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A B S T R A C T

The product of good design should render a tool invisible for a user who is executing a task. Unfortunately,
web applications are often far from invisible to users, who struggle with poor design of websites and processes
in them. We are particularly interested in web processes that involve form filling, so we have been studying
how people interact with web forms. Besides cataloguing user interaction problems that are common in web
forms, we have noticed that, in many cases, there is a single form element or widget to blame for a certain
interaction problem, because such widget is not the most appropriate one for the required input in that
particular context. This unfitness of the widget causes an extra burden to the user, which we call interaction
effort. In this work we propose measuring the interaction effort of a widget with a unified score based on
micro-measures automatically captured from interaction logs. We present the micro-measures that were found
relevant to predict the interaction effort in 6 different types of web forms widgets. We describe a large data
collection process and prediction models, showing that it is indeed possible to automatically predict a widget
interaction effort score by learning from expert human ratings. We consequently believe that the interaction
effort could be used as an effective metric to compare small variations in a design in terms of user experience.
1. Introduction

The design of an artifact determines how we interact with it and
how much additional effort it requires while helping us complete our
goal. Norman says that ‘‘good designs fit our needs so well that the
design is invisible, serving us without drawing attention to itself’’ (Nor-
man, 2013). Many authors have studied user interaction on software
systems and the extra effort that it requires to interact with them. For
instance, research on cognitive load theory in the context of learning
systems calls a learner’s extra cognitive effort ‘‘extraneous processing"
when it does not support the learning objective but on the contrary,
deviates learners from it, as it may be the case with a confusing content
layout or poor design (DeLeeuw and Mayer, 2008); in contrast, Janlert
and Stolterman define ‘‘implicit interaction’’ as the interaction not
requiring user attention (Janlert and Stolterman, 2017).

Most of the studies on web interaction focus on obtaining a measure
of the interaction on a website, a whole page, or a complete user ses-
sion. They do so by analyzing user interface events (e.g. mouse move-
ments, clicks). For example, with a large experiment, Akers proved that
analyzing backtracking events can be as effective as performing user
testing in order to measure the usability of a web application (Akers
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et al., 2012). However, analyzing backtracking events requires manual
observation, which is expensive and may be cost-prohibitive for some
organizations. Therefore, automating the analysis of user interaction
becomes important, as it could present a more affordable option for
website evaluation. Along this line, Speicher et al. created a platform
that captures different kinds of interaction events automatically while
users are performing a task and presents a questionnaire at the end
to ask for explicit usability ratings; the collected interactions plus
these ratings are used to train models for predicting the usability of
a website (Speicher et al., 2014). However, their experiments show
that, for an accurate prediction, it is imperative to capture some con-
text information like page structure, user intention, and even display
resolution.

The narrow focus on the instrumental qualities supported by us-
ability measures was challenged when other dimensions of interactive
products became relevant, and consequently the multidimensional no-
tion of User Experience (UX) emerged (Hassenzahl and Tractinsky,
2006). ISO defines UX as ‘‘user’s perceptions and responses that result
from the use and/or anticipated use of a system, product or ser-
vice’’ (ISO, 2019). For ISO, UX is a consequence of both hedonic aspects
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(brand image, user’ internal state resulting from prior experiences and
attitudes) and instrumental aspects (functionality, interactive behavior,
user’s skills, context of use) (ISO, 2019, note 2). Several other defini-
tions of UX share this hedonic plus instrumental pattern (Law et al.,
2009). Hassenzahl et al. (2021) have advocated for some hierarchical
relationship of hedonic aspects over the instrumental/usability ones, as
components of the UX, but that debate exceeds the scope of this work.
Here we talk broadly of UX in terms of the ISO definition. To improve
the UX, a Human or User-Centered Design (UCD) approach has been
recommended (Sharp et al.; ISO, 2019). However, agile methods have
become the preferred choice for software development (Hoda et al.,
2018), and their organization into short, timeboxed development cycles
makes UCD practices hard to accommodate (Brhel et al., 2015; Da Silva
et al., 2018).

Our long-term goal is to provide technology that allows attending to
UX issues even in short iterations and when resources are insufficient
to hire subjects for user testing. Thus, we aim at assisting UX experts
approach UX issues incrementally, by comparing design variations in
production through controlled experiments that may be run automat-
ically. This can be compared to an A/B testing approach that focuses
on UX instead of measuring revenue (Firmenich et al., 2019; Gardey
and Garrido, 2020). That is, while manual evaluations continue to be
important and should be pursued whenever possible, we believe that
automating the diagnosis of some factors affecting UX is essential to
boost their importance, especially in small/medium-sized companies
with limited resources.

In this work, we are particularly interested in web forms which,
besides navigation, demand the most interactions from web users; they
may range from simple login forms to complex multi-stepped checkout
processes. Forms are worth studying since statistics show that while
they are the most common lead generation tool, 81% of people abandon
them after beginning to fill them out (WPForms, 2020). Moreover, the
experience in studying user interaction during form filling processes
made us realize that in many cases a single form widget (for instance
a text field or a select box) can be responsible for a certain interaction
problem, because it is not the most appropriate for the required input.

The described unfitness of a widget is not only related to the type
of data or format the input expects, but also to other aspects that can
cause user annoyance or discomfort as well as demand extra time and
effort from them. We call it widget interaction effort (Grigera et al.,
2019). Interaction effort is a score assigned by UX experts based on
their subjective analysis of the target interaction. For instance, it may
be related either to one or many of the following: a confusing layout
or label, its position in relation to the rest, unclear input format,
unknown options or constraints, too many options, duplicated content
or actions, how far a required date is, etc. That is, while it may be
related to hedonic factors (such as aesthetics, perceptions, or comfort),
it may also be related to instrumental qualities (e.g., usability measures
such as efficiency), both affecting UX (ISO, 2019). In this work, rather
than arguing about the precise source of the interaction effort, we are
interested in providing a practical instrumentation to measure it.

In general, the interaction effort cannot be discovered by simply
checking guidelines statically but by observing user events dynamically
and detecting the widget that provokes an awkward interaction. We
propose predicting the interaction effort that a widget demands from a
user with a unified score that is based on its usage. To reach such score,
we propose capturing micro-measures while users interact with each
type of widget. Having this unified score could allow comparing the
effort demanded by different types of widgets for the same input. This is
particularly relevant when different variations of a design are proposed,
for example in the context of A/B testing (Speicher et al., 2014;
Gardey and Garrido, 2020) or in the context of UX refactoring (Gardey
et al., 2020). Similar to the concept of code refactoring, UX refactoring
applies small transformations to the user interface (UI) that preserve
functionality, but in this case the purpose is to improve UX rather than
2

internal code quality (Gardey et al., 2020; Garrido et al., 2011).
In a previous work we proposed the interaction effort to rate widgets
for text inputs and selects (i.e., drop down lists) (Grigera et al., 2019)
where expert raters manually rated the interaction effort for different
instances of both kinds of widgets in several web forms. Positive results
were obtained in predicting the score from feeding the automatically
captured micro-measures into a decision tree. This article aims at
extending that work in several aspects: first, the studied widgets have
been extended to a broader set that includes links, radio buttons, date
selects and date pickers. Secondly, micro-measures have been extended
so as to include interaction data from the surroundings of a widget, to
account for some information about the context of the widget in the
page. Thirdly, tools were created to collect the data: a web extension
for event capture and micro-measure recording, and a web application
for manual rating which shows video capture of each user test session
along with a rating form. Moreover, a larger data collection process has
been carried out which enabled wider variation in the data to train the
models. The trained models are decision tree regressors which show
that it is possible to predict the interaction effort from the captured
micro-measures. Since decision trees are white-box models (i.e., it is
possible to interpret what the model learns), an analysis was also
conducted in order to understand the weight that each micro-measure
bears in the decision process.

Summarizing, the main contribution of this article is the defini-
tion and the analysis of the micro-measures that serve to predict the
interaction effort of individual widgets using decision trees. For this
purpose, we conducted a large data collection process to capture user
interactions and UX experts’ manual interaction ratings. Having a pre-
diction model for individual widgets could be a useful addition to the
UX practitioner’s toolkit. By incorporating the effort prediction model
into the web application, which only requires user interaction events to
work, website owners could get effort ratings for all interactive widgets.
This could serve different purposes like pinpointing a roadblock in a
checkout process, or comparing different alternatives in an A/B testing
context. Thus, our approach does not pretend to replace UX evaluation
methods; instead, we believe that the interaction effort metric offers a
factor within the measure of UX of a design, which can be computed
automatically and used to compare designs.

The rest of the paper is organized as follows: Section 2 provides
some background and related work on interactivity, cognitive load and
automatic UX evaluation methods. Section 3 presents the motivation
behind the focus on individual widgets and provides a description of
how the interaction effort could be applied. Section 4 describes the
rationale behind micro-measures and their use for different types of
web form elements. Section 5 describes the process of data collection
and tools built for that purpose. Section 6 presents the models created
for learning and predicting the interaction effort and analysis of re-
sults. Section 7 discusses the limitations of this approach and finally,
Section 8 provides conclusions and future work.

2. Background & related work

2.1. Interactivity and cognitive load

Interaction in action – ‘‘interactivity’’ after Janlert and Stolterman
(2017) – can fluctuate from a moment to another during use and its
measurement is of interest to improve the UX of a software system.
One way to measure interactivity is in terms of the time spent in-
teracting (Janlert and Stolterman, 2017); thus, the time spent in the
interaction with a user interface (UI) component includes the user
actions explicitly directed to the component, as well as others that
are not completely directed to it and that can be placed under the
umbrella of ‘‘implicit interaction’’. This umbrella would include the
set of minimal interactions that occur unconsciously and automatically
in the context of using a UI to achieve a goal (e.g., movements of
the cursor around a widget, scrolling a screen, entering and leaving

a widget, etc.) (Atterer et al., 2006).
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Those patterns of implicit interaction can be collected by moni-
toring the actual usage of a system in real world environments and
evidence shows that said behavior can reflect to some extent the mental
effort and cognitive load (Gütl et al., 2005; Chen et al., 2012). In
fact, Human–Computer Interaction (HCI) research is intertwined with
studies about the Cognitive Load (CL) due to a limited working memory
capacity and a vast long-term memory capacity (Baddeley, 1976).

Cognitive Load theories distinguish three types of loads in working
memory: intrinsic (defined by the complexity of information that is to
be learned); extraneous (caused by an inappropriate presentation of the
material or by requiring to perform activities deemed irrelevant, such
as having to integrate information from spatially separate sources of
information); and germane (results from active schema construction
processes) (DeLeeuw and Mayer, 2008). The CL induced by using a
software tool can be modeled as a specific component of extraneous
CL (Hollender et al., 2010). The amount of extraneous load due to
software use is influenced by the complexity of the software, that is,
a suboptimal software design according to traditional usability goals.
User actions during the interaction constitute observable behaviors that
can be considered CL indicators, with evidence for speech, interactive
gesture, digital pen input and mouse interactivity (Chen et al., 2012,
2016).

Taken together, the physical and mental efforts users make in order
to achieve their goals through interaction with a UI can be linked to
some ‘‘cost of interaction’’ with that UI (Budiu, 2013). In our proposal,
we call it interaction effort (Grigera et al., 2019), and it is inspired by
the works on interactivity and extraneous CL, which provide an inter-
pretation of what we want to measure, although we target individual
UI widgets.

2.2. Automated UX evaluation

Incorporating some degree of automation in UX evaluation and
repair is deemed crucial to make these practices mainstream in software
development, especially for agile teams working in short development
cycles (Da Silva et al., 2018; Firmenich et al., 2019). Bakaev et al.
(2017) classify automatic evaluation methods in three classes: metric-
based methods, which help UX experts during inspection methods
on static web pages, interaction-based methods, which log real user
interaction during user tests, and model-based methods, in which users
and their interaction are simulated in order to create and train models.
The method in this paper can be considered a combination between an
interaction-based – for it involves logging user interaction events – and
a model-based, since we use the interaction data to build models able
to predict user behavior.

Metric-based evaluation methods are mainly concerned with help-
ing experts check guidelines (Bouzit et al., 2016) and assessing UX
factors that can be analyzed from a static perspective of the website,
such as aesthetic appearance and perceived visual complexity. Exam-
ples of this method are the works of Dingli and Mifsud (2011) and
Oulasvirta et al. (2018). Dingli & Mifsud proposed USEFul, a web
usability evaluation framework that focuses on helping UX experts
with inspection methods, especially checking guidelines in html source
code. Oulasvirta et al. have developed AIM, an online service that may
evaluate an existing UI using several metrics on factors like symmetry,
colorfulness and visual clutter.

Regarding interaction-based evaluation methods, there are several
tools that capture and analyze event logs during remote user testing
and may help identifying UX issues through practical visualizations, for
instance by using timelines (Burzacca and Paternò, 2013; Paternò et al.,
2017) or usage graphs (de Santana and Baranauskas, 2015). In our
previous work, we developed a tool called ‘‘USF’’ which, by analyzing
interaction events, automatically detects specific UX problems (Grigera
et al., 2017a).

There are several studies specifically analyzing mouse events that
3

relate mouse movement with visual attention (Arroyo et al., 2006), eye
tracking and task conditions (Navalpakkam and Churchill, 2012), and
survey response difficulty (Horwitz et al., 2017). However, approaches
in related work, while providing insights on general page design, fail to
provide them on localized interaction problems, which is our objective.
As described in Section 4, our approach uses a combination of measures
on several interaction events, with the intention of comparing user
interaction effort of specific widgets.

In the category of model-based evaluation methods, different mod-
els have emerged to predict user interaction. Well-known models such
as Keystroke Level Model (Card et al., 1980) and Fitts’s Law (Fitts,
1954) have been widely used in user interaction improvement. How-
ever, they are focused on capturing one dimension of user interaction
in isolation, making prediction difficult in realistic interaction tasks (Li
et al., 2018). The introduction of artificial intelligence in HCI has
enabled major progress in the automation of UX evaluation. Machine
learning models are able to find complex patterns in the data, which
would not be easily detectable by means of analytical methods. These
models have recently been applied to predict the perceived visual
complexity of a webpage by learning from features obtained through
the static analysis of the target website (e.g., the amount of UI elements
of a specific type or a screenshot of the rendered UI) (Oulasvirta et al.,
2018; Dou et al., 2019; Michailidou et al., 2021).

Regarding the user interaction – our main focus in this work –
there are proposals that model the user performance in menu selec-
tions (Bailly et al., 2014; Li et al., 2018). While Bailly et al. proposed
a mathematical model for selection time in linear menus, Li et al.
developed a deep recurrent neural network to predict the performance
in a sequence of tasks. Both approaches share the goal of predicting
user interaction in a target interface without testing it with real users.
Moreover, they are limited to a specific interaction task, i.e. the option
selection in a vertical menu. However, there are aspects of the user
performance depending on the context of use which cannot be included
by these models. Another work closer to our proposal is that of Speicher
et al. (2014), which also relies on user interaction events in order to
make predictions; however, the metrics that they capture are highly
coupled to the target page structure, so it becomes necessary to de-
velop a different model for each websites group that share a common
layout. In our work, the analysis at the level of UI widgets provides
independence from a particular web application family, because these
widgets are native components used across different websites.

3. Widget-centered analysis

In this section we first motivate the relevance of focusing on indi-
vidual widgets and later describe our approach. In our previous work,
as mentioned in the Introduction, we have studied user interaction
within small portions of web pages, and proposed transformations
to these small portions to improve external qualities of a web ap-
plication while preserving functionality. That is, we have proposed
the application of the refactoring concept, traditionally focused on
internal code qualities (Fowler et al., 1999), to the improvement of
usability (Garrido et al., 2011), accessibility (Garrido et al., 2014) and
UX (Gardey et al., 2020). UX refactorings, in line with the defini-
tion of UX previously introduced, include usability and accessibility
refactorings (transformations to improve instrumental aspects) and also
account for improvement of hedonic aspects (Gardey et al., 2020). As
we mentioned earlier, UX refactorings should preserve functionality,
allowing users to perform the same operations on the application before
and after they are applied.

Having small transformations focused on a single or a few wid-
gets allows for more manageable and safer changes, that may be
incrementally introduced. The additional benefit of having concrete
transformations cataloged as UX refactorings is that each one represents
a solution to a particular UX issue, which, in the refactoring jargon, is
called a ‘‘smell’’ (Grigera et al., 2017a). An example of a UX smell is

Unformatted Input, which signals that a free text input is used where
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Fig. 1. The figure shows an example of a web form with the UX smell Unformatted Input on the ‘‘birthdate’’ field. This smell can be solved by two alternative refactorings: ‘‘Date
Input into Selects’’ or ‘‘Add Datepicker’’.
the user is expected to fill data in a specific format. Fig. 1 shows an
example of this smell on the birthdate field in a form. As it is, this field
can be error-prone since the required date format is unknown to users.

Fig. 1 also shows that there are two possible UX refactorings that
may solve the aforementioned smell: Add Datepicker, which augments
the text input with a calendar to select a date, and Date Input into Selects,
that replaces the input with three select boxes to choose day, month and
year. As we can see from this example, the changes applied by a UX
refactoring go from augmenting the interaction of an existing widget
to replacing it with another widget that serves the same purpose. In
this case, users can enter a date on both interfaces, the only difference
is the type of widget used for the input.

We have built tools that allow the automatic application of UX
refactorings on the client side of running applications (Grigera et al.,
2017b; Gardey et al., 2020). These refactorings are called Client-Side
Web Refactorings (CSWR) and perform small transformations to the
Document Object Model (DOM) of web pages through scripts. More-
over, since there is usually more than one CSWR to solve a given smell,
the tools allow to create different versions of the web application, each
one with a different CSWR, for the purpose of running user tests on
each version (Grigera et al., 2018; Gardey et al., 2020).

For those smells that have alternative refactorings, it becomes nec-
essary to evaluate them and find the best solution for each particular
situation. For instance, in the case of Unformatted Input, the three select
boxes may work better than a datepicker for entering a birthdate, while
a datepicker may be more helpful to enter a date in a booking system. It
could also be the case that a refactoring does not cause an improvement
on a specific UI, and that the original UI works better for the users. As
a consequence, we defined the interaction effort score to have a criteria
for comparing the performance of different UX refactorings for a given
widget.

Since we aim at obtaining the effort score automatically, in this
work we propose models to predict the score assigned by UX experts
based on their subjective criteria, using interaction data captured from
users on the target application. Fig. 2 shows the overall approach based
on the alternative refactorings for Unformatted Input. Using this pre-
diction approach, UX experts could deploy the alternative refactorings
and automatically collect interactions from different users in order to
select the refactoring whose widget results in a lower interaction effort.
Nevertheless, it is important to mention that this idea is not limited
to UX refactorings. It is possible to evaluate the interaction effort of a
widget regardless of how it was created.

The first step for predicting the interaction effort was to define
the set of features that will be used as predictor variables (the micro-
measures in this case). The following section describes the method for
creating the micro-measures and the selected ones for each widget type.
Once we defined the micro-measures to capture, we started with the
4

data collection process to get real user interactions rated by different
UX experts from the industry. Finally, we evaluated different prediction
models and we report the outcome of decision trees, including an
analysis of the micro-measures importance.

4. Micro-measures

We analyzed a set of six types of interactive widgets typically found
in web forms (see Fig. 3). Since each widget type has its own pattern of
interaction, it was necessary to find a different set of micro-measures
for each one. In our previous work, we defined micro-measures for text
inputs and selects (Grigera et al., 2019); yet, in the present work some
of those micro-measures have been replaced and the set of widget types
have been extended to include link anchors, radio buttons, date selects
and datepickers.

With the goal of modeling the behavior around each type of widget
under analysis, we first consolidated a list of possible micro-measures
from existing literature and then performed a preliminary experiment
with UX experts to refine the list. Since the micro-measures had to
be automatically captured, features that required human interpretation
such as ‘‘frustration’’ or ‘‘intent’’ were ruled out from the start. Then,
a preliminary set of user interactions observed by UX experts was
recorded to refine the list of micro-measures, leaving only the most
relevant ones in terms of helping decide how much effort users make.
Some examples of these features are pause times, mouse speed or time
spent around a widget.

This section first describes the sources that inspired the selected
micro-measures and then, it defines the resulting ones for each type
of widget.

4.1. Selection process

We followed a multi-step process for creating and refining the
list of micro-measures. We started with a list of candidate micro-
measures extracted from the existing literature, based on different kinds
of interaction like mouse movement, keyboard activity or idle time
analysis.

Mouse movement is a relevant source for behavior analysis and pre-
diction, and we found many features reported in the literature for this
aspect of interaction. For instance, the action of repeatedly revisiting
a widget has been reported as an uncertainty predictor (Dias et al.,
2019), so we design specific micro-measures such as ‘‘Interactions’’, to
capture the number of times a user gains focus on a widget, or ‘‘Hover
& Exit’’ and ‘‘Exit & Back’’, which try to capture the mouse movement
towards the widget or away from it. The study of dwell times and
pauses has long been considered for behavioral study, even for user
profiling (Hurst et al., 2007; Attig et al., 2019). In our model, pauses
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Fig. 2. The overall prediction approach. Models predict the effort of a single user interaction based on its micro-measures collected.
Fig. 3. Example of a website including most of the types of the widgets considered in this work.
are being considered in micro-measures ‘‘Dwell Time’’ and ‘‘Typing
Latency’’. Mouse speed is also usually mentioned, sometimes as a
confusion indicator. Speicher et al. (2014) use different mouse-related
features such as cursor speed, trail length and hover times in order
to predict quantitative metrics of usability, many of which were also
captured in micro-measures like ‘‘Mouse trace length around widget’’
or ‘‘Dwell+Hover time’’. They also use some keyboard-related ones,
another widely used source for interaction behavior analysis. One of the
earliest works in this area (Atterer et al., 2006) analyzes user actions
in tasks such as filling out web forms. It is worth to mention that in
the related literature, the micro-measures are usually analyzed in the
context of full user sessions, whereas in this work we limit the capture
to specific widgets and their surrounding areas.
5

After selecting the first candidate micro-measures, the preliminary
experiment proceeded as follows. First, three UX experts were asked to
observe and rate individual widget interactions from screen captures
(these practitioners make user testings on a daily basis as Senior UX
Researchers in the local industry). The ratings were classified in 4
different scores, from 1 (least demanding) to 4 (most demanding). After
the rating process, we re-watched the screen captures along with the
experts and asked them about the user behaviors they had considered
in order to select the rating, which helped refine the initial list of micro-
measures by adding new ones or removing those failing to have an
apparent impact on the scores. The list of micro-measures was also
trimmed for technical reasons that prevented capturing some events
with JavaScript. For instance, all mouse activity taking place within an
open select box is intercepted by the browsers; therefore, we could only
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work with micro-measures surrounding the element, or time-related
analyses. We also considered avoiding metrics that would have caused
noticeable performance issues, although we never had this problem.

4.2. Analyzed widgets

Since our objective is to be able to compare the performance of
various types of widgets for the same input (like the example shown in
Fig. 1), the models use the set of micro-measures for each type of widget
to predict a single score that we call interaction effort. This unique score
makes it possible to compare different widgets.

The following list details the micro-measures selected for each type
of widget under analysis. The first part of the list includes the common
micro-measures shared by all widgets, while the rest are specific for
each type. The order of micro-measures in this list is random although,
in the process of predicting the interaction effort score, some micro-
measures were shown to weigh more than others. This analysis will be
presented in a later section.

Shared micro-measures.

• Dwell+Hover time: time the user is inactive while the mouse
cursor is over the widget area, or with the focus on the widget
and the mouse tilted (dwell time), plus time the user is moving the
mouse over or around the widget area (hover time). The widget
area is a bounding box that contains the widget plus a padding,
which allows to capture mouse activity on the surrounding ele-
ments such as the widget label. Mouse activity on these elements
is considered part of the target widget.

• Mouse Trace Length around Widget: the complete length of
the mouse trace captured within the widget area. In combined
widgets, such as radio button sets or date selects, it is a single
area that encompasses all the widgets in the group.

• Hover & Exit: a direct movement of the mouse cursor towards the
widget area, followed by counter movement away from it, with a
similar but opposite trajectory.

• Exit & Back: a mouse movement away from the widget area,
followed by a counter movement back to it, with a similar though
opposite trajectory.

• Interactions: number of times the user gained focus on the wid-
get. For text input and datepicker, the focus event is considered,
while for the remaining widget types, a focus means that the
user enters with the mouse on the widget area and stays within
it for at least 2 s. This threshold was determined by analyzing
the preliminary interaction recordings. Lower values starting from
400 ms were evaluated but they were prone to detect uninten-
tional widget interactions such as a user quickly passing through
a widget area when going from one page section to another. Those
widget logs with ‘‘0’’ as value in this micro-measure were not
included in the datasets, for they are not valid widget interactions.

Text input.

• Focus Time: total time the widget has the focus. Similarly to
Dwell+Hover time, this micro-measure serves to calculate the time
that a user spends on the widget when the keyboard is used
instead of the mouse, to enter and exit from the widget.

• Typing Latency: time elapsed from focus gain to first keystroke.
This time is also included in Focus Time.

• Typing Speed: total typing time in proportion to number of
characters typed. It is the time elapsed from the first to the last
keystroke divided by the keystrokes amount.

• Typing Pace SD: intra-keypress time standard deviation. It esti-
mates the typing pace of the user. The closer the intra-keypress
times are to each other (regardless their magnitude), the lower
the standard deviation is. This means that interruptions during
6

the typing process result in a higher value.
• Corrections: number of deleted characters (with backspace or
delete). It gives a measure of the errors made on this widget.

• Input Switches: changes from keyboard to mouse (or viceversa).
Many users were found to navigate a form with the tab key while
the form elements are visible, and switch to the mouse to scroll
to the next section while interrupting the interaction with the
current widget.

Select.

• Options Display Time: total time the options list is open. It
calculates how much time the user needs to find and select the
desired option.

• Options Selected: number of times the selection is changed. Very
much as Corrections for Text Input, it accounts for the (intentional
or unintentional) errors made.

Link anchor.

• Misclicks: number of missed clicks on the widget area. A missed
click is the one that is supposed to activate a specific link but
no response is generated on the UI. This behavior may be caused
by widget style, for instance, when the widget area is not clearly
delimited or the widget does not provide an appropriate feedback
to the user when it can be clicked.

Radio button set.

• Hover to First Selection: time elapsed from hover to first selec-
tion. Although this time is included in Dwell+Hover time for this
widget, it was decided to distinguish this time into a separate
micro-measure since we observed in the recordings that many
times users hesitate before the first selection.

• Selections: number of selections made. Similar to Selections for
Select.

• Misclicks: number of clicks within the element not causing an
option selection. It is the case, for instance, when an option label
is clicked and it is not linked to the corresponding radio element.

Datepicker.

• Selections: number of date selections made.
• Clicks: number of clicks on the controls of a datepicker excluding

date selections. It estimates how much a user has to navigate in
order to reach the desired date.

Date selects.

• Combined metrics of each individual select: that is, the com-
bination of metrics for day, month and year.

5. Data collection

We conducted a data collection process over a period of six months
during 2020. This process consisted in capturing a substantial amount
of real interactions for each of the six widgets under analysis, then
manually rating them with an effort score, and using this data to train
the model and verify its performance.

Different user tests were carried out in order to collect the data
needed for training and testing the models. Each user test session was
composed by a set of recorded interactions with single widgets, each
of these containing its respective micro-measures. Besides this data, a
complete screen recording was stored for each session, which was later

replayed by the experts in order to manually rate the interactions.
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5.1. Participants

Fifty-two end users (23 females, 29 males) were recruited to run
tests and provide interaction behaviors. In order to diversify the sample,
participants from different age groups, backgrounds, and familiarity
with web forms were selected. The mean age was 38 years (Max =
79; Min = 16; SD = 13). Backgrounds were as diverse as high school
students, professionals in Architecture, Accounting, Computer Sciences,
Medicine, Design, Agronomy, as well as Early Childhood Teachers and
retirees. A total of 223 user test sessions were obtained with 2278 single
widget interactions.

The data collection was conducted during the COVID-19 pandemic,
so all tests had to be run remotely and the data acquisition process was
completely online. Participants were asked to install a web extension
in their browsers that recorded their interaction, and then complete
some tasks in different websites. For this, they received a link by e-
mail with the two-step instructions page.1 The first step guided subjects
through the installation process for the data capture tool (described in
Section 5.4.1), and the second step included the tests to be completed.
For each test, subjects were provided with the description of the task
they had to perform as well as some data to fill in (product to search,
car model to insure, etc.). Participants were allowed to perform small
alterations on their personal information, such as changing a digit in
their ID or phone number if they felt uncomfortable by submitting real
values.

In order to rate the interaction samples, a second group of four UX
experts acted as raters, each one with more than 10 years of experience
in the industry. At the time of the experiment, all of them were serving
as UX researchers and, as practitioners, they had performed numerous
user tests and heuristic inspections of web applications.

5.2. Websites and tasks for end-users

We used six websites selected considering the presence of wid-
gets under analysis and different application domains. Systems for
e-commerce, medical care and public information were included. The
chosen websites had to meet two requirements: (1) they had to include
as many of the target widget types as possible; (2) they had to allow
for recognizable tasks for the participants.

Each participant completed one user test on each of the four selected
websites. Out of the six available websites, two were given to all the
participants, and the remaining four were proportionally assigned so
each website would get approximately the same amount of participants.
The tasks to be completed were the following:

• Search and add products to the shopping cart on a clothing e-
commerce system (https://www.lacoste.com/). Participants had
to look for two products (a jacket with discount and a shirt) and
add them to the shopping cart without completing the checkout.

• Consult the cost of a car insurance for a specific model (https://
selfrefactoring.s3.amazonaws.com/testsites/lacaja.html). In order
to get the cost of the insurance, participants had to fill in a form
with their email and phone number, and with information of the
car including its license plate, brand, model and version.

• Request an appointment at a medical clinic (https://selfrefact
oring.s3.amazonaws.com/testsites/mayoclinic.html). Participants
filled in a form with their personal information, the city where
they wanted to have the appointment, the reason for the medical
consultation, and the date interval in which they were available.

• Make a reservation in a parking lot of at an international air-
port (https://selfrefactoring.s3.amazonaws.com/testsites/aerolin
eas.html). This task consisted in filling in a reservation form
with start and end dates, vehicle license plate and vehicle type
(motorbike, car, bus).

1 http://selfrefactoring.s3.amazonaws.com/ijhcs_experiment/instructions.
tml
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• Register a given vehicle with the electronic toll system (https://
selfrefactoring.s3.amazonaws.com/testsites/telepase.html). The
task required to submit a form with contact information and
address of the participant, vehicle model and license, and finally
credit card information to process the payment.

• Obtain a personal worker ID on a government website (https:
//www.anses.gob.ar). In this task, it was necessary to find the
option to get the worker ID on the website, and then to fill in
a form with participant’s personal ID, name, gender and date of
birth.

The first two tasks (e-commerce and car insurance) were completed
by all the participants. The reasons behind the decision being that
the e-commerce task was the only one focused on navigation and
search to capture interactions with different link widgets, whereas all
the other tasks were form-based; meanwhile, the car insurance task
involved interactions with radio-sets which are not very common in
the remaining tests.

The first and last task were done on the real websites. For the other
tasks it was necessary to create a dummy version of the website so as to
avoid sending sensitive information to the server. Pages were replicated
including all form fields with their constraints and validations for
participants to interact with the websites and submit the forms as if
they were the real ones.

In order to capture all interactions with their micro-measures and
the screen recordings for UX experts to rate, we devised a set of tools
and procedures that we detail in Section 5.4.

5.3. Rating of interaction behavior

Once the interaction samples were finally collected, captured inter-
actions were split into four subsets; furthermore, instead of giving each
subset to a single rater, a pair of raters was assigned to each. Therefore,
four pairs of raters were needed, one for each subset of interactions.
Since we had four raters, each one was paired with two others in order
to get four pairs. That is, if we labeled the raters as A, B, C and D, then
the four pairs were conformed as A/B, A/D, B/C, C/D. This design of
overlapping pairs contributed to reduce potential biases, as described
at the end of this subsection.

By observing screencasts of the captured sessions, the raters as-
signed an effort value to each single widget interaction with the help
of a rating tool. The criteria for establishing an effort rating was
not stipulated or discussed beforehand: each rater only knew that
there were four levels of effort to choose from (that were defined as
incremental and equidistant), and they assigned the rating according
to their own perception without being aware of the micro-measures
calculated under the hood. Experts had no other source of information
– such user gestures or audio recordings – because the intention was to
capture user interactions in an environment as close to the real context
of use as possible, in which users are not aware that they are being
evaluated. In the cases where two raters assigned different values to
the same interaction, they were asked to agree on a single value during
a second round of rating. This consolidation round was also assisted by
the tool, which features a special ‘‘consolidation’’ mode.

Considering this procedure, the overlapping pairs design had two
benefits: on one hand, each single widget interaction was rated by two
independent experts and, on the other, all experts shared a consolida-
tion session with two others instead of one, leading to more uniform
ratings overall.

5.4. Tool support

Data acquisition of both the end-user interactions with the micro-
measures and the rating of these interactions given by the UX experts
required a systematic method and tool support. Without them, data
acquisition would have been a very exhausting process, almost actually
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Fig. 4. Data acquisition process supported by the toolset developed.
Fig. 5. Google Chrome toolbar with the extension record button.
impossible to execute during the quarantine restrictions due to COVID-
19. Besides making the process feasible and helping to maximize the
number of samples, having a strict protocol and tool support also
improved internal validity, providing more uniform conditions for both
the raters and end-users without the need for a moderator.

The toolset we used to acquire data consists of two modules: a
capturer used by the participants acting as end-users, that records all
user interaction with the website, and a rater used by the UX experts,
that presents the screencast along with the widget interactions (without
revealing the micro-measures). Expert used this tool to assign an effort
value to each interaction and thus generating the set of labeled samples.
Fig. 4 shows a diagram of the acquisition process followed using these
tools, from the capture of interactions at end-user sessions to the rating
process carried out by UX experts.

5.4.1. Capturer
Participants recorded their interaction using our capturer tool. This

tool is a browser extension that records user sessions, which consist of
a screen recording and a collection of interaction logs that contain the
corresponding micro-measures for each widget that the user interacted
with. Participants were asked to install this extension in their browsers
before carrying out the required tasks.

This browser extension adds a single button next to the address
bar to start and stop the recording, as shown in Fig. 5. When the
user activates it, 2 subcomponents start recording: the screen recorder
captures the current interaction as seen by the user (visual data), and
the micro-measures logger analyzes each individual widget interaction to
compute the micro-measures (analytical data), depending on the type
of widget, as listed in Section 4.

Regarding the implementation, the screen recorder uses a third
party library called Rrweb2 which generates a screencast using as input
the target page DOM, and then tracks all the modifications and user
interaction events (mouse movement, clicks, etc.) that occurred on site.

5.4.2. Rater
The rater module is a web frontend that UX experts used to replay

the user sessions and rate the interaction on each single widget. When
an expert accesses a session, they can see a video player with the screen
recording, together with a form to rate the interaction on each widget.
Each interaction has the widget label and its type (A=link anchor;
R=radio; S= select, etc.). This layout can be seen in the screenshot

2 https://www.rrweb.io
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shown in Fig. 6: screen recording player on the left, and interactions
on the right.

When rating a set of interactions for a particular session, the tool is
able to link what the player is showing with the captured micromea-
sures, so when the expert puts the mouse over an interaction, the
tool highlights the corresponding widget in the video (as shown in
the screenshot). This allows the raters to put each effort score right
after they observe the interaction. It is important to mention that the
raters are not allowed to observe other raters’ scores assigned to the
interactions (if any).

In order to unify the multiple scores that interactions may have
assigned, we added a consolidation mode which, when activated, an-
alyzes the scores and then highlights the interactions with conflicting
values, showing the value that each rater has assigned and allowing to
select a final score under the label ‘‘Consolidated’’.

6. Prediction models

As we previously described, the interaction effort is a score assigned
by UX experts, who carefully analyze a screencast and decide a value
based on what they observe. Given that the score is subjective, UX
experts may use different criteria to assign it. Thus, our goal in this
work was to investigate if, by using machine learning techniques, it
is possible to predict the interaction effort automatically. With that
purpose we developed prediction models of the interaction effort based
on micro-measures automatically captured for each widget type of
interest. Models use as input the calculated micro-measures of a specific
widget interaction and return a score that ranges from 1 (effortless) to
4 (considerable effort). A regression approach was chosen to predict
continuous values that account for the distances between the predicted
and real scores in the error function. For instance, we consider that
ratings of 2 and 3 are closer together than 1 and 4.

6.1. Data preparation

As described in Section 5, data was collected by capturing user
interactions on real websites. These recordings include a screencast of
the user session and the corresponding micro-measures, automatically
recorded using a custom script. As previously explained, each training
sample was labeled by two different UX experts who analyzed the
screencasts and assigned an effort score to the widget interactions. After
rating all interactions, the two experts agreed on a consolidated value
for the interactions that were rated with different scores.

https://www.rrweb.io
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Fig. 6. Screenshot of rater tool for assigning effort values to single interactions. On the left is the screencast player and on the right is the form for assigning values. The top
right button labeled as ‘‘Encender modo consolidación’’ switches the consolidation mode. The metrics list features 4 buttons for assigning 1–4 rating, and each one displays the
widget’s label, if available. Notice also that the micrometric where the cursor is (labeled as ‘‘Nombre(s)’’) highlights the associated widget on the screencast.
Table 1
Number of collected interactions for each widget type.

Collected interactions

Widget Total Discarded Used

Text Input 755 60 695
Select 394 27 367
Anchor 474 74 400
Radio Button Set 582 27 555
Datepicker 171 2 169
Date Selects 101 9 92

Once data had been collected, a cleaning process for each dataset
was carried out in which we decided to discard widget interactions
with missing or outlier values in any of their micro-measures. Table 1
below presents the number of collected interactions for each score of
the six widget types selected. Outlier and wrong values were detected
through the analysis of the corresponding screencasts. By watching the
interactions it was possible for us to identify errors and discrepancies in
their calculated micro-measures. For instance, there were interactions
for which the Dwell+Hover time observed on the screencast was consid-
erably lower than the one calculated by the micro-measures logger. The
mismatches between the screencasts and the micro-measures may have
taken place due to errors in the logger or unexpected user behaviors
not observable in the recordings. Such interactions were not taken into
account to prevent misleading the training process.

Concerning models features, a decision was made to discard both
Exit & Back and Hover & Exit, since they mostly got 0 values, meaning
that the interaction patterns that they captured were quite rare.

6.2. Model selection

With the aim of identifying the model that best fitted each widget
dataset, different regression approaches were evaluated: linear regres-
sion, support-vector machines, multi-layer perceptrons and decision
tree regressors. The performance of the models was analyzed in terms
9

Table 2
Performance of each widget model.

Widget Model MAE 𝑅2

Text Input 0.22 0.72
Select 0.16 0.82
Anchor 0.19 0.82
Radio Button Set 0.27 0.65
Datepicker 0.26 0.57
Date Selects 0.19 0.69

of the mean absolute error (MAE) and the r-squared coefficient of
determination (𝑅2), which is used to determine how well the model
explains the variance of the rating values. For the evaluation, we
employed repeated cross-validation to reduce the bias that may arise
when datasets are randomly divided into training and testing.

We found that decision trees outperform the other algorithms in all
six datasets. Table 2 shows the results. Considering that the predicted
value is a continuous one, it must be rounded to the closer integer
to obtain a valid score, so a MAE=0.27 was considered to be accept-
able. Consequently, the resulting models show that micro-measures can
predict the interaction effort.

For all decision trees, a predefined max depth and minimum samples
per leaf was used so as to avoid the over-fitting. Regarding these
hyperparameters, we found an optimal performance with a minimum
of 10 samples per leaf and a max depth of 5. In the specific case of
text input, link, and select, where interactions with rating 1 were much
more frequent than the others ratings, a random under-sampling was
performed before the training phase to minimize model bias.

6.3. Micro-measures importance

We analyzed the weights that decision trees assign to each micro-
measure according to Gini importance. In particular, we further an-
alyzed the screencasts with the goal of establishing a relationship
between what we observed on the recordings, and the importance that
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Fig. 7. Boxplots of Dwell+Hover Time for each widget type.
models assign to each micro-measure. The insights obtained allow us to
refine even more the list of micro-measures, and to identify interaction
patterns that may lead to poor user experiences.

From the shared micro-measures, Dwell+Hover Time was the one
that resulted in a higher importance along the different widget types,
which can be due to its capability to separate the different ratings.
Fig. 7 shows the boxplots of this micro-measure for the collected in-
teractions grouped by rating, where it can be observed that the median
is different for each rating in all widgets. This is even more evident for
the widgets in which Dwell+Hover Time was the most important micro-
measure such as link and radio button set. In these cases the values
closer to the median (Q2 and Q3) are also clearly separated between
the ratings.

The next subsection presents the considerations that are specific of
each widget model.

6.3.1. Text input
In terms of the Gini importance, the most important micro-measures

are Typing Pace SD, Focus Time and Dwell+Hover Time (see Table 3).
The last two micro-measures are highly correlated (0.83 Pearson’s
coefficient), so we ran the model excluding one of them from the
selected features and the prediction results were not modified. The
correlation between Dwell+Hover Time and Focus Time is likely to occur
because they both serve the purpose of measuring the time that a user
spends on a widget, so they overlap when the user employs the mouse
to focus on the widget and leaves the mouse around it while typing
the input. Although there exist cases in which they do not overlap, for
instance, when the keyboard is used to enter and abandon the widget,
such cases were not frequently observed in the collected interactions.

The remaining micro-measures bear minimal importance in the
decision process. A reason may be found in that just Typing Pace SD
together with Dwell+Hover Time or Focus Time allow achieving a clear
separation between the different scores.

6.3.2. Select
The most important micro-measures were the ones that measure

the time that the user spends on the widget: Options Display Time and
Dwell+Hover Time (Table 4). The first one estimates the total time
10
Table 3
Average Gini importance for each micro-measure
in the Text Input model.

Micro-measure Gini importance

Typing Pace SD 0.78
Focus Time 0.082
Dwell+Hover Time 0.058
Corrections 0.024
Typing Speed 0.008
Interactions 0.006
Mouse Trace Length 0.004
Typing Latency 0.002
Input Switches 0

that the option list is open, while the latter only considers the mouse
dwell and hover around the select when the options list is closed, as
the browser does not allow to capture interaction events when the
options list is being shown. The high importance of Options Display
Time reflects the most common interaction pattern observed in the
screencasts, which is that users spend most of the time on the widget
scanning through the options list in order to find the desired choice, so
it was the main factor which determined the corresponding interaction
score. The low importance of Options Selected could be explained by
the fact that once users had picked their desired option, it was usually
unlikely for them to change it, consequently, most of the collected
interactions have only one selection. Even in cases when they decided
to change the option, they were more likely to do so only once. The
same lack of variability in the values was observed in the Interactions
micro-measure.

6.3.3. Link
Dwell+Hover Time is the feature with highest Gini importance for the

link interaction effort prediction (Table 5). Analyzing the screencasts,
it becomes evident that users hover over a link while deciding whether
its purpose matches the goal they want to achieve, so the time it takes
to make such decision can be used to determine the interaction effort
score. Mouse Trace Length is correlated with Dwell+Hover Time (0.5
coefficient) as users tend to scan link content by moving the cursor,
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Table 4
Average Gini importance for each micro-measure
in the Select model.

Micro-measure Gini importance

Options Display Time 0.801
Dwell+Hover Time 0.194
Mouse Trace Length 0.003
Interactions 0
Options Selected 0

Table 5
Averaged Gini importance for each micro-
measure in the Link model.

Micro-measure Gini importance

Dwell+Hover Time 0.93
Mouse Trace Length 0.065
Misclicks 0.003
Interactions 0

Table 6
Average Gini importance for each micro-measure
in the Radio Button Set model.

Micro-measure Gini importance

Dwell+Hover Time 0.908
Mouse Trace Length 0.037
Selections 0.037
Hover to First Selection 0.027
Interactions 0.006
MisClicks 0

especially when it contains text. Regarding theMisclicksmicro-measure,
it was observed that clicking on a link surroundings with the intention
of activating the link was an infrequent behavior, so that is why the
model found this micro-measure irrelevant. Moreover, it is prone to
false positives when a group of links are displayed together, as many
of the detected missed clicks on a link were, in fact, targeted to another
link that appeared very close.

6.3.4. Radio button set
Just as in the previous model, Dwell+Hover Time was the most

important micro-measure in the decision process (Table 6). In general,
we observed that users put the mouse on the target radio button set
and then analyze the available options to select the desired one. The
positive correlation with Mouse Trace Length (0.53) could be due to
he behavior of hovering over each of the candidate options before the
election, so the hesitation is also reflected on the mouse movement.
over To First Selection is contained in Dwell+Hover Time and their
alues tend to be very close when the user abandons the widget after
he first selection. This may explain the minimal importance of Hover
o First Selection, as in most of the interactions users made only one
election. As with the missed clicks in link, clicking on a radio button
et that did not trigger an option selection was a very rare interaction,
onsequently, Misclicks was not considered by the decision tree.

.3.5. Datepicker
Table 7 shows their average feature importance. The number of date

elections (Selections) was the main feature that enabled the separation
f interactions with different ratings. Users had to correct the selection
ery often (30% of the collected interactions have at least 2 selections);
he reason is that there were instances of this widget with constraints
or the allowed values, though they were not clearly informed, conse-
uently, users had to change their selection after attempting to submit
he target form with wrong values. This happened for instance in the
arking lot reservation website, where the start date had to be at least
wo days after the current date, and the total amount of days between
he selected dates could not exceed the amount determined by the
11

hosen fare. s
Table 7
Average Gini importance for each micro-measure
in Datepicker model.

Micro-measure Gini importance

Selections 0.73
Interactions 0.160
Dwell+Hover Time 0.070
Clicks 0.021
Mouse Trace Length 0.008

Table 8
Average Gini importance for each micro-measure
in Date Select model.

Micro-measure Gini importance

Options Display Time 0.561
Dwell+Hover Time 0.333
Mouse Trace Length 0.105
Interactions 0
Options Selected 0

The importance of Interactions is also due to date corrections, as
very new date selection causes an increment in the number of inter-
ctions with the target widget. In fact, both features present a very
trong correlation (0.9). Regarding the Dwell+Hover Time and Mouse
race Length, it is important to mention that mouse movements on the
alendar could not be captured due to technical reasons, so such micro-
easures on a datepicker only considered the input surroundings as if

here was no calendar. This may explain why there was no substantial
ifference in terms of Dwell+Hover Time and Mouse Trace Length for the
ifferent ratings since the users spent most of the time with the calendar
pened. The Clicks micro-measure, whose goal is to estimate how much
he user has to navigate on the calendar in order to find the desired
ate, was not so important for the model because in general the target
ate was zero or one click ahead the starting point (the current date).

.3.6. Date select
This model takes as input the same features as the select model

ith the difference that, in this case, the values of the micro-measures
re calculated aggregating the interactions of the three target select
nputs, i.e., month, day and year. Observing the feature importance of
he model ( Table 8), the most important one is the Options Display
ime, just as with select. Besides that, Dwell+Hover Time gained more
elevance because users tended to dwell on the widget area after the
elections made in order to check the selected date. Mouse Trace Length
lso became more significant since it is common to use the mouse to
witch from one input to another. Mouse movement even increased
hen users needed to correct any of the selected values.

. Discussion and limitations

The proposal in this work allows assessing the user interaction effort
n different widgets that are standard UI elements of web forms. Com-
ared to other approaches that analyze user interaction with a broader
erspective, i.e., at the page or user session level, we believe that our
ine grained interaction analysis makes it easier to determine whether
sers are struggling with particular UI elements; thus, it becomes
ossible to suggest solutions (in terms of UX refactorings) to the UX
mells that may arise. Moreover, it allows defining a concrete measure
o compare small design variations in terms of UX. This, together with
he fact that the interaction analysis is not limited to a predefined user
ask on the target website, makes the interaction effort metric suitable
or A/B testing. Thus, the assessment of the user interaction effort can
ake place in production, without user awareness of the presence of a
est and without predefined tasks, which are typical of a user testing

ession.
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Using a white-box model such as decision trees allowed us to
interpret and analyze how each feature influences the prediction. From
this analysis we observed that in general the most relevant micro-
measures were the ones that captured the time that users spend on the
target widget. Conversely, those intended to account for errors turned
out to be less important in comparison, probably due to the fact that
the errors encountered determined to some extent the widget interac-
tion time. Regarding the micro-measures that were found irrelevant,
they mostly capture interaction patterns that were infrequent in the
collected interactions; such was the case of Hover & Exit and Exit &
Back for links, and Misclicks for radio button sets and links.

Our method could have been affected by different biases that, in
some cases, we tried to anticipate and mitigate. The most important
one being, in terms of external validity, the amount of samples gathered
in general, and especially the amount of interactions rated as ‘‘con-
siderable effort’’ (ratings 3 and 4). Even if we mitigated the first one
by implementing the recorder tool (having learned from our previous
experiment), it was not easy to recruit a large number of volunteers,
and those who could have provided more ‘‘considerable effort’’ samples
were not prone to install and operate the browser extension on their
own. In addition, the number of samples was ultimately limited by the
amount which could be rated, involving more effort, since UX experts
had to go through each screencast (in some cases, twice, to get an
agreement), and this is a much slower and careful task than simply
recording the interactions.

The collection of interactions with outlier or wrong values could
also have introduced bias in the prediction models. In particular,
we mentioned that some interactions presented discrepancies between
their screencasts and their calculated micro-measures. We decided not
to consider such interactions because we could not detect the causes of
those mismatches.

Another potential bias was the subjectivity in the ratings, which
also affects external validity. Having a small number of raters might
have resulted in a particular (non-representative) way of judging effort,
and since the training and testing data comes from the same source,
this could threaten the validity of the prediction results. We tried to
mitigate this by using different combinations of expert couples in this
way: we split the interactions in different groups, and assigned different
couples of experts to each one by combining the four volunteers in a
balanced way. We also asked them to discuss and agree on the values
only after they had gone through the first round of rating. The rater
tool did not show ratings from other raters except in the consolidation
mode.

As mentioned in the Introduction, effort ratings may be influenced
by other factors outside visible interactions, so it would be interesting
to combine it with other UX evaluations methods. At present, we are
exploring the relationship between single widget effort and overall
session effort as perceived by UX practitioners. This could also help to
study if there exists a correlation between effort ratings and usability
aspects like efficiency, or even satisfaction. Furthermore, in future work
we plan to research the possible relationship with properties that can
be processed by static code analysis, such as layout, contrast, or other
hedonic factors. We envision a composable measure that could be
customized by the UX expert when defining a controlled experiment.

The tool for the remote capture of interactions was primarily devel-
oped with the aim of maximizing the samples, but it also responded to
COVID-19 restrictions. Should we have been able to make such captures
in person, we believe it would have been possible for us to collect far
more user interaction data (such as volunteers gestures or, at least, their
voice) in order to help the experts to produce more accurate ratings.
However, this would have drastically reduced the amount of captured
interactions. We preferred to work with a higher number of samples
that the remote capture and rating allowed, even if it forced us to
develop a complex tool support. As an additional benefit, the remote
protocol was very consistent and improved both reproducibility and
12

internal validity.
8. Conclusions and future work

This paper shows our work on predicting the interaction effort
of individual widgets, particularly, six types of widgets that may be
found in web forms. Our approach is original in that it measures the
interaction of web widgets rather than entire pages or sessions. The
models show that is feasible to predict the interaction effort using the
micro-measures captured, as we consider acceptable a maximum error
of 0.27 (MAE) for this prediction task. In turn, this allows us to use
the interaction effort metric in a setting similar to that of A/B testing,
i.e., as a metric related to UX instead of conversion rate to compare de-
signs. This article also makes a contribution towards understanding the
importance of individual micro-measures when studying the behavior
in the interaction between end-users with particular form widgets.

Our approach is similar to the philosophy of code refactoring in
that it is based on proposing small changes to improve design, which,
when automated, is more tractable and affordable. UX refactorings also
produce small changes in the design of a web application, and with the
work presented in this article, they may also be tested and compared
automatically through the interaction effort metric. Moreover, refac-
torings may be composed so as to create substantial changes and we
believe that the interaction effort metric may as well be aggregated
from the ones in individual widgets.

Measuring the interaction effort on the widgets of a web page in an
automatic and transparent way also serves to complement user testing;
for instance, when there is a need to evaluate a small change in a non-
expensive and non-intrusive way (since the subjects of a user test may
change their behavior when feeling evaluated).

Future work includes several directions. Firstly, we need to validate
the created models. We plan to collect a new dataset with different
websites and users from the ones used in this work, in order to analyze
how well the models generalize the results. Secondly, we would like
to extend the interaction effort metric to other types of widgets not
present in forms; for example, widgets for different content media.
Related to this, we are interested in studying which measures con-
tribute to the effort when users are not filling forms but consuming
content. It may become also necessary to compare other kinds of page
components such as text and scroll bars. Thirdly, we are studying
different alternatives to accumulate interaction effort from individual
users and from more than one widget (Gardey and Garrido, 2020).
The latter will be used when applying UX refactorings involving more
than one element. Lastly, as discussed before, we intend to study the
combination of the effort rating with other types of measures of the
whole page, like page layout and aesthetic, and whole sessions.

Thus, we envision that this work will contribute to boost the integra-
tion of User Centered Design practices in agile development processes.
On the one hand, it provides an automatic measure for user behavior on
the real application that may be used in tight schedules without the cost
of user testing or, when time allows, in combination with other metrics
for an integrated approach to UX. On the other hand, the interaction
effort metric may be used in conjunction with an incremental process
of UX refactoring that, keeping the users at the center of development,
applies small transformations as UX smells are discovered and selects
the best solutions based on user feedback. In conclusion, we believe
that measuring the interaction effort may serve different purposes for
which we would like to foster research.
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