
Performances of Galois Sub-hierarchy-building

Algorithms

Gabriela Arévalo1,3, Anne Berry2, Marianne Huchard1,
Guillaume Perrot1, and Alain Sigayret2

1 LIRMM - CNRS UMR 5506 - Université de Montpellier II - Montpellier (France)
{huchard, arevalo, perrot}@lirmm.fr

2 LIMOS - CNRS UMR 6158 - Univ. Blaise Pascal - Clermont-Ferrand II (France)
{berry, sigayret}@isima.fr

3 LIFIA - Facultad de Informática (UNLP) - La Plata (Argentina)
garevalo@sol.info.unlp.edu.ar

Abstract. The Galois Sub-hierarchy (GSH) is a polynomial-size repre-
sentation of a concept lattice which has been applied to several fields,
such as software engineering and linguistics.

In this paper, we analyze the performances, in terms of computation
time, of three GSH-building algorithms with very different algorithmic
strategies: Ares, Ceres and Pluton. We use Java and C++ as imple-
mentation languages and Galicia as our development platform.

Our results show that implementations in C++ are significantly faster,
and that in most cases Pluton is the best algorithm.

Keywords: Galois Sub-hierarchy, AOC-Poset, Performance Analysis.

1 Introduction

Formal concept analysis (FCA) has been used in a broad spectrum of research
fields, such as knowledge representation, data mining, machine learning, soft-
ware engineering and databases. The main drawback of concept lattices is that
the number of concepts may be of much larger size than the relation (or even
exponential in the size of the relation). It is therefore feasible, when this prob-
lem is encountered, to use a polynomial-size representation of the lattice while
preserving the most relevant information.

One of the approaches, which has proved useful in practice, is to restrict the
lattice to the concepts which introduce a new object or a new property. This
idea is the basis for two very similar structures called the Galois Sub-hierarchy
(GSH) and the Attribute Object Concept poset (AOC-poset). The Galois Sub-
hierarchy has been introduced in the software engineering field by Godin et
al. [GM93] for class hierarchy reconstruction and successfully applied in later
research work [GMM+98], [AYLCB96], [HDL00], [DHL+02]. The AOC-poset
has been used in applications of FCA to non-monotonic reasoning and domain
theory [Hit04] and to produce classifications from linguistic data [OP02], [Pet01].

S.O. Kuznetsov and S. Schmidt (Eds.): ICFCA 2007, LNAI 4390, pp. 166–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Performances of Galois Sub-hierarchy-building Algorithms 167

These structures are interesting not only as a feasible alternative to oversized
concept lattices, but also as a conceptual improvement, as human perception of a
problem is enhanced by an easy visualization of a restricted number of elements.

As the size of the input may still be large, naturally it is important to have ef-
ficient Galois Sub-hierarchy-building algorithms to work with. There are several
efficient Galois Sub-hierarchy-building algorithms, with very different algorith-
mic strategies, and with theoretical worst-time complexity analyses which are
difficult to compare. Kuznetsov et al. [KO02] propose a rather extensive imple-
mentative comparative analysis of lattice-building algorithms, but to our knowl-
edge the only existing work on comparing algorithms related to GSH-building
algorithms is proposed by Godin et al. [GC99], comparing Ares and ISGOOD,
which is restrictive, as it builds only the attribute elements of the Galois Sub-
hierarchy.

In this paper we address the issue of comparing the execution times of the
three main Galois Sub-hierarchy-building algorithms: Ares, Ceres and Plu-
ton, in order to determine which algorithm can be recommended to a user
and in which case. This choice is meaningful because these three algorithms are
used as tools with a strong user-based interaction, where the response time is a
very important factor. The performance factors we tested are the density of the
relation and the number of objects and attributes.

The paper is structured as follows: Section 2 introduces the main terminology
of Galois Sub-hierarchy. Section 3 explains how the three Galois Sub-hierarchy-
building algorithms work. Section 4 details the experimental approach which we
used. Section 5 presents our evaluation of the results. We conclude in Section 6.

2 Notations and Definitions

In this section, we introduce the main terminology necessary to understanding
how the Galois Sub-hierarchy algorithms work. We do not explain in detail the
basics of FCA features but focus more on Galois Sub-hierarchy definitions. We
refer the reader to Ganter et al. [GW99] for a complete introduction to partial
orders and lattices.

In FCA, a formal context is a triple K = (G, M, I) where G and M are sets
(objects and attributes respectively) and I is a binary relation, i.e., I ⊆ G×M .
Figure 1(left) shows context K = ({1, 2, 3, 4, 5, 6}, {a, b, c, d, e, f, g, h}, I).

For a set A ⊆ G of objects, we define A′ := {m ∈ M |gIm for all g ∈ A}
(the set of attributes common to the objects in A). Correspondingly, for a set
B ⊆ M , we define B′ := {g ∈ G|gIm for all m ∈ B} (the set of objects which
have all attributes in B). Then, a formal concept of the context (G, M, I) is a
pair (A, B) with A ⊆ G, B ⊆ M , A′ = B and B′ = A. A is called the extent and
B the intent of the concept (A, B). B(G, M, I) denotes the set of all concepts of
the context (G, M, I). Figure 1 (right) shows the concept lattice corresponding
to our example.

The concepts CO = {γo = (o′′, o′)|o ∈ G} are called the object concepts of o,
and the concepts CA = {μa = (a′, a′′)|a ∈ A} are called the attribute concepts.

168 G. Arévalo et al.

a b c d e f g h

1 × × × ×
2 × × × × ×
3 × × × × ×
4 × ×
5 × ×
6 × ×

Fig. 1. Left: Binary relation of a context K - Right: Concept lattice B(G, M, I)

The object concept which corresponds to object o, γo, is the smallest concept
with o in its extent, and dually, the attribute concept which corresponds to
attribute a, μa, is the greatest concept with a in its intent. The Galois Sub-
hierarchy is the sub-order of the lattice made out of the set CO ∪ CA and
the restriction of the lattice order to that set [HDL00]. Figure 1 (right) shows
the lattice corresponding to context K. Figure 2 (left) shows the Galois Sub-
hierarchy of the context introduced in Figure 1. As we see, in the Hasse diagram
of a Galois Sub-hierarchy, empty concepts are omitted. Thus, in the paper we
use the notation (4,e) instead of (14,de), and use the terms simplified intent (for
(4)) and simplified extent (for (e)), as well as simplified concept (for (4, e)) as
shown in Figure 2.

Fig. 2. Left: Galois Sub-hierarchy GSH(I). (b) denotes the concept (123,b) or its sim-
plified form (∅,b) - Right: Galois Sub-hierarchy after addition of object 7 (Refer to
Section 3 in ARES algorithm)

3 The Algorithms

This section briefly explains the basic features of the Galois Sub-hierarchy-
building algorithms which we analyze in this paper. The reader is referred to
the cited papers for further details on the corresponding algorithms. We will use
the example from Figure 1 to illustrate our explanations.

Performances of Galois Sub-hierarchy-building Algorithms 169

PLUTON

Pluton is composed of three algorithms: TomThumb, ToLinext, ToGSH.
TomThumb produces an ordered list of the simplified extents and intents in
Berry et al. [BHM+05]. This ordered list maps to a linear extension of the Galois
Sub-hierarchy. Algorithm ToLinext then searches the ordered list to merge
pairs consisting of a simplified extent and a simplified intent pertaining to the
same concept, in order to reconstruct the elements of the Galois Sub-hierarchy.
Algorithm ToGSH is then used to compute the edges of the Hasse diagram
(transitive reduction) of the Galois Sub-hierarchy.

Algorithm TomThumb uses a sub-algorithm which computes either an or-
dered partition of objects into simplified extents, or dually a partition of
attributes into simplified intents. The order on the simplified closed sets (simpli-
fied extents or intents) maps to a linear extension of the Galois Sub-hierarchy.

Algorithm TomThumb uses partition refinement to construct ordered parti-
tions into simplified intents and extents, by using a list of attributes to partition a
list of objects (or vice-versa). If for example the list of attributes (a, b, c, d, e, f, g,
h) is used to refine the class of objects (123456), the first step using attribute
a will split class (123456) into the two classes (236, 145), as a′ = {2, 3, 6}.
The process is then repeatedly applied by the next attribute to each of the
current classes. Berry et al. [BHM+05] give full details as well as a detailed
example.

Algorithm TomThumb proceeds in three steps:

– Computation of an ordered partition Le of the simplified extents, using any
ordering of the properties as input.
For example, using the ordering (a, b, c, d, e, f, g, h) of the attributes, the
output is Le = {(2),(3),(6),(1),(5),(4)}

– Computation of an ordered partition Li of the simplified intents, using Le

as input. In our example, using Le = {(2),(3),(6),(1),(5),(4)} as input, the
output is Li = {(d),(e),(c),(b),(ah),(g),(f)}

– The two partitions are then merged to produce a list of simplified closed
sets which can be mapped to a linear extension of the Galois Sub-hierarchy,
e.g. List = {(2),(3),(f),(g),(6),(ah),(1),(b),(5),(c),(4),(e),(d)}, which repre-
sents the linear extension {(2),(3,f),(g),(6,ah),(1),(b),(5),(c),(4,e),(d)} of the
Galois Sub-hierarchy.

Algorithm ToLinext assembles simplified (non-empty) extent Er and simpli-
fied intent Ir pertaining to a same concept, that is such that for complete extent
and intent, Er = (Ir)′. Only pairs formed by an extent directly followed by an
intent need be considered. For a simplified extent Er = List[i], we check that:
E = (List[i])′ = I = (List[i + 1])′′. In our example, the result is:
L = {(2),(3,f),(g),(6,ah),(1),(b),(5),(c),(4,e),(d)}, but to apply the algorithm
toGSH we consider a form of L where simplified empty sets are added:
L = {(2,∅),(3,f),(∅,g),(6,ah),(1,∅),(∅,b),(5,∅),(∅,c),(4,e),(∅,d)}.

170 G. Arévalo et al.

Algorithm ToGSH builds the Hasse diagram of the Galois Sub-hierarchy by
computing the edges of the graph. The ordering into an linear extension L is used
to reduce the number of comparisons, as by definition of a linear extension, an
edge can only go from a concept (for example (2,∅) to a concept which appears to
its right in the list (for example (∅,c))). Once an edge is detected, sub-concepts
of the origin are marked in order to avoid already visited concepts linked by
transitive edges.

Theoretical complexity. In Berry et al. [BHM+05], Tom Thumb’s time com-
plexity is analyzed as in O(|J |). A brute force implementation of ToLinext has
a complexity in O((|O| + |A|)3). Fura et al. [FLPP05] evaluates the complexity
of ToGSH as O((|O| + |A|)2 × max(|O|, |A|)2). It is worth noting that in the
Galicia implementation of Pluton, whole extents and intents are computed in
a simple pass of the Galois Sub-hierarchy.

CERES

Ceres mixes the computation of the concepts and that of the Hasse diagram.
Concepts are computed respecting an order which maps to a linear extension
of the Galois Sub-hierarchy. First, the columns of I are sorted by decreasing
number of crosses to generate the concepts of CA by decreasing extent size.
In the example shown in Figure 1, columns could be ordered as follows: a, b,
c, d, h, e, g, f . The strategy is then to compute CA by groups of concepts
which have the same extent and adding concepts of CO \CA to the GSH under
construction, when their intent is covered by the intents of the CA concepts
previously computed. Extents and simplified intents of CA concepts, as well
as closed sets of CO concepts, are computed using I. Extent inclusion is used
to compute edges during a top-down traversal of the current Hasse diagram.
Simplified extents and intents of CO concepts are computed by propagation
after edge construction. A simplified execution of the algorithm on our example
could be:

– Column size = 3: concepts (6,ah),(b),(c),(d) are generated and included in
the Hasse diagram (no edges at this step).

– Concept (5) can be added because attributes c and d have already been
found. It is linked to (c) and (d).

– Column size = 2: concepts (4,e) and (g) are generated and linked respectively
to (d), and (6,ah), (b).

– Concepts (2) and (1) are added and linked respectively to (g),(c) and (b),(5),
(4,e).

– Column size = 1: concept (3,f) is generated and linked to concept (g).

Theoretical complexity. The time complexity of Ceres is in O(|O| × (|O|+
|A|)2) [Leb00].

Performances of Galois Sub-hierarchy-building Algorithms 171

ARES

Ares constructs the Galois Sub-hierarchy in an incremental fashion. At each
step, it considers the Galois Sub-hierarchy GSH(I) associated with (G, M, I) as
well as a new formal object o given with its attribute set Ao = o′. The result of
the algorithm is the Galois Sub-hierarchy GSH(I ′) for (G, M ′, I ′), A′ = A∪{o},
I ′ = I ∪ {(o, x)|x ∈ Ao}. The initial GSH is traversed using a linear extension,
ensuring that a concept is explored after all its superconcepts. Let us denote by
C the current (explored) concept and by RIo the attribute set which at the end
is the simplified intent of the concept introducing o (o is in its simplified extent).
Discarding cases such that the intersection between C’s intent and o′ is empty,
four main cases may occur:

– Case 1: C’s intent is exactly o′. o is added to C’s extent. The Hasse diagram
remains unchanged.

– Case 2: C’s intent is strictly included in o′. C is or will be a superconcept
of o′ (the algorithm stores this information). o is added to C’s extent. The
attributes of C are removed from RIo.

– Case 3: C’s intent includes o′. C is a sub-concept of γo. C either inherits all
o’s attributes, or some of o’s attributes are in C’s simplified intent. A new
concept Co with the intent o′ is created if needed. Co is introduced in the
Hasse diagram between C and the C’s superconcepts which also satisfied
Case 2. Intents and extents, as well as their simplified forms, are updated.

– Case 4: C’s intent and o′ cannot be compared by set inclusion. In this situ-
ation, a new concept can be needed to factorize the common attributes not
inherited by C. This new concept is introduced in the Hasse diagram be-
tween C and the C’s superconcepts which also satisfied Case 2. RIo, intents
and extents, as well as their simplified forms, are updated.

If during the exploration, the algorithm did not find an initial concept whose
intent is o′, it is necessary to create a new concept Co = o′. Co’s extent is o,
Co’s simplified intent is RIo (which is o′ minus the attributes found during the
GSH exploration). Co is linked to initial or newly created concepts when their
intent is included in o′. In every modification of the Hasse diagram, the algorithm
removes transitivity edges as necessary. Meanwhile, when simplified intents are
modified, the algorithm checks if for a concept both extent and intent are empty,
and if so, the concept is removed.

Let us examine the addition of new object 7 with A7 = 7′ = {a, c, g, h}. The
Galois Sub-hierarchy is traversed by successively analyzing: concept (6,ah) (Case
2), concept (b) (no intersection between intents), (c) (Case 2), (d) (no intersec-
tion between intents), (g) (Case 4), a new super-concept of concept (g) and o′

is created to factorize the common attribute g, it is attached as a sub-concept
of (6,ah) and (c) and as a super-concept of (g) which becomes extent-empty
and intent-empty and will be removed at the end), concept (2) (Case 3), con-
cept (3,f) (Case 4, but the common attributes are inherited), etc. The Galois
Sub-hierarchy integrating object 7 is shown in Figure 2.

172 G. Arévalo et al.

Theoretical complexity. The time complexity of Ares is in O(|O| × |(w ×
a + m)), where w is the width of the Galois Sub-hierarchy (i.e. the maximum
number of pairwise non-comparable elements), a is the maximum size for an
intent and m the number of edges of the Hasse diagram [DDHL94].

4 Experimental Setup

In this section, we give the parameters we use in our experimentations, and
explain our approach.

Parameters used. We have done the experiments using Galicia [Gal]. Galicia
is a Java-based platform dedicated to constructing lattices. It offers to FCA
researchers advanced tools for performance studies and an open environment
to new lattices-related techniques. Galicia is implemented in Java because it
ensures a high portability of the entire system. Thus Java was our first choice
in the implementation of algorithms Ares, Ceres and Pluton. Because of the
first results in performances, we considered C++ as a second choice, as it is
known as a language with a good processing speed.

In the rest of the paper, we name as Ares, Ceres and Pluton the algorithms
implemented in Java, and Ares++, Ceres++ and Pluton++ the algorithms im-
plemented in C++. We must remark that all the algorithms were implemented
by the same programmer [Per05], so that differences in the implementation style
should not be a factor.

Tests: Random Generation of Binary Relations. To perform our experiments
we generate a test suite using randomly generated binary relations. Similarly to
Kuznetsov et al. [KO02], the binary relations were randomly generated using the
following parameters: the number of objects, the numbers of attributes, and the
binary relation density defined as follows:

|J |
|O| × |A| × 100

In fact, we use the complexity of the binary relation, defined as follows:√(|J |
|O|

)2

+
(|J |
|A|

)2

which is equal to the density multiplied by
√|O|2 + |A|2 divided by 100.

Test Suite. We generate a test suite considering the variability of the density,
the number of objects and the number of attributes, as follows:

– Square binary relations (the same number of objects and attributes) with
variable density. In this case, the numbers of objects and attributes are 500
and the density varies from 2 to 82.

Performances of Galois Sub-hierarchy-building Algorithms 173

– Variable number of objects with fixed number of attributes and density. In
this case, the number of attributes is 500, the density is 50 and the number
of objects varies from 1000 to 4800 incremented by 200.

– Variable number of attributes with fixed number of objects and density. In
this case, the number of objects is 500, the density is 50 and the number of
attributes varies from 1000 to 4800 incremented by 200.

Evolutive Approach of Experiments. We developed the experiments in three
phases:

– First Phase: We compared the results between Ares, Ceres and Pluton only
implemented in Java. In this specific phase, we used HashSet and ArrayList
of the Java language API as our main data structures.

– Second Phase: We compared the results between the implementations in
Java (Ares, Ceres and Pluton) and those in C++ (Ares++, Ceres++ and
Pluton++). In this specific phase, we used set<> and vector<> of the C++
language API as our main data structures.

– Third Phase: We compared the results between Ares, Ceres, Pluton, Ares++,
Ceres++, Pluton++ and their dual versions, where we transposed the matri-
ces representing the binary relations, meaning that the rows of the non-dual
versions are made into columns in the dual versions, and viceversa.

5 Evaluation and Results1

5.1 First Phase

In this first phase, we will only consider the Java implementations of the algo-
rithms. Our results show that each algorithm is interesting in its own right for
certain input parameters:

– Pluton is the best if there is no difference between the number of objects
and the number of attributes (shown in Figure 3).

– Ares is the best if we vary the number of objects (shown in Figure 4).
– Ceres is the best if we vary the number of attributes (shown in Figure 5).

In this first phase, when considering square matrices, we see a common inter-
section point (ca. (180,120)) where all the algorithms converge, and afterwards
we observe major differences in terms of performance. The common point rep-
resents a density of around 30% of the binary relation, corresponding to the
complexity of 180. This means that up to 30% of the binary relation, Ceres and
Ares (with a small interval of difference) are the best algorithms. But with
a larger density, both algorithms increase their time, whereas Pluton keeps
its monotone shape. From this first phase, with a square matrix, we can con-
clude that Pluton is not influenced by the density, and that with a low density,
Ares and Ceres are the most suitable.
1 The interested reader can find a colored version of the figures in the original version

of the paper in http://www.lirmm.fr/∼huchard/Huchard/pub.frametop.html

174 G. Arévalo et al.

Fig. 3. Test results with a square matrix with variable density

Fig. 4. Test results with a variable number of objects

When considering matrices with a variable number of attributes, we see that
the differences in performance between the three algorithms are minimal when
we vary the number of attributes between 1000 and 2000 (meaning 500 and
1000 attributes per object) with a density of 50% of the binary relation. After
this point, we see that Ceres is almost a monotone function, while Ares and
Pluton increase their times. From this we can infer that Ceres is the most
suitable algorithm.

When considering matrices with a variable number of objects, we see no differ-
ences in performance between Ares and Pluton with a complexity from 0 to 680
with a density of 50% and 50 attributes. However, Ceres increases its time as a
power function (with an exponent larger than 1) from the minimal complexity.

Performances of Galois Sub-hierarchy-building Algorithms 175

Fig. 5. Test results with a variable number of attributes

In the last two cases, we do not see critical points where the algorithms change
their performances.

5.2 Second Phase

In this second phase, we consider Java and C++ implementations of the algo-
rithms: Ares, Ceres, Pluton, Ares++, Ceres++ and Pluton++ by completing the
results of the first phase with C++ implementations. We see in Figures 6, 7 and
8 that:

– Pluton++ is the best algorithm when considering square matrices (shown
in Figure 6), and when considering a variable number of objects (shown in
Figure 7).

– Pluton++ and Ceres are the best ones when considering a variable number
of attributes (shown in Figure 8).

Let us discuss the main issues we discover in this phase. Within the context
of square matrices (shown in Figure 6), for low densities (up to a complex-
ity of 150, which means 22% of density of binary relation), all the algorithms
- except Pluton and Pluton++ - present a monotone increasing function, while
Pluton and Pluton++ present almost constant functions. From the complexity of
150, we see three branches of algorithms: Ares++ and Ceres, Ares and Ceres++,
Pluton and Pluton++. In the first group, the performances of the algorithms in-
crease as power functions (with an exponent larger than 1). In the second group,
the performances are monotone functions; and in the third group, Pluton and
Pluton++ remain as almost constant functions. Let us now compare the versions
of the algorithms implemented in Java and in C++. If we consider large densi-
ties, we see that there is less difference between Ares and Pluton than between
Ares++ and Pluton++, but the situation is reversed in the case of Ceres and

176 G. Arévalo et al.

Fig. 6. Test results with a square matrix

Fig. 7. Test results with a variable number of objects

Pluton. There is less difference between Ceres++ and Pluton++ than between
Ceres and Pluton.

Generally, we see an improvement of the C++-based algorithms compared to
their versions in Java, except in the case of Ares++. The major improvement in
Pluton++ illustrates how the API in C++ influences the performances.

When considering a variable number of objects, we see the results in Fig-
ure 7. We observe that the implementations in C++ significantly improves the
results, as the slowest algorithm in C++ (Ares++) has a better performance than
the fastest one in Java (Ares). Compared to the results of the square matrix,
Ares++ improves its performance. Ceres++ and Ares++ seem to have equivalent
performances and Pluton++ remains - so far - the fastest. As a last issue, we see

Performances of Galois Sub-hierarchy-building Algorithms 177

that there is little difference between the implementations in C++ compared to
the implementations in Java, although the difference between the algorithms is
very significant.

Regarding a variable number of attributes, Figure 8 shows the results. We ob-
serve that there are pairs of algorithms (Ares++ and Ares , Ceres and Ceres++)
that have the same performance with the same variations (with some improve-
ments in the Java version). We also see that the difference between Pluton and
Pluton++ is significant. Pluton is the slowest while Pluton++ is the fastest.
In addition to this, Ceres++ seems influenced by the increase in the number
of attributes while Ceres is not. We should remark that, around the complex-
ity of 2400 (meaning 50 objects, 4800 attributes and a density of 50%), there
is an important difference in the performances of Ares and Ares++ regarding
complexities smaller than 2400.

Fig. 8. Test results with a variable number of attributes

As a summary of this phase, we confirm that the API in C++ mostly has a
meaningful positive influence on the performances of the algorithms.

5.3 Third Phase

In this phase we decided to test the performances of the algorithms considering
the dual versions of the binary relations. When we talk about the dual versions
-as said previously-, it does not imply changes in the algorithms, but in the way
we deal with the data. In the dual versions, we transpose the matrices repre-
senting the binary relations. To perform the experiments, we vary the number
of attributes -as we have done in the previous phases. Afterwards, we obtain
the dual versions, meaning that we obtain matrices with a variable number of
objects. Then we run the algorithms for non-dual binary relations, and for dual
binary relations. Figure 9 shows the corresponding results. In order to detail

178 G. Arévalo et al.

the local results in the lower part of Figure 9, we provide a zoomed version in
Figure 10. It is worth remarking that in this case, we do not analyze the square
matrices, because the matrix transposition (to analyze the dual version) has
the same characteristics in our experiments. Despite the fact that Figure 10 is
crowded, we see that it represents the superposition of Figure 7 and Figure 8.

Fig. 9. Test results with a variable number of attributes and their dual versions

From this phase, we observe that Pluton has the same performance if we
vary the number of attributes or objects, and the same holds for Pluton++.
Pluton++ always has the best performance.

Fig. 10. Zoom of Figure 9

Performances of Galois Sub-hierarchy-building Algorithms 179

However, Ceres changes its performance considerably if we vary the number
of objects or the number of attributes. It does not have a good performance
when the objects vary but it is faster than the C++ version in the case of at-
tributes. However, Ceres++ is slower when the number of objects varies than
when the number of attributes varies. Ares and Ares++ have the same perfor-
mance. Ares++ is better when the number of objects varies.

6 Conclusions and Future Work

This paper compares three different Galois Sub-hierarchy-building algorithms
(Ares, Ceres and Pluton) implemented in Java and C++. We see that in
most cases, Pluton++ is the most efficient and stable algorithm. We also see that
the API in C++ affects the results of the computation time of these algorithms.
It is worth mentioning that for low densities, all algorithms are useful, and the
significant differences in performance occur when the binary relations have large
densities. Clearly this analysis can guide the user in his/her choice.

In the future, we plan to extend the analysis to similar algorithms, such as the
incremental algorithm ISGOOD [GMM95] and the global algorithm proposed in
the work of Mineau et al. [MG95], which build only CA concepts. Besides this, we
propose a profiling of all these algorithms, in order to see which are the critical
parts that influence the concepts calculation and performance, taking into ac-
count the fact that each algorithm follows a different lattice-building algorithm.
As a last issue, we plan to implement the algorithms on another platform (such
as Smalltalk/VisualWorks) to see if the C++ implementations are still the best
in terms of performance.

Acknowledgements. Gabriela Arévalo gratefully acknowledges the financial
support of the Swiss National Foundation for the Project: “Advanced Object-
Oriented Reverse Engineering using Formal Concept Analysis” SNF Project No.
PBBE2-111194.

References

[AYLCB96] S. Amer-Yahia, L. Lakhal, R. Cicchetti, and J.-P. Bordat. iO2 — An Al-
gorithmic Method for Building Inheritance Graphs in Object Database
Design. In Proc. of ER’96, volume 1157 of LNCS, pages 422–437.
Springer-Verlag, 1996.

[BHM+05] A. Berry, M. Huchard, R. M. McConnell, A. Sigayret, and J. P. Spinrad.
Efficiently computing a linear extension of the sub-hierarchy of a concept
lattice. In Proc. of ICFCA’05, volume 3403 of LNCS, pages 208–222.
Springer-Verlag, 2005.

[DDHL94] H. Dicky, C. Dony, M. Huchard, and T. Libourel. ARES, un algorithme
d’ajout avec restructuration dans les hiérarchies de classes. Proc. of
LMO’94, L’Objet, pages 125–136, 1994.

180 G. Arévalo et al.

[DHL+02] M. Dao, M. Huchard, T. Libourel, C. Roume, and H. Leblanc. A New
Approach to Factorization: Introducing Metrics. In Proc. of Metrics ’02,
pages 227–236. IEEE Computer Society, 2002.

[FLPP05] L. Fura, G. Laplace, A. Le Provost, and G. Perrot. Algorithme de con-
struction d’une sous-hiérarchie de Galois. Technical report, Université de
Montpellier II, 2005.

[Gal] GaLicia: Galois lattice interactive constructor. Université de Montréal.
http://www.iro.umontreal.ca/∼galicia.

[GC99] R. Godin and T.-T. Chau. Comparaison d’algorithmes de construction
de hiérarchies de classes. L’Objet, 5(3/4), 1999.

[GM93] R. Godin and H. Mili. Building and Maintaining Analysis-Level Class
Hierarchies using Galois Lattices. In Proc. of OOPSLA ’93, volume 28,
pages 394–410. ACM Press, October 1993.

[GMM95] R. Godin, G. Mineau, and R. Missaoui. Incremental structuring of knowl-
edge bases. In G. Ellis, R. A. Levinson, A. Fall, and V. Dahl, editors,
Proc. of KRUSE’95, pages 179–193, University of California at Santa
Cruz, 1995. Department of Computer Science.

[GMM+98] R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi, and T.-T. Chau.
Design of Class Hierarchies based on Concept (Galois) Lattices. Theory
and Practice of Object Systems, 4(2):117–134, 1998.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer Verlag, 1999.

[HDL00] M. Huchard, H. Dicky, and H. Leblanc. Galois Lattice as a Framework to
specify Algorithms Building Class Hierarchies. Theoretical Informatics
and Applications, 34:521–548, 2000.

[Hit04] P. Hitzler. Default reasoning over domains and concept hierarchies. In
Proc. of KI 2004, volume 3238 of LNCS, pages 351–365. Springer Verlag,
2004.

[KO02] Sergei O. Kuznetsov and Sergei A. Obiedkov. Comparing performance
of algorithms for generating concept lattices. Journal of Experimental &
Theoretical Artificial Intelligence, 14(2-3):189–216, 2002.

[Leb00] H. Leblanc. Sous-hiérarchies de Galois: un modèle pour la construction
et l’évolution des hiérarchies d’objets. PhD thesis, Univ. de Montpellier
II, 2000.

[MG95] G. W. Mineau and R. Godin. Automatic structuring of knowledge bases
by conceptual clustering. IEEE Trans. Knowl. Data Eng., 7(5):824–828,
1995.

[OP02] R. Osswald and W. Petersen. Induction of classifications from linguistic
data. In Proc. of ECAI’02 Workshop, pages 75–84. Université de Lyon I,
July 2002.

[Per05] G. Perrot. Implémentation d’algorithmes de construction de sous-
hiérarchies de Galois et étude des performances, 2005.

[Pet01] W. Petersen. A set-theoretical approach for the induction of inheritance
hierarchies. In Electronic Notes in Theoretical in Computer Science, vol-
ume 51. Elsevier, July 2001.

	Introduction
	Notations and Definitions
	The Algorithms
	Experimental Setup
	Evaluation and Results^[1]
	First Phase
	Second Phase
	Third Phase

	Conclusions and Future Work

