
MbedML: A Machine Learning Project for
Embedded Systems

César A. Estrebou1[0000−0001−5926−8827], Mart́ın Fleming2, Marcos Saavedra2,
and Federico Adra2

1 Instituto de Investigación en Informática LIDI, Facultad de Informática,
Universidad Nacional de La Plata

{cesarest}@lidi.info.unlp.edu.ar
2 Facultad de Informática, Universidad Nacional de La Plata

Abstract. This article describes the tasks being carried out within the
framework of a research and development project on machine learning
techniques and algorithms applied to small devices. It includes a brief
review of the available technologies, online development platforms, work
methodology and open source software for the implementation of solu-
tions. Experiments carried out on a proper implementation of an infer-
ence algorithm for convolutional neural networks are also presented with
interesting preliminary results regarding existing implementations.

Keywords: Machine learning · Embedded Systems· Internet of Things
· Convolutional Neural Networks

1 Introduction

As reported by Cisco [1] and Statista[2], it is estimated that the number of IoT
devices connected to the Internet by 2021 will be between 10,600 and 13,800
million. Many of these devices, limited in both hardware resources and process-
ing capacity, upload information to the cloud to be processed, which leads to
problems [3, 4] related to bandwidth, response delays, high computational and
storage costs, higher energy consumption, among others. To address these prob-
lems, the popular concept of Edge Computing arises, which refers to the transfer
of total or partial computing from the cloud to the devices located at the edge of
the network. In this way you can take advantage of the computing power of these
low-power devices that can execute millions of instructions per second despite
their limitations. In general, machine learning and in particular deep learning
have the potential to make important contributions since they can provide ro-
bust solutions [5] as long as they can be adapted to the capacity of the edge
computing devices.

Both the area related to edge devices and machine learning have received a
lot of attention from large hardware and software companies. This drive that
combines machine learning techniques with different platforms for embedded
systems, brings together and facilitates the development of applications that run
on small microcontrollers, something that until recently seemed unthinkable.

25

Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics



With all of the above as motivation comes this research and development
project aimed at documenting, studying and implementing traditional machine
learning techniques adapted to small devices.

2 Software and Hardware Tools

The main objectives of this project are to document, analyze, test and develop
both machine learning and deep learning tools and techniques adapted to devices
with limited computing capacity and resources.

Part of the work carried out in the project includes the study of different
software tools that develop solutions based on machine learning techniques on
microcontrollers. The following sections briefly discuss the work done so far.

2.1 Online Development Platforms, Frameworks and Libraries

There are several online platforms that automate the entire development process,
or at least a good part of it. Platforms such as AlwaysAI, Edge Impulse, Qeexo,
and Cartesiam.AI, with just data loading and microcontroller model selection,
automatically scan a wide variety of algorithms with different configurations
and perform the deployment of the final application in the microcontroller. The
OctoML platform optimizes models previously built by the user using machine
learning techniques for efficient execution in the microcontrollers it supports.
Although in general, most of the platforms support the Arm Cortex-M MCUs,
the low number of supported devices is objectionable.

The open source libraries and frameworks for developing machine learning
applications on microcontrollers are few. The software with the greatest potential
that has been surveyed and analyzed so far is briefly described below:

– MicroML: Implements Scikit-learn (Python) algorithms in C code. Supports
Decision Trees, Random Forest, XGBoost, Gaussian NB, SVM, SEFR.

– eMLearn: Supports Decision Trees, Random Forest, XGBoost, Gaussian NB,
Keras fully connected neural networks and audio features extraction.

– TensorFlow Lite: Support for neural networks generated with TensorFlow.
Requires 32-bit MCU architectures (ARM and ESP32). Provides tools to
adapt your models to microcontrollers.

– TinyML: Supports TensorFlow Lite neural network models in MCU ARM.

2.2 Project Microcontrollers

At this time the project has several development boards to perform tests on the
different implementations of machine learning algorithms. In the future, several
more are planned to be incorporated. The MCUs currently being experimented
on are Arm Cortex-M3, Tensilica L106 and Xtensa LX6 and the technical char-
acteristics can be seen in the table 1. The decision of the embedded models is
based on aspects such as local availability, low cost, computing capacity (medium

26

Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics



to low) and availability of open source software. Regarding connectivity, it was
decided to incorporate both IoT and non-IoT devices, since from the point of
view of machine learning there are many popular devices without this feature.

Table 1: Relevant technical characteristics of the MCUs used in the project.
Board MCU Cores Clock Data Prog. Connectivity US$
Stm32f103c8t6 Arm Cortex-M3 1 72MHz 20KiB 64KiB No 3,50
NodeMCU ESP8266 Tensilica L106 1 80MHz 80KiB 32KiB Wi-Fi 3,50
Esp32-Wroom Xtensa LX6 2 160MHz 520KiB 448KiB Wi-Fi+BT 8,00

2.3 Machine Learning for Microcontrollers

Due to hardware limitations in terms of data and program memory, it is impos-
sible to perform the generation of the machine learning models (training) on the
microcontroller (MCU). For this reason, the model is built in a traditional way
on a computer and the corresponding verification tests are performed.

Once the model is generated, a transformation tool is used to reduce its size
and thus to fit the MCU’s limitations. These types of tools export the model
data, adapting from the data types to including the necessary code to execute the
model. Finally, tests are performed to verify the effectiveness of the adaptation.

3 Experiments and Results in Convolutional Networks

At the time of writing this article, the team is developing tests on convolutional
neural network models on the 3 MCUs used in the project. To perform the tests,
it was decided to build a convolutional model with the ability to distinguish
a digit in an image. As a data source, the UCI repository database [7] was
selected, which is a reduced version of the MNIST database [8] widely used
to evaluate image classification algorithms in different areas such as computer
vision, machine learning and neural networks. This dataset comprises some 5,620
grayscale images with handwritten digits centered in an 8x8 pixel area.

A convolutional neural network [6] (CNN or ConvNet) was used as a model.
This type of network has in its architecture a series of convolutional layers with
a nonlinear activation function in its output such as ReLU or tanh. Each layer of
the network transforms the representation by applying filters that give a higher
level of abstraction. For example, the first layer detects edges, then the second
layer detects contours from those edges, then the third layer detects structures
from contours and so on until an object is detected.

The objective of the 2 experiments performed was to measure the perfor-
mance of a convolutional model on different MCUs through the implementations
of 2 libraries. For this, a convolutional network was trained to classify 8x8 digit
images from the UCI database. In the first experiment the Eloquent TinyML
library was used in 2 of the MCUs, leaving out of the test the ARM Cortex-M3
MCU because it was no longer supported. In the second experiment we used a

27

Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics



proprietary implementation of the convolutional neural network inference algo-
rithm that works on the different architectures of the 3 MCUs. Table 2 shows
the test results of each experiment. In this it can be seen that the proposed algo-
rithm occupies much less program memory and data than the Eloquent TinyML
implementation. Even the significant difference in average inference runtime can
also be observed.

Table 2: Experiment results
Exper. Library Data Mem. Prog. Mem. MCU Time Accuracy

1 Eloquent TinyML Xtensa LX6 23.12 KiB 470.6 KiB 2270 us 97,8 %
2 Own Xtensa LX6 14.21 KiB 277.1 KiB 606 us 97,8 %
1 Eloquent TinyML Tensilica L106 51.20 KiB 391.5 KiB 11167 us 97,8 %
2 Own Tensilica L106 31.01 KiB 274.0 KiB 7568 us 97,8 %
2 Own Stm32103 2.14 KiB 27.3 KiB 8624 us 97,8 %

4 Final Comments

This article has presented a research and development project of machine learn-
ing applied to microcontrollers with low computational power and limited data
and program memory. A brief review of both the technologies and the available
software has been included and a proper implementation of convolutional neural
networks has been presented with satisfactory preliminary results. In the future,
we will continue to experiment with algorithms and machine learning techniques
in small devices, both our own and those of third parties.

References

1. Cisco, Cisco Annual Internet Report (2018–2023) White Paper
https://www.cisco.com/ Last accessed 30 March 2021

2. Statista, Internet of Things (IoT) and non-IoT active device connections worldwide
from 2010 to 2025 https://www.statista.com/ Last accessed 30 March 2021

3. Farhan, L., Kharel, R., Kaiwartya, O., Quiroz-Castellanos M., Alissa, A. and Ab-
dulsalam M., A Concise Review on Internet of Things (IoT) - Problems, Challenges
and Opportunities, 11th International Symposium on Communication Systems, Net-
works & Digital Signal Processing, pp. 1-6. Budapest, Hungary, 2018

4. Shekhar, S. and Gokhale A., Dynamic Resource Management Across Cloud-Edge
Resources for Performance-Sensitive Applications, 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 707-710, NJ, USA, 2017

5. Sharma, K., and Nandal, R., A Literature Study On Machine Learning Fusion With
IOT”, 3rd International Conference on Trends in Electronics and Informatics, 2019

6. Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. 1st edn. MIT Press, 2016
7. Blake, C.L. and Merz, C.J., Optical Recognition of Handwritten Digits Dataset,

1998. https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+
Handwritten+Digits Last accessed 30 March 2021

8. LeCun, Y. and Cortes, C., MNIST handwritten digit database, 2010
http://yann.lecun.com/exdb/mnist/. Last accessed 30 March 2021

28

Short Papers of the 9th Conference on Cloud Computing Conference, Big Data & Emerging Topics


