
TreeSpark: A Distributed Tool for Progeny Analysis

based on Spark

Paula López 1, Waldo Hasperué 1,2, Facundo Quiroga 1 and Franco Ronchetti 1,3

1 Instituto de Investigación en Informática LIDI. Facultad de Informática. Universidad

Nacional de La Plata
2 Investigador asociado - Comisión de Investigaciones Científicas (CIC-PBA)
3 Investigador asistente - Comisión de Investigaciones Científicas (CIC-PBA)

{pdlopez,whasperue,fquiroga,fronchetti}@lidi.info.unlp.edu.ar

Abstract. Progeny analyses are useful in biological sciences for various
purposes, such as improving individuals in new generations or carrying out
molecular analysis of the transmission of genetic characteristics. Analyzing these
data by making comparisons between individuals of a generation with their
offspring is not a trivial task, and increases in complexity as more and more
generations are incorporated. In this article, we present TreeSpark, an open
source tool to carry out progeny analysis and provides functionality that allows
simple access to the information of the individuals and their relations both as
progenitors and descendants. This tool is developed as a Python module, which
in turn inherits the distributed processing features of Spark, allowing it to process
large volumes of progeny information. TreeSpark is compared with other similar
tools, finding TreeSpark much simpler to use.

Keywords: Spark, big data, progeny analysis, genealogy, analytics.

1 Introduction

Various biological sciences carry out progeny analyzes looking for different objectives
with the goal of comparing some characteristic of an individual with that of their
offspring. For example, when analyzing and monitoring cattle, studies are aimed at
establishing the magnitude of the improvement in milk production in the new
generations, and thus be able to estimate its possible association with reproductive
indicators in the offspring [1].

Progeny analyses are carried out both in animal [2][3] and plant species [4][5][6].
There are different works that range from the manual selection of breed individuals
aimed at producing better individuals in the new generations based on a given
characteristic of interest [7], to the molecular analysis of the transmission of genetic
properties [8]. To carry out these analyses, a database prepared for this purpose is
required. Above all, this database should have kinship relationship information between
two individuals (descendant-parent). Crossing the information of an individual with
that of its progeny or its progenitors quickly becomes complicated if many generations
are included in the analysis. Researchers usually lack the required expertise in
programming to use scripts developed for this types of tasks.

251
ISBN 978 -987-633-574-4

In this article, we present TreeSpark, an open source tool that facilitates progeny
analysis by introducing a working mechanism based on Spark. TreeSpark is a Python
module that includes, as part of its API, a set of variables and functions that facilitate
access to information on the progeny or progenitors of any individual analyzed.
TreeSpark is developed on the Spark framework, so it can be used both on individual
computers as well as in distributed environments.

The present work is organized as follows: In Section 2, the problem of accessing the
progeny information of an individual is described in detail. Some current tools that
allow progeny analysis are detailed in Section 3. In Section 4, the TreeSpark tool is
described. In Section 5, TreeSpark is compared with other state-of-the-art
developments, analyzing the code that each of these requires solving various problems.
Finally, conclusions are presented in Section 6.

2 Progeny Tree

In progeny analyses, the evolution of an individual with respect to its parents and
progeny is studied. In other words, the focus of interest is analyzing the evolution of a
branch (or a tree) of genealogical descent. To carry out these analyses, kinship
relationship information between individuals is needed. All individuals that are part of
the database must have information about their progenitors. In studies where it is only
important to know a single progenitor (mother or father in the case of sexual species),
then the set of individuals make up what is known as a progeny tree.

In this work, individuals with no parent information are called "root individuals".
"Leaf" individuals are those that do not have offspring and, following this same logic,
an individual is said to be "parent" of another individual, called "child". Figure 1 shows
an example of a progeny database and the corresponding progeny trees of the two "root"
individuals in the database.

2.1 Building Progeny Trees

To carry out a progeny analysis for different generations of the same family from a
dataset like the one shown in Figure 1, the following steps must be completed: 1)
obtaining the root individuals; 2) obtaining the children from the root individuals; 3)
obtaining the children of the individuals identified in the previous step; continuing
recursively with this procedure until all the leaf individuals of each family are included.

In a database where progeny information is stored in a table like the one shown in
Figure 1, which has the columns ID and ID_Parent, root individuals are obtained
through a filter operation (SELECT), while for each generation that is to be included in
the tree, a JOIN operation between the filtered result and the table of individuals must
be performed. This operation is then repeated as many times as necessary until the
entire family tree is formed. This way of working is inherent to the data that make up a
tree structure. The following pseudo-SQL script allows obtaining the number of
individuals in each family of the dataset.

252
ISBN 978 -987-633-574-4

Gen1 = SELECT ID FROM Table WHERE ID_Parent = Null

Gen2 = SELECT ID, Table.ID_Parent AS Family FROM Table

 INNER JOIN Gen1 ON Tabla.ID_Parent = Gen1.ID

Gen3 = SELECT ID, Family FROM Table INNER JOIN Gen2

 ON Table.ID_Parent = Gen2.ID

Res = SELECT Family, Count(Family) FROM Gen3

 GROUP BY Family

This script only allows working with three-generation trees like the ones shown in
Figure 1. Developing a generic script that allows the treatment of N generations requires
more sophisticated code, since a control structure of the WHILE type that evaluates
some condition that detects if all individuals have been processed (allowing it to end
the loop) is required.

Fig. 1. On the left, a table with progeny information where the ID column (corresponding to the
identifier of the individual) and the ID_Parent column (corresponding to the identifier of the
parent individual) are highlighted. On the right, the graphic representation of the 13 individuals
in the table, forming two independent trees or families.

3 Progeny Analysis Tools

Currently, there are several tools that allow analyzing progeny database. Some have the
disadvantage of having a paid license, while others require a special pre-treatment of
the data, and yet some others are outdated.

GraphFrames [9] and GraphLab [10] are two frameworks for treating graphs.
GraphFrame is an integrated system that combines graphing algorithms, pattern
matching, and relational queries. It is implemented on Spark SQL, it allows running
processes in parallel, and it is compatible with the Spark dataframe API. To use it, data
must be split into two tables: one with vertices (individuals) and another one with edges
(kinship relationships).

On the other hand, GraphLab is a framework for machine learning written in C++
that has libraries for data transformation and manipulation, as well as model
visualization. One of its various functionalities is to create graphs, with requirements
similar to those of GraphFrames.

253
ISBN 978 -987-633-574-4

Both tools allow data to be loaded from various sources (JSON, CSV, etc.), but they
only work with graphs in a generic way, i.e., they do not deal specifically with tree-
shaped structures. Even though it is true that a tree is a particular type of directed graph,
the functions that these tools provide, being graph-based, make it difficult to treat a
tree-shaped graph. In order to work with these tools, at least two relationships (sets of
edges) between individuals must be specified – parent → child and child → parent. If
sibling information is also to be considered, then a third relationship has to be added
between these individuals.

A previous version of the tool presented in this paper, [11] published a tool that
allows using tree information to analyze progeny. This tool allows establishing ancestry
and descent relationships between individuals, generating the progeny tree, providing
functions to process their information. Even though the tool allows assembling and
processing progeny trees, it does not support distributed execution.

Among commercial tools, ChromoSoft
1
 and Breeders Assistant

2
 stand out. Both

work only with animal information and are designed especially for breeders. Even
though they allow analyzing ancestors and descendants, in addition to calculating
genetic or consanguinity coefficients, these tools support limited data formats, are tied
to the payment of an annual membership, and cannot be run in distributed
environments.

Finally, PedHunter
3
 (which focuses on processing people information in large

genealogies), PEDSYS [12] (which is designed to analyze individuals of any species),
ENDOG [13] (which only focuses on analyzing information from animals), and

InterHerd
4
 (which is intended for dairy and meet cattle producers that wish to carry out

progeny analyses, in addition to monitoring production, among other functionalities)
are all tools that are currently outdated or obsolete.

4 TreeSpark

In this section, we introduce TreeSpark
5
, an open source tool that allows progeny

database analysis in Python using a simple and friendly syntax, as it provides variables
and functions for this purpose.

The use of TreeSpark consists of, as a first stage, creating the progeny tree from a
database and then, using several filtering operations “pruning” the family trees in the
dataset based on the analysis to be carried out. For example, keeping individuals with
more than three children, individuals that are "only children", individuals with a certain
number of siblings, and so on, in addition to being able to use the data from the dataset
as filters (days of longevity, milk production, number of eggs laid, etc.). Also,

1
 www.chromosoft.com/en

2
 www.tenset.co.uk/ba/

3
 www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/pedhunter.html

4
 https://www.compuagro.net/interherd.htm

5 https://gitlab.com/Danikawaii/treespark

254
ISBN 978 -987-633-574-4

TreeSpark allows obtaining dataframes for later analysis, made up of individuals with
a given kinship relationship, such as all parents and their children, all siblings, etc.

4.1 Creating Family Trees

TreeSpark works with Spark dataframes; therefore, the first step is to create a dataframe
by retrieving the data from any source supported by Spark. This dataframe must have
at least two columns, as shown in the example in Figure 1: one with the identifier of
the individual (ID) and the other with the identifier of the individual's parent
(ID_parent). Optionally, the database can have a field that has the birth order of an
individual. This must be a number that is interpreted as follows: 1 represents the first
child, 2 represents the second child, and so forth. Having this information allows
querying individuals sequences when they have a sibling relationship.

Once the dataframe is created, family trees must be assembled. This is done by
creating the TreeContext object:

tc = TreeContext(DataFrame, "ID", "ID_PARENT", "ORDER")

where DataFrame is the dataframe with the progeny database retrieved from some data
source, "ID" is the name of the column in the dataframe that stores the identification of
the individuals, and "ID_PARENT" is the identifier of the parent individual. "ORDER",
which is an optional parameter, is the name of the column that stores individual's birth
order information. The object that represents all family trees is stored in the variable tc.

4.2 Filtering Family Trees

Once family trees are created, they can be "pruned" so that only those individuals that
are of interest for a given analysis are retained (for example, individuals with more than
four children or those that were born third), and use only the data corresponding them.

To carry out this task, TreeSpark provides a filter function called filter that allows
“pruning” the trees. It is used as follows:

pruning1 = tc.filter(functionFilter1)

where tc is the TreeContext and functionFilter1 is a function that will be evaluated for
each of the individuals found in tc. functionFilter1 is a function that takes all the
information associated with an individual and returns a Boolean value. TreeSpark's
filter function works similarly to Spark's filter function [14].

To simplify the code for the filters, TreeSpark incorporates special variables that
refer to progeny information (Table 1) and are used with dot notation, as shown in the
following examples.

fil1 = tc.filter(lambda ind: ind.childrenCount <= 3)

fil2 = tc.filter(lambda ind: ind.parentExists)

fil3 = tc.filter(lambda ind: ind.parent.parentExists)

255
ISBN 978 -987-633-574-4

fil4 = tc.filter(lambda ind: ind.childrenOrder == 1)

fil5 = tc.filter(lambda ind: ind.siblingsCount > 4)

In these filter functions, all the attributes found in the database can be accessed, as
shown in the following example that selects all the individuals born in the year 2003:

pruning = tc.filter(lambda ind: ind["Year"] == 2003)

Pruning Results from Previous Prunings. The result of the filter function is an object
that represents all the individuals that met the filter condition and therefore can be used
to apply a new filter:

pruning2 = pruning1.filter(functionFilter2)

where pruning1 is the result of a filter function and functionFilter2 is another function
with the characteristics mentioned above. Thus, the results from a previous “pruning”
operations can be "pruned" again, and different pruning “paths” can be built as needed
(Figure 2).

4.3 Lazy Evaluation

Since TreeSpark is developed using the RDDs API and Spark DataFrames, the
evaluation of all the defined filters is not performed until some action is executed.
Filters are not applied when the filter function is invoked, but the Spark RDD
dependency graph (RDDs lineage) is generated internally. The graph is executed at the
time of invoking any action [14]. The only action available in TreeSpark is collect,
which retrieves all the information of the individuals that resulted from the filters
applied. It is used as follows:

result = pruning.collect()

where pruning is the result of any previous filter function or the entire TreeContext
itself. The result returned by collect is a Spark dataframe, or None if there are no results.
The resulting dataframe will have one row for each individual that met all filter
conditions, and it will also include the same columns as the original dataframe.

Table 1. Special variables that can be used in filter functions.
Variables Typo of return Description
parent individual Reference to the parent individual.
childrenCount int Number of children
siblingCount int Number of siblings
grandchildrenCount int Number of grandchildren
parentExists bool True if the individual has a parent individual
childrenOrder int Number representing sibling order
hasPrevSibling bool True if the individual is not the first child
hasNextSibling bool True if the individual is not the last child

256
ISBN 978 -987-633-574-4

Fig. 2. Different filter “paths” stemming from a single TreeContext.

4.4 Obtaining Progeny Information

Using the results obtained after applying the filters, progeny relationships can be
obtained for the resulting individuals. TreeSpark provides a set of functions that allow
obtaining a collection with family relationships. These are three functions: siblings,
descendants and ascendants.

The siblings function allows obtaining the relationships between an individual and
its siblings. For example, if an individual i, obtained after applying a filter had three
siblings h1, h2 and h3 and they were born in the order h1, i, h2 and h3, it would be possible
to obtain the consecutive siblings in order of birth as follows:

result = pruning.siblings(2)

obtaining as a result the relations (h1, i) and (i, h2). The relationship (h2, h3) is not
obtained as a result since, in this example, neither h2 nor h3 were the result of applying
the filter. The relation (i, h3) is not included either, because these are not consecutive
siblings.

The value 2 used as a parameter in the siblings function indicates the number of
individuals in the returned relationships. A value of 3 would return the relations (h1, i,
h2) and (i, h2, h3). A value of 4 or greater would return the relationship (h1, i, h2, h3).
Similarly to the siblings function, TreeSpark provides the descendants function to
obtain the descendants of an individual. It is used as follows:

result = pruning.descendants(2)

where the value of the parameter indicates the number of generations to be obtained. A
value of 1 would only get the individual itself. With a value of 2, the function returns
all children relationships; a value of 3, returns all children and grandchildren
relationships, and so forth.

257
ISBN 978 -987-633-574-4

Finally, the tool provides the ascendants function, which allows obtaining the
ancestors of an individual. Its use is similar to that of the descendants function:

result = pruning.ascendants(2)

where the value of the parameter indicates the number of generations to be obtained.
Given the nature of the ancestry relationship, a relationship is obtained for each
requested generation: (individual, parent), (individual, parent, grandparent),
(individual, parent, grandparent, great-grandparent), etc.

5 Tool Comparison

In this section, the simplicity of the code that has to be written in TreeSpark to solve a
progeny problem is analyzed. This comparison is made between TreeSpark and
GraphFrames, since the latter is also a Spark-based tool.

As regards data sources, TreeSpark only needs a dataframe that contains the ID and
ID_PARENT fields. On the other hand, GraphFrames requires a dataframe with the
data of the vertices (the individuals) and another dataframe with the information of all
the edges (parent-child relationships). For example, to get all parent-child relationships
from the database in TreeContext, in TreeSpark, the following code must be run:

result = tc.descendants(2)

while in GraphFrames, the following statement must be executed:

result = graph.find(“(n1)-[e]->(n2)”)

where "(n1)-[e]->(n2)" is an expression that returns all edges e originating at node n1
(parent) and reaching node n2 (child). This way of retrieving relations from a graph
becomes more complicated if we look for more complex relations such as grandparent-
child-grandchild. In TreeContext, only descendants (3) is required, while in
GraphFrames, the following statement has to be executed:

result = graph.find(“(n1)-[e1]->(n2);(n2)-[e2]->(n3)”)

Another example is obtaining sibling relationships. In TreeSpark, if the birth-order
field is available, then it is a matter of simply executing the sentence:

df = tc.siblings(2)

while in GraphFrames, the parent-child relationship between vertices is required, as
mentioned in Section 2. However, after this, the resulting graph must be converted to a
DataFrame and a search for siblings using the DataFrame API (that is, externally to
GraphFrame), must be carried out. Part of the code will be as follows:

258
ISBN 978 -987-633-574-4

g1 = graph.filterEdges("relationship = parent_child")

v_df = g1.vertices() ; e_df = g1.edges()

all_df = v_vf.join(e_df, e_df(“dst”) === v_df(“id”))

Then, to obtain the siblings of an individual, a search in the all_df dataframe using
the dataframe API must be carried out. Alternatively, to carry out this search the edges
corresponding to the relationships between siblings should be added to the graph, as
follows:

g1 = graph.filterEdges("relationship = siblings")

motifs = g1.find(“(n1)-[e1]->(n2)”)

As it can be seen, the GraphFrames code in this second example is simpler, but it
requires adding more edges to the graph with the relationships between siblings. In the
case of performing a search with a higher value, in TreeSpark the sentence and its
complexity will remain the same, while in GraphFrames the situation will be similar to
that of the descendants calculation.

An important point to note is that, even though in GraphFrames the vertex filter is
supported through the filterVertices function, its execution not only filters individuals
but also all their relationships (it eliminates those edges whose vertices no longer exist
in the subgraph). This behavior means that, when applying the filter, the relationship
between a child and its parent is lost if the condition provided is not met. In TreeSpark,
on the other hand, the reference to the individual parent does not disappear regardless
of the number of filters applied to the tree, meaning that information can be queried at
any filtering instance.

6 Conclusions

We presented TreeSpark, a tool that facilitates progeny analysis through the use of
specific variables and functions provided by the tool itself. TreeSpark inherits the
simplicity of Python, hiding the complexity of an iterative process of multiple JOINs,
thus allowing any researcher with little knowledge of Python to take advantage of all
its functionality by simply searching for progenies to carry out their analyses.

TreeSpark is implemented on the Spark framework, and inherits two very important
functionalities from it: On the one hand, it can retrieve data from various sources, since
data must be retrieved through a DataFrame in order to use TreeSpark. On the other,
and most importantly, the filters and operations carried out with TreeSpark can be
executed in a distributed manner using a cluster of computers. If the database volume
is very large, then TreeSpark can be run in a distributed manner. This processing is
transparent to the user, since all distributed execution is carried out internally by Spark.
TreeSpark tests have been carried out on a single node with a database of hundreds of
individuals. As future work, we plan to study the performance of this tool in a cluster
of nodes, considering how data distribution affects task execution performance. More
complex filters than those shown in the examples included in this article are also

259
ISBN 978 -987-633-574-4

pending testing. Finally, it should be noted that TreeSpark is in development, meaning
that it is still going through testing and debugging stages.

References

1. Rearte, R., LeBlanc, S. J., Corva, S. G., de la Sota, R. L., Lacau-Mengido, I. M., Giuliodori,
M. J.: Effect of milk production on reproductive performance in dairy herds. Journal of Dairy
Science 101(8), 7575–7584. doi: 10.3168/jds.2017-13796 (2018).
2. Lopera-Barrero, N. M., Vargas, L., Nardez-Sirol, R., Pereira-Ribeiro, R., Aparecido-Povh, J.,
Streit Jr, D. P., Cristina-Gomes, P.: Diversidad genética y contribución reproductiva de una
progenie de Brycon orbignyanus en el sistema reproductivo seminatural, usando marcadores
microsatélites. Agrociencia 44(2), 171-181 (2010)
3. Domínguez Viveros, J., Rodríguez Almeida, F. A., Núñez Domínguez, R., Ramírez Valverde,
R., Ortega Gutierrez, J.A., Ruíz Flores, A.: Análisis del pedigrí y efectos de la consanguinidad
en el comportamiento del ganado de lidia mexicano. Archivos de Zootecnia 59(225), 63-72
(2010)
4. Salomón, J. L, Castillo, J. G, Arzuaga, J. A, Torres, W, Caballero, A, Varela, M., Hernández
Betancourt, V. M.: Análisis de la interacción progenie-ambiente con minitubérculos a partir de
semilla sexual de papa (Solanum tuberosum, L.) en Cuba. Cultivos Tropicales 36(2), 83-89
(2015).
5. Kolvalsky, I. E., Solís Neffa, V. G.: Análisis de la progenie de individuos productores y no
productores de gametos masculinos no reducidos de Turnera sidoides (Passifloraceae). Boletín
de la Sociedad Argentina de Botánica 50(1), 23-33 (2015)
6. Gutiérrez Vázquez, B. N., Cornejo Oviedo, E. H., Zermeño González, A., Valencia Manzo,
S., Mendoza Villarreal, R.: Conversión de un ensayo de progenies de Pinus greggii var. greggii
a huerto semillero mediante eigen-análisis. Bosque (Valdivia) 31(1), 45-52 (2010)
7. Guitou, H. R, Monti, A., Sutz, G., Baluk, I.: Interpretación y uso correcto de las diferencias
esperadas entre progenie (DEP´s) como herramienta de selección para la calidad de carne:
Segunda parte. Revista Colombiana de Ciencias Pecuarias 20(3), 363-376 (2007)
8. Luévanos-Escareño, M. P., Reyes-Valdés, M. H., Villarreal-Quintanilla, J. Á., Rodríguez-
Herrera, R.: Obtención de híbridos intergenéricos Helianthus annuus x Tithonia rotundifolia y
su análisis morfológico y molecular. Acta botánica mexicana (90), 105-118 (2010)
9. Dave, A., Jindal, A., Li, L., Xin, R., Gonzalez, J., Zaharia, M.: GraphFrames: an integrated
API for mixing graph and relational queries. 1-8. 10.1145/2960414.2960416 (2016).
10. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.: GraphLab: A
New Framework for Parallel Machine Learning. Proceedings of the 26th Conference on
Uncertainty in Artificial Intelligence, UAI 2010 (2010).
11. López, P., Hasperué, W., Rearte, R., de la Sota, R. L.: Herramienta informática para el análisis
de progenie. Innovación y Desarrollo Tecnológico y Social 2(1), 35-54 (2020).
12. Dyke B.: PEDSYS: a pedigree data management system user’s manual. San Antonio: Texas
Southwest Foundation for Biomedical Research, Population Genetics Laboratory Technical
Report No. 2. 1999;368 (1999).
13. Gutiérrez, J., Goyache, F.: A note on ENDOG: A computer program for analysing pedigree
information. Journal of animal breeding and genetics. 122. 172-6. 10.1111/j.1439-
0388.2005.00512.x (2005).
14. Scott, J. A.: Getting started with Apache Spark. MapR Technologies, Inc., San Jose, CA
(2015)

260
ISBN 978 -987-633-574-4

	TreeSpark

