
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

 Continuous Testing Improvement Model  

Maximiliano Agustin Mascheroni  
Departamento de Informática, FaCENA  

Universidad Nacional del Nordeste 
Corrientes, Argentina 

Universidad Nacional de La Plata 
La Plata, Buenos Aires, Argentina 

mmascheroni@unne.edu.ar 

Emanuel Irrazábal 
Departamento de Informática, FaCENA  

Universidad Nacional del Nordeste 
Corrientes, Argentina 

eirrazabal@unne.edu.ar 

 
Gustavo Rossi 

LIFIA, Facultad de Informática 
Universidad Nacional de La Plata 
La Plata, Buenos Aires, Argentina  

gustavo@lifia.info.unlp.edu.ar 
 

Abstract —Continuous Delivery is a practice where high-
quality software is built in a way that it can be released into 
production at any time. However, systematic literature reviews 
and surveys performed as part of this Doctoral Research report 
that both the literature and the industry are still facing 
problems related to testing using practices like Continuous 
Delivery or Continuous Deployment. Thus, we propose 
Continuous Testing Improvement Model (CTIM) as a solution 
to the testing problems in continuous software development 
environments. It brings together proposals and approaches 
from different authors which are presented as good practices 
grouped by type of tests and divided into four levels. These levels 
indicate an improvement hierarchy and an evolutionary path in 
the implementation of Continuous Testing. Also, an application 
called EvalCTIM was developed to support the appraisal of a 
testing process using the proposed model. Finally, to validate the 
model, an action-research methodology was employed through 
an interpretive theoretical evaluation followed by case studies 
conducted in real software development projects. After several 
improvements made as part of the validation outcomes, the 
results demonstrate that the model can be used as a solution for 
implementing Continuous Testing gradually at companies using 
Continuous Deployment or Continuous Delivery and measuring 
its progress. 

Keywords—continuous testing, continuous delivery, 
continuous deployment, doctoral thesis 

I. INTRODUCTION 
Recent studies have shown that there are still testing 

problems in software development projects that use practices 
such as Continuous Integration, Continuous Deployment or 
Continuous Delivery. Some of these problems are [1]: 
integration tests, automated tests that generate false positives, 
automated GUI tests that are difficult to maintain, high test 
execution time, and lack of coverage of certain types of tests 
in continuous development environments. Furthermore, the 
industry has reported problems related to the testing process 
in continuous environments [2]. These are time-consuming 
tests, unstable tests, flaky tests, automated graphical interface 
tests, Big Data tests, and a lack of procedures, patterns, and 
good practices for automated testing in continuous 
development environments. This shows that both the 
academic literature and the industry are aligned. 

According to Prusak, “the industry has not closed the 
circle yet when it comes to realizing a full Continuous 
Delivery Process” [3]. Also, some authors state that 
Continuous Testing is the missing component in continuous 
development approaches [4], [5]. As part of Continuous 
Testing, a large number of techniques, methods and tools have 
been proposed to deal with the problems related to testing in 
continuous environments. However, implementing this 
process has been challenging in practice [1]. 

For that reason, the Continuous Testing Improvement 
Model is proposed as a solution to the testing process 

problems in Continuous Deployment or Continuous Delivery. 
The model has been created as part of a Doctoral Thesis 
Research with the collaboration of international companies 
that develop different types of platforms and systems. 

Apart from this introductory section, Section II lists the 
most critical problems in continuous testing. In section III the 
proposed model is detailed. The validation of the model is 
described in section IV. Finally, conclusions are presented in 
section V. 

II. TESTING PROBLEMS 

A. Testing Problems Reported by Academic Sources 
First, as part of the Doctoral Research, a Systematic 

Literature Review (SLR) has been carried out, searching for 
testing problems and solutions for them in Continuous 
Delivery [4]. 

The selection process resulted in 56 studies that met the 
inclusion criteria. After the data were extracted and analyzed, 
a list of 8 problems was obtained for Continuous Testing: 
cloud service-based application testing, challenges with GUI 
testing, continuous monitoring, Testing as a Service in 
Continuous Delivery, automated microservices testing, flaky 
tests, Big Data testing and automated testing of dynamic 
websites. Fig. 1 shows the number of problems reported by 
the studies of the SLR. 

B. Testing Problems Reported by the Industry 
With the aim of searching, identifying, and providing 

information on the status of testing processes in software 
development projects that use Continuous Integration and 
similar practices such as Continuous Deployment or 
Continuous Delivery, a survey was carried out [2].  Its goal 
was to validate whether testing challenges or problems exist 
at the industry and to reveal possible solutions for them. 

After a four-month survey period, a total of 287 projects 
responded. However, following a set of inclusion criteria for 
handling inconsistent and incomplete questionnaires, 255 of 
them were kept. After extracting the data and analyzing the 
results, the testing problems found are listed in TABLE I. 

 
Fig. 1. Testing Problems reported in the academic literature. 



TABLE I.  TESTING PROBLEMS AT THE INDUSTRY 

Testing Problem Nª of Projects 

Automated testing of applications composed by cloud 
services 2 

Mobile testing 17 
Big Data testing 18 
Non-functional automated testing 23 
Data testing 26 
Unstable environments 36 
Dynamic Web UI automated testing 47 
Web service testing 58 
Ambiguous test results 65 
Lack of procedures, patterns and good practices for 
automated testing in Continuous Delivery 112 

Time-consuming testing 179 
Flaky Tests 224 

Automated GUI Testing 1234 
 

The previously problems mentioned represent difficulties 
in implementing the testing process in continuous 
development approaches correctly. Besides, they are related 
to each other in such a way that the occurrence of one produces 
another directly or may produce it. These relationships are 
shown in Fig. 2. 

Finally, it can be seen from Fig. 2 that the most important 
problems are time-consuming tests, flaky tests and lack of 
frameworks, tools and good practices for testing in continuous 
development approaches. 

 

III. CONTINUOUS TESTING IMPROVEMENT MODEL 
In the academic literature and in industry examples, many 

approaches have been proposed to deal, at least partially, with 
each of the mentioned problem. In this way, by gathering and 
analyzing all these proposals, it is possible to build a set of 
well-structured practices to gradually adopt Continuous 
Testing inside an organization. This set of structured good 
practices grouped together is proposed as a model with 
adoption levels called improvement levels. This concept is 
used in other process improvement models like CMMI [7] or 
TMMi [8]. The proposal is called Continuous Testing 
Improvement Model (CTIM). 

CTIM proposes four levels of improvements and five 
verification and validation (V&V) stages that encompass the 
proposals, tools and techniques reported as a set of good 
practices. 

The improvement level 1 of the model is called 
implementation. It proposes test automation as the first step 
in the adoption of Continuous Testing and the initial 
implementation of each V&V stage which generates the 
Continuous Testing Pipeline (Fig. 3). 

The improvement level 2 is called management. It 
implements good practices related mainly to the management 
of tests. Unit and functional tests are grouped. Unit testing 
coverage is measured, and the functional testing framework is 
layered for easy maintainability. The use of a farm for mobile 
device testing and the adoption of exploratory and capacity 
testing is also proposed. This level largely solves the problems 
of low-testing coverage in Continuous Delivery. 

 
Fig. 3. Continuous Testing Pipeline. 

 

 
Fig, 2. Relationship between testing problems [6]. 



The improvement level 3 of the model is called reliability. 
The problem that is mainly solved at this level is flaky tests. 
Standards and patterns are defined for a testing process that 
generates reliable results. Good practices include the 
implementation and execution of test mocks, headless 
functional tests, static code analysis and deployment tests. 
This level also encompasses waiting and skipping strategies 
for the tests and suggestions for improving test reports. 

Finally, the improvement level 4 is called continuity. 
Practices such as test selection, parallelization, use of APIs to 
execute preconditions, browser rotation, among others, are 
implemented. At this level, the problem of time-consuming 
testing is solved. It also seeks to incorporate continuous 
improvement mechanisms for the different types of tests. 

A. Validation and Verification Stages 
CTIM includes a set of V&V stages that encompass 

different types of tests that have been defined and proposed by 
different authors both in the industry and in the academic 
literature. These V&V stages shape the Continuous Testing 
Pipeline, analogous to the concept of Deployment Pipeline 
and which is shown in Fig. 3. The stages are: 

• Local Verification: It occurs before the code is 
integrated into the main trunk, from the version 
control repository. 

• Build: It is the first stage running on the Continuous 
Integration server. Its objective is to affirm that the 
system works on a technical level. 

• Functional Testing: It covers both GUI and API tests 
that verify compliance with the functional 
requirements of the system. 

• Non-Functional Testing: It covers the different types 
of tests related to non-functional requirements such as 
security, performance, etc. 

• User Acceptance Testing: This stage covers 
activities that cannot be automated: exploratory 
testing by testing experts, customer software 
demonstrations approvals by stakeholders, etc. 

TABLE II summarizes the proposed model and lists all the 
good practices that comprise it. 

TABLE II.  CONTINUOUS TESTING PRACTICES IN CTIM 

CTIL V&V Stage Continuous Testing Practice 

1 

Local Verification Local Unit Testing 

Code Reviews 
Build Automated Build 

Automated Unit Tests 
Execution 

Functional 
Testing 

Automated Functional 
Testing 
Functional Testing 
Coverage 

Non-Functional 
Testing Performance Testing 

User Acceptance 
Testing 

Cross-Browser Testing 
Showcases and 
Demonstrations 

CTIL V&V Stage Continuous Testing Practice 

2 

Local Verification Unit Tests Grouping 
Unit Tests Coverage 

Build Automated Deployment 
Functional 
Testing 

Multi-Layered Framework 
Functional Test 
Segmentation 
Mobile Device Farm 

Non-Functional 
Testing 

Capacity Testing 
Management 

User Acceptance 
Testing 

Exploratory Testing 
Management 

3 

Local Verification Test Doubles 
Headless Functional 
Testing 

Build Static Code Analysis 
Installation/Deployment 
Testing 

Functional 
Testing 

Non-Happy path Testing 
E2E Testing 
Test Waiting Strategy 
Test Skipping Strategy 
Re-running Test Failures 
Scheduled Tests Execution 
Test Data Generation 
Generation of accurate 
reports 

Non-Functional 
Testing 

Security Testing 
Management 

User Acceptance 
Testing Usability Testing 

4 

Local Verification Running Unit Tests in the 
background 

Build Parallel Unit Testing 
Measuring build scalability 
and performance. 

Functional 
Testing 

Parallel Functional Testing 
Functional Tests Selection 
Using APIs for 
preconditions 
Browser Rotation 
Image Comparison 
Continuous Monitoring 

Non-Functional 
Testing 

Automated Capacity 
Testing 

User Acceptance 
Testing Crowdsourced Testing 

 

Finally, CTIM is shown in Fig. 4. 



 
Fig. 4. Continuous Testing Improvement Model. 

IV. VALIDATION 
The validation of the model has been carried out using the 

Action-Research method [9]. In this method, a validation 
process is composed of groups of activities organized in a 
cycle. The process used for validating the model was divided 
into two phases (Fig. 5). The input is the proposed model and 
the output is the validated model, which was presented in 
Section III. 

 
Fig. 5. Action-Research cycles for the validation of CTIM. 

In the first theoretical validation, 17 experts reviewed the 
model and then proposed improvements. Most of the experts 
have more than 10 years of experience working with 
Continuous Development practices and the rest have research 
experience in related fields. After that, the model was 
implemented in 10 projects belonging to companies that 
develop software. That implementation generated results 
which generated 30 improvements. The improvements are 
summarized in TABLE III. 

The implementation of the model was supported with a 
tool called EvalCTIM1 which was developed as part of the 
Doctoral Thesis Research to assess an improvement level 
using CTIM. 

TABLE III.  CONTINUOUS TESTING PRACTICES IN CTIM 

Level Improvements New 
Practices 

Modified 
Practices 

Deleted 
Practices 

1 6 0 4 0 

2 6 1 3 0 

3 11 4 5 0 

4 7 1 4 0 

V. CONCLUSION 
In this paper, the Continuous Testing Improvement Model 

was presented as part of a Doctoral Thesis Research. The 
model was proposed as a solution for the reported testing 
problems in projects which are using continuous development 
approaches. 

The model was validated using an Action-Research 
method divided into two phases. Both the experts who were 
selected for the first validation (phase 1) and the specialists 
who participated in the implementation of the model (phase 2) 
agreed that the model is a solution to the Continuous Testing 
problems that exist today. 

REFERENCES 
[1] E. Laukkanen, J. Itkonen, and C. Lassenius, “Problems, causes and 

solutions when adopting continuous delivery — A systematic literature 
review,” Information and Software Technology, vol. 82, pp. 55–79, 
Feb. 2017, doi: 10.1016/j.infsof.2016.10.001. 

[2]  Author X. Paper X. Congreso Argentino de Ciencias de la 
Computación (CACIC), 2019. 

[3]  O. Prusak, “Continuous testing: The missing link in the continuous 
delivery process.” https://www.blazemeter.com/blog/continuous-
testing-missing-link-continuous-delivery-process (accessed Mar. 04, 
2021). 

[4]  Author X. Paper X. Computación y Sistemas, vol. 22, no. 3, Sep. 2018. 
[5]  BlazeMeter, “Continuous Testing in practice. Completing the 

Continuous Delivery Process.” 2015, [Online]. Available: 
https://info.blazemeter.com/shift-left-testing. 

[6]  Author X. Paper X. Congreso Argentino de Ciencias de la 
Computación (La Plata, 2018). 

[7]  “CMMI Institute - CMMI Development.” 
https://cmmiinstitute.com/cmmi/dev (accessed Aug. 24, 2020). 

[8]  “TMMi Model – TMMI.” https://www.tmmi.org/tmmi-model/ 
(accessed Aug. 25, 2019). 

[9]  A. T. Wood-Harper, “Research Methods in Information Systems: 
Using Action Research,” in Research Methods in Information Systems, 
pp. 169–191. 

 

 
1 http://ctim.com.ar/evalctim  

http://ctim.com.ar/evalctim

