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Abstract. The analysis of epigenetic information for the diagnosis and prognosis 

of patients has been gaining relevance in recent years due to the technological 
progress that entails a decrease in information extraction and processing costs. 

One of the tasks most commonly carried out in this area is obtaining models that 

allow using patient epigenetic information to make inferences about survival 

analysis. As a result, optimizing these models turns into a problem of great interest 
today. In this article, the evaluation of different metrics and execution times for 

the Survival Support Vector Machines model is carried out through survival 

analysis applied to gene expression databases. Different experiments were 

performed varying the number of genes used for training to measure the 
correlation between model performance and data growth. The results showed that 

linear and polynomial kernels offer a better balance between execution time and 

model predictive power when the number of genes to be evaluated is less than 

2000, while the cosine and RBF kernels are better candidates otherwise.   

Keywords: Survival analysis, Survival Support Vector Machines, Regression, 

Performance, Apache Spark.  

1. Introduction  

Functional genomics is responsible for the systematic collection of information on 

the function and interaction between genes and/or proteins. It allows an understanding 

of how the genome works as a whole, through the controlled expression of each one of 

its genes. In this area, gene expression profile analyses stand out; their main objective 

is identifying a group of genes whose expression pattern is associated with a specific 

phenotype, a concept known as gene expression signature, or simply signature. In 

medicine, signatures are particularly useful as a diagnostic, prognostic, or predictive 

biomarker of any given pathology. Biomarkers with prognostic value allow better 

stratification of patients according to their prognosis of disease progression regardless 

of a therapy, which opens the way to researching appropriate treatments for each 

defined patient category. The estimate of a biomarker’s prognostic value is measured 

using survival analysis techniques.  

Survival analysis consists of a series of statistical procedures for data analysis that 

study the time until an event occurs (such as patient death or tumor recurrence). The 

number of these procedures is large, and with the lower costs for data storage and 

processing and the technological advances in sequencing, there has been an exponential 

growth of data volumes, thus increasing the need for algorithms that meet the demand 

in an acceptable response time.  
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1.1 Motivation  

The main reason for measuring the execution times of classifiers with survival data 

is their usefulness in Feature Selection (FS) algorithms for survival data. These 

algorithms are based on a gene expression dataset with prognostic, diagnostic, or 

predictive power in any pathology of interest. The objective of the FS is to obtain a 

subset of genes or molecules that have the same or better performance for the current 

problem. Due to the high computational cost that would require evaluating the entire 

solution space (i.e., all the combinations between all genes or molecules), population 

metaheuristics such as Binary Particle Swarm Optimization (BPSO) [1] or Binary 

Black Hole Algorithm (BBHA) [2] are used. These techniques intelligently traverse 

only a portion of the solution space until finding the subset that optimizes the fitness 

function, requiring much less time (knowing that an approximate solution is more likely 

to be found than the best solution).  

The main problem is that the fitness function used by these metaheuristics involves 

the execution of classifiers that could require high computational power. For this 

reason, the parallelization and distribution of the classifier evaluation are essential to 

speed up the total execution time for the FS algorithm.  

Multiomix [3] is a platform which allows researchers to upload datasets or use a 

public database (already integrated into the platform) to perform survival analysis. The 

development and measurement of classifiers such as Survival-SVM or Random 

Survival Forest [4] in distributed environments will allow the developer team to put 

these algorithms into production for free use by the community. Measuring the 

execution times for the different database models and size configurations allows 

defining a task distribution policy throughout the computer cluster (orchestrated by 

Apache Spark) to carry out the various experiments more effectively and efficiently. 

These optimizations are notably relevant for the community as several studies are 

available, including selecting the most appropriate model within a distributed 

environment, as in [5] where classifier models provided by Apache Spark MLib applied 

to FS techniques are compared. Or in [6], where models such as SurvivalSVM and 

Random Survival Forest are proposed to obtain a better C-Index than the Cox 

Proportional Hazards (CPH) offered by standard models for survival analysis in 

oncology studies. There are also algorithms focused on optimizing the training stage of 

the model without affecting the prognostic power against real data sets [7].  

1.2 Survival Support Vector Machines  

The Survival Support Vector Machines model [8][9] is an extension of the standard 

support vector machine for time and event data, with support for right-censored data, 

i.e., samples that do not present the event during a survival study. Its main advantage is 

that it considers complex and non-linear relationships between traits and survival. The 

kernel function of this model implicitly maps input features into highdimensional 

feature spaces that describe survival data with a hyperplane. That makes SVMs very 

versatile and applicable to a wide range of data.  

Survival analysis in the context of support vector machines can be described in two 

different ways:  
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• As a ranking problem: the model learns to assign samples with shorter survival 

times a lower rank by considering all possible pairs of samples in the training data.  

• As a regression problem: the model learns to directly predict log survival time.  

The training data used to obtain such a model consists of a triplet (xi, yi, ẟi) where xi 

is a d-dimensional feature vector, yi > 0 is the survival or censoring time, and ẟi  {0, 

1} is the occurrence indicator for the event (0 = the event did not occur as is said to be 

censored, 1 = the event occurred). The model's objective will be to minimize the 

function presented in [8].  

In this article, the experiments are limited to regression tasks only.  

2. Experimentation  

2.1 Hardware configuration and experiments  

All experiments were carried out in an Apache Spark cluster made up of a single 

master node and three worker nodes. All four nodes had Ubuntu 20.04 LTS, an Intel(R) 

Core(TM) i3-4160 CPU @ 3.60GHz, and 8GB of RAM. As regards software, Spark 

3.1.1 was used.  

To avoid any bias in the results, a Cross Validation (CV) of 10 folds was performed. 

To obtain these folds, stratified sampling was used [10]. Additionally, the entire process 

of randomly selecting attributes, dividing into folds, training, and evaluating the models 

was performed 30 times with each type of kernel and optimizer available in the Scikit-

Survival Python library. The kernels available for the SSVM algorithm are Linear, 

Cosine, Polynomial, and Radial Basis Function (RBF). As regards the optimizers, the 

library allows choosing between AVLTree and RBTree. The metric to be optimized is 

Harrell's concordance index (C-Index) [11][12], which is a suitable metric for survival 

analysis because it evaluates the predictive ability of models in terms of the relative 

order of survival times, considering both observed and censored events. By 

encompassing categorical and continuous data, and having a range of interpretable 

values between 0.5 and 1.0, the C-index allows comparing different models and 

selecting the most suitable one to predict events of interest over time, which makes it a 

versatile and widely accepted tool in medical and scientific research in general.  

2.2 Algorithm and dataset used  

The algorithm used to carry out the experiments is detailed below:  

 
program SurvivalSVMExecution  

parameters    

    ds, {dataset to evaluate} 

    n_individuals, {number of individuals}  

begin  

    total_n_f= get_dataset_n_features(ds)    

    current_n_f = 10    

    step = 100    
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    for iter in 1 .. 30 do 

        while current_n_f <= total_n_f do        

            for ind_idx in n_individuals do 

                rand_features = get_rand_feat(ds,current_n_f) 

                indivs[ind_idx] = rand_features 

                if current_n_f > 100 

                    current_n_f += step 

                else 

                    current_n_f = current_n_f + 10 

            end 

            results = compute_in_spark(indivs) 

            store_results_in_csv(results)      

        end 

    end  

 end.  

 

The dataset used for the experiments is the Breast Invasive Carcinoma (TCGA, 

PanCancer Atlas), which contains data from 1082 patients (931 samples without event 

occurrence and 151 samples with event definition) and 20014 genes [13].  

As previously mentioned, 30 iterations are performed to achieve statistical 

significance. In each of them, N individuals (indivs variable) of the metaheuristic under 

study are computed (particles in the case of the BPSO algorithm, or stars in BBHA). 

Each of these individuals represents a random subset of features and computes 

prognostic power and other metrics from the assigned subset by the 10-folds CV.  

The function compute_in_spark distributes the N individuals among the Workers of 

the Apache Spark cluster, where a Worker can receive several individuals with different 

subsets of genes to compute. Even so, the CV task is carried out on a single individual 

at a time to avoid variations in the time measurements and avoid bias when obtaining 

the real execution times with the parameters set.  

The result of all computed individuals is expressed in the algorithm as results. This 

variable, where N is the number of individuals to be evaluated, consists of an N-tuple 

of the following data: the average fitness value (C-Index) for the every of the folds of 

the CV during the model training and validation phases, the time it took the Spark 

worker to compute a given agent (i.e., the entire CV process), the number of features 

evaluated by that worker, the time that took each Survival-SVM iteration, average 

testing time, number of iterations it took the SVM to converge, and other trace data 

within the cluster such as partition number within the Spark cluster and the hostname 

of the computer where the Spark Worker is operating.  

3. Result and discussion  

The results obtained after running the different gene subsets for 30 independent runs 

are discussed below.  

Regarding the optimizers, the experiments were carried out with the AVLTree and 

RBTree structures. Both structures were found to impact required time for each iteration 

only during the training stage, thus not interfering with model fitness function. 

However, RBTree results were discarded because they solely led to a degradation in 
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training performance; for that reason, only AVLTree results were presented from now 

on.  

As expected, the relationship between testing time and the number of features 

follows a linear trend (Fig. 1) since there is no error function to optimize in the process, 

and the computation of the inference only consists of the execution of the Survival-

SVM kernel function.  

The direct relationship between run time and number of features presents an abrupt 

change after 100 genes as very high run times are observed for the CV process 

evaluating a reduced set of genes. After that number the relationship starts to be more 

linear in nature with the Linear, Polynomial kernels, while in the case of the RBF and 

Cosine kernels, the difference is significant. The Cosine kernel presents an erratic 

runtime with high variance, stabilizing after 2500 genes, while RBF flattens out after 

100 genes and varies with increasing features. All these details can be seen in Fig. 2.  

Based on the total CV time, individual iteration times also vary for the same kernels 

that are inefficient with few genes (Fig. 3). However, for the Linear and Polynomial 

kernels, the curve is linear and it is consistent with the number of genes evaluated. 

Therefore, it is concluded that the model requires more iterations to converge when it 

has less information, explaining the high peaks in total execution time at the beginning 

of graphs in Fig. 2.  

Regarding the C-Index values obtained during the training phase, all kernels suffer 

a degradation in performance as the number of features increases (Fig. 4). This may be 

because the dataset used is highly censored and, therefore, unbalanced: it consists of 

86% of the samples without event occurrence (931 samples) and only 14% with event 

definition (151 samples). Furthermore, the fact that the data is not linearly separable 

explains the poor performance of the linear kernel.  

Expanding the experiments by adjusting the C parameter of the Survival-SVM or 

changing the distribution function to norm-1, which is preferred with highdimensional 

data, could yield better results. Different techniques could also be applied to address 

the imbalance problem, as proposed in [14].  
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Fig. 1. Average test times during cross-validation for the Linear, Cosine, Polynomial, and 

RBF kernels. 

 

 
Fig. 2. Total execution time of the 10-fold CV process for Linear, Cosine, Polynomial, and RBF 

kernels. 
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Fig. 3. Times per iteration for Linear, Cosine, Polynomial, and RBF kernels. 

 

 
Fig. 4. C-Index obtained during the training phase of the Survival-SVM for Linear, Cosine, 

Polynomial, and RBF kernels. 
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4. Conclusion  

The execution times and the C-Index obtained by the Survival-SVM model for 

different numbers of features in a gene dataset have been evaluated. The experiments 

were carried out with different kernels and optimizers, allowing a direct comparison 

between different configurations available.  

Concluding, of the two available optimizers, RBTree generated a significant 

degradation in execution times during the training phase of the model in all cases. 

Regarding kernel configuration, worse time metrics were observed when the dataset 

had less than 100 features. Even so, iteration times remained directly correlated to 

dataset size for the Linear and Cosine kernels, making it clear that the high time 

required with few features is due to the number of iterations the model needs to reach 

convergence. It was not the case with the Polynomial and RBF kernels, whose times 

per iteration were also erratic for measurements with few training features.  

The behavior of the model during the training stage was analyzed, and it was 

observed that the unbalanced nature of the data (a large amount of censored data) and 

the impossibility of separating them linearly resulted in worse metrics as the size of the 

dataset increased.  

The results obtained show that, for subsets with few genes, the linear and 

polynomial kernels have a shorter execution time and an acceptable C-index. On the 

other hand, if the number of genes in the subset exceeds 2000, then the Cosine and RBF 

kernels obtain a better balance between execution time and prognostic power. Both tests 

show that it will be trivial to obtain models that predict the execution time of a model 

with N features, which will allow to improve task distribution in a distributed 

environment. Although the results presented in this work are indeed obtained from the 

analysis of a specific database, in the future it may include replicating the experiment 

in more databases to determine if there is variability.  

The experiments were carried out on an Apache Spark cluster to reduce the time 

required to complete them, in addition to establishing a base configuration that will 

allow carrying these experiments to other models and continue advancing in the 

development of algorithms that will be used in production on the Multiomix platform 

for the application of FS techniques with survival data. Measuring these times will 

allow carrying out a comprehensive analysis, and establish a load balance algorithm 

within the computer cluster to obtain an optimal algorithm distribution and reduce 

execution times.   
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