
Vol.:(0123456789)1 3

Computing and Software for Big Science (2022) 6:12
https://doi.org/10.1007/s41781-022-00084-4

REVIEW

Modelling Large‑Scale Scientific Data Transfers

Joaquin Bogado1,2 · Mario Lassnig3 · Fernando Monticelli2 · Javier Díaz1

Received: 5 April 2021 / Accepted: 5 May 2022 / Published online: 6 July 2022
© The Author(s) 2022

Abstract
This work focuses on the study of a recently published dataset (Bogado et al. in ATLAS Rucio transfers dataset. Zenodo,
2020.) with data that allow us to reconstruct the lifetime of file transfers in the contexts of the Worldwide LHC Comput-
ing Grid (WLCG). Several models for Rule Time To Complete (TTC) prediction are presented and evaluated. The dataset
source is Rucio, an open-source software framework that provides scientific collaborations with the functionality to organ-
ize, manage, and access their data at scale. The rich amount of data gathered about the transfers and rules, presents a unique
opportunity to better understand the complex mechanisms involved in file transfers across the WLCG.

Keywords Data transfer analysis · Distributed computing modelling · Performance metrics

Introduction

There have been efforts to model data transfers since Rucio
commissioning at the end of 2014 [1]. The work cited in [2]
focuses on Transfers TTC predictions. The work cited in [3]
focuses on the prediction of the network throughput. The
work cited in [4] focuses on the prediction of the length of
the queues of the system, with emphasis on the importance
of network throughput. However, prior studies have failed
to delve into Rucio’s replication rules modeling and Rules
TTC prediction, and to assess how accurate a model that can
predict the Network Time of a transfer can also predict the
Transfer or Rule TTC.

Rucio handles transfers between sites but also handles
the deletion requests to comply with the data retention
policy. Both transfers and deletion requests are stored in
REQUESTS and REQUESTS_HISTORY tables: theRE-
QUESTS table stores the current requests with no final
state, while the REQUESTS_HISTORY table works as an
archive of requests that will not be updated anymore, that
is the requests with final state. Deletions requests do not

affect RSE transfer performance, and so can be ignored.
Only transfer requests were taken into account for this work.

There are several instances of the transfer tool on the grid.
These instances work at WLCG level and serve transfers
from several VOs and not only ATLAS specific transfers.
The Rucio Database does not contain information about the
FTS transfer tool other than the instance that is used for
each transfer request. Information about FTS queues state,
scheduling and retries, number of nodes, and configuration
are hidden from Rucio. Transfers in an FTS server from
other VOs are also hidden from Rucio.

The main hypothesis is that the load in FTS queues has a
noticeable impact on the difference of the submission time
and starting time of a transfer. The more transfers are queued
at FTS the more time will elapse between the submission
time and starting time of a transfer. Ergo, a model that can
predict the Network Time of a transfer with 100% accuracy
will not necessarily predict accurately the Transfer TTC, as
the Network Time represents a small fraction of the total
time.

The studied dataset has been made publicly available [1].

Metric Selection

Standard metrics for regression tests include root mean
squared error (RMSE) and mean squared error (MSE) [5],
mean absolute error (MAE) and median absolute error
(MedAE), mean squared logarithmic error (MSLE) [5] and

 * Joaquin Bogado
 jbogado@linti.unlp.edu.ar

1 LINTI, Facultad de Informática, La Plata, Argentina
2 IFLP, UNLP, CONICET, La Plata, Argentina
3 European Organization for Nuclear Research (CERN),

Geneva, Switzerland

http://orcid.org/0000-0001-9491-5698
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-022-00084-4&domain=pdf

 Computing and Software for Big Science (2022) 6:12

1 3

12 Page 2 of 14

root mean squared logarithmic error (RMSLE), explained
variance score, R2 score, mean Tweedie deviance, mean
absolute percentage error (MAPE) [5], relative error (RE)
and related metrics, and the Fraction of Good Predictions
(FoGP) [6]

The mean squared error measures the mean of the
squared difference between the vectors y and ŷ , according
to Eq. 1:

As the differences are squared, this metric penalizes more
the big differences and as it is a mean value, is sensitive to
outliers. The RMSE version is the squared root of the MSE,
making its units comparable with the units of y and ŷ , so
if y and ŷ are in seconds, the RMSE can be interpreted in
seconds too. When several models are to be compared or
when the values of y have great variance, MSE and RMSE
are not particularly useful. Two models � and � will be con-
sidered with comparable performance if RMSE(y, ŷ𝛼) and
RMSE(y, ŷ𝛽) are in the same order of magnitude, but always
the model with smaller RMSE will be preferred.

The Mean Absolute Error and the Median Absolute
Error are the mean and median of the absolute value of
the difference between y and ŷ , respectively. The MAE
is calculated using Eq. 2, whereas MedAE is calculated
using Eq. 3:

MAE and MedAE are easier to interpret than MSE and
RMSE, but MedAE is preferred for its robustness to out-
liers in y and ŷ . However, the four metrics are sensitive
to the scale of y. This means that when the same model
is evaluated, using two different set of observations y and
y′ , the metric will be different for the same model and will
depend on the distribution of y and y′ . If y present outliers
and y′ does not, the metric for the same model will be worse
regardless of the performance of the model. This is not a
problem when two models compared against the same y,
but does not give an idea of the goodness of the models in
general.

The mean squared logarithmic error is a metric robust
against outliers and not sensitive to scale of y. It is defined
by Eq. 4 as the mean of the squared differences between
natural logarithms of 1 + y and the natural logarithm of
1 + ŷ . The root mean squared logarithmic error is the
squared root of MSLE:

(1)MSE(y, ŷ) =
1

n

n−1∑

i=0

(yi − ŷi)
2.

(2)MAE(y, ŷ) =
1

n

n−1∑

i=0

|yi − ŷi|,

(3)MedAE(y, ŷ) =median(|yi − ŷi|), i = 0, 1, 2,… , n − 1.

Hidden in the definition lies the problem that this metric
tends to penalize the negative errors more than the positive
ones, and thus will favor a model that overestimates the pre-
dictions over one that underestimates them. But the metric
is difficult to interpret and the results do not give a good idea
of the goodness of a model.

The explained variance score and the R2 score are two
metrics related to each other. The differences are subtle
but important. The explained variance is defined in Eq. 5.
It can be interpreted as the proportion of the variance of
y that is explained by the model though the predictions ŷ:

The R2 score, also known as coefficient of determination, is
defined as in Eq. 6:

In Eqs. 5 and 6 it is possible to spot the difference at a
glance. Both results are equal if yi − ŷi is zero, meaning the
R2 score does not account for biased models as explained
variance does. This also makes the R2 slightly more sensitive
to the scale of y.

Interpretation of both metrics is not clear at a glance,
but are implied directly from the equations. In both cases,
if the prediction of the model is perfect, then y − ŷ = 0 ,
and then both scores are equal to 1. This is the best score
a model can achieve. By definition, a model that makes a
prediction using the mean y has a score of 0, so any model
with a score bigger than 0 will be better than the naive
model. But then the predictions can be infinitely far away
from the observed value. If that is the case both scores are
negative.

Mean Absolute Percentage Error has the advantage of
being easy to interpret. MAPE is based on the Relative
Error, that is the absolute value of the difference between
target and the prediction relative to the target, as shown in
Eq. 7, and thus, is the error in the prediction relative to the
observed value:

The MAPE is the mean of the RE expressed as a percentage,
as in Eq. 8. But, as a mean value, is sensitive to outliers in
the relative errors. It is possible to overcome this by taking
the median instead of the mean in Eq. 8. Mean Absolute

(4)MSLE(y, ŷ) =
1

n

n−1∑

i=0

(ln(1 + (yi) − ln(1 + (ŷi))
2.

(5)EV_score(y, ŷ) = 1 −

∑n−1

i=0
((yi − ŷi) − (yi − ŷi))

2

∑n−1

i=0
(yi − yi)

2
.

(6)R2_score(y, ŷ) = 1 −

∑n−1

i=0
(yi − ŷi)

2

∑n−1

i=0
(yi − y)2

.

(7)RE(yi, ŷi) =
|yi − ŷi|

yi

Computing and Software for Big Science (2022) 6:12

1 3

Page 3 of 14 12

Percentage Error and Median Absolute Percentage Error
both diverge when y values are very close to zero:

MAPE penalizes more the positive forecast values than the
negative ones [7]. sMAPE or Symetric Mean Absolute Per-
centage Error and sMedAPE try to address this issue but
still can suffer from the divergence problem due to the sum
y+ŷi being small.

In [5], the MASE or Mean Absolute Scaled Error is intro-
duced to circumvent the mentioned problems. These derived
metrics overshadow the straightforward interpretation of
MAPE. Moreover, the models to evaluate in this work make
predictions over positive integer targets, as both the Rule
TTC and Transfer TTC are measured in seconds.

The metric selected to compare models in this work is
described in [6] (p.16) as percentage of predictions with
less than X percent RE. We call this metric Fraction of Good
Predictions (FoGP), expressed as a number between 0 and
1, in which X is the threshold of relative error below which
a prediction is considered good.

Formally, with the trivial function g defined as in Eq. 9,
FoGP is defined in Eq. 10:

As an example, assume that a certain model made a predic-
tion for y. We calculate the FoGP with threshold 0.05 and we
obtain the 0.5 as results. Formally, this can be expressed as
FoGP(y, ŷ, 0.05) = 0.5 . This means that 50% of the predic-
tions in ŷ are less than 5% from their real values.

This metric is easy to interpret, robust to outliers both
in y and ŷ , and can be easily and efficiently implemented.
Thus, the models studied in this work are evaluated using
this metric.

Models

Models ̨ and ̨ ′

The number of transfers per rule varies from rule to rule,
but there are notable peaks in some numbers, most notably,
rules with exactly 20 transfers. These rules are generated by
an automated replication process by the experiment (Fig. 1).

The set of transfers going through the FTS BNL
instance contains over 1.8M different rules. The mean

(8)MAPE(y, ŷ) = 100
1

n

n−1∑

i=0

|yi − ŷi|
yi

(9)g(yi, ŷi, 𝜏) =

{
1 if RE(yi, ŷi) ≤ 𝜏;

0 else.

(10)FoGP(y, ŷ, 𝜏) =
1

n

n−1∑

i=0

g(yi, ŷi, 𝜏)

rule TTC is 3.1 h but the mean varies within two orders of
magnitude depending on the number of transfers per rule,
as shown in Fig. 2.

A baseline model was developed using the dataset
described in the previous section. The prediction for the
Rule TTC is based on the created timestamp of the first
created transfer, the ended timestamp of the first ended
transfer and the total number of transfers to be created and
transferred to fulfill the rule.

Formally, the method consists of a regression analysis
using ordinary least squares to fit a 1-degree polynomial,
where the independent variable is the completions percent-
age of the rule, and the dependent variable is the time at
which the percentage of completion is reached. Figure 3
illustrates the application of the method to an observed
rule. The rule has 20 transfers and the prediction is made
after the first transfer ends, hence only using two points to
fit the polynomial:

Fig. 1 Distribution of the number of transfers per rule. Rules with
more than 210 transfers are counted in the last bin. The maximum
number of transfers per rule is 205951. Notice the peaks in 20, 25, 30,
40, 50, 100, and 200. Other notable peaks are 1, 2, 4, and 6

Fig. 2 Rule TTC given the number of transfers in the rule

 Computing and Software for Big Science (2022) 6:12

1 3

12 Page 4 of 14

More than two points can be used in the regression analy-
sis. But the more points that are used, the more transfers
need to finish before the prediction can be made, ergo the
more the rule needs to progress, and the less useful the pre-
diction will be, rendering this method useless for schedul-
ing purposes. However, these models can still be applied,
for example, to give feedback to users about the time their
transfers will be finished.

We define the family of models �k as in Eq. 12, where
ax + b is the polynomial that results from the fit of the pre-
dictor vector Xk , using the Ordinary Least Squares method.
We call the predictor Xk to the vector of points ((�1j,�2j)) ,

(11)% Completed =
ended_xfers × 100

total_xfers
.

where �1j is the component that represents the percentage
of the rule that is completed, and �2j is the time elapsed
in seconds until that �1j is reached. The sub-index k is
the number of points used to make the fit, so the range is
k = 2, 3, 4,… , n , where n is the number of transfers in the
rule. Thus, j sub-index range from 1,… , k (Fig. 4):

A more detailed analysis of the progress of the rules over
time determined that only a fraction of the Rules TTC are
co-linear with the first points of the progress of the rule,
including the origin point.

From this observation, model �′k was created and tested.
Every member of the �′k family is equal to its relative �k+1 ,
but the origin point, where the rule is created is removed
from the regression. Then, �′2 is equal to �3 , and the ending
times of the first two transfers are used to make the linear
regression but not the origin point. An important conse-
quence is that the models �′k and �k+1 can make a prediction
in the same stage of the progress of the rule, that is, when
the transfer k is finished (Table 1).

Models ˇ and

One important caveat with the models � and �′ is that they
will not be able to make any prediction for the Rule TTC
before at least two transfers of the rule have finished. One
approach is to use metrics such as the mean or the median
of the Rule TTC of already finished rules as the predictor
of Rule TTC of the newly created rules. Figure 5 shows an

(12)�k(Xk) = ax + b.

Fig. 3 Regression analysis applied to a rule to predict its TTC. Pre-
diction is made after the first transfer ends

Fig. 4 Results for the experi-
ment showing the distribution
of the FoGP(y, ŷ𝛼k , 𝜏 = 0.1) for
the first 9 members of the �k
family. The bigger the k, the
more points are included in the
regression, the more accurate
the results, and the later the
prediction. For �2 , at least one
transfer needs to finish before a
prediction can be made, while
for �10 , at least 9 transfers need
to finish to make a prediction

Computing and Software for Big Science (2022) 6:12

1 3

Page 5 of 14 12

example of how this method could work. Assume we want
to predict the Rule TTC of the rule R6 created at time t0 . A
look back window can be defined since t0 . Let’s consider
a window of 30 s and the mean of the Rule TTCs of those
rules created between t0 and t0 − 30 s. Rules R1 to R5 were
created over the last 30 s, and the mean TTC is 3.8 min, so
that will be the prediction for the Rule TTC of R6 . We called
this model � . The best window length was found through an
optimization process described later.

However, some of the Rules R1 to R5 may not be com-
pleted at t0 , so their TTCs will be unknown and not avail-
able to make any prediction, and thus the � model cannot be
implemented to be used in real time. The idea of this work
is to use Time Series Analysis techniques to make a model
that can predict the mean to use it as predictor of the rules
created at t0 . We call this the model �.

Formally, the ��(t0, �) model family is defined as in
Eq. 13. Here, yRi

 are the real Rule TTC of those rules created

in the left-closed interval [t0 − �, t0) , that is, the rules in the
dataset with min_created < t0 and min_created ≥ (t0 − �) .
The parameter � can be interpreted as the size of the rolling
window, usually measured in seconds. The aggregation func-
tion � will be a function that returns a number that represents
a summary of the information contained in the {yRi

} set. The
functions tested are min(), which returns the minimum ele-
ment of the set, max(), which returns the maximum element
of the set, median(), which calculates the arithmetic median,
and mean, which returns the mean of the values of the set:

Using this notation, the example in Fig. 5 can be annotated
as �mean(� = 30).

Figure 6 summarizes the result of the experiment. The
most accurate result was obtained by the �median model with
� values between 20 and 30 s , through an
FoGP(y, ŷ𝛽𝜇(𝜌), 𝜏 = 0.1) = 0.22 , meaning around 22% of the
predictions will present less than 10% of relative error. Other
� s present lower FoGP, and thus, lower predictive power. A
new scanning of � in the interval [20, 30] shows no signifi-
cant improvement in the FoGP. This also shows that the val-
ues of the � aggregation function had some correlation with
time and that these values could hold important information
about the Rule TTC of near future rules.

If the �� model is implemented using only the data at real
time at t0 , that is, at the time to make a prediction for a rule
created at t0 , then the only TTCs available will be the ones of
those rules with created and finished in the semi-open inter-
val [t0 − �, t0) , that is, the rules with min_created ≥ (t0 − �)
and max_ended < t0 . Figure 7 summarizes the results of the
experiment of measuring the FoGP over 300 Rule TTCs
predictions, repeated 100 times. The � functions were cal-
culated using real time data.

The Model �

Model �� is implemented using real time data. It has low
FoGP, as the � aggregation function depends on real
observed Rule TTC, and real time aggregation is not repre-
sentative of the future Rule TTCs. However, as was demon-
strated in the previous section, there is a time dependency in
the aggregated values of the Rule TTCs. Model �� presented
here uses a forecast of the time series of the aggregation
function � to predict the Rule TTC of the new rules. Spe-
cial attention was put in the median() and mean() aggrega-
tion functions, both because of their hypothetical predictive
power and their good statistical properties.

Formally, the �� model is defined as in Eq. 14. This equa-
tion is very similar to the �� equation, but in the � model,
the � function is estimated using an auto-regressive model
with � lags of size � seconds. The � parameter represents the

(13)��(t0, �) = �({yR1
, yR2

, ...})

Table 1 FoGP(y, ŷ𝛼�k , 𝜏) vs. FoGP(y, ŷ𝛼k , 𝜏) comparison. Different
thresholds � are calculated for different �′k and �k models. Compari-
son criteria is based on number of finished transfers in the rule the
model needs to make a prediction. �′k and �k+1 are two models that
need at least k transfers to finish before a prediction can be made.
Top left corner shows that while for model �3 , only 4.4% of the pre-
dictions lay within 10% of its real value, for model �′2 , 8.8% of the
predictions lay in the same range. This represents an improvement of
95.4% of model �′2 with respect to �3

� = 0.1 � = 0.5 � = 0.9

��2∕�3 0.086/0.044 0.425/0.224 0.801/0.398
��3∕�4 0.115/0.064 0.522/0.308 0.858/0.530
��4∕�5 0.134/0.079 0.580/0.384 0.892/0.639
��5∕�6 0.150/0.096 0.623/0.451 0.916/0.727
��6∕�7 0.166/0.113 0.662/0.513 0.932/0.799
��7∕�8 0.184/0.128 0.696/0.574 0.944/0.858
��8∕�9 0.202/0.144 0.730/0.631 0.953/0.901
��9∕�1 0.219/0.163 0.758/0.687 0.959/0.922

Fig. 5 Rule TTC of rule R6 prediction, based on the mean of the Rule
TTC of those rules created 30 s before rule R6 creation

 Computing and Software for Big Science (2022) 6:12

1 3

12 Page 6 of 14

look back, or how many lags are used to fit the model. The
� parameter represents the look ahead, or how many lags in
the future the model will predict:

Here, �̂� is the estimation of the function �(yRi
) through the

use of an auto-regressive model. As in the �� model, the set
yRi

 is the Rule TTC of those rules created in the left-closed
interval [t0 − �, t0) but in this case also the ones that have
finished before t0.

The algorithm proceeds as follows. First, all the rules
that have been created between t0 and t0 − �� seconds and
that have finished before t0 are selected. That is, all the
transfers in the Rules Dataset which satisfy the conditions
t0 − 𝜌𝜓 ≤ min_created < t0 and max_ended < t0 . The Rules
Dataset contains the fields min_created and max_created
time stamps, that represent the time when the first transfer
and last transfer of the rules were created. Thus min_cre-
ated time stamp is equal to the time creation of the rule
and the minimum min_created is the time of creation of
the first rule in the dataset. Also, the max_ended is the
time stamp of the last transfer to finish, and thus, the fin-
ishing time of the rule. The � function is calculated over

(14)𝛾𝜇(t0, 𝜌, 𝜆,𝜓 ,𝜔) = �̂�

the bins of length � seconds, being the value of the first
bin, the � of the Rule TTC of the rules satisfying the con-
dition t0 − 𝜌𝜓 ≤ min_created < t0 − 𝜌𝜓 + 𝜌 , the value of
the second bin the � of the rules satisfying the condition
t0 − 𝜌𝜓 + 𝜌 ≤ min_created < t0 − 𝜌𝜓 + 2𝜌 , and so on. This
generates a time series 𝜎�̂� of frequency � with a total of
�∕� samples. Notice that this time series differs from the
real time series �� in that the � Rules TTCs for the lags
closer to t0 differ due to the selection filter rules described
before. Once the time series is obtained, a standard auto-
regressive model AR(p) [8] is fitted using the first �∕� − �
samples. The parameter of the auto-regressive model is
p = � , meaning the model will need � samples to make a
prediction. Model train and prediction is implemented using
the AutoReg function from the Python statsmodels v0.11.1
package [9]. Once the model is fitted, a forecast is made
using the last � − � samples to predict the following � lags.
The �̂� , i.e.,the prediction of the �� , will be the last value of
the returned forecast.

F i g u r e 8 s h o w s t h e c a s e f o r
�median(� = 30, � = 30,� = 90,� = 16) model. In this case,
the t0 is the date 2019-06-12 22:54:31. The transfers selected
to create the time series were those satisfying the conditions
t0 − 30 ∗ 90 s ≤ min_created < t0 and max_ended < t0 . The

Fig. 6 Rule TTC prediction using the �� for � one of the min(),
median(), mean(), or max() functions. The � parameter was selected
to explore space and test the predictive power of each model. The
FoGP metric is calculated for the same 300 random rules for every
window size � . The experiment is repeated 100 times. The red lines

are the median FoGP of the experiment and the green lines are the
mean FoGP, for every window size. Notice that the real min/median/
mean/max Rule TTC was used to make a prediction and that this
value usually is not available in real time, i.e., the rules created during
the previous seconds usually take several minutes to complete

Computing and Software for Big Science (2022) 6:12

1 3

Page 7 of 14 12

median of the Rule TTC were calculated to get the time
series using bins of 30 s. The 𝜎�̂� time series is shown in
orange while �� time series values, that is the median of the
Rule TTC including those of the rules that end after t0 , is
plotted in blue. These time series are very similar except in
the last minutes before t0 . The main reason for this discrep-
ancy is that rules created some minutes before t0 only finish
after t0 and are excluded, because they do not satisfy the
condition max_ended < t0 . This will happen in a hypotheti-
cal implementation of this method, where everything after
t0 is unknown as it is in the future.

The � parameter for the experiments was set to 8 min and
is estimated based on the median Rule TTC of the Rules
Dataset. This means that most of the rules created until 8
min before t0 will be finished at t0 and thus, the difference
between the time series of the real � and the observed. All
the models tested fix this parameter to represent 8 min but as
it depends on � , it is different for every model. The param-
eter is calculated using the formula � = 8 × 60∕� . That is,
for the model 𝛾�̂�(𝜌, 𝜆,𝜓 ,𝜔) with � = 30 s, � will be 16 lags
and for the models with � = 60 s, � will be 8 lags.

Figure 9 summarizes the results of the experiment for
FoGP(y, ŷ𝛾�̂�(𝜌,𝜆,𝜓 ,𝜔), 𝜏 = 0.1) for a particular choice of the

parameters, that is, how good the models 𝛾�̂�(𝜌, 𝜆,𝜓 ,𝜔) are
to predict the Rule TTC of the rules, for � being the mini-
mum, median, mean and maximum functions. This figure
can be read as follows. In the lower left plot, for the model
𝛾 ̂mean(𝜌 = 30, 𝜆 = 45,𝜓 = 240,𝜔 = 16) , on average, a bit
over 10% of the TTC predictions made with the model will
have less than 10% relative error. The (�, �,� ,�) parameters
were selected using a grid search to maximize the FoGP at
� = 0.1 for the median function and can be sub-optimal for
other � functions.

The Model ı
n

In his book “Deep Learning with Python” [10], Francois
Chollet introduces a DNN architecture able to predict the
temperatures for the Jena Dataset [11] slightly better than a
naive model. We tried a similar approach to predict the Rule
TTC, based on the time series of a number of observables
we suspect could determine the TTC of such a rule at its
creation time. This study should not be considered final nor
exhaustive, but a preliminary study about the use of Deep
Neural Networks to predict the Rule TTC based on the avail-
able data at the time.

Fig. 7 Rule TTC prediction using the �� for � one of the min(),
median(), mean(), or max() of the real time data available at t0 . The
�� function using the TTC of those rules that started between t0 − �
and t0 but also did finish before t0 . This simulates the real time data
available in the system to make the prediction, as those times beyond
t0 are in the future and TTC data for rules finishing after t0 is usually

not available. The FoGP metric is calculated for the same 300 random
rules for every window size � . The experiment is repeated 100 times.
The red lines are the median FoGP of the experiment and the green
lines are the mean FoGP, for every window size. Notice that if � is
small, usually the prediction is zero. That is because the number of
rules created and finished in the interval [t0 − �, t0) is zero

 Computing and Software for Big Science (2022) 6:12

1 3

12 Page 8 of 14

From the Rules Dataset it is possible to create a set of
time series from observables which can influence the Rule
TTC. The minimum, median, mean, and maximum Rule
TTC of previous transfers demonstrate at least some predic-
tive power and have been used in previous models with lim-
ited success. Other variables that could influence the Rule
TTC of future rules are the amount of transfers pending and
also the amount of bytes pending. A way to calculate this
is by extending the routines to calculate the time series for
the minimum, median, mean, and maximum functions. The
bins are filled with the sum of the bytes or the sum of the
transfers of each rule for both time series, the observed and
the real one. The difference between the two will be the time
series of unfinished transfers and unfinished bytes. These
values are known at rule creation time or can be approxi-
mated. As the majority of rules are over closed datasets, that
is datasets to which new files can not be added, the number
of files to be transferred and the size of each is mostly known
at rule creation time.

We develop a model with a very similar structure to that
proposed in Chapter 6 in [10]. We call it �n , where n is the
number of convolutional filters or number of Long-Short
Term Memory (LSTM) neurons. The main difference is the
substitution of the Gated Recurrent Units (GRU) layer from
the original Chollet model for a LSTM layer, as this was a
proposed improvement suggested in the book. Input of the
model consists of 10 channels, each of which represents the
time series of some attribute calculated between t0 or the
rule creation time, and t0 − 120 min, in bins of 30 s. The

Fig. 8 Time series process to forecast the TTC of one Rule. The
rule to predict was created on 2019-06-12 22:54:31. This defines the
t0 time, marked with a purple asterisk at the lower right part of the
plot. Below there is a black asterisk that corresponds with the pre-
diction done by the �median(� = 30, � = 30,� = 90,� = 16) model,
that is a model which uses 30 lags of 30 s or the last 15 min to look
ahead 8 min or 16 lags in the future and 45 min or 90 lags to fit the
model. For this rule, the model underestimates the real Rule TTC.
The real median Rule TTC Time Series is plotted in blue. This rep-
resents the real median Rule TTC of 30 s bins of those rules created
before t0 . The orange line is the observed median Rule TTC, or the
TTC of those rules that are finished before t0 . The agreement between
the blue and orange line is good except in the minutes previous to t0
itself. This results in ineffective �� models when using real time data.
The green line in the plot is the data used to fit the �median model, that
is the observed median Rule TTC till 8 min before t0 . The red line
corresponds to the prediction made for the model for 16 lags ahead of
t0 − 8 min

Fig. 9 FoGP comparison of different �� models

Computing and Software for Big Science (2022) 6:12

1 3

Page 9 of 14 12

attributes used to build this time series were the minimum,
median, mean, and maximum Rule TTC of each bin, plus
the sum of transfers and bytes of finished, created, and pend-
ing rules. Each model was implemented using Keras/Ten-
sorFlow Python API and trained for 120 epochs using the
RMSProp optimizer to minimize the Mean Absolute Error
loss function.

Figure 10 shows the data splitting for training, validation,
and testing. Training and validation data were selected based
on the distribution of the the Rule TTCs at creation time.
The training data comprises all the rules created between
June 8th 2019 to July 3rd 2019. The validation set includes
the rules created between July 4th 2019 and July 10th 2019.
And finally, the testing set includes the rules created between
July 11th 2019 and July 29th 2019.

The δννn Model

The �n model family does not take into account informa-
tion about the rule for which we want to predict the TTC,
that is, the model does not include information about
the target rule. In this section, we present a model that
includes the number of transfers the target rule consists
of, the sum of bytes of all the transfers, and the links this
transfers will affect, that is, the list of sources and destina-
tions for all the transfers. Unlike the time series informa-
tion fed to the previous model, the data about the target
rule is point wise, such that it is not data about the past
state of the system, but of the present or t0 time.

The model has 3 inputs, the several time series rep-
resenting the past of the system, the sum of bytes and
the number of transfers of the rule, and the list of links
affected by those transfers. The only output of the sys-
tem will be the Rule TTC. This kind of model cannot be
implemented using the Keras Sequential Model. Instead,
the Keras Functional API was used to conceive a fam-
ily of models capable of handling the different types of
inputs. We call this family the ���n model family, where

the n parameter is the number of convolutional filters or
the number of LSTM neurons of the model.

Figure 11 shows the architecture of the ���32 model. Data
flows from top to bottom. The left branch is the Chollet-Jena
(�32) model in charge of digesting the time series data. The
center branch input is the number of transfers and sum of
bytes of the target rule. The right branch input is a list of
integers, each of which represents a link that will be affected
by one of the transfers. This list is truncated to 50, so only
the first 50 links are going to be accounted. If less that 50
links are used, the sequence is padded with zeros. There is
a special need to convert the (source, destination) pairs into
a unique number to feed the emb_input layer. This process
is done in a preprocessing stage using the Keras Tokenizer
tool. The alphabet of links is 8762 words of the form SRC-
SITE__DSTSITE. The LSTM layer after the embedding
processes the links in order (Fig. 12). Even though link order
should not matter, that is, the order in which the links appear
in the embedding should not determine or affect the Rule
TTC, the usage of this layer has proven important, because
the prediction rate over the testing set is 1–2% better for the
model family that use the LSTM layer, as shown in Fig. 13.

Normalization of all the numerical data was done using
Eq. 15. This allows the model not to give more impor-
tance to some observables over others because of the scale.
Typical normalization, where values are subtracted from
the mean and divided by the variance is not enough in
this case, due to the very long tail of the distribution of
the values:

Figure 14 shows the histograms of the normalized vs. not
normalized Rule TTC.

Both models were trained using the EarlyStopping call-
back that allows to monitor the progress of the validation
loss. The callback stops training if there is no improvement
after a fixed number of epochs and rolls back the weights
to the ones of the last best model.

For �n models, the patience of the callback was set to 10
epochs. Figure 15 shows the �n model family stops after
10 or 11 epochs, meaning the best model is obtained after
only 1 or 2 training epochs. The �n models are not able to
generalize, and if trained for more epochs, model predic-
tions converge to values around 480.

For the ���n models, EarlyStopping patience was set
to 5. Figure 12 shows that this model family learns from
the training data until epoch 12 in the best case, that is for
model ���32 . After that, there is no improvement in valida-
tion loss. Naturally, the larger the model, that is the n, the
faster the model overfits.

F igu re 16 shows t he compa r i son o f t he
FoGP(y, ŷ, 𝜏 = 0.1) of the �32 and ���32 models. For

(15)� = (ln(x) − ln(mean(x))∕ln(std(x)).

Fig. 10 Rule Dataset split for training, validation and testing

 Computing and Software for Big Science (2022) 6:12

1 3

12 Page 10 of 14

comparison, the � = 562 model, the model that always
predicts a constant value for the Rule TTC, was
included. A subsample of 300 rules was selected. For
each rule, a prediction is made using all the models.
Then, the FoGP(y, ŷ𝛿 , 𝜏 = 0.1) , FoGP(y, ŷ𝛿𝜈𝜈 , 𝜏 = 0.1) , and
FoGP(y, ŷ𝜅 , 𝜏 = 0.1) was calculated. The procedure was

repeated 1000 times. The box plot shows the distribution
of the different FoGP obtained. Model � = 562 shows
that on average, 12.2% of the predictions lies within a
10% relative error from the real value. The ���32 model
outperforms the � = 562 model by a modest 5.7% on
average.

Fig. 11 FunnelNet architecture

Fig. 12 Training loss vs. validation loss for several ���n models.
Training was done setting an EarlyStopping callback measuring the
validation loss with patience of 5 epochs

Fig. 13 FoGP(� = 0.1) for two variants of the ���n models. Models
without a LSTM layer after the Embedding layer perform worse than
the models with a LSTM layer after the Embedding layer

Computing and Software for Big Science (2022) 6:12

1 3

Page 11 of 14 12

Evaluation of Model Performance

It is instructive to compare the models with several values
of � , especially in the range (0.01, 0.25), to see how many
of the predictions of each model have more than 1% and
less than 25% relative error. For the comparison with the �
model to be fair, the best constant for each � must be selected
in order to maximize the FoGP(y, ŷ𝜅 , 𝜏) . Using the same
training data used to fit models � and ��� , the �∕� space
was scanned calculating the FoGP(y, ŷ𝜅 , 𝜏) in the ranges
� = (0, 2000) in steps of 1 and � = (0.01, 2.0) in steps of
0.01. This procedure defines a surface defined in ℝ3 with a
local FoGP(y, ŷ𝜅 , 𝜏) maximum for each � and � . We assume
this is the optimal constant to predict the target with a given
FoGP. Figure 17 shows this local maximum, that is, the con-
stant that predicts the training set with the highest FoGP.
Several things arise from this plot. First, there is a peak at
� = 567 which corresponds neither with the mean Rule TTC

of the training set, that is 1962.1 s, nor with the median of
439 s. This means that both the prediction using the mean
and the median are sub-optimal in terms of FoGP. Second,
when � = 0 the FoGP tops 1.0 all the predictions have less
than 100% relative error. The explanation for this effect is
straightforward. If the prediction for whatever value x is 0,
then the relative error is calculated as |x − 0|∕x = 1 , meaning
the error is 100%. As the FoGP measures how many predic-
tions are less than � , when 𝜏 > 1.0 , if the prediction is 0,
all the predictions are accounted as having less than 100%
relative error. Third, the FoGP values in the � range (0.01,
0.25) fall between 0.027 and 0.251, meaning between 2.7%
and 25.1% of the predictions presents less than between 1%
and 25% relative error.

Fig. 14 Rule TTC distribution
vs. Rule TTC distribution after
normalization using Eq. 15

Fig. 15 Training loss vs. validation loss for several �n models. Train-
ing was done by setting an EarlyStopping callback measuring the val-
idation loss with patience of 10 epochs. This plot suggests the model
is not able to learn from the training data

Fig. 16 This plot shows the distribution of the FoGP(y, �32, � = 0.1)
and FoGP(y, ���32, � = 0.1) over 1000 repetitions of the experiment
to make a prediction for 300 samples. Numbers show that, on aver-
age, 9.9% of the predictions made with model � also known as Chol-
let-Jena have less than 10% relative error. Meanwhile, the 13.0% of
the predictions made with model ��� also known as FunnelNet, have
less than 10% relative error. For comparison, the results of model
� = 562 are shown. This is the model that makes a constant predic-
tion for the Rule TTC of 562 s. For this model 12.2% have less than
10% relative error

 Computing and Software for Big Science (2022) 6:12

1 3

12 Page 12 of 14

The � model outperforms when � is in the range (0.01,
0.04). In the range (0.04, 0.65) the ��� model is better.

Both � and ��� models return continuous values and
hence do not make any sense to measure the FoGP when
� = 0 as the probability of the model to predict the exact
value of the Rule TTC is almost zero. It does make sense
to measure it for the � model as the constant value is inte-
ger. This explains the better performance of the � model
for low values of � . However, there is no noticeable change
in the FoGP when the predictions of the � and ��� models
is rounded.

Among the possible uses of these models for real world
applications, we count the benefits for rule and transfer
requests scheduling and the ability to give feedback to the
users of the system about the time to complete of their
transfers. Before any model can be used to make predic-
tions to improve the scheduling of transfers or rules, we
need two conditions be satisfied. First, the model needs
to be able to make a prediction at the time the rule or
transfer is created or the t0 time. Second, the accuracy of
the model should be high enough to actually improve the
schedule. From talks with the experts, we expect a useful
number will be a FoGP(y, ŷ, 𝜏 = 0.1) of around 0.95. All
presented models except model � can make predictions at
the rule creation time, although the accuracy of the models
presented here are below 0.2. The models that can make
predictions at t0 time can also be used to give feedback to
the users about the TTC of their transfers. However, other
models that include information of times post-t0 have bet-
ter accuracy in general and can be used too, depending
on the need of the users to have the feedback early in the
lifetime of the rule or transfer, or late, in which case the
prediction will be more accurate (Fig. 18).

Model κ

The � model, which always predicts a constant value, allows
us to put a lower bound for the performance of the models
over a range of interesting � values. Optimizing the constant
to maximize the FoGP results in a model that is surprisingly
difficult to improve upon, both at high and low � values. By
its simplicity, and because its performance is comparable to
other more sophisticated models, it should be the preferred
to be implemented, for example to give feedback to users
about the TTC of their transfers. If that is the case, the upper
bound of a confidence interval could be interesting for users.

Model αk

Model � is the only model of the studied ones that is not
directly comparable with the other models due to inabil-
ity to make predictions at the Rule creation time. Model �
needs at least two transfers within the rule to finish to fit and
forecast when the other transfers probably will finish. This
makes the model suitable to give feedback to the users but
will not be helpful to improve the scheduler, as the decision
about where to send the transfers will need to be done at
rule creation time and before any transfer is submitted or
finished. The model shows the non-linearity of the progres-
sion of the transfers, giving insights of the nature of the rules
and their behavior. The time between transfer submissions
for the transfers of a rule is not constant. Rucio’s Conveyor
daemon may consider that FTS has a high enough number
of transfers already and decide not to submit more transfers

Fig. 17 Optimal constant prediction search based on the maximiza-
tion of the FoGP(y, ŷ𝜅 , 𝜏) function. Black line represents the � with
maximum FoGP(y, ŷ𝜅 , 𝜏) for a given � . The colored points represents
the actual FoGP(y, ŷ𝜅 , 𝜏) value, the bluish the worse, the redder the
better. The red line also represents the achieved FoGP with the y-axis
on the right

Fig. 18 FoGP comparison over a � range from 0.01 to 2 for the best
models known, which were presented in this work. Predictions for
all the models were made for all the rules created between 2019-
07-11 and 2019-07-29. Model �median(� = 30) outperforms all the
models. However, the real median of previous Rule TTC needs to be
known for the model to work and this information is not available at
t0 . Model ��� is the best model following the FoGP criteria with �
between 0.22 and 0.70 and is the model with greatest potential to be
extended. The performance of all the models are comparable with the
performance of Model � , and for its simplicity, it should be the pre-
ferred model

Computing and Software for Big Science (2022) 6:12

1 3

Page 13 of 14 12

until some of those active transfers finish, increasing the
Rucio Queue Time for part of the transfers of the rule. This
will impact directly in the Rule TTC and this model will not
be able to forecast this future delays.

Models βμ (t0, ρ) and βμ
* (t0, ρ)

Models ��(t0, �) and �∗
�
(t0, �) make a prediction calculating

a function � over the Rule TTC of those rules created in the
last � s. The difference between �� and �∗

�
 is that �∗

�
 excludes

those rules that ends after t0 . The �� model cannot be imple-
mented with real time data as it calculates the � function
over the Rule TTC of all the rules that have started at some
point in the past, including the ones that have not finished
yet. This information from the future added to the model
makes the two models radically different. One could assume
that if the � function could be predicted with 100% accuracy,
then FoGP of the model �� represents the theoretical limit
of FoGP of the model �∗

�
 , as the first include more informa-

tion than the second. Yet, this statement does not hold in
general, for example, for the function that take the maxi-
mum, including more information in the model does not
make it more accurate. The �max model makes a prediction
by calculating the maximum Rule TTC of all the transfers
created between t0 and � . The bigger the � is the bigger is the
chance that there exists a very slow rule. But �∗

max
 filters out

those transfers that have finished after t0 , and thus the Rule
TTC is throttled to the value of � . For this reason, the
FoGP(y, ŷ𝛽∗

max
, 𝜏 = 0.1) presents a peak when � is near 600.

This value is close to the best value for the model � at
� = 0.1 , which is 562. �∗

�
 models with other parameters pre-

sents lower FoGP values than �∗
max

 at � = 0.1 , and thus are
considered inferior models.

Figure 19 shows that �∗
max

(� = 600) outperforms model �
in the � range between 0.04 and 0.22. This is the best model
known to date in that range. It is not possible to implement
the �median model without knowing the Rule TTC of rules
that didn’t finish yet. If a model for a perfect prediction of
the median of the Rule TTC exists, then the �median(� = 30)
shows the best performance across a wide range of �.

Model γ μ (t0, ρ, λ, ψ, ω)

The �� model family is the first approach to solve the prob-
lem using time series analysis. The �� is an auto-regressive
(AR) model, where the input is the time series of the Rule
TTC. The function � is calculated in bins of � s. The input
for the AR model consists of � lags. The model is fitted
using � lags and the look ahead of the model is � lags. The
best model was obtained by scanning the parameter space
and maximizing the FoGP, as detailed in Sect. 3.3. Model
�median(t0, � = 30, � = 45,�240,� = 16) achieved the best

FoGP at � = 0.1 . If this model would predict the median
with 100% accuracy then its results should be comparable
with those obtained with the �median . The results show that
the �� model is not as good, especially at low � . The �median
model is better than �median only for 𝜏 > 0.91 . This model
seems to be not accurate enough and other more complex
models are worth to try. Integrated models were discarded
after verifying that the time series show no trend, ergo there
is no need for differentiation. Moving Average models are
used after verifying that the time series are not stationary,
which is not the case for long runs of Rule TTC time series.
A straightforward check showed that the standard deviation
from the mean changes over time, and thus a General Auto-
Regressive Conditional Heterokedasticity (GARCH) model
is more appropriate.

Models δ and δνν

The � model is the first attempt to solve the forecast problem
with neural networks using a modified model proposed by
F. Chollet. This approach was shown to be ineffective but
its accuracy is higher than the accuracy of model �median .
Model � includes the information of the past state of the
system in the form of time series but it does not include
information of the present. Information from the rule that
is known at the creation time like the number of transfers
or the sum of bytes the system must process to complete
the rule are not included in model � . This observation leads
to the ��� model, a deep neural network model with mul-
tiple inputs that includes the time series from � model, but
also the number of bytes, number of transfers, and the links
affected by the rule. ��� model is the best practical model
in the � range from 0.25 to 0.70, but more importantly, it is
the easiest model to extend. We expect that this model would
benefit enormously if information about failed transfers per
link, history of transfers submitted to FTS, and history of the
rate of the link were available and could be added as inputs.

Fig. 19 FoGP comparison zoom over a � range from 0.01 to 0.25 for
the best models

 Computing and Software for Big Science (2022) 6:12

1 3

12 Page 14 of 14

Conclusions and Future Work

The distributed data management for the experiments using
the Worldwide LHC Computing Grid form a complex eco-
system with dynamic interactions. Since its commissioning
in 2014, Rucio has become the de-facto standard for scien-
tific data management, even outside the CERN community.

The accuracy of the predictions of the models will be
limited by the amount of data about the system available at
a given moment, and by the stochastic processes involved in
certain parts of this system. Rucio’s importance and the rich
amount of data gathered about the transfers and rules life
cycles, contributes to the importance of this study.

Several models were presented and evaluated during this
work, especially for Rule TTC prediction. All presented
models except model � can make predictions at the rule crea-
tion time, although the accuracy of these does not allow the
models to be used to improve the scheduling of the transfers
or rules. The expected threshold that would make these pre-
dictions useful is a

FoGP(y, ŷ, 𝜏 = 0.1) of around 0.95. Even if the accuracy
of the models presented here is not enough for scheduling
purposes, excluding model � , these are the best models
known to date for Rule TTC prediction at rule creation time.

This work lays the foundation for future models and
establishes the metric by which they should be compared.
The ��� model is promising. The number of failed transfers
per link, aggregated over a the last 10–30 min or some recent
history in time series form could improve the performance of
this model. It is known that the FTS Optimizer penalizes the
links if there are failed transfers. Those links without failures
in the recent history are preferred over the ones with failures.
Thus, the transfers pending that use those links with failures
will be delayed more than the transfers that will use a link
without failures. Adding this information to the model could
increase its performance.

The ��� model could also benefit from knowing how
many transfers have been submitted to the links that the
target rule will affect. The way to calculate this from the
transfers dataset is to get all the transfers that have been sub-
mitted, but did not finish yet, ignoring the started timestamp.

The authors also suggest a study of the prediction accu-
racy needed to improve the scheduling. A rationale of this
value in terms of FoGP will shed more light on the useful-
ness of the models presented here and future models.

Data Availability Statement This manuscript has associated data in
a data repository. The data is available in https:// doi. org/ 10. 5281/
zenodo. 43209 37.

Declarations

Conflicts of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bogado J, Lassnig M, Monticelli F, Díaz J, Beermann T (2020)
ATLAS Rucio transfers dataset. Zenodo. https:// doi. org/ 10. 5281/
zenodo. 43209 37

 2. Lassnig M, Toler W, Vamosi R, Bogado J (2017) Machine learn-
ing of network metrics in ATLAS distributed data management.
J Phys Conf Ser 898:062009. https:// doi. org/ 10. 1088/ 1742- 6596/
898/6/ 062009

 3. Begy V, Barisits M, Lassnig M, Schikuta E (2020) Forecasting
network throughput of remote data access in computing grids.
J Comput Sci 44:101158. https:// doi. org/ 10. 1016/j. jocs. 2020.
101158

 4. Bogado J, Monticelli F, Diaz J, Lassnig M, Vukotic I (2018)
Modelling high-energy physics data transfers. In: 2018 IEEE 14th
international conference on e-science (e-Science)

 5. Hyndman RJ, Koehler AB (2006) Another look at measures of
forecast accuracy. Int J Forecast 22(4):679. https:// doi. org/ 10.
1016/j. ijfor ecast. 2006. 03. 001

 6. Zheng A (2015) Evaluating machine learning models. O’Reilly
Media Inc., Newton

 7. Makridakis S (1993) Accuracy measures: theoretical and practical
concerns. Int J Forecast 9(4):527. https:// doi. org/ 10. 1016/ 0169-
2070(93) 90079-3

 8. Shumway RH, Stoffer DS (2005) Time series analysis and its
applications (Springer Texts in statistics). Springer, Berlin

 9. Seabold S, Perktold J (2010) 9th Python in science conference
 10. Chollet F (2017) Deep learning with Python, 1st edn. Manning

Publications Co., Shelter Island
 11. G.h.j. The dataset recorded at the Weather Station at the Max

Planck Institute for Biogeochemistry in Jena. Weather archive
Jena air temperature, atmospheric pressure, humidity, recorded
over seven years. https:// www. s3. amazo naws. com/ keras- datas ets/
jena_ clima te_ 2009_ 2016. csv. zip. Accessed 4 Aug 2020

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.4320937
https://doi.org/10.5281/zenodo.4320937
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.4320937
https://doi.org/10.5281/zenodo.4320937
https://doi.org/10.1088/1742-6596/898/6/062009
https://doi.org/10.1088/1742-6596/898/6/062009
https://doi.org/10.1016/j.jocs.2020.101158
https://doi.org/10.1016/j.jocs.2020.101158
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.1016/0169-2070(93)90079-3
https://www.s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
https://www.s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip

	Modelling Large-Scale Scientific Data Transfers
	Abstract
	Introduction
	Metric Selection
	Models
	Models and
	Models and
	The Model
	The Model
	The δννn Model

	Evaluation of Model Performance
	Model κ
	Model αk
	Models βμ (t0, ρ) and βμ* (t0, ρ)
	Model γ μ (t0, ρ, λ, ψ, ω)
	Models δ and δνν

	Conclusions and Future Work
	References

