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Abstract
This work focuses on the study of a recently published dataset (Bogado et al. in ATLAS Rucio transfers dataset. Zenodo, 
2020.) with data that allow us to reconstruct the lifetime of file transfers in the contexts of the Worldwide LHC Comput-
ing Grid (WLCG). Several models for Rule Time To Complete (TTC) prediction are presented and evaluated. The dataset 
source is Rucio, an open-source software framework that provides scientific collaborations with the functionality to organ-
ize, manage, and access their data at scale. The rich amount of data gathered about the transfers and rules, presents a unique 
opportunity to better understand the complex mechanisms involved in file transfers across the WLCG.

Keywords  Data transfer analysis · Distributed computing modelling · Performance metrics

Introduction

There have been efforts to model data transfers since Rucio 
commissioning at the end of 2014 [1]. The work cited in [2] 
focuses on Transfers TTC predictions. The work cited in [3] 
focuses on the prediction of the network throughput. The 
work cited in [4] focuses on the prediction of the length of 
the queues of the system, with emphasis on the importance 
of network throughput. However, prior studies have failed 
to delve into Rucio’s replication rules modeling and Rules 
TTC prediction, and to assess how accurate a model that can 
predict the Network Time of a transfer can also predict the 
Transfer or Rule TTC.

Rucio handles transfers between sites but also handles 
the deletion requests to comply with the data retention 
policy. Both transfers and deletion requests are stored in 
REQUESTS and REQUESTS_HISTORY tables: theRE-
QUESTS table stores the current requests with no final 
state, while the REQUESTS_HISTORY table works as an 
archive of requests that will not be updated anymore, that 
is the requests with final state. Deletions requests do not 

affect RSE transfer performance, and so can be ignored. 
Only transfer requests were taken into account for this work.

There are several instances of the transfer tool on the grid. 
These instances work at WLCG level and serve transfers 
from several VOs and not only ATLAS specific transfers. 
The Rucio Database does not contain information about the 
FTS transfer tool other than the instance that is used for 
each transfer request. Information about FTS queues state, 
scheduling and retries, number of nodes, and configuration 
are hidden from Rucio. Transfers in an FTS server from 
other VOs are also hidden from Rucio.

The main hypothesis is that the load in FTS queues has a 
noticeable impact on the difference of the submission time 
and starting time of a transfer. The more transfers are queued 
at FTS the more time will elapse between the submission 
time and starting time of a transfer. Ergo, a model that can 
predict the Network Time of a transfer with 100% accuracy 
will not necessarily predict accurately the Transfer TTC, as 
the Network Time represents a small fraction of the total 
time.

The studied dataset has been made publicly available [1].

Metric Selection

Standard metrics for regression tests include root mean 
squared error (RMSE) and mean squared error (MSE) [5], 
mean absolute error (MAE) and median absolute error 
(MedAE), mean squared logarithmic error (MSLE) [5] and 
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root mean squared logarithmic error (RMSLE), explained 
variance score, R2 score, mean Tweedie deviance, mean 
absolute percentage error (MAPE) [5], relative error (RE) 
and related metrics, and the Fraction of Good Predictions 
(FoGP) [6]

The mean squared error measures the mean of the 
squared difference between the vectors y and ŷ , according 
to Eq. 1:

As the differences are squared, this metric penalizes more 
the big differences and as it is a mean value, is sensitive to 
outliers. The RMSE version is the squared root of the MSE, 
making its units comparable with the units of y and ŷ , so 
if y and ŷ are in seconds, the RMSE can be interpreted in 
seconds too. When several models are to be compared or 
when the values of y have great variance, MSE and RMSE 
are not particularly useful. Two models � and � will be con-
sidered with comparable performance if RMSE(y, ŷ𝛼) and 
RMSE(y, ŷ𝛽) are in the same order of magnitude, but always 
the model with smaller RMSE will be preferred.

The Mean Absolute Error and the Median Absolute 
Error are the mean and median of the absolute value of 
the difference between y and ŷ , respectively. The MAE 
is calculated using Eq. 2, whereas MedAE is calculated 
using Eq. 3:

MAE and MedAE are easier to interpret than MSE and 
RMSE, but MedAE is preferred for its robustness to out-
liers in y and ŷ . However, the four metrics are sensitive 
to the scale of y. This means that when the same model 
is evaluated, using two different set of observations y and 
y′ , the metric will be different for the same model and will 
depend on the distribution of y and y′ . If y present outliers 
and y′ does not, the metric for the same model will be worse 
regardless of the performance of the model. This is not a 
problem when two models compared against the same y, 
but does not give an idea of the goodness of the models in 
general.

The mean squared logarithmic error is a metric robust 
against outliers and not sensitive to scale of y. It is defined 
by Eq. 4 as the mean of the squared differences between 
natural logarithms of 1 + y and the natural logarithm of 
1 + ŷ . The root mean squared logarithmic error is the 
squared root of MSLE:

(1)MSE(y, ŷ) =
1

n

n−1∑

i=0

(yi − ŷi)
2.

(2)MAE(y, ŷ) =
1

n

n−1∑

i=0

|yi − ŷi|,

(3)MedAE(y, ŷ) =median(|yi − ŷi|), i = 0, 1, 2,… , n − 1.

Hidden in the definition lies the problem that this metric 
tends to penalize the negative errors more than the positive 
ones, and thus will favor a model that overestimates the pre-
dictions over one that underestimates them. But the metric 
is difficult to interpret and the results do not give a good idea 
of the goodness of a model.

The explained variance score and the R2 score are two 
metrics related to each other. The differences are subtle 
but important. The explained variance is defined in Eq. 5. 
It can be interpreted as the proportion of the variance of 
y that is explained by the model though the predictions ŷ:

The R2 score, also known as coefficient of determination, is 
defined as in Eq. 6:

In Eqs. 5 and 6 it is possible to spot the difference at a 
glance. Both results are equal if yi − ŷi is zero, meaning the 
R2 score does not account for biased models as explained 
variance does. This also makes the R2 slightly more sensitive 
to the scale of y.

Interpretation of both metrics is not clear at a glance, 
but are implied directly from the equations. In both cases, 
if the prediction of the model is perfect, then y − ŷ = 0 , 
and then both scores are equal to 1. This is the best score 
a model can achieve. By definition, a model that makes a 
prediction using the mean y has a score of 0, so any model 
with a score bigger than 0 will be better than the naive 
model. But then the predictions can be infinitely far away 
from the observed value. If that is the case both scores are 
negative.

Mean Absolute Percentage Error has the advantage of 
being easy to interpret. MAPE is based on the Relative 
Error, that is the absolute value of the difference between 
target and the prediction relative to the target, as shown in 
Eq. 7, and thus, is the error in the prediction relative to the 
observed value:

The MAPE is the mean of the RE expressed as a percentage, 
as in Eq. 8. But, as a mean value, is sensitive to outliers in 
the relative errors. It is possible to overcome this by taking 
the median instead of the mean in Eq. 8. Mean Absolute 

(4)MSLE(y, ŷ) =
1

n

n−1∑

i=0

(ln(1 + (yi) − ln(1 + (ŷi))
2.

(5)EV_score(y, ŷ) = 1 −

∑n−1

i=0
((yi − ŷi) − (yi − ŷi))

2

∑n−1

i=0
(yi − yi)

2
.

(6)R2_score(y, ŷ) = 1 −

∑n−1

i=0
(yi − ŷi)

2

∑n−1

i=0
(yi − y)2

.

(7)RE(yi, ŷi) =
|yi − ŷi|

yi
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Percentage Error and Median Absolute Percentage Error 
both diverge when y values are very close to zero:

MAPE penalizes more the positive forecast values than the 
negative ones [7]. sMAPE or Symetric Mean Absolute Per-
centage Error and sMedAPE try to address this issue but 
still can suffer from the divergence problem due to the sum 
y+ŷi being small.

In [5], the MASE or Mean Absolute Scaled Error is intro-
duced to circumvent the mentioned problems. These derived 
metrics overshadow the straightforward interpretation of 
MAPE. Moreover, the models to evaluate in this work make 
predictions over positive integer targets, as both the Rule 
TTC and Transfer TTC are measured in seconds.

The metric selected to compare models in this work is 
described in [6] (p.16) as percentage of predictions with 
less than X percent RE. We call this metric Fraction of Good 
Predictions (FoGP), expressed as a number between 0 and 
1, in which X is the threshold of relative error below which 
a prediction is considered good.

Formally, with the trivial function g defined as in Eq. 9, 
FoGP is defined in Eq. 10:

As an example, assume that a certain model made a predic-
tion for y. We calculate the FoGP with threshold 0.05 and we 
obtain the 0.5 as results. Formally, this can be expressed as 
FoGP(y, ŷ, 0.05) = 0.5 . This means that 50% of the predic-
tions in ŷ are less than 5% from their real values.

This metric is easy to interpret, robust to outliers both 
in y and ŷ , and can be easily and efficiently implemented. 
Thus, the models studied in this work are evaluated using 
this metric.

Models

Models ̨  and ̨ ′

The number of transfers per rule varies from rule to rule, 
but there are notable peaks in some numbers, most notably, 
rules with exactly 20 transfers. These rules are generated by 
an automated replication process by the experiment (Fig. 1).

The set of transfers going through the FTS BNL 
instance contains over 1.8M different rules. The mean 

(8)MAPE(y, ŷ) = 100
1

n

n−1∑

i=0

|yi − ŷi|
yi

(9)g(yi, ŷi, 𝜏) =

{
1 if RE(yi, ŷi) ≤ 𝜏;

0 else.

(10)FoGP(y, ŷ, 𝜏) =
1

n

n−1∑

i=0

g(yi, ŷi, 𝜏)

rule TTC is 3.1 h but the mean varies within two orders of 
magnitude depending on the number of transfers per rule, 
as shown in Fig. 2.

A baseline model was developed using the dataset 
described in the previous section. The prediction for the 
Rule TTC is based on the created timestamp of the first 
created transfer, the ended timestamp of the first ended 
transfer and the total number of transfers to be created and 
transferred to fulfill the rule.

Formally, the method consists of a regression analysis 
using ordinary least squares to fit a 1-degree polynomial, 
where the independent variable is the completions percent-
age of the rule, and the dependent variable is the time at 
which the percentage of completion is reached. Figure 3 
illustrates the application of the method to an observed 
rule. The rule has 20 transfers and the prediction is made 
after the first transfer ends, hence only using two points to 
fit the polynomial:

Fig. 1   Distribution of the number of transfers per rule. Rules with 
more than 210 transfers are counted in the last bin. The maximum 
number of transfers per rule is 205951. Notice the peaks in 20, 25, 30, 
40, 50, 100, and 200. Other notable peaks are 1, 2, 4, and 6

Fig. 2   Rule TTC given the number of transfers in the rule
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More than two points can be used in the regression analy-
sis. But the more points that are used, the more transfers 
need to finish before the prediction can be made, ergo the 
more the rule needs to progress, and the less useful the pre-
diction will be, rendering this method useless for schedul-
ing purposes. However, these models can still be applied, 
for example, to give feedback to users about the time their 
transfers will be finished.

We define the family of models �k as in Eq. 12, where 
ax + b is the polynomial that results from the fit of the pre-
dictor vector Xk , using the Ordinary Least Squares method. 
We call the predictor Xk to the vector of points ((�1j,�2j)) , 

(11)% Completed =
ended_xfers × 100

total_xfers
.

where �1j is the component that represents the percentage 
of the rule that is completed, and �2j is the time elapsed 
in seconds until that �1j is reached. The sub-index k is 
the number of points used to make the fit, so the range is 
k = 2, 3, 4,… , n , where n is the number of transfers in the 
rule. Thus, j sub-index range from 1,… , k (Fig. 4):

A more detailed analysis of the progress of the rules over 
time determined that only a fraction of the Rules TTC are 
co-linear with the first points of the progress of the rule, 
including the origin point.

From this observation, model �′k was created and tested. 
Every member of the �′k family is equal to its relative �k+1 , 
but the origin point, where the rule is created is removed 
from the regression. Then, �′2 is equal to �3 , and the ending 
times of the first two transfers are used to make the linear 
regression but not the origin point. An important conse-
quence is that the models �′k and �k+1 can make a prediction 
in the same stage of the progress of the rule, that is, when 
the transfer k is finished (Table 1).

Models ˇ and 


One important caveat with the models � and �′ is that they 
will not be able to make any prediction for the Rule TTC 
before at least two transfers of the rule have finished. One 
approach is to use metrics such as the mean or the median 
of the Rule TTC of already finished rules as the predictor 
of Rule TTC of the newly created rules. Figure 5 shows an 

(12)�k(Xk) = ax + b.

Fig. 3   Regression analysis applied to a rule to predict its TTC. Pre-
diction is made after the first transfer ends

Fig. 4   Results for the experi-
ment showing the distribution 
of the FoGP(y, ŷ𝛼k , 𝜏 = 0.1) for 
the first 9 members of the �k 
family. The bigger the k, the 
more points are included in the 
regression, the more accurate 
the results, and the later the 
prediction. For �2 , at least one 
transfer needs to finish before a 
prediction can be made, while 
for �10 , at least 9 transfers need 
to finish to make a prediction
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example of how this method could work. Assume we want 
to predict the Rule TTC of the rule R6 created at time t0 . A 
look back window can be defined since t0 . Let’s consider 
a window of 30 s and the mean of the Rule TTCs of those 
rules created between t0 and t0 − 30 s. Rules R1 to R5 were 
created over the last 30 s, and the mean TTC is 3.8 min, so 
that will be the prediction for the Rule TTC of R6 . We called 
this model � . The best window length was found through an 
optimization process described later.

However, some of the Rules R1 to R5 may not be com-
pleted at t0 , so their TTCs will be unknown and not avail-
able to make any prediction, and thus the � model cannot be 
implemented to be used in real time. The idea of this work 
is to use Time Series Analysis techniques to make a model 
that can predict the mean to use it as predictor of the rules 
created at t0 . We call this the model �.

Formally, the ��(t0, �) model family is defined as in 
Eq. 13. Here, yRi

 are the real Rule TTC of those rules created 

in the left-closed interval [t0 − �, t0) , that is, the rules in the 
dataset with min_created < t0 and min_created ≥ (t0 − �) . 
The parameter � can be interpreted as the size of the rolling 
window, usually measured in seconds. The aggregation func-
tion � will be a function that returns a number that represents 
a summary of the information contained in the {yRi

} set. The 
functions tested are min(), which returns the minimum ele-
ment of the set, max(), which returns the maximum element 
of the set, median(), which calculates the arithmetic median, 
and mean, which returns the mean of the values of the set:

Using this notation, the example in Fig. 5 can be annotated 
as �mean(� = 30).

Figure 6 summarizes the result of the experiment. The 
most accurate result was obtained by the �median model with 
� values between 20 and 30 s ,  through an 
FoGP(y, ŷ𝛽𝜇(𝜌), 𝜏 = 0.1) = 0.22 , meaning around 22% of the 
predictions will present less than 10% of relative error. Other 
� s present lower FoGP, and thus, lower predictive power. A 
new scanning of � in the interval [20, 30] shows no signifi-
cant improvement in the FoGP. This also shows that the val-
ues of the � aggregation function had some correlation with 
time and that these values could hold important information 
about the Rule TTC of near future rules.

If the �� model is implemented using only the data at real 
time at t0 , that is, at the time to make a prediction for a rule 
created at t0 , then the only TTCs available will be the ones of 
those rules with created and finished in the semi-open inter-
val [t0 − �, t0) , that is, the rules with min_created ≥ (t0 − �) 
and max_ended < t0 . Figure 7 summarizes the results of the 
experiment of measuring the FoGP over 300 Rule TTCs 
predictions, repeated 100 times. The � functions were cal-
culated using real time data.

The Model 
�

Model �� is implemented using real time data. It has low 
FoGP, as the � aggregation function depends on real 
observed Rule TTC, and real time aggregation is not repre-
sentative of the future Rule TTCs. However, as was demon-
strated in the previous section, there is a time dependency in 
the aggregated values of the Rule TTCs. Model �� presented 
here uses a forecast of the time series of the aggregation 
function � to predict the Rule TTC of the new rules. Spe-
cial attention was put in the median() and mean() aggrega-
tion functions, both because of their hypothetical predictive 
power and their good statistical properties.

Formally, the �� model is defined as in Eq. 14. This equa-
tion is very similar to the �� equation, but in the � model, 
the � function is estimated using an auto-regressive model 
with � lags of size � seconds. The � parameter represents the 

(13)��(t0, �) = �({yR1
, yR2

, ...})

Table 1   FoGP(y, ŷ𝛼�k , 𝜏) vs.  FoGP(y, ŷ𝛼k , 𝜏) comparison. Different 
thresholds � are calculated for different �′k and �k models. Compari-
son criteria is based on number of finished transfers in the rule the 
model needs to make a prediction. �′k and �k+1 are two models that 
need at least k transfers to finish before a prediction can be made. 
Top left corner shows that while for model �3 , only 4.4% of the pre-
dictions lay within 10% of its real value, for model �′2 , 8.8% of the 
predictions lay in the same range. This represents an improvement of 
95.4% of model �′2 with respect to �3

� = 0.1 � = 0.5 � = 0.9

��2∕�3 0.086/0.044 0.425/0.224 0.801/0.398
��3∕�4 0.115/0.064 0.522/0.308 0.858/0.530
��4∕�5 0.134/0.079 0.580/0.384 0.892/0.639
��5∕�6 0.150/0.096 0.623/0.451 0.916/0.727
��6∕�7 0.166/0.113 0.662/0.513 0.932/0.799
��7∕�8 0.184/0.128 0.696/0.574 0.944/0.858
��8∕�9 0.202/0.144 0.730/0.631 0.953/0.901
��9∕�1 0.219/0.163 0.758/0.687 0.959/0.922

Fig. 5   Rule TTC of rule R6 prediction, based on the mean of the Rule 
TTC of those rules created 30 s before rule R6 creation
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look back, or how many lags are used to fit the model. The 
� parameter represents the look ahead, or how many lags in 
the future the model will predict:

Here, 𝜇̂ is the estimation of the function �(yRi
) through the 

use of an auto-regressive model. As in the �� model, the set 
yRi

 is the Rule TTC of those rules created in the left-closed 
interval [t0 − �, t0) but in this case also the ones that have 
finished before t0.

The algorithm proceeds as follows. First, all the rules 
that have been created between t0 and t0 − �� seconds and 
that have finished before t0 are selected. That is, all the 
transfers in the Rules Dataset which satisfy the conditions 
t0 − 𝜌𝜓 ≤ min_created < t0 and max_ended < t0 . The Rules 
Dataset contains the fields min_created and max_created 
time stamps, that represent the time when the first transfer 
and last transfer of the rules were created. Thus min_cre-
ated time stamp is equal to the time creation of the rule 
and the minimum min_created is the time of creation of 
the first rule in the dataset. Also, the max_ended is the 
time stamp of the last transfer to finish, and thus, the fin-
ishing time of the rule. The � function is calculated over 

(14)𝛾𝜇(t0, 𝜌, 𝜆,𝜓 ,𝜔) = 𝜇̂

the bins of length � seconds, being the value of the first 
bin, the � of the Rule TTC of the rules satisfying the con-
dition t0 − 𝜌𝜓 ≤ min_created < t0 − 𝜌𝜓 + 𝜌 , the value of 
the second bin the � of the rules satisfying the condition 
t0 − 𝜌𝜓 + 𝜌 ≤ min_created < t0 − 𝜌𝜓 + 2𝜌 , and so on. This 
generates a time series 𝜎𝜇̂ of frequency � with a total of 
�∕� samples. Notice that this time series differs from the 
real time series �� in that the � Rules TTCs for the lags 
closer to t0 differ due to the selection filter rules described 
before. Once the time series is obtained, a standard auto-
regressive model AR(p) [8] is fitted using the first �∕� − � 
samples. The parameter of the auto-regressive model is 
p = � , meaning the model will need � samples to make a 
prediction. Model train and prediction is implemented using 
the AutoReg function from the Python statsmodels v0.11.1 
package [9]. Once the model is fitted, a forecast is made 
using the last � − � samples to predict the following � lags. 
The 𝜇̂ , i.e.,the prediction of the �� , will be the last value of 
the returned forecast.

F i g u r e   8  s h o w s  t h e  c a s e  f o r 
�median(� = 30, � = 30,� = 90,� = 16) model. In this case, 
the t0 is the date 2019-06-12 22:54:31. The transfers selected 
to create the time series were those satisfying the conditions 
t0 − 30 ∗ 90 s ≤ min_created < t0 and max_ended < t0 . The 

Fig. 6   Rule TTC prediction using the �� for � one of the min(), 
median(), mean(), or max() functions. The � parameter was selected 
to explore space and test the predictive power of each model. The 
FoGP metric is calculated for the same 300 random rules for every 
window size � . The experiment is repeated 100 times. The red lines 

are the median FoGP of the experiment and the green lines are the 
mean FoGP, for every window size. Notice that the real min/median/
mean/max Rule TTC was used to make a prediction and that this 
value usually is not available in real time, i.e., the rules created during 
the previous seconds usually take several minutes to complete
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median of the Rule TTC were calculated to get the time 
series using bins of 30 s. The 𝜎𝜇̂ time series is shown in 
orange while �� time series values, that is the median of the 
Rule TTC including those of the rules that end after t0 , is 
plotted in blue. These time series are very similar except in 
the last minutes before t0 . The main reason for this discrep-
ancy is that rules created some minutes before t0 only finish 
after t0 and are excluded, because they do not satisfy the 
condition max_ended < t0 . This will happen in a hypotheti-
cal implementation of this method, where everything after 
t0 is unknown as it is in the future.

The � parameter for the experiments was set to 8 min and 
is estimated based on the median Rule TTC of the Rules 
Dataset. This means that most of the rules created until 8 
min before t0 will be finished at t0 and thus, the difference 
between the time series of the real � and the observed. All 
the models tested fix this parameter to represent 8 min but as 
it depends on � , it is different for every model. The param-
eter is calculated using the formula � = 8 × 60∕� . That is, 
for the model 𝛾𝜇̂(𝜌, 𝜆,𝜓 ,𝜔) with � = 30 s, � will be 16 lags 
and for the models with � = 60 s, � will be 8 lags.

Figure 9 summarizes the results of the experiment for 
FoGP(y, ŷ𝛾𝜇̂(𝜌,𝜆,𝜓 ,𝜔), 𝜏 = 0.1) for a particular choice of the 

parameters, that is, how good the models 𝛾𝜇̂(𝜌, 𝜆,𝜓 ,𝜔) are 
to predict the Rule TTC of the rules, for � being the mini-
mum, median, mean and maximum functions. This figure 
can be read as follows. In the lower left plot, for the model 
𝛾 ̂mean(𝜌 = 30, 𝜆 = 45,𝜓 = 240,𝜔 = 16) , on average, a bit 
over 10% of the TTC predictions made with the model will 
have less than 10% relative error. The (�, �,� ,�) parameters 
were selected using a grid search to maximize the FoGP at 
� = 0.1 for the median function and can be sub-optimal for 
other � functions.

The Model ı
n

In his book “Deep Learning with Python” [10], Francois 
Chollet introduces a DNN architecture able to predict the 
temperatures for the Jena Dataset [11] slightly better than a 
naive model. We tried a similar approach to predict the Rule 
TTC, based on the time series of a number of observables 
we suspect could determine the TTC of such a rule at its 
creation time. This study should not be considered final nor 
exhaustive, but a preliminary study about the use of Deep 
Neural Networks to predict the Rule TTC based on the avail-
able data at the time.

Fig. 7   Rule TTC prediction using the �� for � one of the min(), 
median(), mean(), or max() of the real time data available at t0 . The 
�� function using the TTC of those rules that started between t0 − � 
and t0 but also did finish before t0 . This simulates the real time data 
available in the system to make the prediction, as those times beyond 
t0 are in the future and TTC data for rules finishing after t0 is usually 

not available. The FoGP metric is calculated for the same 300 random 
rules for every window size � . The experiment is repeated 100 times. 
The red lines are the median FoGP of the experiment and the green 
lines are the mean FoGP, for every window size. Notice that if � is 
small, usually the prediction is zero. That is because the number of 
rules created and finished in the interval [t0 − �, t0) is zero
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From the Rules Dataset it is possible to create a set of 
time series from observables which can influence the Rule 
TTC. The minimum, median, mean, and maximum Rule 
TTC of previous transfers demonstrate at least some predic-
tive power and have been used in previous models with lim-
ited success. Other variables that could influence the Rule 
TTC of future rules are the amount of transfers pending and 
also the amount of bytes pending. A way to calculate this 
is by extending the routines to calculate the time series for 
the minimum, median, mean, and maximum functions. The 
bins are filled with the sum of the bytes or the sum of the 
transfers of each rule for both time series, the observed and 
the real one. The difference between the two will be the time 
series of unfinished transfers and unfinished bytes. These 
values are known at rule creation time or can be approxi-
mated. As the majority of rules are over closed datasets, that 
is datasets to which new files can not be added, the number 
of files to be transferred and the size of each is mostly known 
at rule creation time.

We develop a model with a very similar structure to that 
proposed in Chapter 6 in [10]. We call it �n , where n is the 
number of convolutional filters or number of Long-Short 
Term Memory (LSTM) neurons. The main difference is the 
substitution of the Gated Recurrent Units (GRU) layer from 
the original Chollet model for a LSTM layer, as this was a 
proposed improvement suggested in the book. Input of the 
model consists of 10 channels, each of which represents the 
time series of some attribute calculated between t0 or the 
rule creation time, and t0 − 120 min, in bins of 30 s. The 

Fig. 8   Time series process to forecast the TTC of one Rule. The 
rule to predict was created on 2019-06-12 22:54:31. This defines the 
t0 time, marked with a purple asterisk at the lower right part of the 
plot. Below there is a black asterisk that corresponds with the pre-
diction done by the �median(� = 30, � = 30,� = 90,� = 16) model, 
that is a model which uses 30 lags of 30 s or the last 15 min to look 
ahead 8 min or 16 lags in the future and 45 min or 90 lags to fit the 
model. For this rule, the model underestimates the real Rule TTC. 
The real median Rule TTC Time Series is plotted in blue. This rep-
resents the real median Rule TTC of 30 s bins of those rules created 
before t0 . The orange line is the observed median Rule TTC, or the 
TTC of those rules that are finished before t0 . The agreement between 
the blue and orange line is good except in the minutes previous to t0 
itself. This results in ineffective �� models when using real time data. 
The green line in the plot is the data used to fit the �median model, that 
is the observed median Rule TTC till 8 min before t0 . The red line 
corresponds to the prediction made for the model for 16 lags ahead of 
t0 − 8 min

Fig. 9   FoGP comparison of different �� models
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attributes used to build this time series were the minimum, 
median, mean, and maximum Rule TTC of each bin, plus 
the sum of transfers and bytes of finished, created, and pend-
ing rules. Each model was implemented using Keras/Ten-
sorFlow Python API and trained for 120 epochs using the 
RMSProp optimizer to minimize the Mean Absolute Error 
loss function.

Figure 10 shows the data splitting for training, validation, 
and testing. Training and validation data were selected based 
on the distribution of the the Rule TTCs at creation time. 
The training data comprises all the rules created between 
June 8th 2019 to July 3rd 2019. The validation set includes 
the rules created between July 4th 2019 and July 10th 2019. 
And finally, the testing set includes the rules created between 
July 11th 2019 and July 29th 2019.

The δννn Model

The �n model family does not take into account informa-
tion about the rule for which we want to predict the TTC, 
that is, the model does not include information about 
the target rule. In this section, we present a model that 
includes the number of transfers the target rule consists 
of, the sum of bytes of all the transfers, and the links this 
transfers will affect, that is, the list of sources and destina-
tions for all the transfers. Unlike the time series informa-
tion fed to the previous model, the data about the target 
rule is point wise, such that it is not data about the past 
state of the system, but of the present or t0 time.

The model has 3 inputs, the several time series rep-
resenting the past of the system, the sum of bytes and 
the number of transfers of the rule, and the list of links 
affected by those transfers. The only output of the sys-
tem will be the Rule TTC. This kind of model cannot be 
implemented using the Keras Sequential Model. Instead, 
the Keras Functional API was used to conceive a fam-
ily of models capable of handling the different types of 
inputs. We call this family the ���n model family, where 

the n parameter is the number of convolutional filters or 
the number of LSTM neurons of the model.

Figure 11 shows the architecture of the ���32 model. Data 
flows from top to bottom. The left branch is the Chollet-Jena 
( �32 ) model in charge of digesting the time series data. The 
center branch input is the number of transfers and sum of 
bytes of the target rule. The right branch input is a list of 
integers, each of which represents a link that will be affected 
by one of the transfers. This list is truncated to 50, so only 
the first 50 links are going to be accounted. If less that 50 
links are used, the sequence is padded with zeros. There is 
a special need to convert the (source, destination) pairs into 
a unique number to feed the emb_input layer. This process 
is done in a preprocessing stage using the Keras Tokenizer 
tool. The alphabet of links is 8762 words of the form SRC-
SITE__DSTSITE. The LSTM layer after the embedding 
processes the links in order (Fig. 12). Even though link order 
should not matter, that is, the order in which the links appear 
in the embedding should not determine or affect the Rule 
TTC, the usage of this layer has proven important, because 
the prediction rate over the testing set is 1–2% better for the 
model family that use the LSTM layer, as shown in Fig. 13.

Normalization of all the numerical data was done using 
Eq. 15. This allows the model not to give more impor-
tance to some observables over others because of the scale. 
Typical normalization, where values are subtracted from 
the mean and divided by the variance is not enough in 
this case, due to the very long tail of the distribution of 
the values:

Figure 14 shows the histograms of the normalized vs. not 
normalized Rule TTC.

Both models were trained using the EarlyStopping call-
back that allows to monitor the progress of the validation 
loss. The callback stops training if there is no improvement 
after a fixed number of epochs and rolls back the weights 
to the ones of the last best model.

For �n models, the patience of the callback was set to 10 
epochs. Figure 15 shows the �n model family stops after 
10 or 11 epochs, meaning the best model is obtained after 
only 1 or 2 training epochs. The �n models are not able to 
generalize, and if trained for more epochs, model predic-
tions converge to values around 480.

For the ���n models, EarlyStopping patience was set 
to 5. Figure 12 shows that this model family learns from 
the training data until epoch 12 in the best case, that is for 
model ���32 . After that, there is no improvement in valida-
tion loss. Naturally, the larger the model, that is the n, the 
faster the model overfits.

F igu re   16  shows  t he  compa r i son  o f  t he 
FoGP(y, ŷ, 𝜏 = 0.1) of the �32 and ���32 models. For 

(15)� = (ln(x) − ln(mean(x))∕ln(std(x)).

Fig. 10   Rule Dataset split for training, validation and testing
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comparison, the � = 562 model, the model that always 
predicts a constant value for the Rule TTC, was 
included. A subsample of 300 rules was selected. For 
each rule, a prediction is made using all the models. 
Then, the FoGP(y, ŷ𝛿 , 𝜏 = 0.1) , FoGP(y, ŷ𝛿𝜈𝜈 , 𝜏 = 0.1) , and 
FoGP(y, ŷ𝜅 , 𝜏 = 0.1) was calculated. The procedure was 

repeated 1000 times. The box plot shows the distribution 
of the different FoGP obtained. Model � = 562 shows 
that on average, 12.2% of the predictions lies within a 
10% relative error from the real value. The ���32 model 
outperforms the � = 562 model by a modest 5.7% on 
average.

Fig. 11   FunnelNet architecture

Fig. 12   Training loss vs.  validation loss for several ���n models. 
Training was done setting an EarlyStopping callback measuring the 
validation loss with patience of 5 epochs

Fig. 13   FoGP(� = 0.1) for two variants of the ���n models. Models 
without a LSTM layer after the Embedding layer perform worse than 
the models with a LSTM layer after the Embedding layer
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Evaluation of Model Performance

It is instructive to compare the models with several values 
of � , especially in the range (0.01, 0.25), to see how many 
of the predictions of each model have more than 1% and 
less than 25% relative error. For the comparison with the � 
model to be fair, the best constant for each � must be selected 
in order to maximize the FoGP(y, ŷ𝜅 , 𝜏) . Using the same 
training data used to fit models � and ��� , the �∕� space 
was scanned calculating the FoGP(y, ŷ𝜅 , 𝜏) in the ranges 
� = (0, 2000) in steps of 1 and � = (0.01, 2.0) in steps of 
0.01. This procedure defines a surface defined in ℝ3 with a 
local FoGP(y, ŷ𝜅 , 𝜏) maximum for each � and � . We assume 
this is the optimal constant to predict the target with a given 
FoGP. Figure 17 shows this local maximum, that is, the con-
stant that predicts the training set with the highest FoGP. 
Several things arise from this plot. First, there is a peak at 
� = 567 which corresponds neither with the mean Rule TTC 

of the training set, that is 1962.1 s, nor with the median of 
439 s. This means that both the prediction using the mean 
and the median are sub-optimal in terms of FoGP. Second, 
when � = 0 the FoGP tops 1.0 all the predictions have less 
than 100% relative error. The explanation for this effect is 
straightforward. If the prediction for whatever value x is 0, 
then the relative error is calculated as |x − 0|∕x = 1 , meaning 
the error is 100%. As the FoGP measures how many predic-
tions are less than � , when 𝜏 > 1.0 , if the prediction is 0, 
all the predictions are accounted as having less than 100% 
relative error. Third, the FoGP values in the � range (0.01, 
0.25) fall between 0.027 and 0.251, meaning between 2.7% 
and 25.1% of the predictions presents less than between 1% 
and 25% relative error.

Fig. 14   Rule TTC distribution 
vs. Rule TTC distribution after 
normalization using Eq. 15

Fig. 15   Training loss vs. validation loss for several �n models. Train-
ing was done by setting an EarlyStopping callback measuring the val-
idation loss with patience of 10 epochs. This plot suggests the model 
is not able to learn from the training data

Fig. 16   This plot shows the distribution of the FoGP(y, �32, � = 0.1 ) 
and FoGP(y, ���32, � = 0.1 ) over 1000 repetitions of the experiment 
to make a prediction for 300 samples. Numbers show that, on aver-
age, 9.9% of the predictions made with model � also known as Chol-
let-Jena have less than 10% relative error. Meanwhile, the 13.0% of 
the predictions made with model ��� also known as FunnelNet, have 
less than 10% relative error. For comparison, the results of model 
� = 562 are shown. This is the model that makes a constant predic-
tion for the Rule TTC of 562 s. For this model 12.2% have less than 
10% relative error
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The � model outperforms when � is in the range (0.01, 
0.04). In the range (0.04, 0.65) the ��� model is better.

Both � and ��� models return continuous values and 
hence do not make any sense to measure the FoGP when 
� = 0 as the probability of the model to predict the exact 
value of the Rule TTC is almost zero. It does make sense 
to measure it for the � model as the constant value is inte-
ger. This explains the better performance of the � model 
for low values of � . However, there is no noticeable change 
in the FoGP when the predictions of the � and ��� models 
is rounded.

Among the possible uses of these models for real world 
applications, we count the benefits for rule and transfer 
requests scheduling and the ability to give feedback to the 
users of the system about the time to complete of their 
transfers. Before any model can be used to make predic-
tions to improve the scheduling of transfers or rules, we 
need two conditions be satisfied. First, the model needs 
to be able to make a prediction at the time the rule or 
transfer is created or the t0 time. Second, the accuracy of 
the model should be high enough to actually improve the 
schedule. From talks with the experts, we expect a useful 
number will be a FoGP(y, ŷ, 𝜏 = 0.1) of around 0.95. All 
presented models except model � can make predictions at 
the rule creation time, although the accuracy of the models 
presented here are below 0.2. The models that can make 
predictions at t0 time can also be used to give feedback to 
the users about the TTC of their transfers. However, other 
models that include information of times post-t0 have bet-
ter accuracy in general and can be used too, depending 
on the need of the users to have the feedback early in the 
lifetime of the rule or transfer, or late, in which case the 
prediction will be more accurate (Fig. 18).

Model κ

The � model, which always predicts a constant value, allows 
us to put a lower bound for the performance of the models 
over a range of interesting � values. Optimizing the constant 
to maximize the FoGP results in a model that is surprisingly 
difficult to improve upon, both at high and low � values. By 
its simplicity, and because its performance is comparable to 
other more sophisticated models, it should be the preferred 
to be implemented, for example to give feedback to users 
about the TTC of their transfers. If that is the case, the upper 
bound of a confidence interval could be interesting for users.

Model αk

Model � is the only model of the studied ones that is not 
directly comparable with the other models due to inabil-
ity to make predictions at the Rule creation time. Model � 
needs at least two transfers within the rule to finish to fit and 
forecast when the other transfers probably will finish. This 
makes the model suitable to give feedback to the users but 
will not be helpful to improve the scheduler, as the decision 
about where to send the transfers will need to be done at 
rule creation time and before any transfer is submitted or 
finished. The model shows the non-linearity of the progres-
sion of the transfers, giving insights of the nature of the rules 
and their behavior. The time between transfer submissions 
for the transfers of a rule is not constant. Rucio’s Conveyor 
daemon may consider that FTS has a high enough number 
of transfers already and decide not to submit more transfers 

Fig. 17   Optimal constant prediction search based on the maximiza-
tion of the FoGP(y, ŷ𝜅 , 𝜏) function. Black line represents the � with 
maximum FoGP(y, ŷ𝜅 , 𝜏) for a given � . The colored points represents 
the actual FoGP(y, ŷ𝜅 , 𝜏) value, the bluish the worse, the redder the 
better. The red line also represents the achieved FoGP with the y-axis 
on the right

Fig. 18   FoGP comparison over a � range from 0.01 to 2 for the best 
models known, which were presented in this work. Predictions for 
all the models were made for all the rules created between 2019-
07-11 and 2019-07-29. Model �median(� = 30) outperforms all the 
models. However, the real median of previous Rule TTC needs to be 
known for the model to work and this information is not available at 
t0 . Model ��� is the best model following the FoGP criteria with � 
between 0.22 and 0.70 and is the model with greatest potential to be 
extended. The performance of all the models are comparable with the 
performance of Model � , and for its simplicity, it should be the pre-
ferred model
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until some of those active transfers finish, increasing the 
Rucio Queue Time for part of the transfers of the rule. This 
will impact directly in the Rule TTC and this model will not 
be able to forecast this future delays.

Models βμ (t0, ρ) and βμ
* (t0, ρ)

Models ��(t0, �) and �∗
�
(t0, �) make a prediction calculating 

a function � over the Rule TTC of those rules created in the 
last � s. The difference between �� and �∗

�
 is that �∗

�
 excludes 

those rules that ends after t0 . The �� model cannot be imple-
mented with real time data as it calculates the � function 
over the Rule TTC of all the rules that have started at some 
point in the past, including the ones that have not finished 
yet. This information from the future added to the model 
makes the two models radically different. One could assume 
that if the � function could be predicted with 100% accuracy, 
then FoGP of the model �� represents the theoretical limit 
of FoGP of the model �∗

�
 , as the first include more informa-

tion than the second. Yet, this statement does not hold in 
general, for example, for the function that take the maxi-
mum, including more information in the model does not 
make it more accurate. The �max model makes a prediction 
by calculating the maximum Rule TTC of all the transfers 
created between t0 and � . The bigger the � is the bigger is the 
chance that there exists a very slow rule. But �∗

max
 filters out 

those transfers that have finished after t0 , and thus the Rule 
TTC is throttled to the value of � . For this reason, the 
FoGP(y, ŷ𝛽∗

max
, 𝜏 = 0.1) presents a peak when � is near 600. 

This value is close to the best value for the model � at 
� = 0.1 , which is 562. �∗

�
 models with other parameters pre-

sents lower FoGP values than �∗
max

 at � = 0.1 , and thus are 
considered inferior models.

Figure 19 shows that �∗
max

(� = 600) outperforms model � 
in the � range between 0.04 and 0.22. This is the best model 
known to date in that range. It is not possible to implement 
the �median model without knowing the Rule TTC of rules 
that didn’t finish yet. If a model for a perfect prediction of 
the median of the Rule TTC exists, then the �median(� = 30) 
shows the best performance across a wide range of �.

Model γ μ (t0, ρ, λ, ψ, ω)

The �� model family is the first approach to solve the prob-
lem using time series analysis. The �� is an auto-regressive 
(AR) model, where the input is the time series of the Rule 
TTC. The function � is calculated in bins of � s. The input 
for the AR model consists of � lags. The model is fitted 
using � lags and the look ahead of the model is � lags. The 
best model was obtained by scanning the parameter space 
and maximizing the FoGP, as detailed in Sect. 3.3. Model 
�median(t0, � = 30, � = 45,�240,� = 16)  achieved the best 

FoGP at � = 0.1 . If this model would predict the median 
with 100% accuracy then its results should be comparable 
with those obtained with the �median . The results show that 
the �� model is not as good, especially at low � . The �median 
model is better than �median only for 𝜏 > 0.91 . This model 
seems to be not accurate enough and other more complex 
models are worth to try. Integrated models were discarded 
after verifying that the time series show no trend, ergo there 
is no need for differentiation. Moving Average models are 
used after verifying that the time series are not stationary, 
which is not the case for long runs of Rule TTC time series. 
A straightforward check showed that the standard deviation 
from the mean changes over time, and thus a General Auto-
Regressive Conditional Heterokedasticity (GARCH) model 
is more appropriate.

Models δ and δνν 

The � model is the first attempt to solve the forecast problem 
with neural networks using a modified model proposed by 
F. Chollet. This approach was shown to be ineffective but 
its accuracy is higher than the accuracy of model �median . 
Model � includes the information of the past state of the 
system in the form of time series but it does not include 
information of the present. Information from the rule that 
is known at the creation time like the number of transfers 
or the sum of bytes the system must process to complete 
the rule are not included in model � . This observation leads 
to the ��� model, a deep neural network model with mul-
tiple inputs that includes the time series from � model, but 
also the number of bytes, number of transfers, and the links 
affected by the rule. ��� model is the best practical model 
in the � range from 0.25 to 0.70, but more importantly, it is 
the easiest model to extend. We expect that this model would 
benefit enormously if information about failed transfers per 
link, history of transfers submitted to FTS, and history of the 
rate of the link were available and could be added as inputs.

Fig. 19   FoGP comparison zoom over a � range from 0.01 to 0.25 for 
the best models
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Conclusions and Future Work

The distributed data management for the experiments using 
the Worldwide LHC Computing Grid form a complex eco-
system with dynamic interactions. Since its commissioning 
in 2014, Rucio has become the de-facto standard for scien-
tific data management, even outside the CERN community.

The accuracy of the predictions of the models will be 
limited by the amount of data about the system available at 
a given moment, and by the stochastic processes involved in 
certain parts of this system. Rucio’s importance and the rich 
amount of data gathered about the transfers and rules life 
cycles, contributes to the importance of this study.

Several models were presented and evaluated during this 
work, especially for Rule TTC prediction. All presented 
models except model � can make predictions at the rule crea-
tion time, although the accuracy of these does not allow the 
models to be used to improve the scheduling of the transfers 
or rules. The expected threshold that would make these pre-
dictions useful is a

FoGP(y, ŷ, 𝜏 = 0.1) of around 0.95. Even if the accuracy 
of the models presented here is not enough for scheduling 
purposes, excluding model � , these are the best models 
known to date for Rule TTC prediction at rule creation time.

This work lays the foundation for future models and 
establishes the metric by which they should be compared. 
The ��� model is promising. The number of failed transfers 
per link, aggregated over a the last 10–30 min or some recent 
history in time series form could improve the performance of 
this model. It is known that the FTS Optimizer penalizes the 
links if there are failed transfers. Those links without failures 
in the recent history are preferred over the ones with failures. 
Thus, the transfers pending that use those links with failures 
will be delayed more than the transfers that will use a link 
without failures. Adding this information to the model could 
increase its performance.

The ��� model could also benefit from knowing how 
many transfers have been submitted to the links that the 
target rule will affect. The way to calculate this from the 
transfers dataset is to get all the transfers that have been sub-
mitted, but did not finish yet, ignoring the started timestamp.

The authors also suggest a study of the prediction accu-
racy needed to improve the scheduling. A rationale of this 
value in terms of FoGP will shed more light on the useful-
ness of the models presented here and future models.
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