaning of these dependencies when we apply
them to a class. We provide a validation in theSmalltalk
class OrderedCollection. In this particular case we see that
there is no internal defined functionality for the class and
that most of the methods are behaving asinterface. We
also see that the only two instance variables (complete state)
of the class are being accessed at the same time by sev-
eral methods, meaning that there is good coupling between
them.
We believe that these views show partially how the class is
working but they are useful because they are reducing the
amount of information provided by the class itself, and help
the developer to have differentviewpoints.
As we are using Concept Analysis -as ourgenerator of in-
formation-, it is important to remark that the groups we
use in theviewsare automatically generated by the concept
analysis algorithm. We only propose a possible interpreta-
tion to the generated groups based on the combination of
the properties given by the algorithm.
Another point to take into account is that we usesimple
properties to express the dependencies between instance
variables and methods. But the combination of the infor-
mation of the groups (provided by the lattice) makes us un-
derstandcomplexdependencies inside the class.
Next steps include the definition of new views and the vali-
dation of them in large classes, and also analyse the impact
of superclass and subclasses in this approach.

Acknowledgements: We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project “Tools and Techniques for Decomposing and
Composing Software” (SNF Project No. 2000-067855.02)

References

[1] G. Birkhoff. Lattice theory.American Mathematical Society,
1940.

[2] E. Casais. An incremental class reorganization approach. In
O. L. Madsen, editor,Proc. ECOOP ’92, volume 615 ofLec-
ture Notes in Computer Science. Springer-Verlag, 1992.

[3] M. Fowler. Refactoring: Improving the Design of Existing
Programs. Addison-Wesley, 1999.

[4] B. Ganter and R. Wille.Formal Concept Analysis: Mathe-
matical Foundations. Springer Verlag, 1999.

[5] R. Wille. Restructuring lattice theory: An approach based on
hierarchies of concepts.Ordered Sets, Ivan Rival Ed., NATO
Advanced Study Institute, 83:445–470, September 1981.


