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Abstract

Handling faults is a growing concern in HPC. In future exascale sys-
tems, it is projected that silent undetected errors will occur several times
a day, increasing the occurrence of corrupted results. In this article, we
propose SEDAR, which is a methodology that improves system reliability
against transient faults when running parallel message-passing applica-
tions. Our approach, based on process replication for detection, combined
with different levels of checkpointing for automatic recovery, has the goal
of helping users of scientific applications to obtain executions with correct
results. SEDAR is structured in three levels: (1) only detection and safe-
stop with notification; (2) recovery based on multiple system-level check-
points; and (3) recovery based on a single valid user-level checkpoint. As
each of these variants supplies a particular coverage but involves limita-
tions and implementation costs, SEDAR can be adapted to the needs of
the system. In this work, a description of the methodology is presented
and the temporal behavior of employing each SEDAR strategy is mathe-
matically described, both in the absence and presence of faults. A model
that considers all the fault scenarios on a test application is introduced
to show the validity of the detection and recovery mechanisms. An over-
head evaluation of each variant is performed with applications involving
different communication patterns; this is also used to extract guidelines
about when it is beneficial to employ each SEDAR, protection level. As
a result, we show its efficacy and viability to tolerate transient faults in
target HPC environments.

Keywords: soft error detection, automatic recovery, system-level checkpoint,
user-level checkpoint

1 Introduction

In the area of High-Performance Computing (HPC), parallel systems continue
increasing the number of components to improve their performance and, as a
consequence, ensuring their reliability has become a critical issue. Nowadays,
fault rates involve just a few hours on modern platforms [I] but it is forecasted
that large parallel applications will have to manage fault rates of barely some
minutes in exascale supercomputers [2]. In that sense, these applications require
some help to progress efficiently.

Currently, there are different types of transient errors affecting parallel pro-
grams; Silent Data Corruption (SDC) is the most dangerous of these as several
recent reports have stated [3]. When SDC occurs, the application seems to run
correctly but, at the end, the results are incorrect. Science is one of the areas
strongly affected by SDC, since historically it has relied on large-scale simula-
tions. Therefore, the treatment of silent errors is one of the greatest challenges
in current and future resilience.

Without a fault tolerance mechanism, a whole application could misbehave
due to a failure affecting just one task. Even worse, the program could output
invalid results that, in the best-case scenario, will be noticed when the execution
is concluded; as a consequence, silent errors require a detection mechanism [4].
In addition, a single SDC can cause deep effects, propagating them across all
processes that communicate in message-passing applications [5]. One way to



tolerate transient faults is to rely on hardware redundancy (registers and pro-
cessor arithmetical logic units). Nevertheless, this approach is highly expensive
and difficult to implement [6]. Given the high cost of re-running the application
from the start if a fault is detected, specific software strategies are required to
reach a suitable cost-benefit trade-off.

As opposed to the silent errors, the fail-stop failures cause a process to crash,
making their detection almost immediate. A common, well-studied technique
to reduce their impact consists of Checkpoint-based Rollback recovery (C/R)
[7]. When coordinated checkpointing is used, the entire state of an application
is saved in a periodic manner. So, if a failure takes place, all the processes can
restart from their saved checkpoints. Instead, if uncoordinated checkpointing is
used, only the state of the process being checkpointed is dumped. Unfortunately,
C/R can be time-consuming and the overhead increases as the number of cores
grow. Nonetheless, despite being effective when dealing with fail-stop errors,
C/R shows weakness when facing silent errors. Since a stored checkpoint could
contain undetected corruption, C/R cannot guarantee a correct recovery. This
situation becomes aggravated in the case of strongly coupled computation, since
an error in one node could propagate to the others in microseconds [§].

Performing redundant software execution is a common way to provide re-
silience. Following the state machine replication approach, a process is dupli-
cated and both copies proceed with the same execution sequence. As a result,
for deterministic applications, they produce the same output for the same input
[9]; these two outputs can be compared to provide error detection, despite not
being enough for recovery. In the HPC context, using multicore architectures
represents a viable solution for detecting SDCs as a result of their intrinsic
natural redundancy [1].

Considering these circumstances of non-reliable results and their expensive
verification, this paper presents SEDAR, which is a methodology designed to
provide transient fault tolerance for scientific message-passing parallel applica-
tions that execute in multicore clusters. SEDAR seeks to help programmers and
users of parallel scientific applications to accomplish reliability in their execu-
tions. It works as a static library that is compiled with the application. Even
though this changes the model of execution, it is still almost transparent to the
algorithm, as opposed to specific detectors that force modifying it and do not
cover all faults [4, [10]. Following this methodology, each process of the paral-
lel application gets replicated and both copies execute on different cores of the
same socket, taking advantage of the multicore’s intrinsic hardware redundancy.
SEDAR can detect and recover from all transient faults that cause SDC and
TOE (Time Out Errors). Three different ways are provided by SEDAR so it
can achieve full silent error coverage: (1) only detection with notification; (2)
recovery based on multiple system-level checkpoints; and (3) recovery utilizing a
single safe application-level checkpoint. Each of these alternatives has particular
features and provides a different cost-performance trade-off.

A preliminary, more conceptual version of this work is available in [IT]. This
article fully describes and validates the methodology, extending the insights
already offered in the previous version, with the following new contributions:

e The introduction of an analytical model to verify the efficacy both of
the detection strategy and of the recovery mechanism based on multi-
ple, system-level coordinated checkpoints. The model is based on the



predictability of the data affected in a well-known test application (con-
sidering its computation and communication stages), so the consequences
of each fault occurrence can be anticipated.

e The design of a complete workfault (i.e. a set of representative fault
cases that emulate real faults experienced by the system, which we use
as workload for testing purposes) that permits a grouping of all possible
faulty situations in scenarios. This set includes the effects of the faults,
their latency of detection and recovery point.

e The implementation of the multiple-checkpoint-based recovery algorithm,
using the DMTCP library. To verify its operation, SEDAR has been
incorporated into the test application. The empirical validation has been
achieved through controlled fault injection.

e The evaluation of the overhead of each alternative SEDAR strategy. For
this purpose, we have attached SEDAR to three parallel benchmarks with
different communication patterns and workload demands, thus measuring
or estimating the execution parameters for each of them.

e The introduction of a function that describes the average execution time
of using each SEDAR strategy.

e A qualitative evaluation of the incidence of the communication pattern’s
influence on temporal behavior.

e A discussion about the convenience of saving multiple checkpoints for re-
covery, compared to just employing the detection mechanism. In addition,
a brief analysis of how to determine the best moment to start protection
has been conducted.

The remainder of the paper is organized as follows: Section 2 reviews some
basic concepts and related work. Section 3 describes the proposed methodology
from a functional point of view, separating it in the three aforementioned strate-
gies. Section 4 presents the evaluation of the recovery strategy, in addition to a
discussion about the convenience of utilization and adaptation, considering the
temporal behavior of the possible variants. Finally, in Section 5, the conclusions
and future lines of work are detailed.

2 Background and Related Work

Transient faults can be classified according to their consequences on the program
execution [I2]. A Latent Error (LE) is a non-harmful fault since it does not affect
the final results. This kind of error alters data that are not used anymore. On
the contrary, when a Detected Unrecoverable Error (DUE) occurs, a program
ends suddenly; the system software can be aware of DUEs but cannot recover
from them. In the case of a Time Out Error (TOE), the application does not
finish within a stipulated time range. Finally, as mentioned before, when SDC
takes part, the application seems to execute correctly, although invalid results
are produced. Particularly, in message-passing parallel programs, SDC can be
sub-classified into two different types of errors according to [13]: (1) Transmitted



Data Corruption (TDC) alters data to be sent by a process, which will propagate
to others if it is not detected; (2) Final Status Corruption (FSC) has an effect on
non-communicated data, spreading the error in a local manner and invalidating
the final results.

Nowadays, there is no silver bullet to manage frequent SDC. Some available
algorithmic solutions only apply to specific kernels [14], decreasing the cost of
error detection; this kind of solution can be used in HPC environments [10].
Among them, some well-known methods like ABFT [I0] can detect up to a
maximum number of errors in linear-algebra problems. However, each kernel
requires an ad-hoc implementation, which represents a lot of work for large HPC
software. Moreover, algorithm-based solutions are more intrusive as they modify
the algorithms [4)[T4][I5]. On the contrary, compiler or runtime software-based
detection proposals are more general since they can be employed to any code,
but at the cost of a significant increase in complexity. In addition, containment
strategies seek to reduce the fault consequences, either stopping its propagation
to the other nodes or to the data stored in checkpoints [7]. In [I6], the authors
increase availability and offer a trade-off between the number and the quality of
components through redundancy in HPC systems. In the same way, [17] showed
that replication strategy is more efficient than C/R under circumstances of high
error rate and large values of C/R overhead.

Traditionally, SDC detection has been achieved through execution replica-
tion combined with partial or total result comparison during the execution.
Software-redundancy solutions remove the need for expensive hardware per-
forming replication at the level of threads [18], processes [6] or machine status.
On the other hand, other proposals require fewer resources but at the cost of
reducing their accuracy. One of them is approximate replication, which im-
plements upper and lower limits for computation results [7]. MR-MPI [16]
employs a transparent redundancy approach for HPC. It proposes a partial pro-
cess replication and can be used together with C/R in non-replicated processes
[19]. rMPI [I7] takes on failures by redundant execution of MPI applications.
Using this protocol, the program fails only if two corresponding replicas fail,
because each node is duplicated. The probability of simultaneous failure of a
node and its replica decreases when the number of nodes increases, so redun-
dancy scales. However, this benefit requires duplicating the number of resources
and quadrupling the number of messages. Faults in shared-memory systems are
explored in [9], where a scheme based on multi-threaded processes is proposed,
including non-determinism management due to memory accesses. A protocol
for hybrid task-parallel MPI programs is described in [I], which carries out re-
covery based on uncoordinated checkpoints and message logging. Only the task
that presented the error is restarted and all the MPT calls are handled inside it.
RedMPT [5] is an MPT library that exploits rMPT’s per-process replication to de-
tect and correct SDC, comparing the messages sent by replicated issuers at the
receiver side. It avoids sending all messages and comparing their entire contents
through a hashing-based optimization. In addition, it does not require source
code modification and guarantees determinism among replicated processes. As
it offers protection even when high failure rates occur, RedMPI is a potential
alternative to be used on large-scale systems. It is shown that even a single
transient error can produce deep effects on the program, causing a corruption
pattern that cascades toward all other processes through MPI messages. In a
similar way to SEDAR, RedMPI also enables replica mapping on the same phys-



ical node as the native processes, or in neighbors with lower network latency.
Like our proposal, it monitors communications as a strategy which attempts
to provide the correct output. Detection is delayed upon transmission, but, as
opposed to SEDAR, validation is carried out on the receiver side. This produces
an additional overhead, as well as latency and network congestion that are not
present in our solution. Fault tolerant protocols for other parallel programming
models, such as PGAS [20] have been also explored. The combination of check-
pointing the output of tasks and replicating for application-specific detection is
explored in [2] for a linear workflow context, in the presence of both fail-stop
and silent faults. Finally, in a recent study, the authors of [21] explore the com-
bination of replication with checkpointing for fail-stop errors, and compute the
optimal checkpoint interval for this approach.

3 Description of the Methodology

The following subsections are dedicated to the description of the basics of the
different proposed options to accomplish transient fault tolerance. In addition,
an evaluation of the temporal behavior of implementing each specific feature is
also included. In that sense, a simple model has been developed which considers
the factors that have influence over the total execution time, both in the absence
of faults as when a single silent error occurs during the execution. It is important
to remark that SEDAR can functionally manage multiple fault occurrence [22].
However, the proposed performance model contemplates a single fault for the
sake of clarity.

To evaluate the different strategies, a baseline is used, which consists of a
manual method for ensuring reliable results. This method involves launching
two simultaneous instances of the application and comparing the final results of
both executions in a semi-automatic manner. In this way, the same computing
resources that are consumed in our proposal are assigned to each individual
instance (i.e. half of the total cores of the system), which is the fairest way
to compare. In the absence of faults, the final results will match. However, if
a transient fault occurs, a third re-execution (maintaining the same mapping)
and a new comparison are required to pick the outputs of the runs that form a
majority (using a voting mechanism) as the correct ones.

The time elapsed by this manual method in the absence of faults (fault
absence, Tr ) is given by Equation[Il It consists of the time spent by the two
independent instances to run simultaneously (T}04) plus the time of comparing
the results of the two executions. On the other hand, Equation [2]is the time
when a fault occurs (fault presence, Trp), which is the time of a new re-execution
and a new comparison for voting, besides a restart time (7..s) to relaunch the
third run (which takes the same time as the previous one because it uses the
same mapping) after the two original ones. In Table[I] the parameters involved
in all the equations and their meanings are summarized.

TFA - Tprog + Tcomp (1>

TFP = 2(Tp7'og + Tcomp) + T7'est (2)



Table 1: Name and meaning of the parameters involved in temporal character-
ization of each alternative strategy

Parameter Meaning

Torog The execution time of two instances of the
original application in parallel

Teomp Time of semi-automatic comparison of results;
may include calculating a hash

Threst Time of manually restarting the application.

An automatic restart may take shorter. In
simplified model, it is considered the same

fa The factor of overhead due to detection mech-
anism. It is application dependent and can be
experimentally determined. 0 < fd <1

X Instant of fault detection, expressed as a frac-
tion of the application progress. Random
0<X <1

n Number of checkpoints made during the whole
execution, given a checkpoint interval

tes Time involved in storing a system checkpoint

t; Checkpoint interval. It can be adjusted to
minimize overhead

k A number of additional checkpoints that the

application needs to rollback to find a non-
corrupted one. It depends on the application
and the detection latency

tea The time involved in storing an application
checkpoint. It should be shorter than t.s
Teompa The time for validating an application check-

point; it may include calculating a hash

3.1 Error detection with notification

In order to accomplish detection when running deterministic parallel applica-
tions, which is the first SEDAR feature, the messages between processes are
validated before being sent. Thus, the error that affects any process can be
isolated, preventing it from propagating to the others.

The detection strategy consists of duplicating each application process in a
thread, which requires a synchronization mechanism between both replicas. Ev-
ery time a communication is to be performed, the leading thread stops running
and then waits for its replica to reach the same point. Once there, the detection
mechanism compares the entire contents of the messages computed by both
redundant threads and, if there is a coincidence, only one of them sends the
message. Such a mechanism does not require additional network bandwidth.
When the receiver process reaches the receive operation, it gets the message
and in turn waits for its replica to synchronize. Next, it makes a copy of the re-
ceived contents before resuming execution. Additionally, because a failure may
have locally propagated until the end of the execution, a comparison of the final
results of the application is performed, thus allowing to detect such failures.



This detection strategy is capable of detecting failures that cause SDC (both
TDC and FSC variants, at the cost of sacrificing latency in the latter case) and
TOE. As regards TOE, they can be detected under the assumption that the
execution time of two redundant threads is similar in a homogeneous, dedicated
system [22]. Hence, if an appreciable delay is noticed between the two replicas,
it is considered that a silent error has caused the separation of their flows. As
a single time-out interval is not optimal, it should be configured taking into
account the application’s needs: if it is too long, the detection latency enlarges,
but being too short may cause false positive detection. Anyway, a TOE is
definitely detected if a process enters an infinite loop.

A scheme of the proposed detection strategy is shown in Figure [l FEach
replica runs in a core that shares a cache level with the core in which the original
process executes. Thus, the comparisons are solved with no need to access main
memory, taking advantage of the memory hierarchy. It should be clear that the
proposed detection mechanism is based on launching a single instance of the
application, with each process internally replicated in a thread. This is different
from the baseline, in which two independent instances of the application are
launched in parallel. Nevertheless, both cases make the same use of half of the
available cores from the application performance point of view.

As this methodology is based on process-replication, it is a priori capable
of performing only detection (triple redundancy needs to be used to achieve
correction). The ways to accomplish recovery without the need of triplicating
are described in the two next subsections.

Implementing any resilience strategy involves unavoidable costs, both in exe-
cution time and in resource utilization. In particular, a duplication-based mech-
anism aims to achieve reliability, at the cost of assigning half of the system cores
to protect the executions. In this context, it is important to note that SEDAR
provides fault tolerance without introducing any additional cost regarding re-
source utilization; it takes advantage of the available cores (the intrinsic redun-
dancy of the system), without any change or need for specific hardware. As a
consequence of the problems related to strong scalability, parallel applications
may not always make an efficient use of all the available cores, both in terms of
time reduction and energy consumption. Therefore, using all the available cores
may not necessarily be better (as expected) than using half of them (some exam-
ples of this behavior can be found in [23, 24]). In addition, as performance can
depend on the mapping, providing resilience is a useful way to take advantage
of the available resources.

Another remarkable aspect is that SEDAR does not modify the algorithm (as
algorithm-based detectors do) and it is almost transparent to the application,
which makes it generally usable for message-passing applications.

The steps involved in the detection, such as the replication of processes,
synchronization between redundant threads, comparison before sending, copying
messages upon reception and final verification of the results, are the cause of
the overhead introduced in the overall execution time.

A trade-off is reached in relation to the validation interval. The overhead
involved in detection is minimized if results are compared only at the end, but
because the detection latency increases, a lot of computation could be use-
less. On the other hand, if the frequency of partial results validation is high,
the introduced overhead enlarges but the fault can be quickly detected, and
hence more computation is profitable. There is evidence that, depending on the
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computation-to-communication ratio of the particular application, as well as on
the size of the workload, the overhead can differ in a significant manner [I3]. As
a consequence, the combination of the validation of the messages with the final
comparison of results aims to detect all faults and obtain a reliable system by
introducing a reasonable overhead. SEDAR’s detection mechanism could also
be adapted to partial replication, similar to [I6]. However, extra work should
be done to identify the application’s critical parts that need to be replicated,
which is a non-general procedure. Consequently, SEDAR could be disabled in
the non-critical parts. Moreover, the partial replication would not result in a
benefit regarding resource utilization, since the cores were previously assigned
to replicas (whether they run or not). Nevertheless, it could be potentially
profitable from the standpoint of energy consumption.

In the absence of a recovery strategy, the occurrence of an SDC or a TOE
causes the detection-only strategy to notify the user and lead the system to
a safe stop, preventing it from delivering defective results. As validating the
messages has the effect of limiting the detection latency, the implementation of
such a strategy permits relaunching the execution as soon as the error is de-
tected, thus avoiding the needless and expensive wait for the termination with
corrupted results. The execution time of the detection strategy in the absence
of faults is given by Equation Bl The time is the same as the one of the base-
line (Equation[]), but, in this case, Tpro4 is negatively affected (increased) by a
factor fg, which represents the overhead of the detection mechanism. If a fault
occurs, the execution time is accounted in Equationdl The first term comprises
the time executed until the detection instant (X) plus the whole re-execution
after the stop caused by the error. Once it is detected, a restart is required,
and, in the re-execution, the final comparison is needed.

TFA = Tprog(l + fd) + Tcomp (3>

Trp = Tprog(l + fa)(X + 1) + Trest + Teomp (4)

It is important to point out that the parameter X represents the instant of
the fault detection and not the moment of the fault occurrence (which cannot
be exactly known). The value of X is related to the latency of detection and
depends on how the data (and then the messages) are affected by the fault, so
it varies according to the communication pattern of the target application.

A remarkable fact is that the proposed detection strategy is equally effective
when multiple errors occur during the execution. The first difference, caused by
an error, which is observable in the contents of a message or in the final results
will lead to the system stopping safely. The vulnerability of this mechanism is
reduced to extremely unlikely cases, which are detailed in [22][25]. Consequently,
despite the fact that we have limited the analysis of the temporal behavior to
the cases of fault absence or single error occurrence, the detection strategy can
handle multiple non-related errors. As regards the implementation, the required
procedure for adding the detection functionality to the parallel application (that
could be automated) is detailed in [13].
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3.2 Recovery based on multiple system-level checkpoints

The next step in the search for transient fault tolerance consists of adding a
recovery mechanism. In SEDAR, it is proposed to store a chain of distributed
coordinated checkpoints, built with a system-level checkpointing library.

It is not possible to ensure that any particular checkpoint holds a safe state
for recovery because a silent error can spoil the internal state of one of the
replicas that is going to be checkpointed. Therefore, recovering from the last
stored checkpoint is not always feasible and using an older one may be required.
Thus, multiple checkpoints have to be saved to guarantee recovery [8]. As the
transient faults are fleeting, it is important to note that the restart can be
attempted from the same node where the corruption took place. There are two
possible cases:

1. The transient fault occurs and is detected inside the boundaries of a check-
point interval. In this situation, the last checkpoint can be used to resume
the execution. As a particular case, if the detection occurs previously to
the first checkpoint, the application must be relaunched from the begin-
ning. This situation is outlined in Figure[2 (a).

2. The detection latency transposes the limits of the checkpoint interval. This
circumstance arises when the fault occurs before storing a checkpoint but
the detection takes place after that. In this situation, the last checkpoint
is invalid, so the corresponding restart causes the same error to manifest.
Consequently, the previous checkpoint must be used to attempt to recover.
Generalizing, the fault can traverse any number of checkpoints (depending
on the detection latency), requiring several tries to make rollback recovery
possible. In turn, this situation is outlined in Figure 2] (b).

Controlled fault injection experiments are needed to verify the operation
of the recovery strategy when the two aforementioned cases occur. The data
corruption becomes evident as an observable difference between the memory
state of the replicas. Hence, in order to simulate a bit-flip in a processor register,
the value of a variable is changed in only one of the replicated threads, in a
single iteration of the computation. Such an injection is made from inside the
code of the application. The details of the injection method are described in
section As regards the checkpoints, the best moments to take them are
when the communications have just been validated. This strategy reduces the
windows of vulnerability [25] (we have previously studied this issue in [22]),
as the probability of an error corrupting the state of a checkpoint is smaller in
that situation. However, the mechanism even works if the checkpoints are taken
somewhere, as in a more realistic scenario, with periodic checkpointing made
externally to the application. However, in general, a considerable overhead
would be involved if a checkpoint is taken after each communication.

As mentioned before, the two possible behaviors of the recovery strategy are
outlined in Figure 2] while Algorithm [ describes the pseudo-code of the pro-
posed method. For the sake of clarity, the injection mechanism is not included
in the algorithm, nor is the recording of system checkpoints; in general, they
can be taken anytime.

Automating this method would increase its usability. This can be accom-
plished if an outsider process is allowed to read the extern_counter and, based

11
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Algorithm 1 Recovery algorithm with multiple system-level checkpoints

1: /* extern_counter is an external counter that controls the
number of rollbacks (not included in checkpoint) */

2: int extern_counter = 0;

: /* fault_detected is a boolean variable that reports if a
failure was detected in the last execution */

: boolean fault_detected = FALSE;

: /* run parallel application app under SEDAR monitoring */

: SEDAR_run(app);

: /*x if fault_detected is TRUE then a fault was detected in the
last execution */

8: while fault_detected == TRUE do

w

N O U

9: /* extern_counter is increased by 1 */

10: extern_counter-+-;

11: /* get the number of checkpoints done */

12: ckpt_count = get_ckpt_count();

13: /* calculate the number of the checkpoint for restart */
14: ckpt_no = ckpt_count - extern_counter;

15: /* reset detection flag for restart */

16: fault_detected = FALSE;

17: /* restart app from checkpoint ckpt_no */
18: SEDAR _restart(app, ckpt-no);

19: end while

on its value, find the correct restart script to try recovery; besides that, the
wrong-restart checkpoint has to be erased (and stored again in re-execution).
In turn, the code of fault injection is executed only once, and the target appli-
cation modifies the value of extern_counter every time a fault is detected.

It is worth noting that this mechanism is also able to detect multiple faults
(if they are independent of each other) [22]. If a different fault is detected during
a re-execution, the algorithm will recover but at a sub-optimal computational
cost. In the current state of the proposal, the algorithm is optimized to deal with
a single error. So, when any error is detected in a re-execution, the algorithm
assumes that it is the same as was previously detected (the detection latency
has exceeded the checkpoint interval, as mentioned in Section B2]). Therefore,
the detection of a different error during re-execution will generate an unnec-
essary rollback attempt (i.e. the algorithm assumes that the last checkpoint
is corrupted, although this is not the case). In the worst-case situation, the
recovery mechanism goes back to the beginning. While predicting the recovery
time becomes difficult in the case of multiple faults, a reliable conclusion is still
ensured. The described inefficiency can be fixed by adding a more sophisticated
mechanism, which is briefly described in Section 4.2

In the absence of faults, the execution time of this mechanism is given by
Equation[Bl Compared with the only detection case (Equation[d)), the extra term
accounts for the time involved in saving n system-level checkpoints. When a
fault occurs, the execution time is the one shown in Equation[G The parameter
k is the number of extra checkpoints that need to be reversed if the restart from
the last one does not succeed. Therefore, the third term represents the time
spent in checkpointing, taking into account that various checkpoints (k) might

13



be recorded again if there is any corruption that prevents successful recovery.
The fourth term is an estimate of the re-execution time, considering that, on
average, the fault may be detected midway through the checkpoint interval.
This lapse will need to be re-executed in the best case, (i.e. when recovery is
possible from the last stored checkpoint (k = 0)). If & > 0, the same portion
plus a number of checkpoint intervals (which depend on the value of k) will
require being re-executed. Finally, the last term represents the number of needed
restarts.

TFA = Tprog(l + fd) + Tcomp + ntcs (5)

TFP = Tprog(l + fd) + Tcomp + (n + k)t65+
k (6)
+(Y (k—m+1/2)t; + (k+ 1) Trest

m=0

When system-level checkpoints are the only available option, this strategy
becomes appropriate, despite having two significant limitations. The first one
refers to the amount of required storage. None of the checkpoints can be erased,
given the uncertainty about the validity of the data recorded in them: if a con-
sistent checkpoint cannot be found, a significant part of the application will
need to be re-executed; in an extreme case, the whole execution will have to
be relaunched from the beginning [8]. In any case, the negative impact of
multiple checkpoints over the storage can be reduced by solutions based on
multi-level checkpointing [7]. The second important drawback is related to scal-
ability: in upcoming exascale systems, and despite some considerable efforts
[26], coordinated-system-level checkpoints would not be the most suitable solu-
tion, because they keep a large amount of information related to the system.
In an unrefined version, our method is an expensive approach, because it needs
to keep an undetermined number of active checkpoints and may require sev-
eral restart attempts. Instead, user-level checkpoints are becoming more usual,
especially due to their lower costs and portability options [I].

3.3 Recovery based on a single safe application-level
checkpoint

This third alternative included in SEDAR is designed to overcome the limita-
tions caused by the utilization of system-level checkpoints. In this context, and
despite requiring detailed knowledge of the application’s internal organization
(computing and communication), user-level checkpoints are a more appropriate
option, given the fact that they only save the application-related information
[4]. Besides that, they are smaller, more portable and scale better than the
system-level versions. As a consequence, the utilization of a single user-level
checkpoint for recovery is proposed, in conjunction with a strategy to ensure
the validity of the last recorded checkpoint. Therefore, the prior checkpoints
can be removed, thus decreasing storage usage and reducing the relaunching
latency.

The proposed solution is based on recording per-thread user-level check-
points, taking advantage of the synchronization mechanism between replicas.
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Such checkpoints just save the set of variables that are significant to the appli-
cation at that specific moment. As both thread checkpoints are stored, a hash
on each one is calculated. To collate the two hashes, the mechanism used for
validating message contents in the detection phase is employed again. Hence,
the checkpoint is considered wvalid only if the comparison proves to be true. In
this situation, the previous checkpoint can be safely discarded to save storage,
as the current one constitutes a consistent state for recovery. On the other
hand, if a difference is detected on the verification phase, it is necessarily due to
a fault that has occurred within the last checkpoint interval. As this checkpoint
is considered corrupted, it is not possible to use it for recovery and it should be
erased. Then, the execution has to be resumed from the previous checkpoint.
As a consequence, there is a single valid checkpoint at any given time (except
for the validation interval), which is independent from the comparison result.
Algorithm Pl describes the pseudo-code of the proposed mechanism.

Algorithm 2 Recovery algorithm with application-level checkpoints

1: function USR_CKPT(n) // usr_ckpt function definition

2: for (tid=0; tid < 2; tid++) do // for both replicas

3 /* record its custom checkpoint */

4: store_all_significant_variables(tid);

5: hash_array[tid]=compute_hash(tid);

6: end for

7: synch_threads(); // wait for each other

8: /* only one of the replicas compares hashes */

9: if tid==0 then

10: if hash_array[0]==hash_array[1] then // they match

11: /* delete own checkpoint */

12: remove_all_significant_variables(tid);

13: /* this is a valid checkpoint so the previous can be
discarded */

14: return TRUE;

15: else

16: return FALSE // this is a corrupted checkpoint

17: end if

18: end if

19: end function

20:

21: (...) // application code

22: /* n represents the current checkpoint */
23: if usr_ckpt(n)== TRUE then

24: /* delete previous checkpoint since the current is valid */
25: remove_usr_ckpt(n-1);

26: else

27: /* remove current corrupted checkpoint */

28: remove_usr_ckpt(n);

29: /* restart from previous checkpoint */

30: restart_from_usr_checkpoint(n-1);

31: end if
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In the absence of faults, the execution time of this mechanism is given by
Equation [l The time is equal to the detection-only strategy, but incorporates
an additional last term which represents the time employed for n user-level
checkpoints to be recorded (t.,) after being validated (tcompa). Instead, Equa-
tion B accounts the time when a fault occurs. The fourth added term shows
that, on average, just half of the checkpoint interval has to be re-executed, as
barely a single rollback is required. For the sake of clarity: as each checkpoint is
validated, the latency of detection is confined within the checkpoint interval. In
the worst-case scenario, the re-execution time will be t;, if the error is detected
just before taking a new checkpoint; while, in the best-case scenario, in which
the error is detected as soon as a checkpoint has been taken, it will be near to 0.
As the probability of an error is equally distributed along with the checkpoint
interval, we state that, on average, the re-execution time is (1/2) ¢;. Ultimately,
the last term represents the only restart time that is required, as the algorithm
performs a single rollback at most. It is important to notice that Tty repre-
sents the time required for the validation of application results, while T,ompa
comprises the time required to validate an application-level checkpoint.

TFA = Tprog(l + fd) + Tcoan + n(tca + TcompA) (7)
TFP = Tprog(l + fd) + Tcoan + n(tca + TcoanA)+

+(1/2)t1 + Trest (8)

3.4 Average Execution Time

As previously mentioned, Equations ] to [§ describe the time required by each
strategy in two cases: (1) in the absence of faults (Tr4); and (2) in the presence
of a single silent fault (TFp). As a fault has an associated occurrence probability,
we introduce a general formulation that predicts the Average FExecution Time
considering it and, as a consequence, the Mean Time Between Errors (MTBE)
parameter. This function allows us to estimate the average overhead introduced
by each SEDAR strategy. Let a be the probability of a fault occurrence. Then,
the Average Execution Time function is given by:

AET = Trp(a) + Tra(l — a) 9)

The MTBE of a system with N processors decreases linearly with IV, that
is MTBE = MTBE;,q/N, where MTBE;,4 is the MTBE of an individual
processor []. If A = 1/MTBE;,, is the silent error rate of an individual pro-
cessor, then the silent error rate of the whole system is AN. Assuming that
errors occur according to an exponential distribution, the probability of a silent
error affecting a computation that lasts T)..q and executes on a system with NV
processors is:

P(N,Tprog) = 1—e M Trros = 1 — e NTorog/ MIBEwma — | _ o=Torog/ MTBE (1))

The latter expression is the probability of a silent fault occurrence, that is, a.
By considering this in Equation @] we can obtain the Average Execution Time
as a function of the MT BE of the system and the baseline program execution
time Tprog-
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AET = Tpp(1 — e~ Teroa/ MTBEY 4y (¢~ Torog/MTBE) (11)

Equation [II] is useful for estimating the average overhead of using each
SEDAR strategy, considering both the cases of fault absence and fault presence.
If Error Detection with Notification strategy is used, Trp4 and Trp of Equa-
tion [[I] are obtained from Equations B and B} when using Recovery based on
Multiple System-Level Checkpoints, they are obtained from Equations [l and [6
and when Recovery based on a Single Safe Application-Level Checkpointing is
the chosen strategy, the times are obtained from Equations [7] and 8

4 An Evaluation of the Recovery Method
4.1 Analytical Model

To describe and validate the functional behavior of the detection and automatic
recovery strategies in the presence of faults, we have built a model based on
combining a well-known test application with a complete, controlled workfault.
The analytical model contemplates all the possible faults that can occur, based
on the deep knowledge of the behavior of the application. Each fault has a
predictable effect, a moment in which it is certainly detected and a determinable
point for recovery. Obviously, there are infinite physical possibilities of fault
occurrences, but all of them are represented in the listed scenarios; a scenario
represents a class of errors, so it includes a set of cases that behave in the same
way. For each experiment, a single fault is injected.

The test application is synthetic, built-up over an MPI Master/Worker ma-
trix multiplication (C' = A x B). The modifications consist of replicating pro-
cesses in threads for detection, in addition to final validation of the result-
ing matrix. Every time the application performs a communication, a system-
level checkpoint is carried out as messages are sent only if the involved data
are safe. The matrix-multiplication has been selected because it is a regu-
lar, computationally-intensive, representative parallel application, with a well-
known communication pattern. The deep knowledge about its behavior allows
the clear identification of the moments of communication between processes and
of the data involved in each communication. As a consequence, the precise ef-
fect of each injected fault can be predicted, as well as the state of each recorded
checkpoint (clean or dirty), and, therefore, which checkpoint makes the recovery
possible.

The pseudo-code for the test application is shown in Algorithm

The possible scenarios for injection experiments are organized according to
the following criteria:

e Pj,;: the execution instant where the injection is carried out, taking as
reference the structure of the application (e.g. between the SCATTER
and CK1).

e Process: if the injection is made in the code executed by the Master or
any Worker.

e Data: if the injection is made either on an element of the matrix A, B
or C, or on an index variable. Also, if the injected value is used by the
Master or a Worker for its computation (e.g. A(M), C(W), i(M), etc).
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Algorithm 3 Pseudo-code for the test application

1: SEDAR_Init()

2: SEDAR_Ckpt() // Checkpoint #0 (CKO)
3: SEDAR_Scatter(A) // Master scatters matrix A (SCATTER)
4: SEDAR_Ckpt() // Checkpoint #1 (CK1)
5: SEDAR_Bcast(B) // Master broadcasts matrix B (BCAST)
6: SEDAR_Ckpt() // Checkpoint #2 (CK2)
7. matmul(A,B,C) // Each process computes its block (MATMUL)
8: SEDAR_Gather(C) // Master gathers matrix C (GATHER)
9: SEDAR_Ckpt() // Checkpoint #3 (CK3)
10: if rank == MASTER then

11: /* Master validates final result (VALIDATE) */

12: SEDAR_Validate(C)

13: end if

e Effect: TDC, FSC, LE or TOE.

e Pj.: the execution moment where the fault is detected. It could be at
communication or at the final validation.

e P...: the nearest checkpoint from which it is possible to recover.

e N,,;: the number of attempts required for correct recovery. The possible
values are: 0, if the injected fault causes a LE; 1, if recovery is possible
from the last recorded checkpoint; 2, if it is necessary to rewind to the
last but one checkpoint; and so on.

Based on the combinations of these factors, we have designed a set of 64
injection experiments that cover all the situations that can occur in the target
test application. The 64 scenarios have been designed according to the following
criteria: the faults are injected both in the code executed by the Master and
by the Workers, in elements of each of the three matrices. The injections in
the Master code are made both in data that it transmits and in others that
are kept for local use. The injections in the Workers’ code are made in data
that will be transmitted, as the Workers do not locally retain results. In both
the Master and the Workers, there are faults injected after each checkpoint, i.e.
the checkpoint is clean, so recovery is possible. Nevertheless, other faults are
injected after a communication operation but before the subsequent checkpoint
(i.e. between them, into already validated data), making that checkpoint dirty
and forcing more than one rollback to recover. On the other hand, injections in
index variables are made, both in the Master and the Workers codes, during the
actual matrix-multiplication operation, in order to make the processing time
of both redundant threads asymmetric. As previously mentioned, every fault
affecting a certain subset of data, and occurring (at any moment) during the
lapse of the execution comprised in a particular scenario, is detected at the
same time, so it can be recovered from the same checkpoint. In other words,
any case of error has a similar effect to one of the 64 provided scenarios; these
64 scenarios are derived from the study of the application behavior.

To illustrate the method followed, only a few representative scenarios are de-
tailed in Table[2l These scenarios were selected mainly to make evident the four
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possible effects of a fault (TDC, FSC, LE or TOE), but also to display injections
made in the codes of both the Master and the Workers, showing different mo-
ments of detection and reflecting various possible situations of recovery (i.e. no
need to rollback, rollback to the last checkpoint or multiple rollback attempts).

Table 2: Selected representative injection scenarios: effects and predicted points
of detection and recovery

Scenario Py Process | Data | Effect Piet Pree | Nyou
2 CKO - SCATTER | Master | A(W) | TDC SCATTER | CKO 1
29 BCAST - CK2 Worker | C(W) LE - - 0
50 GATHER - CK3 Master | C(M) FSC | VALIDATE | CK2 2
59 MATMUL Worker | i(W) TOE GATHER | CK2 1

From Table 2l we can observe that:

e In Scenario 2, the injection is carried out modifying matrix A from the
Master process between CK0O and SCATTER stages. The injected element
of A is going to be transmitted to a Worker, so this injection produces a
TDC error, which will be detected at SCATTER moment. The recovery
is possible from the last checkpoint carried out (CKO, a clean checkpoint).

e An example of LE error is described in Scenario 29. The injection happens
between BCAST and CK2 affecting matrix C' from a Worker. As this
matrix has not been computed yet and will be overwritten afterwards, the
error does not modify the final result.

e Scenario 50 shows the details for an injection experiment that causes a
FSC error. The injection is made in an element of matrix C' that has
already been calculated and received by the Master (GATHER), but before
making the checkpoint CK3. The error will be detected at the VALIDATE
stage, and, because CK3 is dirty (the fault occurred before recording it),
an additional rollback is required to recover.

e A possible TOE error is detailed in Scenario 59. This injection takes place
at MATMUL stage and affects an index variable used by a Worker, causing
one of the replicas to restart its computation after it has already done part
of its task. This causes a delay in the affected thread, which is detected
as a TOE; only the other replica reaches the GATHER operation within
a configurable lapse. The recovery is built from the CK2 point (a single
rollback is enough).

A conclusion of our analysis is that any random fault that can occur along
the execution resembles some of the modeled scenarios. A method of analysis
like the one described, based on the knowledge of the target application and
the moments of checkpointing, in combination with controlled and systematic
fault injection, allows us to predict the behavior of both the detection and the
automatic recovery mechanisms. Thus, the efficiency of the strategy is shown
when running in a real environment with random faults.

It is to be noted that the aim of the performed functional analysis is the
evaluation of the efficacy of SEDAR’s detection and recovery mechanisms. As
the correct operation of both mechanisms is checked for all the errors that can
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occur in the particular selected test application, and other types of errors do not
exist, the carried-out validation verifies the functional suitability of SEDAR.

4.2 Results over a Real Implementation

All the experiments that are described in this section have been carried out uti-
lizing standard tools. The implementation of the fault tolerance strategy con-
sists of a library of modified MPI functions and data types with extended func-
tionality for fault detection. This includes a buffers comparison before sending,
message copies upon reception, and synchronization between replicated threads.

The coordinated system-level checkpoints are built with the DMTCP li-
brary [27], which generates distributed-per-process checkpoint files, and a sin-
gle restart script for each checkpoint. All processes of the application call
SEDAR_Ckpt(), but a single process (e.g. the Master) is in charge of check-
pointing the whole application. Both redundant threads of this process syn-
chronize with each other (in the same way that they do when a message is to
be sent), and only one of them calls DMTCP_Ckpt() from inside of SEDAR.

The fault injection is made from inside the test application. An ad-hoc func-
tion is included in the library, which contains the 64 scenarios, and a conditional
compilation is used to make a single injection in each experiment. Depending
on the number of the particular injection scenario, the function is invoked in a
different place during the execution. This function works in conjunction with
a file that is used to control if an injection has been already made (named in-
jected.tat). The content of this file is evaluated in each function call. In the
first instance, the file contains the value 0 and when the injection is made,
its content is incremented (it is changed to 7). In the recovery process, the
code is re-executed calling the injection routine again. As the file content is
re-evaluated, the function returns without making a new injection since it has
changed. This flag needs to be external to the application so that its content is
independent of the checkpointing storage (i.e. when a checkpoint is made, the
value in the file is not affected).

The recovery mechanism, based on keeping a chain of checkpoints, uses an-
other file to control how many times the same fault has been detected (named
failures.tzt). This file is initialized with 0 and its content is incremented each
time that a fault is detected. Assuming that a single error occurs during execu-
tion, then the file contains 1 for the first detection, and a rollback to last restart
script is tried. If an error is detected during re-execution, it is assumed that it
is the same error as the previous one and that the checkpoint is dirty due to the
detection latency. In this case, the file’s content becomes 2 and a rollback to
the prior checkpoint is attempted. Therefore, the content of the file is used to
choose the number of the restart script that has to be executed. Once again, the
file needs to be external to the application, so that its content is independent
of the checkpoint storage.

To recover from multiple different faults, the mechanism should be slightly
modified to achieve a better performance. Some additional data, related to the
current fault, might also need to be stored in the file, in order to be able to
distinguish between a repetition of the previous fault and a new fault. In the
latter case, the file size would not increase and the mechanism would behave as
in the "first” detection scenario.

The 64 injection experiments, each one being representative of a particular
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scenario, were performed over the test application, using two nodes of a Blade
cluster with eight nodes. Each node contains two quad-core Intel Xeon e5405
2.0GHz processors (6MB L2 cache, shared between pairs of cores), 10GB RAM
memory (shared between both processors) and 250GB local disk storage. The
operating system is GNU/Linux Debian 6.0.7 (64 bits, kernel version 2.6.32),
the message-passing library is MPICH (version 3.3.1), and the checkpointing
library is DMTCP (version 2.4.4).

Figure [ shows the output file of one of the injection experiments, namely
Injection Scenario 50, in order to demonstrate the followed methodology and
the obtained behavior.

® - o diego@hoja13: ~/FGCS2019 Execution of injection case #50

diego@hojal3:~/FGCS2019$ ./sedartest50.sh pr—
SEDAR Init H
SEDAR_Ckpt i
SEDAR_Scatter Ay y lication execution
SEDAR_Ckpt PP
SEDAR Bcast H
SEDAR_Ckpt
SEDAR Gather :
SEDAR_Ckpt H
MPI_ABORT was invoked on rank © in communicator MPI_COMM WORLD with errorcode 907. Fault dstection (#1)
NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes. H
You may or may not see output from other processes, depending on exactly when Open MPI kills them. —_
Rollback (#1)

SEDAR Restart: restarting from /tmp/restart_scripts/dmtcp_restart_script_179679f3debbc-40000-5c98040b_00004.sh

Application execution
SEDAR_Error: final buffers differ at byte 46. -1

MPI_ABORT was invoked on rank © in communicator MPI_COMM WORLD with errorcode 907. i
NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes. Fa_”" detection (#2)
You may or may not see output from other processes, depending on exactly when Open MPI kills them. 3
SEDAR Restart: restarting from /tmp/restart_scripts/dmtcp_restart _script 179079f3debbc-40000-5c98040b_606003.sh Rf;llback #2)

SEDAR_Gather H
SEDAR Ckpt :
SEDAR Validate Application execution

Matrix multiplication done H
diego@hojal3:~/FGCS2019% H
diego@hojal3:~/FGCS2019$ more injected.txt

1

. . Output of injected.txt file
diego@hojal3:~/FGCS2019%
diego@hojal3:~/FGCS2019$ more failures.txt
Output of failures.txt file

2
diego@hojal3:~/FGCS2019$ |

Figure 3: Output of the execution of the test application when the fault of
Scenario 50 is injected

In order to provide more detail, in this stage of SEDAR’s functional valida-
tion, our implementation of fault-tolerant MPI functions is based on point-to-
point communications, which makes it more general and allows us to show up
the FSC scenarios, at the expense of sacrificing performance. However, we have
also developed versions of optimized collective communications, which are used
in the stage of the temporal behavior evaluation. It is important to note that in
collective communications, the sender process also participates in these, either
sending or receiving. If our test application just uses collective operations, the
corrupted data gets transmitted and hence it is validated. In this way, only
TDC scenarios remain and FSC scenarios should not be present any longer. It
is clear that this idea could be extended to many other applications.
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4.3 Evaluation of the Temporal Behavior

To show how our descriptive model can be used to evaluate the temporal behav-
ior of each alternative, a set of simple examples is presented, which includes real
measured values for the parameters in Table[I] taken from carried-out tests.

To enrich the analysis, we have used three parallel benchmarks for the test-
ing stage: matrix multiplication; Jacobi’s method for Laplace’s equation [28];
and DNA sequence alignment with Smith-Waterman algorithm [29]. These ap-
plications have been selected because they are well-known, computationally in-
tensive, and representative of scientific computing. In addition, they allow us to
study the effects of having different communication patterns: Master-Worker,
Single-Program-Multiple-Data (SPMD) and Pipeline, respectively [13]. The
comparison between execution times of the three target applications, between
raw MPI versions and our MPI-based implementation of SEDAR, has the aim
of measuring the execution parameters with each application and pointing out
the differences according to the distinct communication patterns. The SEDAR
implementation includes mechanisms for duplicating processes, synchronizing
replicas, comparing and copying the messages’ contents, and validating the fi-
nal results. Each experiment has been repeated five times, and average values
have been taken.

The parameter f;, the detection overhead, was obtained by comparing the
execution time of the SEDAR detection mechanism, in the absence of faults,
with the time of executing the manual detection strategy (baseline), for each
target application. Explicitly:

o TSE'DAR_det_FA - (Tprog + Tcomp)

fd Tprog + Tcomp

(12)

where Tsgpar_det_Fa is the time of Equation Bl and (Tprog + Teomp) is the
time of Equation [T

As regards the parameter Tcomp, it has been measured for a manually-
launched program that compares the contents of two binary files. It is similar
to the one required by the function SEDAR_Validate(). An average value of
the parameter t.; was obtained by measuring with tools provided by DMTCP
library. As regards T.st, it has been indirectly measured (by fault injection ex-
periments which demand recovery), but the obtained values were consistent to
the assumption that the time needed to perform a checkpoint can be considered
equal to the time needed to load a checkpoint from storage [30].

To achieve long-lasting executions for the three applications (around 10 hours
for the baseline case), we have adjusted the execution parameters. The matrix
product has been repeated 100 times using N = 8192. For the Jacobi algorithm,
the size of the workload was N = 8192 and the number of iterations I = 300.000.
Finally, for DNA sequence alignment, the length of the sequences was set to N
= 2722 = 4.194.304. In this context, the parameter ¢; has been fixed to 1 hour
for all the experiments. Regarding n, this is the number of checkpoints that
have been recorded with such an interval value, and it is obtained by dividing
the time of the only detection strategy (Equation [3)) by the checkpoint interval
t;. It is worth noting that (instead of being arbitrarily assigned) the checkpoint
interval can be determined, for example, with Daly’s formula [31], which takes
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into account the M T BE. The checkpoint interval is intended to be a trade-off
between maintaining a low overhead, due to checkpointing, and a reasonable
time of rework if a fault occurs.

The parameter X, which depends on the detection latency, has been manu-
ally assigned for three cases. On its behalf, the parameter t., was estimated as-
suming that an application-level checkpoint is more lightweight for storing than
its system-level counterpart. Last, Tompa (the validation time of an application-
level checkpoint) has been estimated to be equal to the time of validating the
results (i.e. parameter Teomyp), as a way to simplify the model.

Table [3] contains the list of all values used for the temporal evaluation, ob-
tained as described, whereas Table [] shows the resulting times in each case.

It may be recalled that in the manual strategy (execution of two simultaneous
MPI independent instances), a total of eight MPI processes have been launched,
with a maximum of four processes mapped in each node, which means that just
four cores have been used in that node. The same mapping was assigned in
SEDAR implementation, but in this case, all the cores of each node have been
used, as the redundant threads run on free cores.

An analysis of the data contained in Table [B] reveals some remarkable facts.
In all the cases, the detection overhead fy is very low. However, the biggest
value is for Jacobi’s method, which is the application with the most frequent
communications. This is the expected behavior since fy is tightly associated
with messages. On the other hand, the matrix product, which is computation
bounded, presents negligible detection overhead.

On the other hand, t., is directly related with the size of the workload W for
each application, and therefore with the amount of memory spent, as can be seen
in TableBl The matrix product is the most memory-consuming application. The
Master process handles the three entire matrices, whereas each Worker handles
the entire B matrix, plus its corresponding chunks of A and C. As regards
Jacobi’s method, one of the processes handles the two entire matrices, whereas
the other processes handle their corresponding chunks of them. Finally, in
Smith-Waterman algorithm, all the processes require local buffers; one of them
handles two entire sequences, whereas the others handle one entire sequence
plus their corresponding chunk of the other. It may be recalled that for the
three benchmarks, all the processes are replicated.

Finally, T.omp is associated with the size of the results that have to be
validated. In the matrix product, the entire matrix C is validated for each
instance, so the obtained value is significant compared to the other applications.
On the other hand, in the DNA sequence alignment, only the similarity score
has to be validated, which involves negligible time. As a middle ground, in
Jacobi’s method, a single matrix needs validation.

The information shown in Table M allows us to survey interesting aspects of
SEDAR’s behavior. As a remarkable fact, when a fault occurs, the detection
mechanism (rows 4, 5 and 6) performs better than the baseline (row 2) for all
the applications, regardless of the time of detection, due to the low temporal
overhead implied. The sooner the error is detected, the better the mechanism
behaves, as expected, because less work must be remade after stopping. It
is rather obvious that adding the multiple-checkpoint-based recovery strategy
(row 7) involves a larger overhead if compared to the detection-only strategy, in
absence of faults; the time spent in checkpointing is worth more in the case of
these long-lasting executions, but may have a not-negligible impact in shorter
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Table 3: Values of the parameters utilized in the temporal evaluation of each
alternative strategy

Parameter MATMUL | JACOBI | SW
Tprog [hs] 10.21 8.92 11.15
Teomp [8] 42 1 <1
fa %] <0.01 0.6 0.05
X1; Xo; X3 [%] 30; 50; 80
n 10 8 11
W [MB] 6016 1920 152
tes [s] 14.10 9.62 2.55
Trest [9] 14.10 9.62 2.55
tea [S) 10.58 9.11 1.92
teompa [8] 42 1 <1

Table 4: Execution times [hs] of all SEDAR alternative strategies, both in the
absence and in the presence of faults, compared with the baseline

| # | Situation | MATMUL | JACOBI | SW |
1 Baseline, without fault (Eq. 1) 10.22 8.92 11.15
2 Baseline, with fault (Eq. 2) 20.45 17.85 22.35
3 Only detection, without fault (Eq. 3) 10.23 8.97 11.16
4 Only detection, with fault (Eq. 4, X = 30%) 13.29 11.67 14.50
5 Only detection, with fault (Eq. 4, X = 50%) 15.33 13.46 16.73
6 Only detection, with fault (Eq. 4, X = 80%) 18.39 16.16 20.08
7 Multiple checkpoints, without fault (Eq. 5) 10.26 9.00 11.17
8 | Multiple checkpoints, with fault (Eq. 6, k = 0) 10.77 9.50 11.66
9 | Multiple checkpoints, with fault (Eq. 6, k = 1) 12.27 11.01 13.17
10 | Multiple checkpoints, with fault (Eq. 6, k = 4) 22.79 21.53 23.67
11 Single checkpoint, without fault (Eq. 7) 10.37 8.99 11.16
12 Single checkpoint, with fault (Eq. 8) 10.87 9.50 11.66

programs.

The analysis of the values in rows 8, 9 and 10 reveals that, when an error
takes place, even rolling back several times is advantageous in respect to the
baseline; as long as the number of rollbacks is greater than 4, the time spent in
reworking is longer than the baseline strategy.

The values shown in rows 11 and 12 are similar to the ones of rows 7 and 8.
As expected, the time of recovery from the last valid application-level checkpoint
(Equation [§)) is almost equal to the time of recovery from the last system-level
checkpoint, when this is possible (Equation [f] with & = 0).

In conclusion, it can be seen that the temporal behavior of each SEDAR
strategy is dependent on the communication pattern, the computation-to-
communication ratio and the detection latency. The examples described, with
the three benchmarks, demonstrate how the model can be applied for temporal
evaluation if the involved parameters are available (or they can be measured).

Another remarkable fact that can be observed from Tabledis that the differ-
ent alternatives of SEDAR offer considerable gains both in time and reliability,
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when facing the occurrence of a silent error. This item becomes particularly
important in executions that can last many hours. Moreover, the longer the
execution time (Tprog), the more useful the fault-tolerance strategy is, because
the failures are more likely to happen. As previously stated, the protection
mechanism should be used used for long programs: if the execution is too short,
checkpoints become worthless. Despite the fact that these examples cannot be
taken as general conclusions, they are illustrative of the potential of SEDAR in
helping users of scientific applications to reach reliable executions, as they are
representative of the scientific parallel applications.

4.4 Convenience of Saving Multiple Checkpoints for Re-
covery

As mentioned before, in a system that saves a chain of checkpoints for rollback,
the recovery is then possible after one or more attempts. However, due to the
checkpointing and rolling-back overhead, there are possible scenarios in which
the time spent in those attempts could be longer than simply stopping upon
detection and relaunching from the beginning. Therefore, it is useful to evaluate
the convenience of saving multiple checkpoints. Moreover, the benefits of using
the checkpoint-based protection should be considered.

This study is suggestive about how to use the developed model. If statistics
about the frequency and typical behavior of the faults are available for a par-
ticular system that runs an application (i.e. when the faults are more likely to
appear), the strategy of protection can be properly tuned between only detection
and checkpointing for recovery.

For different values or parameter X, some quantitative knowledge can be
extracted from the evaluation of the execution times in Equationdand in Equa-
tion[6l It can be shown that the fourth term in Equation [G]is equivalent to:

k

(D (k—m+1/2))t; =

m=0

(k1)
2 1

so that Equation [6] can be rewritten as:

TFP = Tprog(l + fd) + Tcomp + (n + k)tcs+

k4 1)2 (14)
%ti + (k/’ + 1)Trest

+

To illustrate this idea, we have selected Jacobi’s method as the test case (al-
though the procedure can easily be applied to the other benchmarks). For this,
we have evaluated the Equation d with three different values of X: if the fault
is detected near the beginning (X = 30%), in the middle (X = 50%) or toward
the end (X = 80%) of the execution. The times obtained are compared with the
ones derived from Equation[I4] taking into account the following considerations.
The reference time for this analysis is the one from Equation[Bt the duration

of an execution using the detection mechanism, without faults. In such a total
execution time (8.97 hs, see Tabled), X = 30% means that the fault is detected
at t = 2.69 hs. At this time, with ¢; = 1 hour, only the two first checkpoints
(CKO0 and CK1) have been stored. Therefore, recovery must be possible, either
from CK1 (i.e. k= 0) or from CKO (i.e. k& = 1), so both values are admissible
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Table 5: Execution time with the fault detected at X, with only detection and
with different number of rollback attempts (k+1)

X [%] | Only detection [hs] k + 1 rollback attempts [hs]

k=0 | k=1 | k=2 | k=3 | k=4
30 11.66 NA (Not Admissible)
50 13.46 9.5 | 11.01 NA
80 16.16 18.52 | 17.02 21.53

in Equation [[4l The same reasoning has been followed for the other values of
X.

Table[Blsummarizes this data. Based on the value of parameter X, the second
column shows the times obtained with detection, safe-stop and relaunching from
the start (i.e. from Equation[d), the third column shows the times obtained by
rewinding to the last (by the moment) stored checkpoint (i.e. from Equation [I4]
with & = 0), the fourth column shows the times obtained by rewinding to the
last but one checkpoint (i.e. from Equation [[4 with £ = 1), and so on. The
value N A means that the current value of k is not admissible in Equation [I4]
for the current value of X, because the corresponding checkpoint has not been
stored yet by that moment of the progress of the execution.

For the analyzed values of X, the obtained results suggest that rolling back to
the last stored checkpoint (k = 0), if possible, is always advisable, faced with the
case of stopping, notifying the error and relaunching from the beginning. Even
to restart from the last but one checkpoint (k = 1) is still convenient (obviously,
if that checkpoint is not corrupted). However, if the fault is detected around
the middle of execution, and two (or more) rollbacks have to made, it would
have been preferable to stop and relaunch. In other words, if recovery from the
last two checkpoints is not possible, trying from the previous ones is still more
expensive than simply halting and getting started again. This is caused by the
large overheads involved in not only re-executing the same computation several
times, but also re-storing checkpoints and making various restart attempts. This
trend also holds as the application progresses: if the fault is detected close to
the end, even trying more rollbacks to recorded checkpoints could represent an
improvement compared to stop and relaunch.

Of course, there is no way of knowing which checkpoint would enable recov-
ery. However, following this line of reasoning, if we force the time of Equation [
to be minor or equal to the one of Equation[I4lwith & = 0, we obtain X < 5.88%.
This means that, before that level of progress (which represents about 32 min-
utes with this set of parameters), it is not convenient to record any checkpoint;
it is less expensive simply to stop and relaunch. On the other hand, if we force
the time of Equation [ to be greater or equal to the one of Equation [[4 with %
=1, we obtain X > 22.67%, which represents about 2 hours. This means that
only when that percentage of execution time has elapsed, rolling back to the last
but one checkpoint is preferable than stopping and relaunching. Before that, it
is worth storing only a single checkpoint. This result reinforces the idea that
this strategy is not so useful if the overall execution time is too short: the time
required for storing the checkpoint could be non-negligible if compared with the
required checkpoint interval. As a final example, when X > 50.61%, rolling
back up two checkpoints is beneficial when compared to using the detection-only
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mechanism.

Despite the fact that this cannot be taken as a general conclusion, the anal-
ysis above shows that (with these parameters), the overhead associated with
rolling back and re-executing is much more significant than the low cost of sav-
ing checkpoints. This suggests that decreasing the checkpoint interval ¢; can be
convenient, as the advantage of rolling back a shorter span exceeds the check-
pointing overhead.

Once again, although these are simple examples, they are illustrative of how
useful conclusions can be drawn from the model of temporal behavior, which
allow us to adapt the protection strategy based on the knowledge of the system
parameters.

5 Conclusions and Future Work

Exascale computing presents several challenges to future generation computer
systems and guaranteeing reliability is one of them. The protection of the MPI
applications at message level is a feasible and effective method for detecting,
secluding and avoiding the propagation of data corruption, taking into account
the deep effects that a single transient fault can cause on all processes that
communicate. In this article, SEDAR has been presented as a methodology
for detecting and recovering from all silent errors, in an agnostic manner to
the algorithms. SEDAR consists of three complementary alternatives for only
detection, recovery based on multiple system-level checkpoints and recovery
based on a single user-level checkpoint. The most remarkable conclusions are:

e The functional behavior in the presence of faults can be analytically de-
scribed. We have built a model that considers all the fault scenarios on a
well-known test application and SEDAR/’s response facing each scenario,
thus showing the validity of the detection and the recovery mechanisms.

e The predictions of the model can be empirically verified. Through con-
trolled fault injection experiments, the reliability provided by SEDAR
strategies has been demonstrated.

e The temporal behavior of each SEDAR strategy can be characterized.
When obtaining the execution parameters for applications with different
communication patterns and computation-to-communication ratios, it has
been shown that the different variants of SEDAR offer benefits both in
execution time and reliability. This becomes particularly profitable in
long-lasting programs.

e SEDAR can be adapted to a determined cost-performance trade-off. As
each SEDAR strategy supplies a particular coverage but also has limita-
tions and implementation costs, choosing between them allows us to adjust
to the needs of a particular system.

e The temporal characterization can be used to extract useful protection
guidelines. To illustrate this, it has been shown when it is beneficial to
employ each SEDAR strategy.

e Both the viability and efficacy to tolerate transient faults in expected HPC
exascale systems have been shown.
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As ongoing and future lines of work, we can enumerate:

e Emulating non-deterministic calls, which are required to extend the scope
of applications that can be protected with SEDAR.

e Performing experimental validation with customized, non-coordinated
user-level checkpoints, calculating the optimal checkpoint interval to min-
imize execution overhead, and measuring the relationship between the
latency of detection and the communication pattern.

e Refining the multiple checkpoint-based recovery mechanism to optimally
support various faults, and analytically modeling the temporal response
in the presence of multiple non-related faults.

e Implementing an automatic adaptation of the recovery strategy, i.e. dy-
namically starting protection depending on the progress of the execution
(based on the reasoning stated in section [£.4)).

As a final aim, integration with scalable architectures that use C/R for
permanent fault tolerance [32] should be attempted. As SEDAR also provides
scalable options for detection and recovery, fault-tolerance for both types of
errors could be achieved for projected exascale systems. It is important to
clarify that a production version of SEDAR is being developed, whereas the
current implementation remains as a prototype.
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