X-Ray Views on a Class using Concept Analysis

Gabriela Aévalo, Séphane Ducasse, Oscar Nierstrasz
Software Composition Group
Institut fur Informatik und angewandte Mathematik
University of Bern
3012 - Bern, Switzerland
{arevalo@iam.unibe.ch, ducasse, os@iam.unibe.ch

Abstract follows: First, we introduce which are the different aspects
we can take into account to understand a class. Second,
Within object oriented software, the minimal unit of de- we introduce our approach defining briefly what is Concept
velopment and testing is a class. So understanding howAnalysis and how we use it in our study context. Third,
a class is defined and behaves is important. Consideringwe define several dependencies and we group them to build
that a class is composed of instance variables and meth-the views. Finally, we show the validation on tBmalltaltk
ods, the process is not so easy to achieve because we mustass OrderedCollection and the conclusions we get from
decide which different viewpoints can help us to detect fea-this experiment.
tures of a class. These viewpoints can include identifying
groups of methods accessing a (set of) instance variable(s)p Class Understanding
groups of methods that interact among themselves to pro-
vide a functionality or groups of methods that behave as
interface. Thus, with these different groups, we are able
to know the different hidden characteristics of a class. In

this position paper, we propose to apply Concept Analysis methodsused to represent the behaviour. Then, understand-

to generate the different groups of (collaborating) entities ing how a class works means identifying several aspects
and use these groups to define different views. These view& 3

will help us to get the main features of a class.

Within object oriented software, the minimal unit of de-
velopment and testing is @dass Usually, a class is com-
posed ofinstance variablesised to represent the state, and

e how the methods are interacting together (coupling be-
tween methods)

1. Introduction e how the instance variables are working (or not) to-

gether in the methods (coupling between instance vari-
Analyzing or reusing an object oriented system implies ables)

understanding how the different classes are built and work-
ing, and how the classes interact together to provide the dif- ® Which methods are using (or not) the state of the class
ferent functionalities of the system. The functionality of a
class is defined in terms of its state (instance variables) and
behavior (methods). Thus the way a class is working de-
pends on the dependencies between these entities. In this o which methods are considered as interfaces
position paper, we propose to identify these dependencies
grouped inviewsand characterize the class based on them. ¢ which methods are used as entry points (methods that
We propose to identify the dependencies between entities ~ are considered as interfaces and communicate with
using Concept Analysis, and to provide an interpretation of ~ other methods defined in the class)
the views to characterize a class. This paper is structured as

o if there are methods that form a cluster and define to-
gether a precise behaviour of the class

e which methods and instance variables represent the

*In Proceedings of WOOR 03 (4th International Workshop on Object core of the class
Oriented Reengineering) colocated in ECOOP 2003, pp. 76-80, University ) )
of Antwerp, 2003 e which methods are using all the state of the class




These aspects are not explicit and not simple to detectanalyze and we can have an abstraction of the different parts
and manage. ldentifying clear criteria to classify the dif- of a system. These abstractions helps us to start to see how
ferentdependencieamong the instance variables or meth- the parts are working, how they are defined and how they
ods allows to get a characterization of the class and under-are connected to others parts of the system. In our specific
stand how the class is working and collaborating with other case, we are interested in seeing how the class is structured
classes in a system. We calbw the group of dependen- internally in terms of instance variables and methods. Then,
cies. CA will give us groupgconcepts}hat allows us to analyze

different dependencies inside the class.
3. Our approach: Definition of Views 4.1. Use of Concept Analysis: Definition of Ele-

: . . . ments and Properties
Our approach is based on two main aspeittentifica-

tion and grouping of dependenciesviewsin the class and
interpretation of theviewsapplied in a class. The following

sgchons explgm ihese different aspects. . F|r§t we explamm the specific case of our case study, we are focused on the
briefly the main concepts @oncept Analysisvhich is the

techni to identify the diff td denci dianalysis of the class as a sole unit, thus the elements are the
echnique we use to iden ify the different depen ENCIES, anGstance variables and the methods defined in the class, and
how we apply it in our approach. Secondly, we give a nota-

. ) ) .~ the properties are how they are related between themselves.
tion for these dependencies to avoid any case of amb'gu'w'Consider that we have the set of instance variablesB}
Following we propose Ziews based on grouping of de- f

? . . : and the set of methodd, Q, X, ¥} defined in a class, the
pendencies and an interpretation of them applied on a class : )
i S . properties we use are:
Finally, as a validation we show how we can apply the views

First we need to define the elements and the properties
that are used to calculate thenceptdy the CA algorithm.

on theSmalltalkclass OrderedCollection e B is used by Aneans that the methd@is accessing
directly or through an accessor/mutator to the instance
4. Concept Analysis variableB.
e Q is called in Pmeans that the methdd is called in
Concept Analysis (CA) is a branch of lattice theory that the method? via aself-call

allows us to identify meaningful groupings efementgre-
ferred to asobjectsin CA literature) that have common
properties (referred to asattributesin CA literature) *.
These groupings are callednceptsand capture similari-
ties among a set aflementdased on their commaprop-

erties Mathematically, concepts amaximal collections of ’ ’ N
elements sharing common propertieshey form a com- we say that obviousl¥ is read by Xbut also indirectlyB

plete partial order, called aoncept lattice which repre- is read by E’too. .W|th these kinds of dependenues we will
sents the relationships between all the concepts [1, 5, 4].°¢ @ble to identify not only groups of direct accesses/uses
To use the CA technique, one only needs to specify theOf entltle_s, but also indirect ones that will help us to mea-
properties of interest on each element, and does not nee@U'® the impact of the changes and the level of dependency
to think about all possible combination of these properties, °€tWeen instance variables and methods in a class.

since these groupings are made automatically by the CA .

algorithm. The possibility of capturing similarities of ele- 4-2. Notation

ments in groupsdoncept} -based on the specification of

Simp'e properties_ a”OWS to |dent|fy common features of We introduce a notation to deﬁne the dependenCieS men-
the elements. In the specific case of software reengineeriioned previously without ambiguity. As we said previously,
ing, the system are composed of a big amount of differentthese dependencies are the contents of the concepts calcu-
entities (classes, methods, modules, subsystems) and thed@ted by the Concept Analysis algorithm.

are different kinds of relationships among them. When we
are able to characterize the entities in terms of properties,
and we can detect if these characteristics are repeated in the
system, then we can reduce the amount of information to

The predicates presented previously represent dilect
pendenciedetween the involved entities. But the interest-
ing/curious point is to consider andirect dependencle-
tween two entities, for example the instance varidbles
read by Xand thaiX is called in P If we consider this case,

e {Fy, ..E,} R {M, ..,M,} means that the entities
{E1, .., E, } depend exclusivelyn {1, .., M,,}. This
means tha{ M, .., M,} are the only entities that are
related through the properto { Fy, ...E, }.

1We prefer to use the ternetementndpropertyinstead ofobjectand L.
attribute because the latter terms have a specific meaning in the object- ® {Elv --vEn} R {Ml’ --!‘Mp} mea:ns that the entities
oriented paradigm. {E1, ...E,} donot depend exclusivetn { M, ..M, }.



This means thafM, ..,M,} is a subset of all the en-
tities that are related through the propeRyto {E1,
Fn}.

{E:1, ..E,} R" {M,, ..,M,} means that the entities
{E1, ...E,} depend exclusively and transitivebn
{M,, ..,.M,}. This means thaf{M,, ...M,} are the
only ones that are related {d%, ..,.E,, } through the
propertyR and R, whereR; is an intermediate prop-
erty, because there is a §éY1, ..,y } such that{E;,
WEn} R{Ny, ..,N} Ry {M, ..M}

{E1, ..E,} R* {M, ..M,} means that the entities
{E\, ...E,} donot depend exclusively but transitively
on{M, ...M,}. This means thaf{M, ..M, } are not
the only ones that are related {&, ..,F,,} through
the propertyR and R;, where R; is an intermediate
property, because there is a $éf;, ...V} such that:

case, we consider exclusive dependency, this means that the
groups of methods are disjoint among them. If there is a
method that access several instance variables, it will not ap-
pear in this dependency.

Exclusive Indirect "Accessors”. We consider a method
asexclusive indirect accessavhen the method calls @i-
rect accessomethod of a specific instance variable. It is
represented with an exclusive dependency as:

o {I;}is used by{ My 41, ..M}

if {I,}is used by{ M, ...My}is called in{Mpy41,...M,}

This dependency helps us to distinguish those methods that
define the behavior of a class without using at all the state
from those that use the state of the class.

Collaborating instance variables: This dependency ex-

{Ery B} R{N1, o Ni} By {My, .M} presses which instance variables are being used at the same

time in a (set of) method(s). It is represented witheanlu-

e A special case{FE;, ...F,,} =R {M;, ..,.M,} means X
P LEr } (M, v} sive dependenas:

that the entity{E+, ...E,,} has any dependenciem

{Mj, ..,Mp}. This is only applicable oexclusive de- o {I1,..I; Yis used by {Mj, .., My}

pendencies

Although the definition seems to be similar to the previous

ones, the main difference is that in this case, we are focusing

on having set of instance variables working together. This
Based on the proposed notation, we define the differentdependency helps to identify potentially which are the func-

dependencies we can have in a class: tionalities that sets of instance variables are providing inside

the class. We are not limited to methods that access directly

Direct "Accessors” We consider a method afirect ac- to the instance variables, but we are focused on identifying
all the methods that can affect the state of a class.

cessorwhen the method uses a specific instance variables
directly or through aelf-callto the method accessor or mu-

tator of the instance variable. And it is represented with a INtérface methods: This dependency expresses which
non-exclusive dependency as: methods are not used at all inside the class. Itis represented

with anexclusive dependeneg:

4.3. Dependencies: Definition and Interpretation

e {I;}isused by M, .., M X
{L} " } o {Mi,..,M;}—is called in {Mjy1,.., My}

This dependency allows us a simple classification of the ) _

methods according which instance variables use. As it is 1 NiS dependency helps us to define which are the methods

a non-exclusive dependency, if there is a method that usedhat are used as interface to the class. We consider that if

several instance variables, this method will be in the set of they are not used inside the class, these methods are called

methods of each instance variable where it has influence. outside the scope of the class.

Internal Behavior: This dependency expresses which
methods are used inside the class. It is represented with
anexclusive dependeneg:

Exclusive Direct "Accessors”. Similar to the previous
defined dependency, but we consider a methoekakisive
direct accessor'when the method uses only a specific in-
stance variable directly or througtsalf-callto the method
accessor or mutator of the instance variable. As it is repre-
sented with a exclusive dependency as:

o {My,..,M;}is called in {M; 1, .., My}
if{[l, ,IJ}“ZS used by{Ml, cey MJ}

Clearly, this dependency is complementary to ltiter-
face methodsand helps to identify methods that are defin-
Similarly to the previous dependency, we classify the meth- ing internally the behaviour of the class but this behaviour
ods according which instance variables use. But in thisis not related to modifying/accessing the state of the class.

o {I;}isused by {M,.., My}



Externally Used State : This dependency expresses e {lastindeX is used by{removelndex:, after:, add-

which methods arexclusive direct accessoandinterface LastNoCheck:, removelLast, addLast:, removelast:,
methodslt is represented with aexclusive dependenag: last, }
o {M, .., Mj}—is called in {Mjy, .., My} o {firstindex, lastindex is used by
if {I;}is used by {M, .., M;} {makeRoomAtFirst, changeSizeTo:, removeAll-

) . ) SuchThat:;, makeRoomAtLast, do:, notEmpty:,
This dependency helps us to define which are the methods  eysandvaluesDo:, detectifNone:, changeCapac-
that are used as interface to the class and accessing directly iy To: isEmpty, size, remove:ifAbsent:, includes:,

to the state of the class. reverseDo:, find:, setlndices, insert: before:, at:,

at:put:, setindicesFrorh:

5. Views and Validation _ . ,
o {firstindex is used by {addAllFirst:}

Based on the dependencies defined previously, we intro-
duce two views that can be applied in a clasxore At-
tributes and Public Interface They are simple but show o {firstindex, lastindex isused by {add:before:,
how useful the combination afependencies. add:after}

We show a validation on th&malltalk class Ordered-
Collection. It represents a collection of elements explic-
ity ordered by the sequence in which objects are added
and removed. The elements are accessible by externaf
keys that are indices. This class has two instance variable
{firstindex, lastindexto manage the indexes of the first and
last elements in the collection. Its behavior is defined in 56
methods.

e {lastindex is used by~ {addAllLast:, add}.

Discussion: According to these results we see that most
f the methods access directly to the state of the class,
nd only a few ones are accessing indirectly to the class.
his means that the behavior of the class is not used inter-
nally, and most of it is directly in terms of the instance vari-
ables. In this particular case, we see that the core attributes
{firstindex, lastindekx have nopure accessorsr mutators

This means that the state is used only internally and it is not

5.1. View: Core Attributes exported at all outside the class.

Description:  Cluster methods according to their access to 5 o vjiew: Public Interface
instance variables

Description: Identify methods that behave as the public
Used dependencies: interface of the class

e exclusive direct accessors, .
Used dependencies:

e exclusive indirect accessors, and .
e interface methods

e collaborating instance variables
e externally used state

Rationale: Instance variables represent the state of an ob- _.. ) ' :

iact. Understandina how the state of an obiect is accesseci:atlonale' Methods define the internal and external be-

J r0\./ides ke infom?ation regarding the cIast structure and avior of a class. Classifying them in terms of this feature

p ) y Inic garding helps us to identify which is thiaterfacefor the class

behavior. In particular the distribution of the groups regard-

ing the number of instance variables helps understanding

how the class is internally built. Validation on OrderedCollection: In Ordered Collec-
tion, as we saw in the previous view that most of the meth-

ods are behaving as interface methods.
Validation on OrderedCollection: When we identify the g

dependencies, we have: . _ _ . _
Discussion: In this particular case we see that it almost

o {firstindex} is used by{before, removeAtindex:, does not exist methods focused on internal functionalities
addFirst:;, add:beforelndex:, removeFirst, remove- of the class, and most of the methods are exported to be
First:, first} used as interfaces.



6. Conclusions and Future Work [5] R. Wille. Restructuring lattice theory: An approach based on
hierarchies of concept®©rdered Sets, Ilvan Rival Ed., NATO

In this position paper, we propose a technique to under- Advanced Study Institut83:445-470, September 1981.

stand how a class itself is defined and working. Thus, we
identify known (e.g.instance variable A is used by method
M) but also unknown dependencies (eigstance variable

A is used indirectly by method Mbetween instance vari-
ables and methods using Concept Analysis. Afterwards, we
group these dependenciesiiewsand we give an interpre-
tation of the meaning of these dependencies when we apply
them to a class. We provide a validation in tBmalltalk
class OrderedCollectianin this particular case we see that
there is no internal defined functionality for the class and
that most of the methods are behavingirgrface We

also see that the only two instance variables (complete state)
of the class are being accessed at the same time by sev-
eral methods, meaning that there is good coupling between
them.

We believe that these views show partially how the class is
working but they are useful because they are reducing the
amount of information provided by the class itself, and help
the developer to have differeviewpoints

As we are using Concept Analysis -as @enerator of in-
formation, it is important to remark that the groups we
use in theviewsare automatically generated by the concept
analysis algorithm. We only propose a possible interpreta-
tion to the generated groups based on the combination of
the properties given by the algorithm.

Another point to take into account is that we wsmple
properties to express the dependencies between instance
variables and methods. But the combination of the infor-
mation of the groups (provided by the lattice) makes us un-
derstanccomplexdependencies inside the class.

Next steps include the definition of new views and the vali-
dation of them in large classes, and also analyse the impact
of superclass and subclasses in this approach.

Acknowledgements: We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project “Tools and Techniques for Decomposing and
Composing Software” (SNF Project No. 2000-067855.02)

References

[1] G. Birkhoff. Lattice theory.American Mathematical Society
1940.

[2] E. Casais. An incremental class reorganization approach. In
O. L. Madsen, edito?roc. ECOOP '92volume 615 of_ec-
ture Notes in Computer Sciencgpringer-Verlag, 1992.

[3] M. Fowler. Refactoring: Improving the Design of Existing
Programs Addison-Wesley, 1999.

[4] B. Ganter and R. Wille.Formal Concept Analysis: Mathe-
matical FoundationsSpringer Verlag, 1999.



