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∙ No systematic comparison of distribu-

tions to fit keystroke timings in free-text 
has been carried out yet.

∙ Most keystroke timings in free text do 
not follow a gaussian law.

∙ The three-parameter log-logistic distri-

bution provides the best fit for hold 
times and flight times, over three data-

sets.

∙ Other previously considered distribu-

tions, like the log-normal, provide a 
good fit but not as good as the log-

logistic.
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Keystroke dynamics is a soft biometric trait. Although the shape of the timing distributions in keystroke dynamics 
profiles is a central element for the accurate modeling of the behavioral patterns of the user, a simplified approach 
has been to presuppose normality. Careful consideration of the individual shapes for the timing models could 
lead to improvements in the error rates of current methods or possibly inspire new ones. The main objective of 
this study is to compare several heavy-tailed and positively skewed candidate distributions in order to rank them 
according to their merit for fitting timing histograms in keystroke dynamics profiles. Results are summarized 
in three ways: counting how many times each candidate distribution provides the best fit and ranking them in 
order of success, measuring average information content, and ranking candidate distributions according to the 
frequency of hypothesis rejection with an Anderson-Darling goodness of fit test. Seven distributions with two 
parameters and seven with three were evaluated against three publicly available free-text keystroke dynamics 
datasets. The results confirm the established use in the research community of the log-normal distribution, in 
its two- and three-parameter variations, as excellent choices for modeling the shape of timings histograms in 
keystroke dynamics profiles. However, the log-logistic distribution emerges as a clear winner among all two- and 
three-parameter candidates, consistently surpassing the log-normal and all the rest under the three evaluation 
criteria for both hold and flight times.
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1. Introduction

Whenever we type on a computer keyboard or a mobile device, our 
characteristic behavior leaves a trace that can be used to verify our iden-

tity. A keystroke dynamics authentication system leveraging the timings 
between successive key events has been proposed forty years ago [1]; 
since then, many improvements have been evaluated in the literature 
[2]. Nowadays, using a state-of-the-art neural network, it is possible to 
scale keystroke dynamics authentication systems to hundreds of thou-

sands of users, with low error rates even when little training data for 
each of them is available [3]. Although identity verification has been 
the most studied application of keystroke dynamics, several others ex-

ist. For example, the analysis of keystroke timings have been used to 
detect deceptive intents on the part of the writer [4], to flag accounts 
spreading fake news about COVID [5], and even to infer the emotional 
state of the user [6].

Keystroke dynamics is a soft biometric trait. The general idea be-

hind its analysis, which remains the same for authentication and other 
tasks, is to model how the legitimate user would have typed under cer-

tain conditions. The training data for those models generally consists of 
the past observations of keystroke timings, and possibly other features 
like pressure and acceleration, when available. For example, a baseline 
method to verify whether a password has been typed by the legitimate 
user or an impostor is, for each key, to average all the observations in 
his or her profile from previous logins, and then to calculate a scaled 
distance to the keystroke timings vector of the current login attempt 
[7].

Which distribution or distributions do these timings obey? Though 
clearly a central element for the accurate modeling of the behavioral 
pattern of the user, this question has not been explicitly addressed ex-

cept by a few authors. Usually the approach has been to presuppose 
normality of the underlying variables [8] or to assume the masking 
effect produced by smoothing distance formulas, or other metrics em-

ployed, will make deviations or biases in the individual terms disappear 
in the whole [9]. By the fact that previous methods appear to work 
rather well using only two parameters (mean and variance) and presup-

posing normality for keystroke timing models, it seems evident that this 
founding postulate is not far from reality.

On the other hand, careful consideration of the individual shapes of 
keystroke timing distributions could lead to improvements in the error 
rates of current methods or possibly inspire new ones, as long as the dis-

tributions can be modeled in a simple way with a few parameters. Else, 
the models would suffer from overfitting and unnecessary complexity 
would be added to implementations. Joking about a similar topic, John 
von Neumann has been quoted asserting that “with four parameters I can 
fit an elephant, and with five I can make him wiggle his trunk” [10]. Fol-

lowing his witty remark, the candidate distributions in this study were 
restricted to those with two or three parameters.

With the advent of free-text keystroke dynamics analysis, the prob-

lem of fitting keystroke timing profiles has grown in importance. It can 
be expected that passwords and short fixed texts, consistently typed in a 
row with a rather stable cadence, would produce normally distributed 
timing profiles. But free text involves pauses and hesitations of many 
different kinds. Thinking, looking at the keyboard, resting, external in-

terruptions, etc., occur invariably however short the sample might be, 
skewing the distribution, changing its shape, and adding heavy tails. 
Considering that most distance metrics and classification methods are 
sensitive to discrepancies between the assumed model and the empiri-

cal data, it is puzzling that a systematic study of histogram shapes was 
not an early step in the discipline. Not long ago a systematic compari-

son of a large number of candidates has been carried out [11, 12] but, 
unfortunately, it is restricted to fixed text.
2

1.1. Contribution

The aim of this paper is to evaluate several candidate distributions 
and rank them according to their merit for fitting the timing histograms 
of free-text keystroke dynamics profiles. As will be discussed in sec-

tion 2, similar studies have been conducted using passwords and fixed 
texts as source material, but the difference between those and a free 
text typing task justifies an experiment for the latter. To the best of 
our knowledge, no systematic comparison of distributions for fitting 
the timing histograms of free-text keystroke dynamics profiles can be 
found in the literature. The main contributions are

• Evaluating seven distributions with two parameters and seven 
more with three parameters for the task of fitting timing histograms 
of free-text keystroke dynamics profiles, using three criteria: best 
match percentage, Akaike information criterion, and hypothesis re-

jection rate.

• Showing, based on the results of the experiment, that the three-

parameter log-logistic distribution, which has not been considered 
before in the literature of free-text keystroke dynamics, provides 
the best fit for flight times.

• Making the source and results datasets publicly available to help 
research in the topic, as well as to encourage replication and vali-

dation of these results.

1.2. Organization

The rest of the article is organized as follows. Section 2 reviews past 
approaches to modeling the timing distributions. Section 3 describes the 
experimental setting, including the problem statement, methodological 
guidelines, candidate distributions, evaluation details, and presentation 
of results, together with a description of source datasets, tools, and the 
availability of the resulting dataset. Section 4 discusses the results and 
future lines of research derived from this work. The last section sum-

marizes the conclusions.

2. Previous studies

Even though they share many similarities, the difference between 
passwords and free text is significant enough to demand divergent ap-

proaches when dealing with keystroke dynamics. For example, one of 
the earliest attempts at user verification using features derived from 
keystroke timings noticed a fivefold increase in error rates when meth-

ods that performed well for passwords were applied to free text [13]. 
This motivated the introduction by other authors of specialized methods 
for the task, starting with the R metric [14, 15] that required samples of 
around 800 characters, and lately reaching low error rates when scaled 
to thousands of users using a neural network specialized for free text 
[3]. The difference between passwords and free text can be justified by 
considering the decision interval that precedes the motor process; while 
passwords are typed straightforwardly, during composition or transcrip-

tion of longer texts the user introduces pauses to think or read the next 
set of words, hesitates, and is subject to involuntary interruptions in 
the flow of the task. Thus, the distribution of the keystroke timings are 
expected to differ significantly.

The log–normal distribution was first proposed by Montalvão et al. 
[16] as a good fit for the flight times in their datasets. Instead of using 
it directly, a transformation was applied to the empirical data to ap-

proximate and simplify its cumulative distribution function; the overall 
effect does not differ much from assuming lognormality. As their main 
objective was improving the performance of algorithms that do not in-

corporate intervals distribution equalization, no attempt was made at 
justifying the choice beyond the empirical fit and the error rate reduc-

tion which is successfully achieved. However, the authors pioneered 
the idea of setting aside the assumption of normality in the field of key-

stroke dynamics analysis.
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From that milestone onwards, the log-normal distribution has been 
a common choice for modeling flight times whenever the shape of the 
histograms is considered. Monaco et al. have shown lowered error rates 
in comparison with other anomaly detectors while testing a partially 
observable hidden Markov model that used the log-normal as the den-

sity function for time intervals [17]. The distribution was also proved 
useful as the underlying model for a spoofing attack with partial in-

formation by the same authors [18]. A plausible explanation for the 
resemblance to a log-normal of the empirical shape of distributions re-

sulting from human dynamics (not specific for typing tasks) is offered 
by Barabási [19], deducing it from the hypothesis that human subjects 
execute tasks using a decision-based queueing process with priorities.

Assuming that users type with a normally distributed pure motor 
delay and an exponentially distributed decision time between keys, the 
idea of fitting flight times with an exgaussian distribution is natural. 
Chukharev-Hudilainen [20] used the scale parameter of the exgaussian 
distributions fitting user flight times to detect pauses and linguistic hes-

itation, and to shed light on the psycholinguistic processes underlying 
the typing task. As he notes, there is a rich and long-established lit-
erature in psychology about using an exgaussian to fit response times, 
which are very similar to flight times in both their empirical distribu-

tions and their theoretical model of occurrence. For example, see [23] 
or [24], where the values of the parameters estimated from the mea-

sured response times were used to infer task conflicts.

Comparisons between candidate distributions are sparse in the lit-
erature, where most of the time the problem is ignored. Two coun-

terexamples are [21] and [22], where a log-normal is compared against 
Benford and Zipf’s power laws and an exponential. To our best knowl-

edge, this is the first systematic attempt to compare several distributions 
for fitting keystroke dynamics timing profiles when the text is not short 
and fixed, as in a password or a passphrase. Attempting to overcome the 
limitations in existing datasets, Migdal and Rosenberger [11, 12] have 
carried out a detailed comparison of almost twenty candidate distribu-

tions for the generation of synthetic datasets using statistical models; 
the Gumbel distribution provided the best overall fit. Our approach 
differs in the target tasks that were considered and the evaluation cri-

teria; while theirs, using the GREYC dataset [25], represents short fixed 
texts like usernames and passwords that the user has typed repeatedly, 
ours is focused on free text composition and transcription tasks. Un-

surprisingly, the results differ between the two studies but the Gumbel 
distribution still performs adequately.

A structured literature review was carried out to find out more 
recent studies on the topic. The academic databases Google Scholar, 
Microsoft Academic, and Scopus were queried with the software Pub-

lish or Perish 7 [26], using the mandatory keywords keystroke dynamics, 
distributions, and lognormal to restrict the search. The objective of in-

cluding the last keyword was to cut down on the number of results 
and concentrate on the most relevant ones; the lognormal being the 
first distribution evaluated for the purpose of fitting timings histograms 
in free text keystroke dynamics profiles [16] beyond the gaussian, it 
is expected to be used as a base case in any comparison. Publications 
from 2017 onwards were considered and sorted by relevance. A total 
of 15 studies meeting the aforementioned criteria were found in Google 
Scholar, 6 in Microsoft Academic, and 10 in Scopus, with several over-

laps. Those only mentioning but not dealing directly with keystroke 
dynamics were manually filtered.

Most of the remaining studies consider the lognormal and other 
related distributions in a more general setting that includes not only 
keystroke dynamics but also touch-screen biometrics [27]. Going be-

yond authentication, [28] and [29] employ the sigma-lognormal model 
of rapid human movements to detect the age group of users based on 
their interaction with a touch screen, while [30] leverages different dis-

tributions to discriminate a human user from a bot. No other systematic 
comparison of distributions for the task of fitting keystroke timings his-

tograms was found other than the aforementioned [21], [22], and [11, 
3

Table 1. History of distributions evaluated for the task.

Authors Year Distributions

Montalvão et al. [16] 2006 lognormal

Chukharev-Hudilainen [20] 2014 exgaussian

Monaco et al. [21]
2015

Benford

Iorliam et al. [22] Zipf

Migdal & Rosenberger [12] 2019

arcsine, beta,

betaprime, chi,

chisquare, erlang,

exponential, gamma,

gumbel, laplace,

logistic, normal,

lognormal, rayleigh,

raised cosine,

Student’s t, uniform,

triangular

12]. A historical summary of distributions evaluated for the purpose is 
shown in Table 1.

3. Experimental setting

3.1. Problem statement

The main objective of this study is to compare several candidate 
distributions in order to rank them according to their merit for fit-

ting timing histograms in keystroke dynamics profiles. Note that the 
problem is different and more complex than simply fitting one set of 
observations to a distribution, because the histogram for every alphanu-

meric key should be modeled. Thus the search is for a distribution that 
provides the best fit more often, or fits better on average, or is rejected 
less often, across the collection of all profiles. For a precise definition of 
the latter term please refer to subsection 3.6.

Additionally, merit should not be addressed only as the minimiza-

tion of a certain measure of the difference between the model and 
empirical data. Several additional concerns not having to do with the 
purely statistical problem of fitting are relevant when the models are 
meant to be used in real biometric systems. To begin with, the num-

ber of parameters in the candidate distributions should be as small as 
possible. Not only to avoid the theoretical nuisances of overfitting and 
hindering generalizability, but also because the estimation of additional 
parameters requires more observations to be reliable. Thus, choosing 
highly parameterized distributions as models lengthens the training re-

quired before a biometric system can achieve a low error rate. This is 
a practical concern for continuous keystroke dynamics verification and 
spoofing attacks like [18], which become more effective when fewer 
keystrokes are needed to bootstrap reliable profiles.

Ideally, a statistical model should provide both predictive and ex-

planatory power [31]. The former one was already addressed in the 
form of fitting quality. The latter one, though at first glance not im-

mediately relevant for the practical issues of biometric verification, can 
nonetheless find applications in the extended field of keystroke dynam-

ics analysis. After all, the observed timing histogram is the result of 
neural and motor processes which, if correctly modeled, can shed light 
on the physical and emotional state of the user. In the same way that 
the mean flight time is highly correlated with typing proficiency and 
its variance can help to classify the emotional state of the user [32] or 
detect cognitive impairment [33], the parameters of the highest rank-

ing distributions should offer some kind of insight into the underlying 
processes.

3.2. Methodological guidelines

Several common pitfalls have proliferated in keystroke dynamics 
studies, and biometrics in general, to such an extent that they have 



N. González, E.P. Calot, J.S. Ierache et al. Heliyon 7 (2021) e08413
motivated specialized literature addressing and trying to prevent them. 
Killourhy and Maxion [34] emphasize the importance of conducting 
comparative experiments in contrast to one-off evaluations — where 
a new technology and a new dataset are evaluated together — and 
strengthening conclusions with statistical inference. Jain et al. have pro-

posed a set of guidelines [35] for best practices in biometrics research; 
even though they are aimed at the evaluation of biometric recognition 
systems and thus do not extrapolate directly to this experiment, the 
rules that apply were followed.

More explicitly, to make sure this experiment provides value to the 
research community, it was made sure that:

• The experiment is comparative. Three publicly available datasets are 
used for this study. The candidate distributions include common 
cases previously used in the literature as a baseline.

• The experiment is replicable. The datasets and the base tools are free 
and openly available. No additional data or tool is needed to repli-

cate our results.

• The conclusions are generalizable. The raw data comes from different 
studies, was captured under different circumstances, with different 
users and scopes, and by different authors. The datasets are exten-

sive and at least LSIA corresponds to real operational data.

• The conclusions are founded on statistical inference. Whenever pos-

sible, confidence intervals and other techniques are used to show 
significance.

With respect to the last item, there is no standard set of guidelines 
specific for biometric studies according to the best of our knowledge. To 
make up for it, [36] which is aimed at the medical research community 
is followed here.

3.3. Datasets

The dataset LSIA is the same as previously used in [37], which is 
a longer and harsher version than the one used in [38]. It consists of 
typing sessions recorded during daily work in a healthcare environment 
for more than a year where the users, mostly doctors, worked rotating 
shifts and on duty.

The dataset KM was used in [39] to evaluate if a free writing or a 
transcription task would produce similar enough profiles to be used in-

terchangeably with the purpose of simplifying future data acquisitions, 
as volunteers were found more prone to contribute transcribed texts 
than composing original ones. The task separation for this study was 
kept, but merging the different groups in which the users were split.

The dataset PROSODY was used in [40] to study cues of deceptive 
intent reflected in typing pattern variations. It contains deceptive and 
truthful writing, as well as copying tasks where the user agrees or dis-

agrees with the content. Gay marriage and gun control are included 
as controversial and opinionated topics to induce strong emotional re-

sponses in the writers and a more neutral topic of restaurant reviews 
balances the set. Such a rich source of diversity deserves not to be crip-

pled, especially considering that each subset has enough samples to be 
significant. Thus, results for each of its categories of topic and task are 
reported.

Every dataset used here was captured in a different environment 
and setting, with a different set of users. Varying tasks were requested, 
ranging from simple copying to free composition. Emotional dimensions 
are explicitly considered in the last dataset and at least LSIA includes 
the effect of stress and fatigue. The diversity of sources is expected to 
help avoid single dataset caveats [41] such as selection and capture 
bias. Main dataset characteristics like user and session count are shown 
in Table 2.
4

Table 2. Main dataset characteristics.

Dataset Task Users Profiles Profiles

𝑁 ≥ 20 𝑁 ≥ 40
LSIA Free text 42 5167 2777

KM
Free text 
Transcription

20
1644

1551

854

840

P
R

O
S
O

D
Y

GAY

Copy 1

400

13188 8911

Copy 2 12909 8772

Fake Essay 13697 9233

True Essay 15362 9959

GUN

Copy 1

400

13996 9380

Copy 2 13408 9148

Fake Essay 13991 9374

True Essay 16026 10380

REVIEW

Copy 1

500

13447 9850

Copy 2 13638 9902

Fake Review 14890 10483

True Review 15937 10909

Fig. 1. A typical histogram for hold times, taken from dataset KM.

3.4. Availability of source and results data

A dataset containing CSV files with the timing features (hold times 
and flight times) of every keypress in the three source datasets — group-

ed by dataset, user, task, virtual key code, and feature — is made 
available both at the laboratory website, at IEEE DataPort [42], and 
as a Mendeley Data repository [43]. No additional data is needed to 
replicate the results here reported or to evaluate additional distribu-

tions that were not considered in this study.

The files in the dataset are named using the following convention: 
DATASET-TASK-USER-FEATURE-VK, and organized in folders accord-

ing to their dataset and task. Due to the number of files being greater 
than a hundred thousand, they are packaged in the DISTRIBUTIONS.zip 
file. Five files, which are also included inside the package, are added 
to exemplify the naming convention. For example, KM-transcribed-

USERs019-FT-VK32.csv contains the timing observations for the flight 
time (FT) of the space key (VK32, virtual key code 32) when pressed by 
the user s019 in the dataset KM, while he is carrying out a transcription 
task. Each file contains a single timing value per line, in miliseconds, 
for an observation of the corresponding feature, virtual key, and user.

3.5. Candidate distributions

It has been recognized for a while that hold times (down-up) and 
flight times (down-down) are expected to show different histogram 
shapes, the former being rather similar to a normal variable while the 
latter presents fatter tails and positive skew. Figs. 1 and 2 show the 
density and cumulative distribution of hold times and flight times for 
the space key of the user s019 from dataset KM, grouped in buckets of 
0.2 standard deviations around the mean, to exemplify these assertions. 
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Fig. 2. A typical histogram for flight times, taken from dataset KM.

Fig. 3. Candidate distributions with two parameters.

A visual inspection of histograms from different users and datasets is 
enough to convince oneself that they provide a rather accurate descrip-

tion of empirical data.

As candidates for evaluation, seven well-known distributions with 
two parameters and seven more with three parameters were picked 
from [44]. Three formal requisites were being right tailed, with posi-

tive skew and infinite support, at least in the positive real numbers. A 
general shape resemblance to observed profiles was an additional sub-

jective criterion. An attempt was made to represent different families 
of distributions as much as possible, preferring those with shape pa-

rameters that controlled the skewness, to account both for hold times 
and flight times. Finally, practical considerations restricted the choice 
to those having an implementation in R, compatible with the package

fitdistrplus.

The chosen two-parameter candidates were log-normal (lnorm), lo-

gistic (log), log-logistic (llog), gamma, Weibull, and Gumbel; a normal 
distribution was also included as a comparison baseline. The terms in 
parentheses show the abbreviations used for tables, which match the 
corresponding R function. Fig. 3 exemplifies the first six, which have 
been fit to have their mean at 200 ms and a variance consistent with 
empirical examples of keystroke timing histograms as those made avail-

able with the results dataset.

The chosen three-parameter candidates were exgaussian (exGAUS), 
translated log-normal (lnorm3), translated log-logistic (llog3) Burr, 
Frechet, generalized gamma (gg), and Dagum. Once again, the terms 
in parentheses show the abbreviations used for tables, which match 
the corresponding R function. Fig. 4 exemplifies five of them, under 
the same conditions as in the previous one. Translated log-normal and 
log-logistic are not shown, as they have the same shape as their two-

parameter counterparts but include an additional threshold parameter 
with can shift them left or right.
5

Fig. 4. Candidate distributions with three parameters.

3.6. Evaluation

Each considered dataset contains several typing sessions for each 
user, consisting of a sequence of keystrokes where its hold times (down-

up) and flight times (down-down) were recorded alongside other rel-

evant information. All of the latter was ignored except for the name 
of the typing task. The rationale for this action was to observe how 
different tasks influence the best-fitting distributions. Keystrokes were 
grouped on a per-user basis, packing them independently of their ses-

sions. Thus, a profile was built for each dataset, task, user, virtual key 
code, and feature, consisting of a set of timing values. The temporal 
evolution of individual cadences was not considered, forming instead a 
single histogram for each timing profile.

All candidate distributions were evaluated against each alphanu-

meric profile with enough keystrokes (20 for two parameters and 40 
for three), truncating them to 100 samples at most for performance 
considerations. Their parameters were estimated using maximum like-

lihood estimation and the resulting log-likelihood was corrected us-

ing Akaike’s additional terms for parameter count and small sample 
bias, the latter only if required. Then a hypothesis verification was ap-

plied using Anderson-Darling goodness of fit test. The latter is better 
suited to the task at hand because it is more sensitive towards the tails 
than to the bulge of the distributions, for example in comparison with 
Kolmogoroff-Smirnoff test. An additional advantage is that R’s imple-

mentation seamlessly compensates for repetitions in the sample set, 
a cumbersome artifact of recording keystroke timings with a discrete 
clock.

Please note that performance metrics typically used to rank methods 
for intrusion detection and identity verification, like precision, accu-

racy, FAR, FRR, ERR, etc., are not suited for this context, where key-

stroke timing distributions in free text are being fitted. In their place, 
it is natural to consider the number of times a distribution achieves 
the best fit against the other candidates, and verify the results using 
hypothesis testing, which is a standard tool when fitting sample data. 
From several available tests, the Anderson-Darling has been shown to be 
a top performer even with small sample sizes [45] and has the advan-

tage of working well with most empirical distributions and candidate 
laws [46]. Finally, the Akaike information criterion was chosen for its 
ability to compensate for the number of parameters in the distributions.

3.7. Tools

The statistical software tool R [47] was employed for most of the 
complex calculations of this study. Package fitdistrplus [48] pro-

vided the core functionality for fitting and ADGofTest [49] the im-

plementation of Anderson-Darling goodness of fit test, while packages

actuar [50], brms [51], distr [52], FAdist [53], gamlss.dist

[54] and qualityTools [55] provided the candidate distributions. 
Additional modules like dataset files parsing, table building, and gen-

eral module gluing were done in C#.
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Table 3. Results by dataset.

Two parameters Three parameters

Dataset Task Best Avg. Least rej. Best Avg. Least rej.

HT/FT HT/FT HT/FT HT/FT HT/FT HT/FT

LSIA Free text gumbel/llogis llogis/llogis llogis/llogis lnorm3/llog3 dagum/llog3 llog3/llog3

KM
Free text logis/llogis

logis/llogis
logis/llogis llog3/llog3 llog3/llog3 lnorm3/dagum

Transcription gumbel/llogis logis/lnorm lnorm3/llog3 dagum/llog3 dagum/lnorm3

P
R

O
S
O

D
Y

GAY

Copy 1

logis/llogis logis/llogis logis/llogis llog3/llog3 llog3/llog3
llog3/llog3Copy 2

Fake Essay

True Essay llog3/dagum

GUN

Copy 1

logis/llogis logis/llogis logis/llogis llog3/llog3 llog3/llog3 llog3/llog3
Copy 2

Fake Essay

True Essay

REVIEW

Copy 1

logis/llogis logis/llogis logis/llogis llog3/llog3 llog3/llog3 llog3/llog3
Copy 2

Fake Essay

True Essay

Table 4. Distributions merit for hold times ordered by best match count, two-parameter distributions.

Table 5. Distributions merit for flight times ordered by best match count, two-parameter distributions.
3.8. Presentation of results

Results are summarized in three ways. The first set of tables, span-

ning from Table 4 to Table 7, was built by counting how many times 
6

each candidate distribution provides the best fit and ranking them in or-

der of success. Tables 4 and 5 show detailed results for hold times and 
flight times respectively, for two-parameter distributions; both are rep-

resented, together with their confidence intervals, in Fig. 5. Similarly, 
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Table 6. Distributions merit for hold times ordered by best match count, three-parameter distributions.

Table 7. Distributions merit for flight times ordered by best match count, three-parameter distributions.
Fig. 5. Merit for two-parameter distributions. Higher is better.

Tables 6 and 7 show detailed results for hold times and flight times for 
three-parameter distributions, while Fig. 6 displays them graphically 
and with confidence intervals.
7

Fig. 6. Merit for three-parameter distributions. Higher is better.

The second set of tables, spanning from Table 8 to Table 11 shows 
the average of one-half the AIC metric of every profile in each data-

set/task pair. The layout of tables and figures, for hold times and flight 
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Table 8. Average log-likelihood for hold times, two-parameter distributions.

Table 9. Average log-likelihood for flight times, two-parameter distributions.

Table 10. Average log-likelihood for hold times, three-parameter distributions.

Table 11. Average log-likelihood for flight times, three-parameter distributions.
times, and for two-parameter and three-parameters distributions, fol-

lows the first set of tables.

Finally, the third set of tables, spanning from Table 12 to Table 15, 
ranks candidate distributions according to the frequency of hypothesis 
8

rejection (the lower the better). Once again, a similar layout has been 
followed.

The gray shading in each cell of each table is meant to convey, 
at a glance, the relative merit of each distribution in its row, which 
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Table 12. Rejection percentage for hold times, two-parameter distributions.

Table 13. Rejection percentage for flight times, two-parameter distributions.

Table 14. Rejection percentage for hold times, three-parameter distributions.
corresponds to a dataset and a task. Lighter shading means better per-

formance. For example, in Table 4, Gumbel is the distribution with the 
highest match count and thus depicted the lighter, while norm is the 
worst performing and thus depicted the darker.

Table 2 details the number of users and evaluated profiles with more 
than 20 and 40 samples in each task of every dataset, while summariz-
9

ing the best performing distribution for each line of every table. A line 
of Table 2 includes the twelve best scoring distributions for the same 
dataset and task in tables ranging from Table 6 to 15. As llogis/llogis 
and llog3/llog3 are the most common entries for two and three parame-

ters, values that deviate from the former have been emphasized to make 
them easier to spot.
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Table 15. Rejection percentage for flight times, three-parameter distributions.
3.9. Akaike information criteria

A word of caution and an extended explanation is needed with re-

spect to the second set of tables. The intention when building them was 
to consider that the distribution providing the best fit most of the time 
must not necessarily be the one that fits better on average. To arrive 
at this latter value a measure of fit is needed, and not only a binary 
best/not best answer for each profile and distribution. Starting with 
Akaike valuation for a model

𝐴𝐼𝐶𝑐 = 2𝑘− 2 ln (𝐿̂) (1)

where 𝑘 is the number of parameters, here two or three, and 𝐿̂ is the 
value of the maximum value of the likelihood function for the model. 
From the set of candidates, the distribution yielding the lowest value of 
AICc should be preferred. The term 2𝑘 is meant to penalize the intro-

duction of more parameters than necessary.

As explained by Akaike in his seminal paper [56], the value of 
the mean log-likelihood is an estimator of the (negative of the) cross-

entropy between the evaluated distribution 𝑓 with parameter set 𝜃 and 
the “true” underlying distribution 𝑔. Thus, the former tends to the latter 
with probability one as N, the number of samples, is increased indefi-

nitely.

lim
𝑁→∞

1
𝑁

𝑁∑
𝑖=1

log𝑓 (𝑥𝑖|𝜃) = ∫ 𝑔(𝑥) log𝑓 (𝑥|𝜃)𝑑𝑥 (2)

for almost all 𝑔, 𝑓 and point sets. Using AICc a better estimator for 
practical purposes can be constructed thanks to the additional term 2𝑘
correcting the downward bias introduced by the number of estimated 
parameters and other terms that can account for small sample sizes 
[57]. However, because of AICc’s multiplicative constant, it must be 
divided by two to recover the cross-entropy. Formally, the expression is

lim
𝑁→∞

1
2𝑁

𝐴𝐼𝐶𝑐 = −∫ 𝑔(𝑥) log𝑓 (𝑥|𝜃)𝑑𝑥 (3)

= 𝔼𝑔[− log𝑓𝜃] (4)

This is the value whose average for each dataset is reported in the 
second set of tables. It can be interpreted as the average cross entropy 
between the candidate distribution and the true statistical distribution 
generated by the typing process, thus the lower the value the better the 
candidate resembles the legitimate source.

Following an information theoretic interpretation these numbers, if 
weighted with key frequency, would represent the average information 
content in nats of a keystroke under each candidate hypothesis. This 
can be useful for compression of keystroke timing data, but this line 
will not be pursued further here.
10
Fig. 7. Average values of AICc for two-parameter distributions. Lower is better.

4. Results and discussion

4.1. Validation of results

Several widely acknowledged observations can be used as test cases 
to validate the general correctness of the evaluations here presented. 
One of them is that hold times, being the result of a purely motor pro-

cess, ought to contain less information than flight times, which not only 
includes decision delays but also external pauses and interruptions. The 
latter phenomenon is easy to observe; users rarely, if ever, respond to 
interruptions by holding a key pressed. The second set of tables (8 to 
11) together with Figs. 7 and 8, roughly show values of AICc around 4.5 
for hold times and around 6 for flight times; please refer to section 3.8

for the meaning of these numbers. Being disjoint from the former after 
considering the confidence intervals, it provides evidence for the stated 
observation, as well as an approximate measure of the information con-

tent of hold and flight times.

Another obvious phenomenon that can be used to validate the ex-

periment is that distributions with three parameters provide a better 
fit than those with two. Once again, the second set of tables (8 to 11) 
shows the appreciation true. In Tables 12 and 13, as well as in Fig. 9, it 
is shown that normality is rejected very often both for hold and flight 
times. The latter histograms, being heavier tailed, have a higher per-

centage of rejections. What is more, the fact that hold time histograms 
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Fig. 8. Average values of AICc for three-parameter distributions. Lower is bet-

ter.

Fig. 9. Rejection rate for two-parameter distributions. Lower is better.

present more stable shapes can be seen in the fairer distribution of win-

ner shares in their first set of tables compared with flight times.

Even though it is not a clear winner, the log-normal distribution has 
proved itself worthwhile in both the two- and three-parameter form. In 
almost every table, whenever it is not one of the top performers, it also 
stays far from the worst one. A curious exception appears in Table 4 for 
hold times of dataset KM, where even the normal distribution is chosen 
more often than log-normal as the best fit.

4.2. Highlights from the results

These previous observations on the shape of timing distributions in 
keystroke dynamics profiles, as stated in the section on previous stud-

ies, were confirmed here. However, several new and interesting facts 
emerge from the numerical results.

The log-logistic distribution, both in its two- and three-parame-

ter version, is a clear winner among all candidates. Fitting flight 
times with two parameters, its lowest best match count for all datasets 
is around 50% in LSIA and above 65% in the rest, whereas the following 
candidate, the (two-parameter) log-normal distribution, achieves 28% 
in LSIA and less than 20% in the rest. For hold times it still outranks 
11
every other distribution by a margin of more than 10%, and gener-

ally around 20%, with the exception of the two KM tasks. Fitting with 
three parameters, the log-logistic distribution still beats all the rest by 
more than 10%, with a wider margin for flight times. Being consistently 
the least — sometimes the second to least — rejected for all datasets 
and almost always providing the smallest information content (followed 
closely by Dagum and log-normal) for both hold and flight times, the 
log-logistic distribution turns out to be an unexpected and unchallenged 
winner. To the best of our knowledge, and Google Scholar’s, no previous 
mention of this distribution appears in keystroke dynamics research.

The best-fitting distribution does not depend much on the 
evaluation dataset. Whenever log-logistic, both in its two- or three-

parameter version, does not achieve first place, it makes the second or 
third place by a negligible margin. Thus, the environmental conditions 
of the data capture setting do not seem to have a strong influence on 
the detailed shape of timing histograms.

Three-parameter distributions’ merits are not that clear-cut. In-

formation content and rejection tables do not show such a clear-cut 
distinction between the best scoring and the following ones, as do the 
tables for two-parameter distributions. Most of the time three, or even 
four, of them present very similar values and almost overlapping confi-

dence intervals. Dagum’s values are almost always a close call to those 
of the log-logistic. The average information content of log-logistic, Da-

gum, Frechet, and log-normal are almost identical.

The log-normal distribution is the second best choice among 
two-parameter candidates, even though it is slightly worse than Gum-

bel for hold times. It is still a good choice when using the three-

parameter version, though behind Dagum and exgaussian distributions. 
This hardly comes as a surprise considering the attention it has re-

ceived in the past. Scanning the tables it can also be seen that, together 
with log-logistic, its two-parameter version can compete with three-

parameter distributions in information content and rejections confirm-

ing it as an excellent candidate.

The performance of the Dagum distribution comes as a surprise, 
as it has never been considered before in the literature about free-text 
keystroke dynamics. Yet, its performance is not far from log-logistic.

The exgaussian distribution is not a very good choice for mod-

eling flight time histograms. In spite of the motivation presented in 
the section on past studies, the exgaussian distribution does not often 
provide best fit and its rejection percentage is high, especially in the 
PROSODY dataset. However, while the information content is relatively 
one of the worsts in Table 11, it is still not far from the best ones in ab-

solute terms. External interruptions increase the noise in the histograms 
and the exgaussian distribution suffers its effects more than the other 
candidates that can absorb it seamlessly, explaining the high rejection 
rate and poor best match count.

Different typing tasks and topics in PROSODY dataset do not 
change significantly the best-fitting distribution. The three sets of 
tables show rather similar merit ranks for every task and topic in 
PROSODY dataset. Thus, broad histogram shapes do not seem to be cor-

related with the emotional context of the typing user except for the way 
in which the latter influences the parameters of the underlying distri-

bution. This is an interesting observation because confirming it would 
rule out the better fitting distribution as a criterion for truth or task 
detection. Unluckily, being the only dataset with such a fine-grained 
distinction, it is impossible to know if this observation is generalizable 
or only applies to PROSODY dataset.

4.3. Discussion of the results

In Figs. 5 to 10, the values achieved by each candidate distribu-

tion for the three evaluation criteria have been represented together 
with confidence intervals. Large differences in performance for fitting 
the empirical histograms of keystroke timings were found when com-

paring them using best match count and hypothesis rejection rate, and 
more so when considering two-parameter distributions instead of three. 
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Fig. 10. Rejection rate for three-parameter distributions. Lower is better.

Fig. 11. Merit and hypothesis acceptance for two-parameter distributions. Hold 
times in blue, flight times in red.

On the other hand, the differences in AICc turned out to not be very 
pronounced except for the outliers norm and gengamma. Thus, to facil-

itate a visual comparison of the relative merits at a glance, Figs. 11 and 
12 show scatter plots for the rate of hypothesis acceptance against best 
match count for distributions of two and three parameters; the nearer a 
distribution is to the top right, the better, and the nearer to the bottom 
left, the worse.

In the first figure a distinctive positive correlation between both 
performance metrics can be observed, while the pattern in the second 
one is much less clear. This can be expected, as an additional third 
parameter helps to accommodate wider variations in the shape of the 
empirical histograms, reducing the rate of hypothesis rejection. Yet, the 
log-logistic distribution in its two- and three-parameter versions man-

ages to outclass all the other candidates. The reason why such is the 
case cannot be established with the existing data, and further exper-

imentation is needed to determine the cause. The conclusion cannot 
be attributed to bias or an artifact of the data, as three publicly avail-

able datasets with several typing tasks, captured by different sets of 
non-collaborating authors in different environments, were used for the 
evaluation, and the log-logistic distribution achieved the best results, 
12
Fig. 12. Merit and hypothesis acceptance for three-parameter distributions. 
Hold times in blue, flight times in red.

measured with three metrics, in all but a handful of instances as Ta-

ble 3 revealed.

The results have shown consistency with those of previous studies, 
as far as they can be compared. In particular, the log-normal distri-

bution has proved to be a robust choice and much better for the task 
at hand than the normal distribution, as was first noted by [16]. Con-

trasting with the keystroke dynamics of passwords, where the Gumbel 
distribution was previously found to provide the best fit [12], it scores 
in third place behind the log-logistic and log-normal when evaluated 
with free text as was done here and as long only two parameters are al-

lowed. Divergent results with respect to the best fitting distribution for 
passwords and free text confirm the initial motivation for this study.

4.4. Limitations of this study

This study has been restricted to free-text keystroke dynamics. The 
types of writing tasks represented in the datasets comprise composition 
and transcription. No claim is made about the shape of timing distribu-

tions generated by other types of writing tasks; in particular, password 
typing and short fixed texts were not considered. The reader interested 
in these cases is referred to [11, 12].

Two languages were considered in this study, English and Spanish, 
and no significant differences were found between them with respect to 
the timings distributions involved while typing. Whether these findings 
are generalizable to other languages or not can only be decided with 
further experimentation. Unluckily, the necessary datasets are lacking.

As stated in section 3.5, the criteria for selection of candidate distri-

butions were being right tailed, with positive skew and infinite support 
in the positive real numbers, and bearing a general shape resemblance 
to the observed empirical profiles. Seven distributions with two pa-

rameters and seven more with three parameters were chosen for the 
comparison; it is a limitation of this study that many others were neces-

sarily excluded, but the rather tight draw in information content for the 
best performing candidates, shown in Figs. 7 and 8, suggests that a sig-

nificant improvement is improbable. However, the companion dataset 
provides the means to evaluate other distributions not evaluated here.

Candidate distributions with four or more parameters were not ex-

amined in this study. To our best knowledge, none have been previously 
considered in the literature of keystroke dynamics, to avoid overfitting 
and because of the large amount of timing observations required to es-

timate the parameters accurately.
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4.5. Future lines of research

The main result of this paper, that the log-logistic distribution is a 
clear winner among all candidates for fitting keystroke dynamics timing 
histograms, naturally suggests two lines of inquiry. An immediate prag-

matic question is whether considering the aforementioned distribution 
can reduce the error rates of existing algorithms beyond those achieved 
in [16] using the log-normal, and by how much. A tougher research 
question would be asking for the underlying motor and decision pro-

cess that results in such a distribution for timings. Why the log-logistic 
and not other distributions? The candidate with the simplest explana-

tion based on the former processes, the exgaussian, was ruled out here.

Montalvão et al. [16] have shown in the past how histogram normal-

ization based on a log-normal distribution can improve the performance 
of a user verification task. Based on the results here reported, our cur-

rent work on the topic focuses on evaluating whether considering the 
log-logistic and other well-performing distributions can provide further 
refinements of the error rates.

5. Conclusions

After evaluating seven distributions with two and three parameters 
separately against three publicly available free-text keystroke dynamics 
datasets, three groups of tables were produced that showed the results 
according to different criteria: the number of times each distribution 
was chosen as the best-fitting for each profile, its average information 
content over all profiles, and its rejection rate after an Anderson-Darling 
goodness of fit test.

The results confirm the established use in the research community 
of the log-normal distribution, in its two- and three-parameter varia-

tions, as excellent choices for modeling the shape of timings histograms 
in keystroke dynamics profiles. However, the log-logistic distribution 
emerges as a clear winner among all two- and three-parameter candi-

dates, consistently surpassing the log-normal and all the other candi-

dates under the three evaluation criteria for both hold and flight times. 
This comes as a pleasant surprise, for this distribution has not been men-

tioned or evaluated before in keystroke dynamics literature. So does a 
rather similar performance by the Dagum distribution, another new-

comer to the arena. The reason why these two distributions score so 
well cannot be established with the existing data, and further experi-

mentation is needed to determine the cause.

The relative merits of three-parameter distributions are not that 
clear-cut, as information content and rejection tables do not show sig-

nificant differences between the best scoring and the following ones. 
Most of the time three, or even four, distributions present very similar 
values and almost overlapping confidence intervals. Dagum’s values are 
almost always a close call to those of the log-logistic. The average in-

formation content of log-logistic, Dagum, Frechet, and log-normal are 
almost identical. Is the distinction between three–parameter distribu-

tions too fine-grained to analyze such a noisy source of data as free-text 
keystroke dynamics, where pauses, distractions, and intermissions pol-

lute the timings neatly generated by the sum of a motor process and a 
decision process in the brain of the typing user? If that was not the case, 
the exgaussian would be an excellent candidate, and it was shown it is 
not.

Last but not least, it was shown that tasks and topics do not influence 
the shape of timing histograms enough to distinguish them, even though 
the value of their parameters can (as can be seen in [40]). This result 
cannot be generalized beyond dataset PROSODY, for it is the only one 
to contain such a distinction. But, as was stated in the Contributions 
section to motivate the present study, results for passwords and free text 
have been shown to differ, with the best candidate for the former, the 
Gumbel distribution, scoring third after the log-logistic and log-normal 
for free text.
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