
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008 435

Performance Comparison of VxWorks, Linux, RTAI,
and Xenomai in a Hard Real-Time Application

A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C. Taliercio

Abstract—We report on a set of performance measurements ex-
ecuted on VMEbus MVME5500 boards equipped with MPC7455
PowerPC processor, running four different operating systems:
Wind River VxWorks, Linux, RTAI, and Xenomai. Some com-
ponents of RTAI and Xenomai have been ported to the target
architecture. Interrupt latency, rescheduling and inter-process
communication times are compared in the framework of a sample
real-time application.

Performance measurements on Gigabit Ethernet network com-
munication have also been carried out on the target boards. To this
purpose, we have considered the Linux IP stack and RTnet, an
open-source hard real-time network protocol stack for Xenomai
and RTAI, which was ported to the considered architecture.

Performance measurements show that the tested open-source
software is suitable for hard real-time applications.

Index Terms—Real-time systems, Linux, RTAI, Xenomai,
ADEOS, RTnet, VxWorks, PowerPC.

I. INTRODUCTION

REAL-TIME feedback control has been extensively used
in the RFX-mod experiment since 1998 [1]. RFX-mod

is a magnetic-confinement, toroidal device, located in Padova,
Italy, for studies on thermonuclear fusion. Seven control units
are currently in operation and each unit consists of a VME crate
hosting a Motorola MVME5500 single-board computer along
with other boards for ADC/DAC conversion and digital I/O. The
control units form a control network, where data are exchanged
in real time among units. A software framework [2] has been
developed to provide common functionalities for data handling
and communication using the VxWorks platform [3]. VxWorks
is widely used in physics research for several reasons, among
which:

• It provides an integrated development platform, thus sim-
plifying the development process. Programs can be devel-
oped and simulated in the host system before downloading
them to the target system.

• It provides a powerful multitasking environment. Tasks
have a fixed priority and can communicate via a rich set
of inter-process communication (IPC) mechanisms.

• The software model of VxWorks is quite similar to that of
UNIX, in particular for I/O and networking, thus simpli-

Manuscript received May 7, 2007; revised July 5, 2007. This work was sup-
ported by the European Communities under the contract of Association Eu-
ratom/ENEA. Paper no. TNS-00166-2007.

A. Barbalace and M. Moro are with the Department of Information Engi-
neering, University of Padova, Padova, Italy.

A. Luchetta, G. Manduchi, A. Soppelsa, and C. Taliercio are with the Con-
sorzio RFX, Euratom-ENEA Association, 35127 Padova, Italy (e-mail: cesare.
taliercio@igi.cnr.it).

Digital Object Identifier 10.1109/TNS.2007.905231

fying software writing for developers who have experience
with UNIX.

In recent years, however, the growing penetration of Linux has
generated much interest in the possibility of adapting Linux for
real-time control. Whereas for data acquisition and, more in
general, for all those tasks that do not require strict timing deter-
minism, Linux is already the standard in scientific experiments,
there are some aspects of Linux that prevent a straightforward
usage in real-time applications, among which:

• Dynamic priorities. Using a priority for processes that
varies over time is for sure a good solution in time sharing,
but may prevent an urgent process to get CPU ownership
as soon as it requires it.

• Paging. It may introduce unexpected delays unless the page
is locked in memory.

• MMU remapping. Remapping the Page Tables entries
in the Memory Management Unit (MMU) when a user
process gets the CPU may prevent fast context switching.

• Coarse-grained synchronization. Due to the non-pre-emp-
tive kernel, the system may not react to events for some
time in the case of lengthy kernel operations.

The recent Linux kernel 2.6 provides solutions to some of the
above problems. It is in fact possible to associate a fixed pri-
ority with a subset of processes, and the kernel has been made
pre-emptive by accurately defining un-interruptible segments in
the kernel code and protecting them with spin locks, rather than
disabling interrupts. Moreover, a new O(1) implementation of
the scheduler has been provided in Linux kernel 2.6. Consid-
ering also that swapping can be disabled and that, for given level
ranges, priorities can be made fixed, we can state that Linux can
currently be considered a soft real-time operating system and
can therefore be used for many applications which tolerate occa-
sional delays in system response. However Linux 2.6 is not yet
suitable for hard real-time applications, as required in feedback
control for fusion devices. In this case, in fact, unpredictable re-
sponse time may deteriorate the quality of the control or, worse,
lead to unrecoverable instabilities.

Nevertheless, Linux has been successfully used for hard real-
time control in [4] and [5], thanks to the pulsed nature of the ex-
periments. In this case, for most of the time, the process control
system does not need to operate in real-time mode. Real-time re-
sponse is required only during plasma discharges which in most
current fusion experiments last for few seconds. Therefore it is
possible to disable interrupts when real-time behaviour is re-
quired, thus achieving an overall jitter in cycle time of 1–2 s.
When interrupts are disabled, extra care must be taken: the code
and data must be locked into memory to prevent page faults, and
the software cannot rely on system services for I/O. Therefore
the control code cannot communicate with the external environ-
ment except for polling for input data and writing output data,

0018-9499/$25.00 © 2008 IEEE

436 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

Fig. 1. Layering in Xenomai.

using pre-configured address windows, for a fixed number of it-
erations.

This solution, although successful in particular applications,
cannot be considered a general one for a variety of reasons,
and most importantly because in the next-generation fusion de-
vices the control system is expected to handle long-duration dis-
charges, or even quasi steady-state processes.

II. REAL-TIME EXTENSIONS FOR LINUX

What we are basically interested in is a way of adding to
Linux the possibility of defining a few real-time tasks that are
ensured to get control within a deterministic time as soon as they
are ready to run. This feature is provided by two open- source
Linux extensions: RTAI [6], [7] and Xenomai [8]. RTAI and
Xenomai share most concepts (they originated from the same
project) and both represent, rather than a replacement of Linux,
an additional component that works in conjunction with Linux,
handling the scheduling of real-time tasks and letting Linux pro-
vide all the remaining functionality.

In order to co-operate with Linux it is however necessary that
the underlying hardware be shared by Linux and the additional
component. This is achieved in both RTAI and Xenomai by
using the ADEOS nanokernel [9], [10], which acts as a broker of
the hardware functionality. In particular, hardware interrupts are
normally handled by ADEOS, which propagates notifications in
sequence to the other components. In this case Linux and RTAI
(or Xenomai) represent ADEOS domains, and are logically or-
ganized by the nanokernel as a pipeline.

The component that is declared to be at the head of the pipe
will receive interrupt notifications first and may then decide
whether letting ADEOS propagate them along the domain pipe.
In this case RTAI (or Xenomai) is at the head of the pipe and
has therefore precedence over Linux, thus allowing determin-
istic response times regardless of the actual Linux implemen-
tation. This organization is fully achieved in Xenomai as illus-
trated in Fig. 1.

RTAI has a somewhat different organization, as shown in
Fig. 2. Instead of letting ADEOS handle all the interrupt sources,
RTAI intercepts them, using ADEOS to propagate those inter-
rupt notifications to Linux in which RTAI is not interested in
(i.e., the interrupt does not affect real-time scheduling). The

Fig. 2. Layering in RTAI.

reason for this mixed approach is performance, because in this
case, if the interrupt is going to awake a real-time task, the
overhead due to the management of the interrupt by ADEOS
is avoided.

Both RTAI and Xenomai have an active developer community
and both may represent an open-source alternative to VxWorks.

In order to assess the suitability for our purposes, we executed
a set of measurements comparing the performances of Linux,
RTAI, Xenomai and VxWorks. We used the PowerPC architec-
ture, using in particular the Motorola MVME5500 single-board
computer. The reason for this choice is that the PowerPC archi-
tecture proved to be better performing in floating-point compu-
tation than the x86 architecture. Moreover, in the development
of the real-time control system of RFX-mod we had a very pos-
itive experience using the Vector Architecture Component (Al-
tiVec) provided by the PowerPC processor family for parallel
floating-point computation.

However, RTAI had not been ported to PowerPC and ADEOS
had bugs which prevented its usage on our platform. There-
fore we had first to develop a set of patches for using RTAI
and Xenomai (both layered over ADEOS) on the MVME5500
board.

III. PORTING LINUX, ADEOS, RTAI, AND XENOMAI

TO THE MVME5500 PLATFORM

We have developed several patches for porting Linux,
ADEOS, RTAI, and Xenomai to the target board.

For the Linux installation, a patch available from Motorola
has been applied to a Vanilla Linux Kernel v 2.6.14, but we had
to develop an additional patch in order to fix some bugs in VME
data access. The nanokernel ADEOS had already been ported
to the PowerPC architecture, but there was a bug preventing its
usage for all platforms using the Galileo GT-64260 system con-
troller, which has been fixed in a new patch developed by us.
Xenomai has been installed with no changes because the ver-
sion for PowerPC was already available and there was no need
for specific board support, being Xenomai completely layered
over ADEOS. No recent RTAI version was instead available for

BARBALACE et al.: PERFORMANCE COMPARISON OF VXWORKS, LINUX, RTAI, AND XENOMAI 437

PowerPC, and therefore a further development was required. Fi-
nally, the porting of RTnet did not require any additional devel-
opment.

The patches developed for ADEOS and RTAI have already
been integrated in the official distribution of both systems. All
the patches for Linux on the MVME5500 board are available at
the RFX-mod web site [11].

Since the target board is diskless, the boot of the system is first
carried out by the factory-provided bootloader, Motload, which
uses the Trivial File Transfer Protocol (TFTP) for downloading
the kernel from a server machine. Network File System (NFS)
is then used by Linux for file I/O.

IV. PERFORMANCE MEASUREMENT

For evaluating the performance, we concentrated on two fea-
tures: interrupt latency and rescheduling time. We used a test
program, acqloop, which acquires 64 cannels from an ADC con-
verter via the VME bus and produces a single output on a DAC
board, corresponding to the first acquired signal. Although very
simple, this program allows testing the features we are interested
in, since the ADC generates an interrupt when a new set of digi-
tized data is ready. By measuring with an oscilloscope the delay
between an input signal and the output of the system, we can
perform a non-perturbative measurement of the overall system
performance, thus allowing us to measure the differences in in-
terrupt latency and rescheduling times. The other delays con-
tributing to the overall delay are in fact due to the access time
for VME I/O, which can be assumed to be the same for all the
considered systems.

Finally, we considered real-time network communication
since most control systems for fusion devices involve some sort
of real-time communication. Both RTAI and Xenomai rely on
the Linux IP stack for network communication. We provided
therefore a first performance comparison between the IP stacks
for VxWorks and Linux by extending our sample acqloop
program to produce the output signal in another computer
board, connected via Gigabit Ethernet and using the UDP
protocol. We were interested in the UDP protocol because
it is used for real-time communication in the current control
system of RFX-mod. We then considered RTnet [12], [13],
an open-source project for real-time network communication.
RTnet provides a new implementation of the IP stack (up
to UDP), where causes of non-determinism are accurately
avoided. In particular, memory allocation for data packets is
handled by pre-allocating all the required buffers in advance in
order to avoid dynamic memory allocation. RTnet is available
for both RTAI and Xenomai.

In a first round of tests, we focused on the differences in inter-
rupt latency times among the considered systems. In this case,
the program acqloop first installs an Interrupt Service Routine
(ISR), which directly reads the ADC data register and writes to
the DAC device (via VME). For VxWorks (v 5.5.1) acqloop is
implemented as a C function which is then called by the shell,
and all the code natively runs in kernel mode. For the other sys-
tems, this code is integrated into a Linux module, since it has to
be executed in kernel mode. The overall measured delay is due
to the times required:

1) by the ADC board to perform ADC conversion;

Fig. 3. Measured delay and jitter without rescheduling.

2) by the VME interface chip in the computer board to detect
the VME interrupt, and to propagate it to the system con-
troller;

3) by the Operating System (OS) to handle the interrupt and
to call the associate ISR;

4) by the ISR to read ADC data from VME;
5) by the ISR to write the output value to the DAC device;
6) by the DAC converter to output the corresponding voltage

value.
Of the above times, only the third depends on the OS im-

plementation. Therefore the differences in the measured delay
highlight the differences in interrupt latency among the consid-
ered systems.

The measured times are reported in Fig. 3.
Overall the performance figures are similar with about 5%

difference between the fastest (VxWorks) and the slowest
(Xenomai). Closer analysis reveals that the difference between
RTAI and Xenomai is a consequence of the fact that in Xenomai
interrupts are always dispatched first to the nanokernel, thus
introducing a small overhead, even with respect to Linux.
Conversely, RTAI bypasses ADEOS in the management of
interrupts, and relies on ADEOS only in the case the interrupt
has to be propagated to another domain (Linux). It is worth
noting that the performance of RTAI is very close to that of
VxWorks and that, remarkably, the jitter appears to be smaller.

In a second set of tests, we changed the program acqloop
so that the output is not written directly by the Interrupt Ser-
vice Routine, but by another kernel task which is waiting for a
semaphore, set by the ISR. In this case we take into account also
the rescheduling task time. The results are listed in Fig. 4, where
the second component of each bar represents the rescheduling
time.

A first surprise has been the performance of Linux, both in
delay and jitter. However such measures hold only for a system
which is not loaded, and soon decrease when the workload in-
creases. Conversely, the measured performances of the other
systems proved to be only minimally affected by workload, un-
less involving a high interrupt rate.

Again, the performances of VxWorks and of RTAI are very
close. In particular it appears that RTAI has a very efficient
scheduler for native real-time tasks.

In the last set of tests we consider network communication. In
this case the process waiting for the semaphore does not write

438 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

Fig. 4. Measured delay and jitter including rescheduling.

Fig. 5. Measured delays with real-time network communication.

the output directly to the DAC, but sends a UDP packet with all
acquired data samples to another MVME5500 board, which in
turn writes to the DAC converter. The size of the UDP packet
is approximately 256 bytes (a few extra bytes are used for time-
stamping UDP packets in order to detect packet loss).

The measured delays using network communication are listed
in Fig. 5.

Here we compare the performance of Linux, using the native
IP stack, RTAI and Xenomai, both using RTnet, and VxWorks,
using its native IP stack. It is worth noting the poor performance
of the VxWorks network communication, a fact we already ex-
perienced in RFX-mod using the latest version of VxWorks.
RTnet shows very good performance with little jitter. Again, we
observe a slight difference between RTAI and Xenomai, prob-
ably due to the different execution paths in interrupts.

In the above tests we enabled no access control disciplines for
Ethernet in RTnet. We repeated the test with RTnet by enabling
the Time Division Multiple Access (TDMA) access discipline
on Ethernet. Such discipline is optionally provided by RTnet
and aims at forcing determinism in network access, avoiding
possible collisions. Using a TDMA cycle time of 100 s and a
time slot of 40 s for the data packet, we obtained an overall
latency of approx. 150 s with a jitter around. 50 s. It is not
possible to reduce the TDMA cycle time (and therefore latency
and jitter) since this causes an unacceptable CPU load.

V. DISCUSSION

The aim of the reported work has been the evaluation of real-
time Linux solutions for a possible replacement of VxWorks,

currently in use at RFX-mod. Based on the reported perfor-
mance measures, we observe the following facts:

• The performance of the current Linux 2.6 kernel is very
good and may be acceptable in small, dedicated systems.
This is however not the case for the feedback control
system of RFX-mod, where the involved control units
need to handle high data throughput in I/O and network
communication.

• Both RTAI and Xenomai are worthy of consideration.
Xenomai proved to be slightly less performing than RTAI,
mainly because of its layered approach, which introduces
some overhead in interrupt management. On the other
hand, Xenomai is better structured and is available for a
larger number of platforms. Moreover, Xenomai provides
a set of emulation layers which may prove useful when
porting large systems.

• Compared to VxWorks, both RTAI and Xenomai can be
less user friendly for software developers. Since real-time
tasks are to be executed in kernel mode in order to achieve
best performance, the programmer cannot rely on the
system services normally available in user space and
debugging becomes very difficult. It is however possible,
for both Xenomai and RTAI, to let user processes become
real time. Allowing the development of user processes
for real-time applications simplifies the development of
real-time systems and permits also IPC with standard
Linux processes. Real-time user processes are managed
by a dedicated scheduler, which works in conjunction with
the Linux scheduler by stealing user processes when they
request to become real-time. Unlike kernel processes, con-
text switching for user processes requires the remapping
of the Page Table, a potentially time consuming operation.
For this reason we plan further tests in order to quantify
the impact of the MMU remapping in context switching.

• The network performance represents a strong point in
favour of the migration towards RTAI or Xenomai. UDP
has been successfully used for real-time network com-
munication, and RTnet proved to be a very performing
solution, especially compared with the poor performance
we experienced with the latest version of the VxWorks IP
stack for the considered board.

The best performance in RTnet is achieved without enabling
the TDMA access discipline, which appears to be best suited
to systems with a large number of access points (and therefore
higher probability of access conflicts) but less stringent timing
requirements. This is not the case of the RFX-mod experiment
which involves less than 10 control units.

We can therefore state that both RTAI and Xenomai represent
valid alternatives to VxWorks in the real-time control system of
RFX-mod, and, more generally, for fusion devices.

REFERENCES

[1] A. Luchetta and G. Manduchi, “General architecture, implementation
and performance of the digital feedback control in RFX,” IEEE Trans.
Nucl. Sci., vol. 47, pp. 186–191, 2000.

[2] M. Cavinato, G. Manduchi, A. Luchetta, and C. Taliercio, “Gen-
eral-purpose framework for real time control in nuclear fusion
experiments,” Trans. Nucl. Sci., vol. 53, pp. 1002–1008, 2006.

[3] Wind River home page, [Online]. Available: http: www.windriver.com.
[4] J. A. Stillerman, M. Ferrara, T. W. Fredian, and S. M. Wolfe, “Digital

real-time plasma control system for Alcator C-Mod,” Fus. Eng. Des.,
vol. 81, pp. 1905–1910, 2006.

BARBALACE et al.: PERFORMANCE COMPARISON OF VXWORKS, LINUX, RTAI, AND XENOMAI 439

[5] B. G. Penaflor, J. R. Ferron, M. L. Walker, D. A. Piglowski, and R. D.
Johnson, “Real-time control of DIII-D plasma discharges using a Linux
alpha computing cluster,” Fus. Eng. Des., vol. 56-57, pp. 739–742,
2001.

[6] RTAI Home page, [Online]. Available: http:// www.rtai.org.
[7] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes, S. Hughes,

and K. Yaghmour, in DIAPM-RTAI position paper, Nov. 2000, RTSS
2000—Real Time Operating System Workshop, 2000.

[8] Xenomai home page, [Online]. Available: http://www.Xenomai.org.
[9] ADEOS home page, [Online]. Available: http://www.adeos.org.

[10] Karim Yaghmour Opersys Inc., Adaptive Domain Environment for Op-
erating Systems, 2001. [Online]. Available: http://www.opersys.com/
ftp/pub/Adeos/adeos.ps.

[11] RFX-Mod home page, [Online]. Available: http:www.igi.cnr.it.
[12] RTnet home page, [Online]. Available: http://www.rtnet.org.
[13] J. Kiszka, B. Wagner, Dr. Y. Zhang, and Dr. ir. J. F. Broenink,

“RTnet—A flexible hard real-time networking framework,” in Proc.
10th IEEE Int.Conf. Emerging Technologies and Factory Automation,
Catania, Italy, 2005.

