symfony

Practical symfony

symfony 1.3 & 1.4 | Doctrine

This PDF is brought to you by
LABS 3k

License: Creative Commons Attribution-Share Alike 3.0 Unported License
Version: jobeet-1.4-doctrine-en-2011-08-18

ass 3k

Table of Contents ii

Table of Contents

About the AUthor........cccoivuiiiiiiiiiiiiiiiiiiiiiiis s ssaesssaesene 9
About Sensio Labs........ccccvviiiiiiiiiiiiiiiiiiiiiiiiiiisssasssaees 10
Which symfony Version?cccccceiiuiiiniiniiniiiiiiiiiiieiiiiiiscieisisssssnssees 11
Day 1: Starting up the Projectcccccvviviiuiiiniinniiniiiniiiinies 12
INELOAUCTION ...ttt e e st e s 12
This Bo0K is different.........ccoviiiiiiiiiiiiiii e 12
WRaAE fOT TOAAY?.....uueiiiiiiiiiiiiiiiiit e e e e e e e e e e e eeeaeaaeeaaeaaaaaaaaaaaaaaaaens 13
Pl EgUISIEES ..uuuiieieeeeeeeeeccce ettt e e e e e e e e e e e e e bbb e e e eaeaeaeranes 13
Third-Party SOTEWATEveiiiiiciiiie ettt e e e et e e e e eta e e e e e eaeraeeeesnaraaeeens 13
Command Line INtEIaCeueiiiiiiiiiiiiiiieecieee e 13
PHP CoOnfigUuration........cccccviiieeiiiiiiiie ettt e ettt e e e e e tar e e e e s setraeeesesanrnaeeeeanens 14
Symfony INStallationcc..vviiiiiiiiii e 14
Initializing the Project DIr€CLOTYciiiivciiiii ettt e e e e s eearreeeeeaes 14
Choosing the Symfony VEISION..........ccceiviiiiiiiiiciiiieeeciiieeee e errteee e eeree e e e strree e e s ssanneeeeeenes 15
Choosing the Symfony Installation LoCationccceeeevvvieieeiriiiiie e 15
INSLAlliNG SYMIONYeeieieiiiiiee et e et e e s et e e e e sntraeeesesssraeeeesnnnes 15
PrOJECE SELUD ..vvieii e e e e et e e e e e e eaaaaae 17

g 0] [0 A5 = 1 1o) o KU 17
APPLication Creation.......ccciiiiiiiiiieieee e e e e e e s e cs et r e e e e e e e e e e e e seeaaenenes 17
Directory Structure RightS........cooioiiiiiii e e 18
Web Server Configuration: The ugly Waycccccccvviviiiiiiiiiiiiiiiiieireeeeeeeeeeeeeeeeeeeeens 19
Web Server Configuration: The secure Waycccccceeeeeviiiviiieiieeeeiiiiiieeeee e e 19
Web Server Configuration...........ccoovciiiiriiiiiiie et e e e serre e e e s eeeraee s 19
Test the New Configurationcocccuviiiiiiiiiiiee et crree e e e e e e serre e e e s eenraeee s 20
The ENVITONMENTS.....c.iiiiiiiiiieeieciiieeee et e e e e e e s s s siabaaaaeeees 22
SUDVETSION .ttt et e e e e s st a e e e e s e ssaabbeees 24
Final TROUGRES ..covviiiiiiii 25
Day 2: The Project......cccccviiiiiuiiiniiiiiuiiiiiiiiiiiiiiiiiiiiesiaiisieissesssssiassssssssssasses 26
The PToJeCE PiLCh ...uueeiiiiii e e e e e e e e e e e e 26
The ProjeCt USET STOTIES....uuuuiiiiiiiiiiiiiiiiiiiiiiiitiiitiiaittrvrtrreererereereresrerrrreereeereereeeeeeeees 27
Story F1: On the homepage, the user sees the latest active jobsccccoevvviivveeeenn, 27
Story F2: A user can ask for all the jobs in a given category..........cccooeeviiiiieeiiieieinin, 28
Story F3: A user refines the list with some KEywords........ccccvveeeeiiiiiiciiiiiieeeee e, 29
Story F4: A user clicks on a job to see more detailed informationccccovvvvveeenennnnnn. 29
Story F5: A USET POSES @ JOD ittt e e e e e e e e e e eaneees 30
Story F6: A user applies to become an affiliatecccccvvvveeieiiiiiiiiii 31
Story F7: An affiliate retrieves the current active job list.......cccccccoiviiiiiiiiiics 31
Story B1: An admin configures the WebSitecccccviiiiiiiiiiiiii e, 32
Story B2: An admin manages the JODS.........coooiiiiiiiiii e 32
Story B3: An admin manages the affiliatesccceeeeiiiiiiiiii e 32

ass 3k

Table of Contents iii

Final TROUGRES ..covvieiiiiieee s 32
Day 3: The Data Model.........cccceviiviiniiiniiniiiiiiiiiiiiiiiiiise 33
The Relational Model.........coiiiiiiiiiiiiiiic et 33
TRE SCREIMIA ... eaaaaaaaaaaaaaaaaaaaens 33
THe DAtADASEuueiiiiiiiiiiii e as 36
ThE ORM ...ttt ettt ettt e e st e e s sabbeeessnbbaeeesenenee 36
The Initial Data.....ccoooiiiiiiiiieceee e e e 38
See it in Action in the BrowsSer ... 40
Final TROUGRES c.ccvviviieieeee s 42
Day 4: The Controller and the VIiew.......c.ccoiiviiiuiiiiininininniinies 43
The MVC ATChITECTUTEeeiiiiiiieiiiiiee et e e 43
THE LAYOUL ...t eeaaeeaaeaaaaaaaaaeaaaaaaaaaaens 44
The Stylesheets, Images, and JavaSCTiPLSuuuvuvrriiiiiiiiiiiiiiiiierrieerrreerreeeeee e 47
The JOD HOMEPDAGE. .. .uuuuiiiiiiiiiiiiiiiiiiiiittiititit it rereeeeeeeeeeeeeeeeeeaeeaaeaaes 50
TRE ACEIONL 1.ttt ettt e et e e st e e st e e st e e nab e s bt e e e naaaeas 50
THE TOIMIPIALE ...eiiiii i e e et et et eeeeeeeeeee e s ttbrbrrrreeeeaaeeas 51
The Job Page TempPlatecciiiiiiiiiiiiiiiec e e e e 52
1] (0} PP 54
The Job Page ACEION........iiiiiiiiii e e e e e e e e e e e e eeaeeaaaaaeas 55
The Request and the RESPONISE.uuuuiiiuiuiiiiiiiiiiiiiiiiiiiiiiiirrrrrrrrrrrerrererrerrreereeereeeee 57
THE REQUEST ..eveeiiiieee ettt e e e e e e e et e e ettt bbb e eeeaeeeeeeeeesssatsasrrrraeeeaaeeens 57
THE RESPOISE eeeeiiiiieiiiiiiitireeeeeee e e e e e e e e e e ee e s ettt bbb e reeaeeeeeeeeeessaatasrrrreeeeeaaeens 58
FINal ThOUGRES ...eeiiiiiiiie et 59
Day 5: The ROUING ...ccvciiiiiiniiiiniiiuiiiiiiiiiiiiiiiiiiiiiiimiimsimississsssses 60
URLS ittt ettt ettt ettt e ettt e e ettt e e e et a e e e e sttt e e s e nbbeeeeenbbaeeeentbaaeeennbaeeeeentnes 60
Routing Configurationcuuiviiiiiiiiiiiii e 61
Route CuStOmMIZATIONScccovviiiiiiiiiiieieeiieee e e e 62
REQUITEMENES. .. .iiiiiiicieeee et e e e e e et e e e e bbb e e e e eeaeaeanseses 63
ROULE ClaSS c.eviiiiiiiiiiieeeeeeeeeeeee e 63
ODBJECE ROULE CLaSS...uuiiiiieeiiiiiiiiiiiiee e e e ecciirtte e e et e e e e e s e raareee e e e e e s s snaaaaaaaeaaeeens 64
Routing in Actions and Templatescccccuviiiiiieiiiiiiiiiieecc e 67
Collection ROULE ClasSS.....ccviiiiiiiiiiiiiiiiiice s 67
ROULE DEDUGGING ..evviiiiiiiiiiiieieeeeeeee e 69
Default ROULES ...coiiiiiiiiiiiiiiiie ettt et e s st e s s aaree s 70
FINal ThOUQGRES ... e e e e e e et e e e e e e e e eaes 70
Day 6: More with the Model.........ccccivviiiniiiniiiiiiiniiiiiiii 71
The Doctrine QUEry OBJECE..... .. eeeeeeeees 71
Debugging Doctrine generated SQLccooiiiiiiiiiiiiiiiieeeeecccecee e 72
Object SerialiZationccoviuiiiiiiiie e e e e a e e 72
More With FiXEUTES ..cccvviiiiiiiiicccc s 73
Custom Configuration..........coeiiiiiiiiiiiiii e 74
RETACTOTING oevvviiiiiiiiieeee e 75
Categories on the HOMEPAGEvvvviieiiiiiiiiiiiiieee ettt e e sarareeee e 76
Limit the ReSUILS...ccvviiiiiieeeee 78
DynamicC FIXTUTEScooiiiiiiiiiiii e e e e e e e e e e e e e e s e e eaeaaaanes 79
Secure the Job Page........ccoooiiiiiiiiii e 80
Link to the Category PAgec..uvviiiiiiiiiiiieee et 81
Final TROUGRES c.cvvvvieieieeeeeeeee s 81

ass 3k

Table of Contents iv

Day 7: Playing with the Category Page........ccccccviiuiiiniiniiniinciniiiniiecinicesiee 82
The Category ROULEuviiiiiiiieeciiieec e e e e e 82
The Category LNkc.cuviiiiiiiiee e 83
Job Category Module Creationcuevviiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e, 85
Update the Databasecccoeeeiiieiiiiiiiiieee e 85
PaATEIALS .. tttteeee et e e e e e e e e e e e e st b baraeaaeeeaane 87
LiSt PAGINATION ..eivviiiiiiiiiiiiiiiiiiiec e 88
Final TROUGRES c.vvvviiiieeeeeeee s 91

Day 8: The Unit TesStS....ccccceiiuiiiiiniiuiiiiiniiiiiiiiiiniiiiiiaiiiiisiimiriisscimissssssssssses 92
TeStS IN SYMFONIY ..oeeeiiiiiiiieecc e e e e e e e 92
UL TOSES . .uvtttiiiiiiiiiiiiitteeeeeeeeeeeeee ettt e e e et e et e e e e e e e e e e e e e e s e s s s s s s s s s s s asaaaaaabaabaaes 92
The 1ime Testing FramewWOrKcccccceiiiiiiiiiiiiiiiiiiiiiiiiiiiivierrveseeeee e ereereeeeeeeees 93
RUNNING UNIE TESES c.iiiiiiiiiiiiiee e e e e e s e e s e e e e eeeaaaanees 94
TeStiNg STUGLTY coiiiic e e e e e e e 94
Adding Tests for NEW FEAtUTESccuvviiiiiiiiiiiiiiiicc e e e e 96
Adding Tests because of @ BUG........coooeeieiiiiiiiiie e 97
DOCETINe UNIE TESES..ciiiiiiiiiiiiiiie e e e e s e e e e eaeaaaes 100

Database Configuration.........coooiviciiiiiiiiieiec e rr e e e e e e e e e e ssaeaes 100
N A DL - RSP UR T 101
TeSting JODEETIOD ..o 101
Test 0ther DOCETINE ClASSESuvvviieiiiiiiiiee et e ettt e ettt e e e e etbre e e e e s ratar e e e e e stbaeeeeeenaens 103
Uit TESTS HAITIESS .vvvvvviiiiiiiiiiiiiiiiiiiiiriteeeeeeeeereeeee e ee e e e e e e e e e e e e e aeeeeeeeeeeeeeesaeeseesseenns 103
Final TROUGRES ccovvviieeeeee s 104

Day 9: The Functional Testscccccirvuiiiiniiiiiniiiiiniiiiiiiiiiie. 105
FUNCHional TeSES .covviiiiiiiiiiiee e 105
The STBIrOWSEI CLASS ...uvviiiiiiiiie e e e 105
The sTTeStFUNCTIOoNAL Class ...cccuvviiiiiiiieec e 106

The REQUESE TESLET ..cceeieiciiiitiee ettt e e e e e e e e e ettt bbb areeeeeeeeeeeesesasesrsssaseeees 108
The RESPONSE TOSEET .cciiiiiiiitieeeeee e e e e e e e e e e e e e e s rtab bbb e e aeeeaeaeeeesesssessssasseeees 108
Running Functional TeStScuvviviiiiiiiiiiiii e 108
TESE DALA. . uuuueiuiiiiiiiiiiiiiitiiiiit ittt e e e e e e e e e e e e e aaeaaaaaaaaaaaeaaeaaaaaaeaaaaaaaaaaaaaaans 109
Writing Functional TeSEScceiieieiiiiiiiiiiic e 109
Expired jobs are NOt lISTEd.......ccccuiiiiiiiciiee e 109
Only n jobs are listed fOr @ CAtEGOTYcccvviiiiieiiiiiee e 110
A category has a link to the category page only if too many jobs.........cccceevveeeeiinnnennnn. 110
Jobs are SOTted DY date.....ciceiciiiiiieccie e e 111
Each job on the homepage is Clickablecccoccoviiiiiiiciiiiii e 112
Learn by the EXample......ooovviiiiiiiiiii e 112
Debugging Functional TestScuuviiviiiiiiiiiiiiiiieeeee 115
Functional TesSts HATNESSuuviiiiiiiiiiiiiiiiiieeee ettt e e e e e e aaaaaee e 115
TESES HATTIESS ...ttt e e et e e e e e e e e e e e eeaaeaaeeaeaeeeseasaessennsennns 115
Final TROUGOES coovvviiieeiee s 116

Day 10: The FOIMSccciuiiiuiiuiiniiiniieiciniieiieietniissisisssssssssssssssassssssssssasssnssans 117
The FOrm FrameWOTKuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieieeseeeeeeeeeeeeeeee e e ee e e e e e e e e eeaaaaaeeaaeeeens 117
FOTTNIS ..o 117
DOCETINE FOTIMS ...ttt e e e e e e e e e e e aaabbbaaaeeeeeaeaennans 118

Customizing the Job FOTMccoiiiiiiiiiiiiiie et e s earaee e e 119
The FOrm TemMPIAteuvviiieiiiiiiiee et e e e s et e e e e sntbeee e s ennnrees 123
The FOTM ACEIONcciiiieicee et e e e e e et r e e e e e e e e e e s e e ssaanetrraaaeeees 125
Protecting the Job Form with @ TOKENuvvviieiiiiiieiiicieee e 128

ass 3k

Table of Contents \%

The PTEVIEW PAGEuviiiiiiiiiiiiiiiiiiiiiiiittete aaaeaaaeaaeas 129
Job Activation and PubliCation..........cccuvuviviiiiiiiiiiiiiiiiieieeeeereeeeeeeeeeer e 131
FINal ThOUGRES ... e e e e e e e es 132
Day 11: Testing yOUTr FOITScccvuiiiuuiiiniinnieinininicieisiassenssisssssssssssssssssssnses 133
Submitting @ FOTIM.......cooiiiiii e e e eeeeees 133
The FOIM TeSTET ..ot e e e e et e e e e e e e e eaaaaees 135
REAITECEION TEST.....uiiiiiiiiieeiiiiiie e e e e e e e e e e e e saaaaaeeaaee s 135
The DOCETING TESTETuuviiiiiiiiiiiiiiiiiiitre 135
TESTING fOT ETTOTS ...uiviiiiiiiiiiiiiiiiiiiiiiiiteee eaaaeeaens 136
Forcing the HTTP Method of @ linkovvviiiiiiiiiiieeeeeeeeeee e 137
Tests as @ SafeGUATdceiiiiiiiiiiiiiiiiic e 138
Back to the Future in @ Test ...oovvvviiiiiiiiii, 139
FOTINS SECUTILY ..uoveiiiiiiiiiiiiieie et e e e e e e e e e e aaabbbssseeeeeeeaaeannes 141
Form Serialization MagiC!........coooiiiiiiiiiiiiieie e st e e e e e e e e e e e s eaaaees 141
Built-in SeCUTity FEATUTES ..ccoiiiiiiiiiiteeee et rre e e e e e e e e e e e e enaaees 141
XSS and CSRE ProteCION......uuiiiiiiiiiiiiii it re e e e e e e e e e e s s s eeaerenaaeeees 142
MaInteNanCe TaASKSceiiiiiiiiiiiiiiiie e et e e e e ea e s 143
Final TROUGRES ccovvveiieeieeee s 144
Day 12: The Admin Generator.........cccoeiiuieienieiniiinnicisiiraisiessrsssssssssssssssssssnses 145
Backend Creation ... 145
BacCKkend MOGUIES........cciiiiiiiiiiiiiiiiee ettt e e et e e e e e e e aaaraeeeaeeas 146
Backend Look and Feel........ccccuviiiiiiiiiiiiiiic et 146
The SYMIONY CAChE.......uuuiiiiiiiiiiiiiiierrre e e e e e e 148
Backend Configurationcccccvvviiiiiiiiiiii s 150
Title ConfIGUIAtION........vviiiiiiieeeiee e e e e e e e e 150
Fields Configurationcooccuiiiiiiiiiiiiiiiceec e e e ee e 151
List View Configurationcouviiiiiiiiiiiii e 152
(o] o] = VU PUUUUUROt 152
LAY OUT ettt e e sttt e e e e sttt e e e s ettt e e e e e bbreeeeeanbbreeeesenbbaeeeeennnes 152
“VIrtUal” COIUMIS ..ovvviiiiieiiiie e e e e e e e e e s e st bra e e e e e e aeeeeeeeesennnsnnes 153

Y 0] ol PP 153
1F= D o T=Y o= o [T O TP PPPRRRUPPPPRRN 153
DATCN @CTIONS oot e e s ettt e e e st e e e et 154
(o] oy =T o= Y ol s Ko 4 - J SO PPPPPRRURPPPPRN 156

= ol i Ko] 1 =T OO PP PP PPTTPPPPPRRRN 157
TADLE METNOM coeiiiiiieee et es 158
Form Views Configuration............cccceeeiiiiiiiiiiiec e 159
[0] o] R 1O PSPPSR U PROTPPIPPP 152
“VITEUAL” COIUIMIIS .oeiiiiiiiiiieeieiiiee e ettt e e e ettt e e e e e itr e e e e ettt aeeeeesanbsaeeesesntsaeeesesnnssneeessnnsens 153
(ol - 11 PO P PO P PRI OPPPPPPRO 161
Filters Configurationococuviiiiiieiiiiiee e 163
Actions CUSLOMIZATIONcevviiiiiiiiiieeee e e e e e e e e e e aa b e e e e e 164
Templates CuStOmMIZAtIONuviiiieiiiiiiieiccee e 165
Final Configuration........c.cciiiciiiiiiiicccceciieee et e e e e 166
FINal ThOUGRES ... e e e e e e e es 167
DAy 13: The USETccciivuiiiuiirniiiniiinicirnisiniisnsisssrsssssssssssssssssssssssssssssssssssssnss 168
USET FIASNES ...uvvviiiiiiiiiiiiiiiieeieeeeeeeeee ettt e aaeaeaas 168
USET ALETIDULES .t e e e e e e aar e e e eeeas 169
getAttribute(), setAtTribute() 170
The MYUSET CLASS .eiiiiiieiiiiee ettt ettt et e e e et e e e e st r e e e e e s abaaeeesestsaeeesessnrsaeeeeennnsens 170
SR N 1 R =Y o o (o o [ol PSPPSR 172

ass 3k

Table of Contents vi

ApPLication SECUTILYccoeeeiieeiee e eeeeeeeeees 172
AULhENTICALION ...uviiiicc e e e e et ra e e e e e et ae e e e eenenres 172
AULNOTIZATION ... e e e et e e e e e tbr e e e e e s ttba e e e e esaabaeeeeeenenres 174

PIUGITIS ©ovviiieieieicce et e e e e et e e e e e e e sttt a e e e e e e e e e s nnabbbaaaaaaeeaas 175

Backend SECUTILYccvvvviiiiiiiieiiccc e 176

LYo =TS T T OO PP PP PPPPPPRRN 178

Final TROUGRES c.cvvviiiieiii s 179

DAY 14: FEOAS ..cuuivuiiriiuiiiiiuiiiuiiiiiiniirsiuisiuisesiasssessssiasssssssssssssssssasssassssssassses 180

0] 01 0= SO PPPTRIN 180

FREAS ..ottt e e e e e e e e e r e e e aeeaeeeararae 181
LateSt JODS FEEAuuuiiiiiiiiiiiii et ee e e e e e e e e s bbb r e e e e e e e e e e e e e enanenes 181
Latest Jobs in @ Category FEEd........cccuuiiiiiiiiiiiiiie e 184

Final TROUGRES c.cvvviiiiiiee s 187

Day 15: Web ServiCescccvviiuiiiniinniiniiiniiiiiniiiiieisiuiiisiiisiiesimssssssssasssssens 188

FAN i oY TP PPPTPPPPP 188
TRE FIXEUTES ...eeeiieiieiciiiee ettt e e e sttt e e e ettt e e e e s e stbeaeesessnnsaeeesensnseaeessnnnnnees 188
The JOb WED SEIVICE ...ccooiiiiiieeeee ettt e e e e e e e e e e s e s raabbraareeees 189
B 0 (A Ned 1 o) o PSS 190
The XMU FOIMAL.....cciiiiiiiiee et et e e e e e e e e sntbe e e e s esnraeeeesennnres 191
The JSON FOTMAL......ccioiiiciiieee e e e e e e e e r e e e e e e e e e e e e sesaanensrraaaeees 191
The YamL FOIMAT........ccvviiiiieiiiee ettt e e e et ee e e s et e e e s esnnbsaeeesennnres 192

WED SEIVICE TESES .uuuuiiieiiiiiieeeiiciee ettt e e e e e e e e e e re e bbb e e eeeeas 193

The Affiliate Application FOIMl.....ccooeiiiiiiiiiiiiiciiieee e 194
ROUEITIG 1ottt e e e e e e s e st b e e e e e e eeeeeeessssssssebrsseaaeaeeaeesesssannnnes 195
LS T0 T hS] =1 0] 01 0o ST PPUUPURE 195
TOIMPLALES 1ovvveeiiiiiie ettt e e e e e e et e et ee bbb b reaeaaeeeeeeeeeatarabrrrraaeaeas 195
YA Nod 10 1 PP UUPUPR PP 196
TS ST 197

The Affiliate BACKENA.........uuuuiiiiiiiiiiiiiiiiiiiiiiieereeeeeeeeeeee e e e 198

Final TROUGOES coovviiiieeee s 201

Day 16: The Mailer........ccociviiiiiiniiiiiniiiiiiiiiiiiiiiiieiiiiimiimrsssassssssens 202

Sending simple EMailS.........c.uvviiiiiiiiiiiiiiiec e 202

(070) 00 [0 10D =1 o) U UUUP PP 203
=01 o) o (=T TSP PP PUPPP TPt 203
D e A A L 1 1T PP SRPPRPR 204
LA R 1 1015 0100 o USSP PPPPPPPR 205

TEeStING EIMAILS ...uuviiiiiiiiiiiiiiiiiiiiiii e aeaaaas 205

Final TROUGRES c.cvvviiiiiee s 207

Day 17: SearcChccciiviiiiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiesissessreissssesssessses 208

The TeChNOLOGY ...ccciiiiiiiiiiiie e e e e e e s e e aabaeees 208

Installing and Configuring the Zend Frameworkccccccoiiiiiiiii e, 209

500 1) 1o T O URRURROPRPR 209
The save () MELhOd ... e e e e e e e s r e 210
DOCETINE TTaNSACTIONS tvvvviiiiiiieiiiiiiiiiiiitre e ee e e e e e e e ssstritr e reeeeeeeeessssssssbsesrrrareeeaeesssessansnnses 211
(o 1] I o SRR PUPRUPPPRNt 212

SEATCRING ...t e e e e e e e e et rraeaeeeeaanans 212

T TS S ittt ettt et e e e e e e e e et e e e e e aabeeeeesaateeeeesrteeeeerrannns 214

TS KS oottt ettt e e e e e e e e e e e e b e e e eaeeeaarr b ————— 214

Final TROUGRES c.cvvviiiieie s 215

LD T s . N 1 . N 216

ass 3k

Table of Contents vii

INSEAllING JQUETY .ccvvvieiiieiiiieeeeee e 216
INCIUAING JQUETY ..vvvtvviiiiee ettt e e e e et e e e e e e e s saiiab e e e e e e e e e s aaaaaaeaeaeeas 216
Adding BEhaVIOTSccciiiiiiiiiiiieee ettt e e e e e e s e e saabaeeeeeeeesnnnes 217
USEr FEEADACK......uuviiiiiiiiiiiiiiieeeeeeee e 217
AJAX AN QN ACTION . .uiiiee it e e e e e e e e e a e e e 219
TESTINIG AJAX L.ttt e e ettt et teeeaeaaaaaaaeaaaaeaaeeeeaeeeeeeeeeaaeeneenns 220
FINal ThOUGRES ... e e e e e e e es 220
Day 19: Internationalization and Localizationccccccvviivniiiniiinnicinnciennenn 222
| Y=Y OO PP PPPPPPPPPPRRIN 222
ThE USET CULTUTE ..cooiiiiiiee ettt e e s et e e e s 222
The Preferred CULtUTIeoooiiiiiiii e 223
Culture in the URL.......ccoiiiiiiiiiiiiie ittt e st e st e e s 223
CULEUTE TOSTING ..eeeeeniiiiieeeiiiee ettt e et e et e e e s sabbeee e e e 225
Language SWItChingcovvviiiiiiiiiii s 226
Internationalization ... 229
Languages, Charset, and ENCOAINGuuvviiiiiiiiiiiiiiiiiiiiiiieeeee e e esciiiinnreree e e e e e e e e e 229
=000 0] Fo Y TR P PR 229
TLBN I EXTEIACT oottt e s e e et e st e e st e e et e e e nabbeeene 231
Translations With ATGUIMENTSccoiiiiiiiiiiie e e e e e 232
FOTIIIS .ttt et ettt e e ettt e e e ettt e e e sttt e e e e saabbbeeeeeas 234

1D oTotn a1 LR @] o] =T o - PP URPPPURN 234
AdMIN GENETALOT «...viiiiiiie ittt ettt sb e st e et e e e sttt e e sbbeeessbbeesbbeeesnbeeesans 237
TS ettt e et e e e ettt e e e e bbbt e e e et bte e e e e aabbeeeas 238
LOCALIZATIONeiiiiiiiiiiee e e 238
TOIMPIALES .ovvviviiieiiee e e e e e e e e e e e e s et bb bbb brreaaaeaeaeeeeeeaatatabrrraaaeeeas 229
FOTIMS (T1811) 1ttt sttt et e et esbteeenaaeee s 239
Final TROUGOES coovviiieieeee s 240
Day 20: The PIUGInSccccccviiuiiniiiiiniiiniiiniiiiiiiiiiieiiiisiiissisissssssssassssssans 241
10 T 110 PSSR 241
FNE 720010} 0} L 1o 11 SRS 241
Private PIUGITIS ..ioocviieiie ittt ettt e ettt e e et ee e e e eatr e e e e essaanaeeeeesnsaeeaeesens 241
PUDIIC PIUGINS ..eeiiiiiiieiee ettt ettt e et e e e e e etbae e e s esatraeeeesnsraaeeeesnsnnneeeennns 241

A Different Way to Organize COAEuvveeeeieiiieieeieiiieeeeerrree e e eeirre e e s srerree e e e snrraeeeeenens 242
Plugin File STIUCTUTE ...coovvviieieeiee e 242
The JODEEt PIUGIN.......uuuiiiiiiiiiiiiiiiiiiiiiiriieee et e e e e e e e e e e e e 242
[ST [1o 1= USRS 243
The Controllers and the VIEWSeiiiiiiii it e e e e e e e e e s e eeenenanns 245
THE TASKS . .etttiiiiiiiee e e e e e e e e e s e sttt e e e e e aeaeeeessernnserabrrraaeeeeas 248
TRE 1180 FAlES ...t et e e e ettt e e s et ae e e e s naneeas 248
THE ROUTING coeeeeiiiieic et e e e e e e e e ettt r e e e eeeeeeeessssnaneratrbaaeeeeeas 249
TRE ASSEES ettt e e e ettt e e st e e e e s naaeeas 249
THE USET ..ttt ettt e et e e e ettt e e e s et b e e e e seaabbaeeesenaaaaeas 249
The Default Structure vs. the Plugin Architecture.........cccccciiiiiiiiiiiiciieeecee e 251
USING PIUGINS ..ottt e e e e e e e e et r e e e e e e e s saaaaaaeeaeeeas 251
Contributing @ PIUGINccoeiiiiiiiiiiiccc e e 252
Packaging @ PIUGINcceiercuiiiieeieiiieee ettt tee e sttt e e e estree e e e s etreeeeeessnnaaeeessnnneeaeeesnns 252
Hosting a Plugin on the symfony WebSitecccveviviiiiiiiiiiiiiiie e, 255
Final TROUGOES coovvviiiiieeee s 255
Day 21: The CacChe......ccccceiiuiiiiiniiiniiuiiiiiiiiiiiiiiiiieiiiieimisisrisssassssssens 256
Creating a new ENvVIroONMEeNtcccvviiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 256
Cache Configurationcooiciiiiiiiieeeeiiiieee e e e e e e s e e saaraeeeeeees 257

ass 3k

Table of Contents viii

Page CaChie ..o 258
Clearing the CaAChEccciiiiiiiiiiiice e e e e e e e s 260
yAXo] 1 o) N 0= Yol o 1= S PPTPPPPPR 260
Partial and Component Cacheooovvvivviiiiiiiiiiiii, 261
FOrms in CaChe ..o 263
Removing the CaCheccoooiiiiiiiii e 264
Testing the CaChe ...ccoouviiiii e 265
Final TROUGOES ccovviieieee s 266
Day 22: The Deploymentccccceeiuiiiniiiiinniiiiaiciniieciniiiiisicimisesisissssssssssssnss 267
Preparing the Production SEIVET.........cccoviviiiiiiieiciieeeee e 267
Server ConfigUIAtiOncc.viiii i e et e e e et ee e e s strr e e e e s strareeeeesnnsaaeaeeanes 267
PHP ACCEIETALOTvviiiie it ettt ettt ettt e e e e st e e e e e eetbae e e s e aeraeeeeesssesaeeeeensnseaeeeesnns 268
The symfony LiDTaries ...t 268
Embedding SYMIONYcccciiiiiiieiiiie ettt e e s tree e e s erre e e e e ennnraae e e e 268
Upgrading SYMEONYccceeiiiiiiieeiiiiiie ettt ee et e e e e st e e e s entree e e e esnnsaeeeesensnseeeens 268
Tweaking the Configurationcccccccviiiiiiiiiiiiiiieee e e e e 269
Database Configuration............ooiiiciiiiiiiiiiieecce e e e e e e e e e e eaaees 269

A S SEES e e e e e e e e e e e e e e — b —aeaeaaaeeeeaaararrrrarrrees 269
CUStOMIZING ETTOT PAGES...iiiiiiiiiiiiiiiiitieee ettt e e e e e e e e s e e eaatararrreeeaeaeeeeessennnees 269
Customizing the Directory SIructurecccccccvviiiiiiiiie, 270
The Web ROOE DITECEOTY .uvviiiiiiiiiiie ettt et e e e e s ttae e e e e e setbaeeeeeenenes 270
The Cache and Log Dir€CLOTYuciiiiiiuiiiiie et ettt e ettt e e etrre e e e e staree e e e eerraeeeeeseens 270
Customizing symfony core Objects (aka factories).......ccccccceeeeevriiiiiveiieeeeiniiiinnnen, 271
COOKIE NAINIE ...eeieeiiiiiiee ettt e e ettt e e e e sttt e e e e setteeeeeesstbaeeeeessstraeeesessnssaeessssssseeesesssssneeesnsnes 271
SESSION SEOTAGE ..vvviiiiiiiieiiiiiii ettt e e e e e e s s s s bbbtbaeeeeeeeaeesssssnssnnsnnes 271
SESSION TIMEOUL ..veviiiiiiiiiiiiiiiiiiiiieeee et e e e e s e s s s s sbbbbbrareeeeeeeesssssssnssassses 271
0T (0110 T PP P PP PPPPPPPPN 272
19753 01 (0721 Vo SRR 272
LT L oI (= o) (o) S SR UUU 272
DePloYING SEratEgies .uuvuiiiiiiiii it e e e e e e e e s e st r e e e e e e e e e e eeennnees 272
Final TROUGRES c.coviiiiieiiie s 274
Day 23: Another Look at symfonyc..cceeiuiiiniiniiiniiiiiniiiiiiiciis. 275
What iS SYMIONY? ..o 275
THE MOGEL ...t e aaaaaaaeaeaaaaaaeeaaeaaaaaaaaans 275
TRE VIBW Lo eaaeaeeeeeeaeeeaaaeaaaeaanns 275
The CONITOLLET.......eiiiiiiiiee ettt e e s sbbeee e 276
(070) 00 [0 10D =1 T0) 1 U UUUP TP 276
DEDUGGING coiviiiiieiiiiiieeeeeeee e 276
Main symfony OBJECES.....ccvvviiiiiiiiiiii 277
L= 1010 1 L PPPPPPPPPP 277
0] 011 OO TPPPPPPPPPPRRIN 277
Internationalization and Localizationcevvveeiiiiiiiiiiie, 277
BT 2T PPPPPPPPTRRR 277
PIUGITIS ©ovviiiiieieieciiee et e e e e e et e e e e e e e s saatbbba e e e e e e e e s snaaaaaaaaaaaeaas 278
TS KS b e e r e et r et et e e et r et aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 278
SBE TOU SOOTL..cvvviiiiieeeiiiiiiiiicee et e e e e e et et et s e e e e e eeeeeeasbbennaeeseaaaaannes 279
Learning by PracCtiCingccooiiiiiiiiiiiiiieiee ettt e e e e e e e e e e e e e raaees 279
The COMMIUIILY ..eiiiiieeeicc e e e e e et r e e e e e e e e e s e e s eaerebrraaaeeees 279
ApPpendix A: LICENSEcccvuiiuiiuiiiniiniiiniieiiiuiiiiieicriiissrsissssiassssssssssassssssssssnsses 281
Attribution-Share Alike 3.0 Unported LiCENSEcceeeeeeeeeeeeeeieiieeieeeccecceeiaes 281

ass 3k

About the Author ix

About the Author

Fabien Potencier discovered the Web in 1994, at a time when connecting to the Internet
was still associated with the harmful strident sounds of a modem. Being a developer by
passion, he immediately started to build websites with Perl. But with the release of PHP 5, he
decided to switch focus to PHP, and created the symfony framework project in 2004 to help
his company leverage the power of PHP for its customers.

Fabien is a serial-entrepreneur, and among other companies, he created Sensio, a services
and consulting company specialized in web technologies and Internet marketing, in 1998.

Fabien is also the creator of several other Open-Source projects, a writer, a blogger, a
speaker at international conferences, and a happy father of two wonderful kids.

His Website: http://fabien.potencier.org/
On Twitter: http.//www.twitter.com/fabpot

ass 3k

http://www.symfony-project.org/
http://www.sensio.com/

About Sensio Labs X

About Sensio Labs

Sensio Labs is a services and consulting company specialized in Open-Source Web
technologies and Internet marketing.

Founded in 1998 by Fabien Potencier, Gregory Pascal, and Samuel Potencier, Sensio
benefited from the Internet growth of the late 1990s and situated itself as a major player for
building complex web applications. It survived the Internet bubble burst by applying
professional and industrial methods to a business where most players seemed to reinvent the
wheel for each project. Most of Sensio’s clients are large corporations, who hire its teams to
deal with small- to middle-scale projects with strong time-to-market and innovation
constraints.

Sensio Labs develops interactive web applications, both for dot-com and traditional
companies. Sensio Labs also provides auditing, consulting, and training on Internet
technologies and complex application deployment. It helps define the global Internet strategy
of large-scale industrial players. Sensio Labs has projects in France and abroad.

For its own needs, Sensio Labs develops the symfony framework and sponsors its deployment
as an Open-Source project. This means that symfony is built from experience and is employed
in many web applications, including those of large corporations.

Since its beginnings eleven years ago, Sensio has always based its strategy on strong
technical expertise. The company focuses on Open-Source technologies, and as for dynamic
scripting languages, Sensio offers developments in all LAMP platforms. Sensio acquired
strong experience on the best frameworks using these languages, and often develops web
applications in Django, Rails, and, of course, symfony.

Sensio Labs is always open to new business opportunities, so if you ever need help developing
a web application, learning symfony, or evaluating a symfony development, feel free to
contact us at fabien.potencier@sensio.com. The consultants, project managers, web
designers, and developers of Sensio can handle projects from A to Z.

ass 3k

Which symfony Version? xi

Which symfony Version?

This book has been written for both symfony 1.3 and symfony 1.4. As writing a single book for
two different versions of a software is quite unusual, this section explains what the main
differences are between the two versions, and how to make the best choice for your projects.

Both the symfony 1.3 and symfony 1.4 versions have been released at about the same time (at
the end of 2009). As a matter of fact, they both have the exact same feature set. The only
difference between the two versions is how each supports backward compatibility with older
symfony versions.

Symfony 1.3 is the release you'll want to use if you need to upgrade a legacy project that uses
an older symfony version (1.0, 1.1, or 1.2). It has a backward compatibility layer and all the
features that have been deprecated during the 1.3 development period are still available. It
means that upgrading is easy, simple, and safe.

If you start a new project today, however, you should use symfony 1.4. This version has the
same feature set as symfony 1.3 but all the deprecated features, including the entire
compatibility layer, have been removed. This version is cleaner and also a bit faster than
symfony 1.3. Another big advantage of using symfony 1.4 is its longer support. Being a Long
Term Support release, it will be maintained by the symfony core team for three years (until
November 2012).

Of course, you can migrate your projects to symfony 1.3 and then slowly update your code to
remove the deprecated features and eventually move to symfony 1.4 in order to benefit from
the long term support. You have plenty of time to plan the move as symfony 1.3 will be
supported for a year (until November 2010).

As this book does not describe deprecated features, all examples work equally well on both
versions.

ass 3k

Day 1: Starting up the Project 12

Day 1

Starting up the Project

Introduction

The syrnfony1 framework has been an Open-Source project for more than four years and has
become one of the most popular PHP frameworks thanks to its great features and great
documentation.

This book describes the creation of a web application with the symfony framework, step-by-
step from the specifications to the implementation. It is targeted at beginners who want to
learn symfony, understand how it works, and also learn about the best web development
practices.

The application to be designed could have been yet another blog engine. But we want to use
symfony on a useful project. The goal is to demonstrate that symfony can be used to develop
professional applications with style and little effort.

We will keep the content of the project secret for another day as we already have much for
now. However, let’s give it a name: Jobeet.

Each day of this book is meant to last between one and two hours, and will be the occasion to
learn symfony by coding a real website, from start to finish. Every day, new features will be
added to the application, and we’ll take advantage of this development to introduce you to
new symfony functionalities as well as good practices in symfony web development.

This Book is different

Remember the early days of PHP4. Ah, la Belle Epoque! PHP was one of the first languages
dedicated to the web and one of the easiest to learn.

But as web technologies evolve at a very fast pace, web developers need to keep up with the
latest best practices and tools. The best way to learn is of course by reading blogs, tutorials,
and books. We have read a lot of these, be they written for PHP, Python, Java, Ruby, or Perl,
and many of them fall short when the author starts giving snippets of codes as examples.

You are probably used to reading warnings like:

“For a real application, don’t forget to add validation and proper error handling.”
or

“Security is left as an exercise to the reader.”

or

1. http://www.symfony-project.org/

ass 3k

http://en.wikipedia.org/wiki/Belle_Époque

Day 1: Starting up the Project 13

“You will of course need to write tests.”

What? These things are serious business. They are perhaps the most important part of any
piece of code. And as a reader, you are left alone. Without these concerns taken into account,
the examples are much less useful. You cannot use them as a good starting point. That’s bad!
Why? Because security, validation, error handling, and tests, just to name a few, take care to
code right.

In this book, you will never see statements like those as we will write tests, error handling,
validation code, and be sure we develop a secure application. That’s because symfony is
about code, but also about best practices and how to develop professional applications for the
enterprise. We will be able to afford this luxury because symfony provides all the tools needed
to code these aspects easily without writing too much code.

Validation, error handling, security, and tests are first-class citizens in symfony, so it won’t
take us too long to explain. This is just one of many reasons why to use a framework for “real
life” projects.

All the code you will read in this book is code you could use for a real project. We encourage
you to copy and paste snippets of code or steal whole chunks.

What for Today?

We won’t write PHP code. But even without writing a single line of code, you will start
understanding the benefits of using a framework like symfony, just by bootstrapping a new
project.

The objective of this day is to setup the development environment and display a page of the
application in a web browser. This includes installation of symfony, creation of an application,
and web server configuration.

As this book will mostly focus on the symfony framework, we will assume that you already
have a solid knowledge of PHP 5 and Object Oriented programming.

Prerequisites

Before installing symfony, you need to check that your computer has everything installed and
configured correctly. Take the time to conscientiously read this day and follow all the steps
required to check your configuration, as it may save your day further down the road.

Third-Party Software

First of all, you need to check that your computer has a friendly working environment for web
development. At a minimum, you need a web server (Apache, for instance), a database engine

(MySQL, PostgreSQL, SQLite, or any PDOZ-compatible database engine), and PHP 5.2.4 or
later.

Command Line Interface

The symfony framework comes bundled with a command line tool that automates a lot of
work for you. If you are a Unix-like OS user, you will feel right at home. If you run a Windows
system, it will also work fine, but you will just have to type a few commands at the cmd
prompt.

2. http://www.php.net/PD0O

ass 3k

Day 1: Starting up the Project 14

E Unix shell commands can come in handy in a Windows environment. If you would like to
use tools like tar, gzip or grep on Windows, you can install CygwinS. The adventurous
may also like to try Microsoft’'s Windows Services for Unix*.

PHP Configuration

As PHP configurations can vary a lot from one OS to another, or even between different Linux
distributions, you need to check that your PHP configuration meets the symfony minimum
requirements.

First, ensure that you have PHP 5.2.4 at a minimum installed by using the phpinfo () built-in
function or by running php -v on the command line. Be aware that on some configurations,
you might have two different PHP versions installed: one for the command line, and another
for the web.

Then, download the symfony configuration checker script at the following URL:

Listing http://sf-to.org/1.4/check.php
Save the script somewhere under your current web root directory. Launch the configuration
checker script from the command line:

Listing $ php check configuration.php
If there is a problem with your PHP configuration, the output of the command will give you
hints on what to fix and how to fix it.

You should also execute the checker from a browser and fix the issues it might discover.
That’s because PHP can have a distinct php.ini configuration file for these two
environments, with different settings.

Don’t forget to remove the file from your web root directory afterwards.

Symfony Installation

Initializing the Project Directory

Before installing symfony, you first need to create a directory that will host all the files
related to Jobeet:

Listing $ mkdir -p /home/sfprojects/jobeet
“ $ cd /home/sfprojects/jobeet

Or on Windows:

Listing c:\> mkdir c:\development\sfprojects\jobeet
~ c:\> cd c:\development\sfprojects\jobeet

3. http://cygwin.com/
4. http://technet.microsoft.com/en-gb/interopmigration/bb380242.aspx

ass 3k

Day 1: Starting up the Project 15

Windows users are advised to run symfony and to setup their new project in a path which
contains no spaces. Avoid using the Documents and Settings directory, including
anywhere under My Documents.

@ If you create the symfony project directory under the web root directory, you won't need to
configure your web server. Of course, for production environments, we strongly advise you
to configure your web server as explained in the web server configuration section.

Choosing the Symfony Version

Now, you need to install symfony. As the symfony framework has several stable versions, you
need to choose the one you want to install by reading the installation page5 on the symfony
website.

This book assumes you want to install symfony 1.3 or symfony 1.4.

Choosing the Symfony Installation Location

You can install symfony globally on your machine, or embed it into each of your project. The
latter is the recommended one as projects will then be totally independent from each others.
Upgrading your locally installed symfony won’t break some of your projects unexpectedly. It
means you will be able to have projects on different versions of symfony, and upgrade them
one at a time as you see fit.

As a best practice, many people install the symfony framework files in the lib/vendor
project directory. So, first, create this directory:

$ mkdir -p lib/vendor

Installing Symfony

Installing from an Archive

The easiest way to install symfony is to download the archive for the version you choose from
the symfony website. Go to the installation page for the version you have just chosen, symfony

1.45 for instance.

Under the “Source Download” section, you will find the archive in .tgz or in .zip format.
Download the archive, put it under the freshly created 1ib/vendor/ directory, un-archive it,
and rename the directory to symfony:

$ cd lib/vendor

$ tar zxpf symfony-1.4.0.tgz
$ mv symfony-1.4.0 symfony

$ rm symfony-1.4.0.tgz

Under Windows, unzipping the zip file can be achieved using Windows Explorer. After you

rename the directory to symfony, there should be a directory structure similar to
c:\dev\sfprojects\jobeet\lib\vendor\symfony.

5. http://www.symfony-project.org/installation
6. http://www.symfony-project.org/installation/1 4

ass 3k

Listing
1-5

Listing
1-6

Listing
1-7

Listing
1-8

Listing
1-9

Listing
1-10

Listing
1-11

Day 1: Starting up the Project 16

Installing from Subversion (recommended)

If you use Subversion, it is even better to use the svn:externals property to embed
symfony into your project in the 1ib/vendor/ directory:

$ svn pe svn:externals lib/vendor/

Importing your project in a new Subversion repository is explained at the end of this day.

If everything goes well, this command will run your favorite editor to give you the opportunity
to configure the external Subversion sources.

@ On Windows, you can use tools like TortoiseSVN’ to do everything without the need to use
the console.

If you are conservative, tie your project to a specific release (a subversion tag):

symfony http://svn.symfony-project.com/tags/RELEASE 1 4 0

Whenever a new release comes out (as announced on the symfony b10g8), you will need to
change the URL to the new version.

If you want to go the bleeding-edge route, use the 1.4 branch:
symfony http://svn.symfony-project.com/branches/1.4/

Using the branch makes your project benefits from the bug fixes automatically whenever you
run a svn update.

Installation Verification

Now that symfony is installed, check that everything is working by using the symfony
command line to display the symfony version (note the capital V):

$cd ../..
$ php lib/vendor/symfony/data/bin/symfony -V

On Windows:

c:\>cd ..\..
c:\> php lib\vendor\symfony\data\bin\symfony -V

@ If you are curious about what this command line tool can do for you, type symfony to list
the available options and tasks:

Lzls_tlz'gg $ php lib/vendor/symfony/data/bin/symfony
On Windows:

Lzls_tligg c:\> php lib\vendor\symfony\data\bin\symfony

7. http://tortoisesvn.net/
8. http://www.symfony-project.org/blog/

ass 3k

Day 1: Starting up the Project 17

The symfony command line is the developer’s best friend. It provides a lot of utilities that
improve your productivity for day-to-day activities like cleaning the cache, generating code,
and much more.

Project Setup

In symfony, applications sharing the same data model are regrouped into projects. For
most projects, you will have two different applications: a frontend and a backend.

Project Creation

From the sfprojects/jobeet directory, run the symfony generate:project task to
actually create the symfony project:

$ php lib/vendor/symfony/data/bin/symfony generate:project jobeet
On Windows:
c:\> php lib\vendor\symfony\data\bin\symfony generate:project jobeet

The generate:project task generates the default structure of directories and files needed
for a symfony project:

Directory Description

apps/ Hosts all project applications
cache/ The files cached by the framework
config/ The project configuration files

lib/ The project libraries and classes
log/ The framework log files

plugins/ The installed plugins

test/ The unit and functional test files
web/ The web root directory (see below)

Why does symfony generate so many files? One of the main benefits of using a full-stack
framework is to standardize your developments. Thanks to symfony’s default structure of
files and directories, any developer with some symfony knowledge can take over the
maintenance of any symfony project. In a matter of minutes, he will be able to dive into the
code, fix bugs, and add new features.

The generate:project task has also created a symfony shortcut in the project root
directory to shorten the number of characters you have to write when running a task.

So, from now on, instead of using the fully qualified path to the symfony program, you can use
the symfony shortcut.

Application Creation

Now, create the frontend application by running the generate:app task:

ass 3k

Listing
1-14

Listing
1-15

Day 1: Starting up the Project 18

tsing $ php symfony generate:app frontend

@ Because the symfony shortcut file is executable, Unix users can replace all occurrences of
‘php symfony’ by ‘. /symfony’ from now on.

On Windows you can copy the ‘symfony.bat’ file to your project and use ‘symfony’
instead of ‘php symfony’:

Listing c:\> copy lib\vendor\symfony\data\bin\symfony.bat .

Based on the application name given as an argument, the generate:app task creates the
default directory structure needed for the application under the apps/frontend/ directory:

Directory Description

config/ The application configuration files
lib/ The application libraries and classes
modules/ The application code (MVC)
templates/ The global template files

Security

By default, the generate:app task has secured our application from the two most
widespread vulnerabilities found on the web. That’s right, symfony automatically takes
security measures on our behalf.

To prevent XSS attacks, output escaping has been enabled; and to prevent CSRF attacks, a
random CSRF secret has been generated.

Of course, you can tweak these settings thanks to the following options:

* --escaping-strategy: Enables or disables output escaping
* --csrf-secret: Enables session tokens in forms

If you know nothing about XSS? or CSRF'Y, take the time to learn more these security
vulnerabilities.

Directory Structure Rights

Before trying to access your newly created project, you need to set the write permissions on
the cache/ and log/ directories to the appropriate levels, so that your web server can write
to them:

Listing $ chmod 777 cache/ log/

Tips for People using a SCM Tool
symfony only ever writes in two directories of a symfony project, cache/ and log/. The

content of these directories should be ignored by your SCM (by editing the svn:ignore
property if you use Subversion for instance).

9. http://en.wikipedia.org/wiki/Cross-site scripting
10. http://en.wikipedia.org/wiki/CSRF

ass 3k

Day 1: Starting up the Project 19

Web Server Configuration: The ugly Way

If you have created the project directory it somewhere under the web root directory of your
web server, you can already access the project in a web browser.

Of course, as there is no configuration, it is very fast to set up, but try to access the config/
databases.yml file in your browser to understand the bad consequences of such a lazy
attitude. If the user knows that your website is developed with symfony, he will have access
to a lot of sensitive files.

Never ever use this setup on a production server, and read the next section to learn how
to configure your web server properly.

Web Server Configuration: The secure Way

A good web practice is to put under the web root directory only the files that need to be
accessed by a web browser, like stylesheets, JavaScripts and images. By default, we
recommend to store these files under the web/ sub-directory of a symfony project.

If you have a look at this directory, you will find some sub-directories for web assets (css/
and images/) and the two front controller files. The front controllers are the only PHP files
that need to be under the web root directory. All other PHP files can be hidden from the
browser, which is a good idea as far as security is concerned.

Web Server Configuration

Now it is time to change your Apache configuration, to make the new project accessible to the
world.

Locate and open the httpd.conf configuration file and add the following configuration at
the end:

Be sure to only have this line once in your configuration Listing
NameVirtualHost 127.0.0.1:8080 h

This is the configuration for your project
Listen 127.0.0.1:8080

<VirtualHost 127.0.0.1:8080>
DocumentRoot "/home/sfprojects/jobeet/web"
DirectoryIndex index.php
<Directory "/home/sfprojects/jobeet/web">
AllowOverride All
Allow from All
</Directory>

Alias /sf /home/sfprojects/jobeet/1lib/vendor/symfony/data/web/sf
<Directory "/home/sfprojects/jobeet/lib/vendor/symfony/data/web/sf">
AllowOverride All
Allow from All
</Directory>
</VirtualHost>

E The /s alias gives you access to images and javascript files needed to properly display
default symfony pages and the web debug toolbar|Web Debug Toolbar.

ass 3k

Day 1: Starting up the Project 20

On Windows, you need to replace the Alias line with something like:
"’f.g?;g Alias /sf "c:\dev\sfprojects\jobeet\lib\vendor\symfony\data\web\sf"
And /home/sfprojects/jobeet/web should be replaced with:

"’fﬁ?g c:\dev\sfprojects\jobeet\web

This configuration makes Apache listen to port 8080 on your machine, so, after restarting
apache, the website will be accessible at the following URL.:

Listing http://~localhost~:8080/

You can change 8080 to any number, but favour numbers greater than 1024 as they do not
require administrator rights.

Configure a dedicated Domain Name

If you are an administrator on your machine, it is better to setup virtual hosts instead of
adding a new port each time you start a new project. Instead of choosing a port and add a
Listen statement, choose a domain name (for instance the real domain name with
.localhost added at the end) and add a ServerName statement:

Lising # This is the configuration for your project
" <VirtualHost 127.0.0.1:80>
ServerName www.jobeet.com.localhost
<!-- same configuration as before -->
</VirtualHost>

The domain name www. jobeet.com.localhost used in the Apache configuration has to
be declared locally. If you run a Linux system, it has to be done in the /etc/hosts file. If
you run Windows XP, this file is located in the C:\WINDOWS\system32\drivers\etc\
directory.

Add in the following line:

Listing 127.0.0.1 www. jobeet.com.localhost

Test the New Configuration

Restart Apache, and check that you now have access to the new application by opening a
browser and typing http://localhost:8080/index.php/, or
http://www.jobeet.com.localhost/index.php/ depending on the Apache
configuration you chose in the previous section.

ass 3k

Day 1: Starting up the Project 21

Symfony Project Created

Congratulations! You have successfully created your symfony project.

Project setup successful

This project uses the symfony libraries. If you see no image in this page,
you may need to configure your web server so that it gains access to the
symfony data/web/sf/ directory.

This is a temporary page

This page is part of the symfony default module. It will disappear as soon
as you define a homepage route in your routing.yml.

What's next

& create your data model

%3 Customize the layout of the generated templates
= Learn more from the online documentation

@ If you have the Apache mod rewrite module installed, you can remove the index.php/
part of the URL. This is possible thanks to the rewriting rules configured in the web/
.htaccess file.

You should also try to access the application in the development environment (see the next
section for more information about environments). Type in the following URL:

http://www.jobeet.com.localhost/frontend_dev.php/ Listing

1-25

The web debug toolbar should show in the top right corner, including small icons proving that
your sf/ alias configuration is correct.

symfony Brought to you by SENSIOLABS 3K

Day 1: Starting up the Project 22

Sf {ciconfig ¢ logs [1594.1KB (5127 ms i

gisymiony

Symfony Project Created

Congratulations! You have successfully created your symfony project.

Project setup successful

This project uses the symfony libraries. If you see no image in this page,
you may need to configure your web server so that it gains access to the
symfony data/web/sf/ directory.

This is a temporary page

This page is part of the symfony default module. It will disappear as soon
as you define a homepage route in your routing.yml.

What's next

& Create your data model

€3 Customize the layout of the generated templates
[Learn more from the online documentation

T The setup is a little different if you want to run symfony on an IIS server in a Windows
environment. Find how to configure it in the related tutorial'!.

The Environments

If you have a look at the web/ directory, you will find two PHP files: index.php and
frontend dev.php. These files are called front controllers; all requests to the application
are made through them. But why do we have two front controllers for each application?

Both files point to the same application but for different environments. When you develop an
application, except if you develop directly on the production server, you need several
environments:

* The development environment: This is the environment used by web developers
when they work on the application to add new features, fix bugs, ...

* The test environment: This environment is used to automatically test the
application.

* The staging environment: This environment is used by the customer to test the
application and report bugs or missing features.

* The production environment: This is the environment end users interact with.

What makes an environment unique? In the development environment for instance, the
application needs to log all the details of a request to ease debugging, but the cache system
must be disabled as all changes made to the code must be taken into account right away. So,
the development environment must be optimized for the developer. The best example is
certainly when an exception|Exception Handling occurs. To help the developer debug the
issue faster, symfony displays the exception with all the information it has about the current
request right into the browser:

11. http://www.symfony-project.com/cookbook/1 0/web server iis

symfony Brought to you by SENSIOLABS 3K

Day 1: Starting up the Project 23

500 | Internal Server Error | Exception @

Foo exception

stack trace
1. at ()
in 5F_ROOT_DIR/apps/frontend/modules/job/actions/actions.class.php line 15 ...
17,
13. public function executeIndex{sfWebReguest $reguest)
14. {
15. throw new Exception{'Foo axcaption'});
16. $this->jobeet job list = JobeetJobPeer::doSelect{new Criteria{)}};
7.}

18.
2. at jobActions->executelndex{object{'sfWebRequest'))
in SF_SYMFONY _LIB DIR/action/sfActions.class.php line 53 ...

3. at sfActions->execute(object{'sfWebRequeast'))
in 5F_SYMFONY _LIB DIR/filter/sfExecubionfilter.class.php line 80 ...

4. at sfExecutionFilter->executeAction(object{'jobActions'))
in SFE_SYMFONY_LIB_DIR/filter/sfExecutionFilter.class.php line 76 ...

5. at sfExecutionFilter->handleAction(object('sfFilterChain"), object{'jobActions'))
in SF_SYMFONY _LIB DIR/filter/sfExecutionfilter.class.php line 42 ...
But on the production environment, the cache layer must be activated and, of course, the
application must display customized error messages instead of raw exceptions. So, the
production environment must be optimized for performance and the user experience.

The server returned a "500 Internal Server Error”.

>< Oops! An Error Occurred

Something is broken

Please e-mail us at [email] and let us know what you were doing when this
error occurred. We will fix it as soon as possible. Sorry for any
inconvenience caused.

What's next
[Back to previous page
7 Go to Homepage

@ If you open the front controller files, you will see that their content is the same except for
the environment setting:

// web/index.php Listing
<?php 1-26

require once(dirname(_FILE).'/../config/
ProjectConfiguration.class.php');

$configuration =
ProjectConfiguration::getApplicationConfiguration('frontend', 'prod',
false);

sfContext::createInstance($configuration)->dispatch();

symfony Brought to you by SENSIOLABS 3K

Listing
1-27

Listing

1-28

Listing
1-29

Listing
1-30

Listing
1-31

Day 1: Starting up the Project 24

The web debug toolbar is also a great example of the usage of environment. It is present on
all pages in the development environment and gives you access to a lot of information by
clicking on the different tabs: the current application configuration, the logs for the current
request, the SQL statements executed on the database engine, memory information, and time
information.

Subversion

It is a good practice to use source version control when developing a web application. Using a
source version control allows us to:

* work with confidence

* revert to a previous version if a change breaks something

* allow more than one person to work efficiently on the project
* have access to all the successive versions of the application

In this section, we will describe how to use Subversion'? with symfony. If you use another
source code control tool, it must be quite easy to adapt what we describe for Subversion.

We assume you have already access to a Subversion server and can access it via HTTP.

@ If you don’t have a Subversion server at your disposal, you can create a repository for free

on Google Code!? or just type “free subversion repository” in Google to have a lot more
options.

First, create a repository for the jobeet project on the repository server:

$ svnadmin create /path/to/jobeet/repository

On your machine, create the basic directory structure:

$ svn mkdir -m "created default directory structure"
http://svn.example.com/jobeet/trunk
http://svn.example.com/jobeet/tags
http://svn.example.com/jobeet/branches

And checkout the empty trunk/ directory:

$ cd /home/sfprojects/jobeet
$ svn co http://svn.example.com/jobeet/trunk/ .

Then, remove the content of the cache/ and log/ directories as we don’t want to put them
into the repository.

$ rm -rf cache/* log/*

Now, make sure to set the write permissions on the cache and logs directories to the
appropriate levels so that your web server can write to them:

$ chmod 777 cache/ log/

Now, import all the files and directories:

12. http://subversion.tigris.org/
13. http://code.google.com/hosting/

ass 3k

Day 1: Starting up the Project 25

$ svn add *

As we will never want to commit files located in the cache/ and log/ directories, you need
to specify an ignore list:

$ svn propedit svn:ignore cache

The default text editor configured for SVN should launch. Subversion must ignore all the
content of this directory:

ES

Save and quit. You're done.
Repeat the procedure for the log/ directory:

$ svn propedit svn:ignore log

And enter:

*

Finally, commit these changes to the repository:

$ svn import -m "made the initial import"
http://svn.example.com/jobeet/trunk

@ Windows users can use the great TortoiseSVN'# client to manage their subversion
repository.

Final Thoughts

Well, time is over! Even if we have not yet started talking about symfony, we have setup a
solid development environment, we have talked about web development best practices, and
we are ready to start coding.

Tomorrow, we will reveal what the application will do and talk about the requirements we
need to implement for Jobeet.

14. http://tortoisesvn.tigris.org/

ass 3k

Listing
1-32

Listing
1-33

Listing
1-34

Listing
1-35

Listing
1-36

Listing
1-37

Day 2: The Project 26

Day 2

The Project

We have not written a single line of PHP yet, but in day 1, we setup the environment, created
an empty symfony project, and made sure we started with some good security defaults. If you
followed along, you have been looking at your screen delightedly since then, as it displays the
beautiful default symfony page for new applications.

Symfony Project Created

Congratulations! You have successfully created your symfony project.

Project setup successful

This project uses the symfony libraries. If you see no image in this page,
you may need to configure your web server so that it gains access to the
symfony data/web/sf/ directory.

This is a temporary page

This page is part of the symfony default module. It will disappear as soon
as you define a homepage route in your routing.yml.

What's next

& create your data model

%3 Customize the layout of the generated templates
= Learn more from the online documentation

But you want more. You want to learn all the nitty gritty details of symfony application
development. So, let’s resume our trip to symfony development nirvana.

Now, we will take the time to describe the requirements of the Jobeet project with some basic
mockups.

The Project Pitch

Everybody is talking about the crisis nowadays. Unemployment is rising again.

I know, symfony developers are not really concerned and that’s why you want to learn
symfony in the first place. But it is also quite difficult to find good symfony developers.

Where can you find a symfony developer? Where can you advertise your symfony skills?

symfony Brought to you by SENSIOLABS 3K

Day 2: The Project 27

You need to find a good job board. Monster you say? Think again. You need a focused job
board. One where you can find the best people, the experts. One where it is easy, fast, and
fun to look for a job, or to propose one.

Search no more. Jobeet is the place. Jobeet is Open-Source job board software that only
does one thing, but does it well. It is easy to use, customize, extend, and embed into your
website. It supports multiple languages out of the box, and of course uses the latest Web 2.0
technologies to enhance user experience. It also provides feeds and an API to interact with it
programatically.

Does it already exist? As a user, you will find a lot of job boards like Jobeet on the Internet.
But try to find one which is Open-Source, and as feature-rich as what we propose here.

T If you are really looking for a symfony job or want to hire a symfony developer, you can go
to the syrnfonians15 website.

The Project User Stories

Before diving into the code head-first, let’s describe the project a bit more. The following
sections describe the features we want to implement in the first version/iteration of the
project with some simple stories.

The Jobeet website has four kind of users:
* admin: He owns the website and has the magic power
* user: He visits the website to look for a job

* poster: He visits the website to post a job
+ affiliate: He re-publishes some jobs on his website

The project has two applications: the frontend (stories F1 to F7, below), where the users
interact with the website, and the backend (stories B1 to B3), where admins manage the
website.

The backend application is secured and requires credentials to access.

Story F1: On the homepage, the user sees the latest active jobs

When a user comes to the Jobeet website, he sees a list of active jobs. The jobs are sorted by
category and then by publication date (newer jobs first). For each job, only the location, the
position, and the company are displayed.

For each category, the list only shows the first 10 jobs and a link allows to list all the jobs for
a given category (Story F2).

On the homepage, the user can refine the job list (Story F3), or post a new job (Story F5).

15. http://symfonians.net/

ass 3k

Day 2: The Project

28

Jobeet

<> X O 71 & O
@LIVE Search) | Search l

Design RSS Feed

Location Position Company

Paris France Web Designer Sensio Labs

Programming RSS Feed

Location Position Company

Paris France Web Developer Sensio Labs

Paris France Tester Sensio Labs

and 10 more. ..
AboutJobeet Full RSS Feed | _Jobeet APT Affiliates
4|

Story F2: A user can ask for all the jobs in a given category

When a user clicks on a category name or on a “more jobs” link on the homepage, he sees all
the jobs for this category sorted by date.

The list is paginated with 20 jobs per page.

Brought to you by SENSIOLABS *’

Day 2: The Project 29

Jobeet

<A X 43 1@ O

Jobeet

@__Lw'e Search) | Search l
Programming RSS Feed
Location Pasition Company

Paris France Web Developer Sensio Labs

Paris France Tester Sensio Labs

33 jobs in this category - page 1/7 @

AboutJobeet | Full RSS Feed | Jobeet APT | Affiliates

4|

Story F3: A user refines the list with some keywords

The user can enter some keywords to refine his search. Keywords can be words found in the
location, the position, the category, or the company fields.

Story F4: A user clicks on a job to see more detailed information

The user can select a job from the list to see more detailed information.

symfony Brought to you by SENSIOLABS 3K

Day 2: The Project 30

Jobeet

<A X O3 1 & O

Jobeet
@Lw‘e Search) | Search l

Sensio Labs

Paris, France

Web Developer - full time

You've already developed websites with symfony and you want to work with
Open-Source technologies. You have a minimum of 3 years experience in web
development with PHP or Java and you wish to participate to development of
Web 2.0 sites using the best frameworks available,

How to apply?

Send your resume to fabien.potencier [at] sensio.com

AboutJobeet Full RS5 Feed Jobeet APL Affiliates

#|

Story F5: A user posts a job
A user can post a job. A job is made of several pieces of information:

* Company

* Type (full-time, part-time, or freelance)

* Logo (optional)

* URL (optional)

* Position

* Location

* Category (the user chooses in a list of possible categories)
* Job description (URLs and emails are automatically linked)
* How to apply (URLs and emails are automatically linked)

» Public (whether the job can also be published on affiliate websites)
* Email (email of the poster)

There is no need to create an account to post a job.

The process is straightforward with only two steps: first, the user fills in the form with all the
needed information to describe the job, then he validates the information by previewing the
final job page.

Even if the user has no account, a job can be modified afterwards thanks to a specific URL
(protected by a token given to the user when the job is created).

sumfonu Brought to you by LABS *

Day 2: The Project 31

Each job post is online for 30 days (this is configurable by the admin - see Story B2). A user
can come back to re-activate or extend the validity of the job for an extra 30 days but only
when the job expires in less than 5 days.

Jobeet

<AC> X O3 1 & O

Jobeet
@ Live Search) [search |

Post a Job

Category

Type O Full Time O Part Time O Freelance

Company I l
Logo I ” Choose file I

URL |
Position B l
Location l
Description

AboutJobeet Full RS5 Feed Jobeet APL Affiliates

Story F6: A user applies to become an affiliate

A user needs to apply to become an affiliate and be authorized to use the Jobeet API. To
apply, he must give the following information:

¢ Name
¢ Email
e Website URL

The affiliate account must be activated by the admin (Story B3). Once activated, the affiliate
receives a token to use with the API via email.

When applying, the affiliate can also choose to get jobs from a sub-set of the available
categories.

Story F7: An affiliate retrieves the current active job list

An affiliate can retrieve the current job list by calling the API with his affiliate token. The list
can be returned in the XML, JSON or YAML format.

ass 3k

Day 2: The Project 32

The list contains the public information available for a job.

The affiliate can also limit the number of jobs to be returned, and refine his query by
specifying a category.

Story B1: An admin configures the website

An admin can edit the categories available on the website.

Story B2: An admin manages the jobs

An admin can edit and remove any posted job.

Story B3: An admin manages the affiliates

The admin can create or edit affiliates. He is responsible for activating an affiliate and can
also disable one.

When the admin activates a new affiliate, the system creates a unique token to be used by the
affiliate.

Final Thoughts

As for any web development, you never start coding the first day. You need to gather the
requirements first and work on a mockup design. That’s what we have done here.

ass 3k

Day 3: The Data Model 33

Day 3

The Data Model

Those of you itching to open your text editor and lay down some PHP will be happy to know
today will get us into some development. We will define the Jobeet data model, use an ORM to
interact with the database, and build the first module of the application. But as symfony does
a lot of the work for us, we will have a fully functional web module without writing too much
PHP code.

The Relational Model

The user stories we saw yesterday describe the main objects of our project: jobs, affiliates,
and categories. Here is the corresponding entity relationship diagram:

Job

id
category_id
type
company
I

url
position
location

description K
how_to_apply
token
is_public
is_validated Categorgdhffillate
ermail category_i
expires_at affiliate id
created_at
updated_at

Affiliate
id
Category Lrl
. email
! token
! is_active
1
1

]
name

created at

In addition to the columns described in the stories, we have also added a created at field to
some tables. Symfony recognizes such fields and sets the value to the current system time
when a record is created. That’s the same for updated at fields: Their value is set to the
system time whenever the record is updated.

The Schema

To store the jobs, affiliates, and categories, we obviously need a relational database.

ass 3k

Day 3: The Data Model 34

But as symfony is an Object-Oriented framework, we like to manipulate objects whenever we
can. For example, instead of writing SQL statements to retrieve records from the database,
we’d rather prefer to use objects.

The relational database information must be mapped to an ohject model. This can be done
with an ORM tool and thankfully, symfony comes bundled with two of them: Propel'® and
Doctrine!’. In this tutorial, we will use Doctrine.

The ORM needs a description of the tables and their relationships to create the related
classes. There are two ways to create this description schema: by introspecting an existing
database or by creating it by hand.

As the database does not exist yet and as we want to keep Jobeet database agnostic, let’s
create the schema file by hand by editing the empty config/doctrine/schema.yml file:

Listing # config/doctrine/schema.yml
" JobeetCategory:
actAs: { Timestampable: ~ }
columns:
name: { type: string(255), notnull: true, unique: true }

JobeetJob:

actAs: { Timestampable: ~ }

columns:
category id: { type: integer, notnull: true }
type: { type: string(255) }
company: { type: string(255), notnull: true }
logo: { type: string(255) }
url: { type: string(255) }
position: { type: string(255), notnull: true }
location: { type: string(255), notnull: true }
description: { type: string(4000), notnull: true }
how to apply: { type: string(4000), notnull: true }
token: { type: string(255), notnull: true, unique: true }
is public: { type: boolean, notnull: true, default: 1 }
is activated: { type: boolean, notnull: true, default: 0 }
email: { type: string(255), notnull: true }
expires at: { type: timestamp, notnull: true }

relations:

JobeetCategory: { onDelete: CASCADE, local: category id, foreign: id,
foreignAlias: JobeetJobs }

JobeetAffiliate:
actAs: { Timestampable: ~ }
columns:
url: { type: string(255), notnull: true }
email: { type: string(255), notnull: true, unique: true }
token: { type: string(255), notnull: true }
is active: { type: boolean, notnull: true, default: 0 }
relations:
JobeetCategories:

class: JobeetCategory

refClass: JobeetCategoryAffiliate
local: affiliate id

foreign: category id
foreignAlias: JobeetAffiliates

16. http://www.propelorm.org/
17. http://www.doctrine-project.org/

ass 3k

http://en.wikipedia.org/wiki/Object-relational_mapping

Day 3: The Data Model 35

JobeetCategoryAffiliate:
columns:
category id: { type: integer, primary: true }
affiliate id: { type: integer, primary: true }
relations:
JobeetCategory: { onDelete: CASCADE, local: category id, foreign: id }
JobeetAffiliate: { onDelete: CASCADE, local: affiliate id, foreign: id

°

If you have decided to create the tables by writing SQL statements, you can generate the
corresponding schema.yml configuration file by running the doctrine:build-schema
task:

$ php symfony doctrine:build-schema ugglg

The above task requires that you have a configured database in databases.yml. We show
you how to configure the database in a later step. If you try and run this task now it won’t

work as it doesn’t know what database to build the schema for.

The schema is the direct translation of the entity relationship diagram in the YAML format.
The YAML Format

According to the official YAML!® website, YAML is “a human friendly data serialization
standard for all programming languages”

Put another way, YAML is a simple language to describe data (strings, integers, dates,
arrays, and hashes).

In YAML, structure is shown through indentation, sequence items are denoted by a dash,
and key/value pairs within a map are separated by a colon. YAML also has a shorthand
syntax to describe the same structure with fewer lines, where arrays are explicitly shown
with [] and hashes with {}.

If you are not yet familiar with YAML, it is time to get started as the symfony framework
uses it extensively for its configuration files. A good starting point is the symfony YAML

component documentation'®.

There is one important thing you need to remember when editing a YAML file: indentation
must be done with one or more spaces, but never with tabulations.

The schema.yml file contains the description of all tables and their columns. Each column is
described with the following information:

* type: The column type (boolean, integer, float, decimal, string, array,
object, blob, clob, timestamp, time, date, enum, gzip)

* notnull: Setit to true if you want the column to be required

* unique: Set it to true if you want to create a unique index for the column.

The onDelete attribute defines the ON DELETE behavior of foreign keys, and Doctrine
supports CASCADE, SET NULL, and RESTRICT. For instance, when a job record is deleted,
all the jobeet category affiliate related records will be automatically deleted by
the database.

18. http://yaml.org/
19. http://components.symfony-project.org/yaml/documentation

ass 3k

Listing
3-3

Listing
3-4

Listing
3-5

Listing
3-6

Listing
3-7

Day 3: The Data Model 36

The Database

The symfony framework supports all PDO-supported databases (MySQL, PostgreSQL, SQLite,

Oracle, MSSQL, ...). PDO?? is the database abstraction layer|Database Abstraction Layer
bundled with PHP.

Let’s use MySQL for this tutorial:

$ mysqladmin -uroot -p create jobeet
Enter password: mYsEcret ## The password will echo as *¥¥*xx*x*

E Feel free to choose another database engine if you want. It won’t be difficult to adapt the
code we will write as we will use the ORM will write the SQL for us.

We need to tell symfony to use this database for the Jobeet project:

$ php symfony configure:database
"mysql:host=1localhost;dbname=jobeet" root mYsEcret

The configure:database task takes three arguments: the PDO DSN?!, the username, and
the password to access the database. If you don’t need a password to access your database on
the development server, just omit the third argument.

F The configure:database task stores the database configuration into the config/
databases.yml configuration file. Instead of using the task, you can edit this file by hand.

A Passing the database password on the command line is convenient but insecure??.

Depending on who has access to your environment, it might be better to edit the config/
databases.yml to change the password. Of course, to keep the password safe, the
configuration file access mode should also be restricted.

The ORM

Thanks to the database description from the schema.yml file, we can use some Doctrine
built-in tasks to generate the SQL statements needed to create the database tables:

First in order to generate the SQL you must build your models from your schema files.
$ php symfony doctrine:build --model

Now that your models are present you can generate and insert the SQL.

$ php symfony doctrine:build --sql

The doctrine:build --sql task generates SQL statements in the data/sql/ directory,
optimized for the database engine we have configured:

snippet from data/sql/schema.sql
CREATE TABLE jobeet category (id BIGINT AUTO INCREMENT, name VARCHAR(255)

20. http://www.php.net/PDO
21. http://www.php.net/manual/en/pdo.drivers.php
22. http://dev.mysqgl.com/doc/refman/5.1/en/password-security.html

ass 3k

Day 3: The Data Model 37

NOT NULL COMMENT 'test', created at DATETIME, updated at DATETIME, slug
VARCHAR(255), UNIQUE INDEX sluggable idx (slug), PRIMARY KEY(id))
ENGINE = INNODB;

To actually create the tables in the database, you need to run the doctrine:insert-sql
task:

$ php symfony doctrine:insert-sql Listing

As for any command line tool, symfony tasks can take arguments and options. Each task
comes with a built-in help message that can be displayed by running the help task:

$ php symfony help doctrine:insert-sql Listing

3-9

The help message lists all the possible arguments and options, gives the default values for
each of them, and provides some useful usage examples.

The ORM also generates PHP classes that map table records to objects:

$ php symfony doctrine:build --model Listing

3-10

The doctrine:build --model task generates PHP files in the 1ib/model/ directory that
can be used to interact with the database.

By browsing the generated files, you have probably noticed that Doctrine generates three
classes per table. For the jobeet job table:
* JobeetJob: An object of this class represents a single record of the jobeet job
table. The class is empty by default.

¢ BaseJobeetJob: The parent class of JobeetJob. Each time you run
doctrine:build --model, this class is overwritten, so all customizations must be
done in the JobeetJob class.

* JobeetJobTable: The class defines methods that mostly return collections of
JobeetJob objects. The class is empty by default.

The column values of a record can be manipulated with a model object by using some
accessors (get* () methods) and mutators (set* () methods):

$job = new JobeetJob(); L?%g
$job->setPosition('Web developer'); -
$job->save();

echo $job->getPosition();

$job->delete();

You can also define foreign keys directly by linking objects together:

$category = new JobeetCategory(); Listing
$category->setName('Programming'); ’

$job = new JobeetJob();
$job->setCategory($category);

The doctrine:build --all task is a shortcut for the tasks we have run in this section and

some more. So, run this task now to generate forms and validators for the Jobeet model
classes:

ass 3k

Listing
3-13

Listing
3-

Day 3: The Data Model 38

$ php symfony doctrine:build --all --no-confirmation

You will see validators in action today and forms will be explained in great details on day 10.

The Initial Data

The tables have been created in the database but there is no data in them. For any web
application, there are three types of data:

» Initial data: Initial data are needed for the application to work. For example, Jobeet
needs some initial categories. If not, nobody will be able to submit a job. We also
need an admin user to be able to login to the backend.

* Test data: Test Data are needed for the application to be tested. As a developer,
you will write tests to ensure that Jobeet behaves as described in the user stories,
and the best way is to write automated tests. So, each time you run your tests, you
need a clean database with some fresh data to test on.

* User data: User data are created by the users during the normal life of the
application.

Each time symfony creates the tables in the database, all the data are lost. To populate the
database with some initial data, we could create a PHP script, or execute some SQL
statements with the mysql program. But as the need is quite common, there is a better way
with symfony: create YAML files in the data/fixtures/ directory and use the
doctrine:data-load task to load them into the database.

First, create the following fixture files:

data/fixtures/categories.yml
JobeetCategory:
design:
name: Design
programming:
name: Programming
manager:
name: Manager
administrator:
name: Administrator

data/fixtures/jobs.yml
JobeetJob:
job sensio labs:
JobeetCategory: programming

type: full-time

company: Sensio Labs

logo: sensio-labs.gif

url: http://www.sensiolabs.com/
position: Web Developer

location: Paris, France

description: |

You've already developed websites with symfony and you want to work
with Open-Source technologies. You have a minimum of 3 years
experience in web development with PHP or Java and you wish to
participate to development of Web 2.0 sites using the best
frameworks available.

how to apply: |
Send your resume to fabien.potencier [at] sensio.com

ass 3k

Day 3: The Data Model 39

is public: true

is activated: true

token: job sensio labs
email: job@example. com
expires at: '2010-10-10"

job _extreme sensio:
JobeetCategory: design

type: part-time

company: Extreme Sensio

logo: extreme-sensio.gif

url: http://www.extreme-sensio.com/
position: Web Designer

location: Paris, France

description: |

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in.

Voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

how to apply: |
Send your resume to fabien.potencier [at] sensio.com

is public: true

is activated: true

token: job extreme sensio
email: job@example.com
expires at: '2010-10-10"

The job fixture file references two images. You <can download them
(http://www.symfony-project.org/get/jobeet/sensio-labs.gif,
http://www.symfony-project.org/get/jobeet/extreme-sensio.gif) and put
them under the web/uploads/jobs/ directory.

A fixtures file is written in YAML, and defines model objects, labelled with a unique name (for
instance, we have defined two jobs labelled job sensio labs and job extreme sensio).
This label is of great use to link related objects without having to define primary keys (which
are often auto-incremented and cannot be set). For instance, the job sensio labs job
category is programming, which is the label given to the ‘Programming’ category.

In a YAML file, when a string contains line breaks (like the description column in the job
fixture file), you can use the pipe (|) to indicate that the string will span several lines.

Although a fixture file can contain objects from one or several models, we have decided to
create one file per model for the Jobeet fixtures.

T Propel requires that the fixtures files be prefixed with numbers to determine the order in
which the files will be loaded. With Doctrine this is not required as all fixtures will be
loaded and saved in the correct order to make sure foreign keys are set properly.

In a fixture file, you don’t need to define all columns values. If not, symfony will use the
default value defined in the database schema. And as symfony uses Doctrine to load the data

ass 3k

Listing
3-15

Listing
3-16

Listing
3-17

Day 3: The Data Model 40

into the database, all the built-in behaviors (like automatically setting the created at or
updated at columns) and the custom behaviors you might have added to the model classes
are activated.

Loading the initial data into the database is as simple as running the doctrine:data- load
task:

$ php symfony doctrine:data-load

The doctrine:build --all --and-load task is a shortcut for the doctrine:build -
-all task followed by the doctrine:data- load task.

Run the doctrine:build --all --and-load task to make sure everything is generated
from your schema. This will generate your forms, filters, models, drop your database and re-
create it with all the tables.

$ php symfony doctrine:build --all --and-load

See it in Action in the Browser

We have used the command line interface a lot but that’s not really exciting, especially for a
web project. We now have everything we need to create Web pages that interact with the
database.

Let’s see how to display the list of jobs, how to edit an existing job, and how to delete a job.
As explained during the first day, a symfony project is made of applications. Each application
is further divided into modules. A module is a self-contained set of PHP code that represents
a feature of the application (the API module for example), or a set of manipulations the user
can do on a model object (a job module for example).

Symfony is able to automatically generate a module for a given model that provides basic
manipulation features:

$ php symfony doctrine:generate-module --with-show
--non-verbose-templates frontend job JobeetJob

The doctrine:generate-module generates a job module in the frontend application for
the JobeetJob model. As with most symfony tasks, some files and directories have been
created for you under the apps/frontend/modules/job/ directory:

Directory Description
actions/ The module actions
templates/ The module templates

The actions/actions.class.php file defines all the available action for the job module:

Action name Description

index Displays the records of the table

show Displays the fields and their values for a given record
new Displays a form to create a new record

create Creates a new record

edit Displays a form to edit an existing record

ass 3k

Day 3: The Data Model 41

Action name Description
update Updates a record according to the user submitted values
delete Deletes a given record from the table

You can now test the job module in a browser:

http://www. jobeet.com.localhost/frontend dev.php/job Listing

Edit Job

Category id [Programming ?]
Type full-time
Company Sensio Labs

Logo sensio_labs.png

Url http:/ /www.sensiolabs.com

Position web Developer

Location Paris, France

You've already developed

D iption want to werk :
with Open-Source £
technologies. You have a v

Send your resume to

How to apply |=

Token job_sensio_labs
Is public #
Is activated
Email job@example.com
Expiresat | 10 —:}'T 10 —:}ﬂ 2010 —:]f oo T]f 00 T]
Created at (01 [3)[13 (5] 2000 [5][09 5} o7 [5)
Updated at (o1 [} 13 &) 2008 [3](00 5} 07 [4]

Cancel Delete (save)

If you try to edit a job, you will notice the Category id drop down has a list of all the category
names. The value of each option is gotten from the toString() method.

Doctrine will try and provide a base toString() method by guessing a descriptive column
name like, title, name, subject, etc. If you want something custom then you will need to
add your own toString() methods like below. The JobeetCategory model is able to
guess the toString() method by using the name column of the jobeet category table.

// lib/model/doctrine/JobeetJob.class.php Listing
class JobeetJob extends BaselobeetlJob o

{
public function _ toString()

{
return sprintf('ss at %s (%s)', $this->getPosition(),
$this->getCompany(), $this->getLocation());
}

}

// lib/model/doctrine/JobeetAffiliate.class.php
class JobeetAffiliate extends BaseJobeetAffiliate

public function _ toString()
{

ass 3k

Day 3: The Data Model 42

return $this->getUrl();

}
}

You can now create and edit jobs. Try to leave a required field blank, or try to enter an invalid
date. That’s right, symfony has created basic validation rules by introspecting the database

schema.

Token » Required.
Is public
Is activated =
Required.
Email * e
Required.
Expires at * heq

(WCW ™ W™
Createdat [®)/(B/ 18 ()

TTndatad at [/I = | kad | ==l

P @

Final Thoughts

That’s all. I have warned you in the introduction. Today, we have barely written PHP code but
we have a working web module for the job model, ready to be tweaked and customized.
Remember, no PHP code also means no bugs!

If you still have some energy left, feel free to read the generated code for the module and the
model and try to understand how it works. If not, don’t worry and sleep well, as tomorrow we

will talk about one of the most used paradigm in web frameworks, the MVC design pattern23.

23. http://en.wikipedia.org/wiki/Model-view-controller

ass 3k

Day 4: The Controller and the View 43

Day 4

The Controller and the View

Yesterday, we explored how symfony simplifies database management by abstracting the
differences between database engines, and by converting the relational elements to nice
object oriented classes. We have also played with Doctrine to describe the database schema,
create the tables, and populate the database with some initial data.

Today, we are going to customize the basic job module we created previously. The job
module already has all the code we need for Jobeet:

* A page to list all jobs

* A page to create a new job

* A page to update an existing job
* A page to delete a job

Although the code is ready to be used as is, we will refactor the templates to match closer to
the Jobeet mockups.

The MVC Architecture

If you are used to developing PHP websites without a framework, you probably use the one
PHP file per HTML page paradigm. These PHP files probably contain the same kind of
structure: initialization and global configuration, business logic related to the requested page,
database records fetching, and finally HTML code that builds the page.

You may use a templating engine to separate the logic from the HTML. Perhaps you use a
database abstraction layer to separate model interaction from business logic. But most of the
time, you end up with a lot of code that is a nightmare to maintain. It was fast to build, but
over time, it’'s more and more difficult to make changes, especially because nobody except
you understands how it is built and how it works.

As with every problem, there are nice solutions. For web development, the most common

solution for organizing your code nowadays is the MVC design pattern24. In short, the MVC
design pattern defines a way to organize your code according to its nature. This pattern
separates the code into three layers:

* The Model layer defines the business logic (the database belongs to this layer). You
already know that symfony stores all the classes and files related to the Model in the
lib/model/ directory.

* The View is what the user interacts with (a template engine is part of this layer). In
symfony, the View layer is mainly made of PHP templates. They are stored in various
templates/ directories as we will see later in these lines.

24. http://en.wikipedia.org/wiki/Model-view-controller

ass 3k

Day 4: The Controller and the View 44

* The Controller is a piece of code that calls the Model to get some data that it
passes to the View for rendering to the client. When we installed symfony at the
beginning of this book, we saw that all requests are managed by front controllers
(index.php and frontend dev.php). These front controllers delegate the real
work to actions. As we saw previously, these actions are logically grouped into

modules.
request
HTTR CLI, etc.
I'ESPDHSE
Controller HTML, RSS, XML,
J5OM, etc.
demand data

Model

View

Dacabase, VW5, e1c,

Templates, layour

Today, we will use the mockup defined in day 2 to customize the homepage and the job page.
We will also make them dynamic. Along the way, we will tweak a lot of things in many
different files to demonstrate the symfony directory structure and the way to separate code
between layers.

The Layout

First, if you have a closer look at the mockups, you will notice that much of each page looks
the same. You already know that code duplication is bad, whether we are talking about HTML
or PHP code, so we need to find a way to prevent these common view elements from resulting
in code duplication.

One way to solve the problem is to define a header and a footer and include them in each
template:

template + = template

symfony Brought to you by SENSIOLABS 3K

Day 4: The Controller and the View 45

But here the header and the footer files do not contain valid HTML. There must be a better
way. Instead of reinventing the wheel, we will use another design pattern to solve this

problem: the decorator design pattern25. The decorator design pattern resolves the problem
the other way around: the template is decorated after the content is rendered by a global
template, called a layout in symfony:

layout

template template

The default layout of an application is called layout.php and can be found in the apps/
frontend/templates/ directory. This directory contains all the global templates for an
application.

Replace the default symfony layout with the following code:

<!-- apps/frontend/templates/layout.php --> Listing
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Jobeet - Your best job board</title>
<link rel="shortcut icon" href="/favicon.ico" />
<?php include javascripts() 7>
<?php include stylesheets() 7>
</head>
<body>
<div id="container">
<div id="header">
<div class="content">
<hl><a href="<?php echo url for('job/index') 7?>">
<img src="http://www.symfony-project.org/images/logo.jpg"
alt="Jobeet Job Board" />
</hl>

<div id="sub header">
<div class="post">
<h2>Ask for people</h2>
<div>
<a href="<?php echo url for('job/index') ?>">Post a Job
</div>
</div>

<div class="search">
<h2>Ask for a job</h2>
<form action="" method="get">
<input type="text" name="keywords"
id="search keywords" />
<input type="submit" value="search" />
<div class="help">
Enter some keywords (city, country, position, ...)

25. http://en.wikipedia.org/wiki/Decorator pattern

symfony Brought to you by SENSIOLABS 3K

Day 4: The Controller and the View 46

</div>
</form>
</div>
</div>
</div>
</div>

<div id="content">
<?php if ($sf user->hasFlash('notice')): 7>
<div class="flash notice">
<?php echo $sf user->getFlash('notice') 7>
</div>
<?php endif 7>

<?php if ($sf user->hasFlash('error')): ?>
<div class="flash_error">
<?php echo $sf user->getFlash('error') 7>
</div>
<?php endif 7>

<div class="content">
<?php echo $sf content 7>
</div>
</div>

<div id="footer">
<div class="content">

<img src="http://www.symfony-project.org/images/
jobeet-mini.png" />
powered by
<img src="http://www.symfony-project.org/images/symfony.gif"
alt="symfony framework" />

About Jobeet</1li>
<li class="feed">Full feed
Jobeet API
<li class="last">Affiliates</1i>

</div>
</div>
</div>
</body>
</html>

A symfony template is just a plain PHP file. In the layout template, you see calls to PHP
functions and references to PHP variables. $sf content is the most interesting variable: it
is defined by the framework itself and contains the HTML generated by the action.

If you browse the job module (http://www.jobeet.com.localhost/
frontend dev.php/job), you will see that all actions are now decorated by the layout.

ass 3k

Day 4: The Controller and the View 47

The Stylesheets, Images, and JavaScripts

As this tutorial is not about web design, we have already prepared all the needed assets we
will use for Jobeet: download the image files?® archive and put them into the web/images/
directory; download the stylesheet files?’ archive and put them into the web/css/ directory.

T In the layout, we have included a favicon. You can download the Jobeet one?® and put it
under the web/ directory.

Jobeet v

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

Category id | Administrator |'+]
Type

Company

Logo

Url

Position

Location

Description

How to appl

Token

Is public 4

Is activated [

Email

Expiresat | /0 B/ I
Created at B/ B B B

i S =¥ ==] Tal [Tal

@ By default, the generate:project task has created three directories for the project

assets: web/images/ for images, web/~css|CSS~/ for stylesheets, and web/js/ for

JavaScripts. This is one of the many conventions defined by symfony, but you can of course
store them elsewhere under the web/ directory.

The astute reader will have noticed that even if the main. css file is not mentioned anywhere
in the default layout, it is definitely present in the generated HTML. But not the other ones.
How is this possible?

The stylesheet file has been included by the include stylesheets() function call found
within the layout <head> tag. The include stylesheets() function is called a helper. A
helper is a function, defined by symfony, that can take parameters and returns HTML code.
Most of the time, helpers are time-savers, they package code snippets frequently used in
templates. The include stylesheets() helper generates <link> tags for stylesheets.

26. http://www.symfony-project.org/get/jobeet/images.zip
27. http://www.symfony-project.org/get/jobeet/css.zip
28. http://www.symfony-project.org/get/jobeet/favicon.ico

symfony Brought to you by SENSIOLABS 3K

Day 4: The Controller and the View

But how does the helper know which stylesheets to include?

438

The View layer can be configured by editing the view.yml configuration file of the

application. Here is the default one generated by the generate:app task:

Listing # apps/frontend/config/view.yml

Lstng stylesheets:

Listing stylesheets:

Lising <link rel="stylesheet"

)

default:
http _metas:
content-type:

metas:
#title:
#description:
#keywords:
#language:
#robots:

stylesheets:
javascripts:

has layout:
layout:

text/html

symfony project
symfony project
symfony, project
en

index, follow

[main.css]

[]

true
layout

The view.yml file configures the default settings for all the templates of the application.
For instance, the stylesheets entry defines an array of stylesheet files to include for every
page of the application (the inclusion is done by the include stylesheets() helper).

E In the default view.yml configuration file, the referenced file is main.css, and not /css/
main.css. As a matter of fact, both definitions are equivalent as symfony prefixes relative
paths with /~css|CSS~/.

If many files are defined, symfony will include them in the same order as the definition:

You can also change the media attribute and omit the . css suffix:

This configuration will be rendered as:

href="/css/main.css" />

<link rel="stylesheet"

href="/css/jobs.css" />

<link rel="stylesheet"

href="/css/job.css" />

<link rel="stylesheet" type="text/css"

href="/css/print.css" />

type="text/css"
type="text/css"

type="text/css"

[main.css, jobs.css, job.css]

media="screen"
media="screen"
media="screen"

media="print"

[main.css, jobs.css, job.css, print: { media: print }]

@ The view.yml configuration file also defines the default layout used by the application. By
default, the name is layout, and so symfony decorates every page with the layout.php
file. You can also disable the decoration process altogether by switching the has layout

entry to false.

Laes >k

Day 4: The Controller and the View 49

It works as is but the jobs. css file is only needed for the homepage and the job.css file is
only needed for the job page. The view.yml configuration file can be customized on a per-
module basis. Change the stylesheets key of the application view.yml file to only contain the
main.css file:

apps/frontend/config/view.yml
stylesheets: [main.css]

To customize the view for the job module, create a view.yml file in the apps/frontend/
modules/job/config/ directory:

apps/frontend/modules/job/config/view.yml
indexSuccess:
stylesheets: [jobs.css]

showSuccess:
stylesheets: [job.css]

Under the indexSuccess and showSuccess sections (they are the template names
associated with the index and show actions, as we will see later on), you can customize any
entry found under the default section of the application view.yml. All specific entries are
merged with the application configuration. You can also define some configuration for all
actions of a module with the special all section.

Configuration Principles in symfony

For many symfony configuration files, the same setting can be defined at different levels:

The default configuration is located in the framework

The global configuration for the project (in config/)

The local configuration for an application (in apps/APP/config/)

The local configuration restricted to a module (in apps/APP/modules/MODULE/
config/)

At runtime, the configuration system merges all the values from the different files if they
exist and caches the result for better performance.

As a rule of thumb, when something is configurable via a configuration file, the same can be
accomplished with PHP code. Instead of creating a view.yml file for the job module for
instance, you can also use the use stylesheet() helper to include a stylesheet from a
template:

<?php use stylesheet('main.css') 7>

You can also use this helper in the layout to include a stylesheet globally.

Choosing between one method or the other is really a matter of taste. The view.yml file
provides a way to define things for all actions of a module, which is not possible in a template,
but the configuration is quite static. On the other hand, using the use stylesheet() helper
is more flexible and moreover, everything is in the same place: the stylesheet definition and
the HTML code. For Jobeet, we will use the use stylesheet() helper, so you can remove
the view.yml we have just created and update the job templates with the
use stylesheet() calls:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php use stylesheet('jobs.css') 7>

ass 3k

Listing
4-6

Listing
4-7

Listing
4-8

Listing
4-9

Day 4: The Controller and the View 50

<!-- apps/frontend/modules/job/templates/showSuccess.php -->
<?php use stylesheet('job.css') 7>

T Symmetrically, the JavaScript configuration is done via the javascripts entry of the
view.yml configuration file and the use javascript() helper defines JavaScript files to
include for a template.

The Job Homepage

As seen in day 3, the job homepage is generated by the index action of the job module. The
index action is the Controller part of the page and the associated template,
indexSuccess.php, is the View part:

iy apps/
frontend/
modules/
job/
actions/
actions.class.php
templates/
indexSuccess.php

The Action

Each action is represented by a method of a class. For the job homepage, the class is
jobActions (the name of the module suffixed by Actions) and the method is
executeIndex() (execute suffixed by the name of the action). It retrieves all the jobs from
the database:

Listing // apps/frontend/modules/job/actions/actions.class.php
~ class jobActions extends sfActions

public function executelIndex(sfWebRequest $request)

{
$this->jobeet jobs = Doctrine::getTable('JobeetJob')
->createQuery('a')
->execute();
}
/...

}

Let’s have a closer look at the code: the executeIndex() method (the Controller) calls the
Table JobeetJob to create a query to retrieve all the jobs. It returns a
Doctrine Collection of JobeetJob objects that are assigned to the jobeet jobs object
property. All such object properties are then automatically passed to the template (the View).
To pass data from the Controller to the View, just create a new property:

Listing public function executeFooBar(sfWebRequest $request)
A
$this->foo
$this->bar
}

'bar';
array('bar', 'baz');

ass 3k

Day 4: The Controller and the View 51

This code will make $foo and $bar variables accessible in the template.

The Template

By default, the template name associated with an action is deduced by symfony thanks to a
convention (the action name suffixed by Success).

The indexSuccess.php template generates an HTML table for all the jobs. Here is the
current template code:

<!-- apps/frontend/modules/job/templates/indexSuccess.php --> Listing
<?php use stylesheet('jobs.css') 7> -

<h1>Job List</hl>

<table>
<thead>
<tr>
<th>Id</th>
<th>Category</th>
<th>Type</th>
<!-- more columns here -->
<th>Created at</th>
<th>Updated at</th>
</tr>
</thead>
<tbody>
<?php foreach ($jobeet jobs as $jobeet job): 7>
<tr>
<td>
<a href="<?php echo url for('job/show?id="'.$jobeet job->getId())
>">
<?php echo $jobeet job->getId() 7>

</td>
<td><?php echo $jobeet job->getCategoryIld() ?></td>
<td><?php echo $jobeet job->getType() ?></td>
<!-- more columns here -->
<td><?php echo $jobeet job->getCreatedAt() ?></td>
<td><?php echo $jobeet job->getUpdatedAt() ?></td>
</tr>
<?php endforeach 7>
</tbody>
</table>

<a href="<?php echo url for('job/new') ?>">New
In the template code, the foreach iterates through the list of Job objects ($jobeet jobs),
and for each job, each column value is output. Remember, accessing a column value is as

simple as calling an accessor method which name begins with get and the camelCased
column name (for instance the getCreatedAt () method for the created at column).

Let’s clean this up a bit to only display a sub-set of the available columns:

<!-- apps/frontend/modules/job/templates/indexSuccess.php --> Listing
<?php use stylesheet('jobs.css') 7> '

<div id="jobs">

ass 3k

Day 4: The Controller and the View 52

<table class="jobs">
<?php foreach ($jobeet jobs as $i => $job): ?>
<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">
<td class="location"><?php echo $job->getLocation() ?></td>
<td class="position">
<a href="<?php echo url _for('job/show?id="'.$job->getId()) 7>">
<?php echo $job->getPosition() 7>

</td>
<td class="company"><?php echo $job->getCompany() ?></td>
</tr>
<?php endforeach 7>
</table>

</div>

Jobeet oo

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

Paris, France Web Developer Sensio Labs
Paris, France Web Designer Extreme Sensio

About Jobeet Bl Full feed Jobeet APl Affiliates Jemgtpamreuny

The url for() function call in this template is a symfony helper that we will discuss
tomorrow.

The Job Page Template

Now let’s customize the template of the job page. Open the showSuccess.php file and
replace its content with the following code:

Listing <! -- apps/frontend/modules/job/templates/showSuccess.php -->
4-15 .

<?php use stylesheet('job.css') 7>

<?php use helper('Text') 7>

<div id="job">
<h1><?php echo $job->getCompany() ?></hl>
<h2><?php echo $job->getlLocation() ?></h2>
<h3>
<?php echo $job->getPosition() 7>
<small> - <?php echo $job->getType() ?></small>
</h3>

symfony Brought to you by SENSIOLABS 3K

Day 4: The Controller and the View 53

<?php if ($job->getLogo()): ?>
<div class="logo">
<a href="<?php echo $job->getUrl() 7>">
<img src="http://www.symfony-project.org/uploads/jobs/<?php echo
$job->getLogo() 7>"
alt="<?php echo $job->getCompany() ?> logo" />

</div>
<?php endif 7>

<div class="description">
<?php echo simple format text($job->getDescription()) ?>
</div>

<h4>How to apply?</h4>
<p class="how to apply"><?php echo $job->getHowToApply() ?></p>

<div class="meta">
<small>posted on <?php echo
$job->getDateTimeObject('created at')->format('m/d/Y"') ?></small>
</div>

<div style="padding: 20px 0">
<a href="<?php echo url for('job/edit?id="'.$job->getId()) 7?>">
Edit

</div>
</div>

This template uses the $job variable passed by the action to display the job information. As
we have renamed the variable passed to the template from $jobeet job to $job, you need
to also make this change in the show action (be careful, there are two occurrences of the
variable):

// apps/frontend/modules/job/actions/actions.class.php Listing
public function executeShow(sfWebRequest $request) '

{
$this->job = Doctrine::getTable('Jobeetlob')->
find($request->getParameter('id'));
$this->forward404Unless($this->job);

}

Notice that date columns can be converted to PHP DateTime object instances. As we have
defined the created at column as a timestamp, you can convert the column value to a
DateTime object by using the getDateTimeObject () method and then call the format ()
method which takes a date formatting pattern as its first argument:

$job->getDateTimeObject('created at')->format('m/d/Y"); Listing

4-17

The job description uses the simple format text() helper to format it as HTML, by
replacing carriage returns with
 for instance. As this helper belongs to the Text
helper group, which is not loaded by default, we have loaded it manually by using the
use_helper() helper.

ass 3k

Day 4: The Controller and the View 54

Jobeet v

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

SENSIO LABS Paris, France

Web Developer - full-time

You've already developed websites with symfony and you want to

»
rou SENSIOLABS 3K
with Open-Source technologies. You have a minimum of 3 years
experience in web development with PHP or Java and you wish to
participate to development of Web 2.0 sites using the best
frameworks available.

How to apply?

Send your resume to fabien.potencier [at] sensio.com
posted on 01/13/2009

Edit

About Jobeet Full feed Jobeet API Affiliates J[]Dge BT symiony]

Slots

Right now, the title of all pages is defined in the <title> tag of the layout:

Listing <title>Jobeet - Your best job board</title>

But for the job page, we want to provide more useful information, like the company name and
the job position.

In symfony, when a zone of the layout depends on the template to be displayed, you need to

define a slot:

layout
slot
+ G =
template template

Add a slot to the layout to allow the title to be dynamic:

tsing // apps/frontend/templates/layout.php

<title><?php include slot('title') ?></title>
Each slot is defined by a name (title) and can be displayed by using the include slot()

helper. Now, at the beginning of the showSuccess.php template, use the slot () helper to
define the content of the slot for the job page:

symfony Brought to you by SENSIOLABS 3K

Day 4: The Controller and the View 55

// apps/frontend/modules/job/templates/showSuccess.php Listing
<?php slot(
"title',
sprintf('%s is looking for a %s', $job->getCompany(),
$job->getPosition()))
?>

If the title is complex to generate, the slot () helper can also be used with a block of code:

// apps/frontend/modules/job/templates/showSuccess.php Listing
<?php slot('title') 7>

<?php echo sprintf('%ss is looking for a %s', $job->getCompany(),
$job->getPosition()) 7>
<?php end slot() 7>

For some pages, like the homepage, we just need a generic title. Instead of repeating the
same title over and over again in templates, we can define a default title in the layout:

// apps/frontend/templates/layout.php Listing
<title>

<?php include slot('title', 'Jobeet - Your best job board') 7>
</title>

The second argument of the include slot() method is the default value for the slot if it
has not been defined. If the default value is longer or has some HTML tags, you can also
defined it like in the following code:

// apps/frontend/templates/layout.php Listing
<title>
<?php if ('include slot('title')): 7>
Jobeet - Your best job board
<?php endif 7>
</title>

The include slot() helper returns true if the slot has been defined. So, when you define
the title slot content in a template, it is used; if not, the default title is used.

@ We have already seen quite a few helpers beginning with include . These helpers output
the HTML and in most cases have a get helper counterpart to just return the content:

<?php include slot('title') 7> Listing
<?php echo get slot('title') 7> -

<?php include stylesheets() ?>
<?php echo get stylesheets() 7>

The Job Page Action

The job page is generated by the show action, defined in the executeShow() method of the
job module:

class jobActions extends sfActions Listing

4-25
{

public function executeShow(sfWebRequest $request)

ass 3k

Day 4: The Controller and the View 56

{
$this->job = Doctrine::getTable('Jobeetlob')->
find($request->getParameter('id'));
$this->forward404Unless($this->job);

}

//
}

As in the index action, the JobeetJob table class is used to retrieve a job, this time by using
the find() method. The parameter of this method is the unique identifier of a job, its
primary key. The next section will explain why the $request->getParameter('id")
statement returns the job primary key.

If the job does not exist in the database, we want to forward the user to a 404 page, which is
exactly what the forward404Unless () method does. It takes a Boolean as its first argument
and, unless it is true, stops the current flow of execution. As the forward methods stops the
execution of the action right away by throwing a sfError404Exception, you don’t need to
return afterwards.

As for exceptions, the page displayed to the user is different in the prod environment and in
the dev environment:

404 | Not Found | sfError404Exception @

This request has been forwarded to a 404 error page by the action "job/show".

stack trace

1. at()
in SF_SYMFONY_LIB_DIR/sction/sfAction.class.php line 89 ...

86. {
BT7. if {l%condition)
88. {

1] nifthicoSratdNdMac

Oops! Page Not Found

The server returned a 404 response.

Did you type the URL?

You may have typed the address (URL) incorrectly. Check it to make sure
you've got the exact right spelling, capitalization, etc.

Did vou follow a link from somewhere else at this site?

E Before you deploy the Jobeet website to the production server, you will learn how to
customize the default 404 page.

symfony Brought to you by LaBs sk

Day 4: The Controller and the View 57

The “forward” Methods Family
The forward404Unless call is actually equivalent to:
$this->forward404If(!$this->job); ngg

which is also equivalent to:

. | 2 @ . isting

?f (!$this->job) Listing
$this->forward404();

}

The forward404 () method itself is just a shortcut for:

$this->forward('default', '404'); L;s_ggg
The forward () method forwards to another action of the same application; in the previous
example, to the 404 action of the default module. The default module is bundled with
symfony and provides default actions to render 404, secure, and login pages.

The Request and the Response

When you browse to the /job or /job/show/id/1 pages in your browser, your are initiating
a round trip with the web server. The browser is sending a request and the server sends
back a response| HTTP Response.

We have already seen that symfony encapsulates the request in a sfWebRequest object (see
the executeShow() method signature). And as symfony is an Object-Oriented framework,
the response is also an object, of class sfWebResponse. You can access the response object
in an action by calling $this->getResponse().

These objects provide a lot of convenient methods to access information from PHP functions
and PHP global variables.

T Why does symfony wrap existing PHP functionalities? First, because the symfony methods
are more powerful than their PHP counterpart. Then, because when you test an
application, it is much more easier to simulate a request or a response object than trying to
fiddle around with global variables or work with PHP functions like header () which do too
much magic behind the scene.

The Request

The sfWebRequest class wraps the $ SERVER, $ COOKIE, $ GET, $ POST, and $ FILES
PHP global arrays:

Method name PHP equivalent

getMethod() $ SERVER['REQUEST METHOD']
getUri() $ SERVER['REQUEST URI']
getReferer() $ SERVER['HTTP_REFERER']
getHost () $ SERVER['HTTP_HOST']
getlLanguages() $ SERVER['HTTP_ACCEPT LANGUAGE']

ass 3k

Day 4: The Controller and the View 58

Method name PHP equivalent

getCharsets() $ SERVER['HTTP_ACCEPT CHARSET']
isXmlHttpRequest() $ SERVER['X REQUESTED WITH'] == 'XMLHttpRequest'
getHttpHeader() $ SERVER

getCookie() $ COOKIE

isSecure() $ SERVER['HTTPS']

getFiles() $ FILES

getGetParameter ($ GET

getUrlParameter ($ SERVER['PATH INFO']

)
getPostParameter() $ POST
)
getRemoteAddress() $ SERVER['REMOTE ADDR']
We have already accessed request parameters by using the getParameter() method. It
returns a value from the $ GET or $ POST global variable, or from the PATH INFO variable.

If you want to ensure that a request parameter comes from a particular one of these
variables, you need use the getGetParameter(), getPostParameter(), and
getUrlParameter() methods respectively.

E When you want to restrict an action for a specific HTTP method, for instance when you
want to ensure that a form is submitted as a POST, you can use the isMethod() method:
$this->forwardUnless($request->isMethod('POST'));.

The Response

The sfWebResponse class wraps the header() and setrawcookie() PHP methods:

Method name PHP equivalent
setCookie() setrawcookie()
setStatusCode() header()
setHttpHeader() header()
setContentType() header ()
addVaryHttpHeader() header()
addCacheControlHttpHeader() header()

Of course, the sfWebResponse class also provides a way to set the content of the response
(setContent()) and send the response to the browser (send()).

Earlier today we saw how to manage stylesheets and JavaScripts in both the view.yml file
and in templates. In the end, both techniques use the response object addStylesheet() and
addJavascript () methods.

The sfAction??, szequest3°, and szesponse31 classes provide a lot of other useful

methods. Don’t hesitate to browse the API documentation3? to learn more about all
symfony internal classes.

29. http://www.symfony-project.org/api/1 4/sfAction
30. http://www.symfony-project.org/api/1 4/sfRequest
31. http://www.symfony-project.org/api/1 4/sfResponse

ass 3k

Day 4: The Controller and the View 59

Final Thoughts

Today, we have described some design patterns used by symfony. Hopefully the project
directory structure now makes more sense. We have played with templates by manipulating
the layout and template files. We have also made them a bit more dynamic thanks to slots and
actions.

Tomorrow, we will be dedicated to the url for() helper we have used here, and the routing
sub-framework associated with it.

32. http://www.symfony-project.org/api/1 4/

ass 3k

Listing
5-1

Listing
5-2

Listing
5-3

Day 5: The Routing 60

Day 5

The Routing

If you've completed day 4, you should now be familiar with the MVC pattern and it should be
feeling like a more and more natural way of coding. Spend a bit more time with it and you
won’t look back. To practice a bit, we customized the Jobeet pages and in the process, also
reviewed several symfony concepts, like the layout, helpers, and slots.

Today, we will dive into the wonderful world of the symfony routing framework.

URLSs

If you click on a job on the Jobeet homepage, the URL looks like this: /job/show/id/1. If
you have already developed PHP websites, you are probably more accustomed to URLs like
/job.php?id=1. How does symfony make it work? How does symfony determine the action
to call based on this URL? Why is the id of the job retrieved with $request-
>getParameter('id"')? Here, we will answer all these questions.

But first, let’s talk about URLs and what exactly they are. In a web context, a URL is the
unique identifier of a web resource. When you go to a URL, you ask the browser to fetch a
resource identified by that URL. So, as the URL is the interface between the website and the
user, it must convey some meaningful information about the resource it references. But
“traditional” URLs do not really describe the resource, they expose the internal structure of
the application. The user does not care that your website is developed with the PHP language
or that the job has a certain identifier in the database. Exposing the internal workings of your
application is also quite bad as far as security is concerned: What if the user tries to guess the
URL for resources he does not have access to? Sure, the developer must secure them the
proper way, but you’d better hide sensitive information.

URLs are so important in symfony that it has an entire framework dedicated to their
management: the routing framework. The routing manages internal URIs and external URLs.
When a request comes in, the routing parses the URL and converts it to an internal URI.

You have already seen the internal URI of the job page in the indexSuccess.php template:
'job/show?id="'.$job->getId()

The url for() helper converts this internal URI to a proper URL:

/job/show/id/1

The internal URI is made of several parts: job is the module, show is the action and the
query string adds parameters to pass to the action. The generic pattern for internal URIs is:

MODULE/ACTION?key=value&key l=value 1&...

ass 3k

Day 5: The Routing 61

As the symfony routing is a two-way process, you can change the URLs without changing the
technical implementation. This is one of the main advantages of the front-controller design
pattern.

Routing Configuration

The mapping between internal URIs and external URLs is done in the routing.yml
configuration file:

apps/frontend/config/routing.yml
homepage:

url: /

param: { module: default, action: index }

default index:
url: /:module
param: { action: index }

default:
url: /:module/:action/*

The routing.yml file describes routes. A route has a name (homepage), a pattern
(/:module/:action/*), and some parameters (under the param key).

When a request comes in, the routing tries to match a pattern for the given URL. The first
route that matches wins, so the order in routing.yml is important. Let’s take a look at some
examples to better understand how this works.

When you request the Jobeet homepage, which has the /job URL, the first route that
matches is the default index one. In a pattern, a word prefixed with a colon (:) is a
variable, so the /:module pattern means: Match a / followed by something. In our example,
the module variable will have job as a value. This value can then be retrieved with
$request->getParameter('module’) in the action. This route also defines a default
value for the action variable. So, for all URLs matching this route, the request will also have
an action parameter with index as a value.

If you request the /job/show/id/1 page, symfony will match the last pattern: /:module/
:action/*. In a pattern, a star (*) matches a collection of variable/value pairs separated by
slashes (/):

Request parameter Value

module job
action show
id 1

E The module and action variables are special as they are used by symfony to determine
the action to execute.

The /job/show/id/1 URL can be created from a template by using the following call to the
url for() helper:

url for('job/show?id='.$job->getId())

You can also use the route name by prefixing it by @:

ass 3k

Listing
54

Listing
5-5

Listing
5-6

Listing
5-7

Listing
5-8

Listing
5-9

Listing
5-10

Listing
5-11

Day 5: The Routing 62

url for('@default?module=job&action=show&id="'.%$job->getId())

Both calls are equivalent but the latter is much faster as the routing does not have to parse all
routes to find the best match, and it is less tied to the implementation (the module and action
names are not present in the internal URI).

Route Customizations

For now, when you request the / URL in a browser, you have the default congratulations
page of symfony. That’s because this URL matches the homepage route. But it makes sense
to change it to be the Jobeet homepage. To make the change, modify the module variable of
the homepage route to job:

apps/frontend/config/routing.yml
homepage:

url: /

param: { module: job, action: index }

We can now change the link of the Jobeet logo in the layout to use the homepage route:

<!-- apps/frontend/templates/layout.php -->
<hl>
<a href="<?php echo url for('homepage') 7>">
<img src="http://www.symfony-project.org/images/logo.jpg" alt="Jobeet
Job Board" />

</hl>

That was easy!

When you update the routing configuration, the changes are immediately taken into
account in the development environment. But to make them also work in the production
environment, you need to clear the cache by calling the cache: clear task.

For something a bit more involved, let’s change the job page URL to something more
meaningful:

/job/sensio-labs/paris-france/1/web-developer

Without knowing anything about Jobeet, and without looking at the page, you can understand
from the URL that Sensio Labs is looking for a Web developer to work in Paris, France.

E Pretty URLs are important because they convey information for the user. It is also useful
when you copy and paste the URL in an email or to optimize your website for search
engines.

The following pattern matches such a URL:
/job/:company/:location/:id/:position

Edit the routing.yml file and add the job show user route at the beginning of the file:

ass 3k

Day 5: The Routing 63

job show user:
url: /job/:company/:location/:id/:position
param: { module: job, action: show }

If you refresh the Jobeet homepage, the links to jobs have not changed. That’s because to
generate a route, you need to pass all the required variables. So, you need to change the
url for() callin indexSuccess.php to:

url for('job/show?id='.$job->getId().'&company="'.$job->getCompany(). Listing
'&location='.$job->getLocation(). " '&position=".$job->getPosition()) N
An internal URI can also be expressed as an array:
url for(array(Listng
'module’ = 'job', N
'action' => 'show',
'id' => $job->getId(),
"company' => $job->getCompany(),
'location' => $job->getlLocation(),
‘position' => $job->getPosition(),
))
Requirements
At the beginning of the book, we talked about validation and error handling for good reasons.
The routing system has a built-in validation feature. Each pattern variable can be validated by
a regular expression defined using the requirements entry of a route definition:
job_show user: Listing
url: /job/:company/:location/:id/:position 0
param: { module: job, action: show }
requirements:
id: \d+
The above requirements entry forces the id to be a numeric value. If not, the route won't
match.
Route Class
Each route defined in routing.yml is internally converted to an object of class sfRoute33,
This class can be changed by defining a class entry in the route definition. If you are
familiar with the HTTP protocol, you know that it defines several “methods”, like GET, POST,
HEAD |HEAD (HTTP Method), DELETE, and PUT. The first three are supported by all
browsers, while the other two are not.
To restrict a route to only match for certain request methods, you can change the route class
to szequestRou‘ce34 and add a requirement for the virtual sf method variable:
j Ob_S how_use r: Listing

5-15

url: /job/:company/:location/:id/:position
class: sfRequestRoute
param: { module: job, action: show }

33. http://www.symfony-project.org/api/1l 4/sfRoute
34. http://www.symfony-project.org/api/1 4/sfRequestRoute

ass 3k

Day 5: The Routing 64

requirements:
id: \d+
sf method: [get]

T Requiring a route to only match for some HTTP methods is not totally equivalent to using
sfWebRequest: :isMethod() in your actions. That’s because the routing will continue to
look for a matching route if the method does not match the expected one.

Object Route Class

The new internal URI for a job is quite long and tedious to write (url for('job/
show?id='.$job->getId().'&company='.$job-
>getCompany().'&location="'.$job->getLocation(). '&position="'.$job-
>getPosition())), but as we have just learned in the previous section, the route class can
be changed. For the job show user route, it is better to use sfDoctrineRoute3® as the
class is optimized for routes that represent Doctrine ohjects or collections of Doctrine objects:

titng job_show_user:

url: /job/:company/:location/:id/:position
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:

id: \d+

sf method: [get]
The options entry customizes the behavior of the route. Here, the model option defines the

Doctrine model class (JobeetJob) related to the route, and the type option defines that this
route is tied to one object (you can also use list if a route represents a collection of objects).

The job show user route is now aware of its relation with JobeetJob and so we can
simplify the url for() call to:

Listing url for(array('sf route' => 'job show user', 'sf subject' => $job))
or just:

Listng url for('job show user', $job)

The first example is useful when you need to pass more arguments than just the object.

It works because all variables in the route have a corresponding accessor in the JobeetJob
class (for instance, the company route variable is replaced with the value of getCompany ()).

If you have a look at generated URLs, they are not quite yet as we want them to be:

Lising http://www.jobeet.com.localhost/frontend_dev.php/job/Sensio+Labs/
" Paris%2C+France/1/Web+Developer

We need to “slugify” the column values by replacing all non ASCII characters by a -. Open
the JobeetJob file and add the following methods to the class:

35. http://www.symfony-project.orqg/api/1 4/sfDoctrineRoute

ass 3k

Day 5: The Routing 65

// lib/model/doctrine/JobeetJob.class.php
public function getCompanySlug()

{

return Jobeet::slugify($this->getCompany());
}
public function getPositionSlug()
{

return Jobeet::slugify($this->getPosition());
}
public function getLocationSlug()
{

return Jobeet::slugify($this->getLocation());
}

Then, create the 1ib/Jobeet. class. php file and add the slugify method in it:

// lib/Jobeet.class.php
class Jobeet

{
static public function slugify($text)
{
// replace all non letters or digits by -
$text = preg replace('/\W+/', '-', $text);
// trim and lowercase
$text = strtolower(trim($text, '-'));
return $text;
}
}

In this tutorial, we never show the opening <?php statement in the code examples that
only contain pure PHP code to optimize space and save some trees. You should obviously
remember to add it whenever you create a new PHP file. Just remember to not add it to
template files.

We have defined three new “virtual” accessors: getCompanySlug(), getPositionSlug(),
and getLocationSlug(). They return their corresponding column value after applying it
the slugify() method. Now, you can replace the real column names by these virtual ones in
the job_show user route:

job show user:

url: /job/:company slug/:location slug/:id/:position slug
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:
id: \d+

sf method: [get]
You will now have the expected URLs:

http://www.jobeet.com.localhost/frontend dev.php/job/sensio-labs/
paris-france/1/web-developer

ass 3k

Listing
5-20

Listing
5-21

Listing
522

Listing
5-23

Day 5: The Routing 66

But that’s only half the story. The route is able to generate a URL based on an object, but it is
also able to find the object related to a given URL. The related object can be retrieved with
the getObject () method of the route object. When parsing an incoming request, the routing
stores the matching route object for you to use in the actions. So, change the
executeShow () method to use the route object to retrieve the Jobeet object:

tstng class jobActions extends sfActions

public function executeShow(sfWebRequest $request)

{
$this->job = $this->getRoute()->getObject();
$this->forward404Unless($this->job);

}

// ...

}

If you try to get a job for an unknown id, you will see a 404 error page but the error message
has changed:

AN
404 | Not Found | sfError404Exception &

Unable to find the JobeetlobPeer object with the following parameters "array (
‘company_as_slug’' => "extreme-sensio’, 'location_as_slug' => 'paris-france’, "id’
=> "B88’', "position_as_slug’' => "web-designer',}"}.

stack trace

1. at ()
in SF_SYMFONY_LIB_DIR/routing/sfObjectRoute.class.php line 111 ...
108.

109. if (is_pull{$this-»object = $this->getObjectForParameters($this->paramet

That’s because the 404 error has been thrown for you automatically by the getRoute()
method. So, we can simplify the executeShow method even more:

tsting class jobActions extends sfActions

{
public function executeShow(sfWebRequest $request)
{
$this->job = $this->getRoute()->getObject();
}
/..
}

@ If you don’t want the route to generate a 404 error, you can set the allow empty routing
option to true.

The related object of a route is lazy loaded. It is only retrieved from the database if you call
the getRoute() method.

ass 3k

Day 5: The Routing 67

Routing in Actions and Templates

In a template, the url for() helper converts an internal URI to an external URL. Some
other symfony helpers also take an internal URI as an argument, like the link to() helper
which generates an <a> tag:

<?php echo link to($job->getPosition(), 'job show user', $job) ?>

It generates the following HTML code:

Web Developer
Bothurl for() and link to() can also generate absolute URLs:

url for('job show user', $job, true);

link to($job->getPosition(), 'job show user', $job, true);

If you want to generate a URL from an action, you can use the generateUrl() method:

$this->redirect($this->generateUrl('job show user', $job));

The “redirect” Methods Family

Yesterday, we talked about the “forward” methods. These methods forward the current
request to another action without a round-trip with the browser.

The “redirect” methods redirect the user to another URL. As with forward, you can use the
redirect () method, or the redirectIf() and redirectUnless () shortcut methods.

Collection Route Class

For the job module, we have already customized the show action route, but the URLs for the
others methods (index, new, edit, create, update, and delete) are still managed by the
default route:

default:
url: /:module/:action/*

The default route is a great way to start coding without defining too many routes. But as
the route acts as a “catch-all”, it cannot be configured for specific needs.

As all job actions are related to the JobeetJob model class, we can easily define a custom
sfDoctrineRoute route for each as we have already done for the show action. But as the
job module defines the classic seven actions possible for a model, we can also use the
sfDoctrineRouteCollection3® class. Open the routing.yml file and modify it to read as
follows:

apps/frontend/config/routing.yml
job:
class: sfDoctrineRouteCollection

options: { model: JobeetlJob }

36. http://www.symfony-project.org/api/1 4/sfDoctrineRouteCollection

ass 3k

Listing
5-26

Listing
5-27

Listing
5-28

Listing
5-29

Listing
5-30

Listing
5-31

Listing
5-32

Day 5: The Routing

job show user:

url: /job/:company slug/:location slug/:id/:position slug
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:
id: \d+

sf method: [get]

default rules
homepage:
url: /
param: { module: job, action: index }

default index:
url: /:module
param: { action: index }

default:
url: /:module/:action/*

The job route above is really just a shortcut that automatically generates the following seven

sfDoctrineRoute routes:

job:
url: /job.:sf format
class: sfDoctrineRoute
options: { model: JobeetJob, type: list }
param: { module: job, action: index, sf format: html }

requirements: { sf method: get }

job new:
url: /job/new.:sf format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: new, sf format: html }

requirements: { sf method: get }

job create:
url: /job.:sf format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: create, sf format: html }

requirements: { sf method: post }

job edit:
url: /job/:id/edit.:sf format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: edit, sf format: html }

requirements: { sf method: get }

job update:
url: /job/:id.:sf format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: update, sf format: html }

Day 5: The Routing 69

requirements: { sf method: put }

job delete:
url: /job/:id.:sf format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: delete, sf format: html }

requirements: { sf method: delete }

job show:
url: /job/:id.:sf format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show, sf format: html }

requirements: { sf method: get }

E Some routes generated by sfDoctrineRouteCollection have the same URL. The
routing is still able to use them because they all have different HTTP method requirements.

The job _delete and job update routes requires HTTP methods that are not supported by
browsers (DELETE and PUT respectively). This works because symfony simulates them. Open
the form.php template to see an example:

// apps/frontend/modules/job/templates/ form.php Listing
<form action="..." ...> o
<?php if (!$form->getObject()->isNew()): ?>

<input type="hidden" name="sf method" value="PUT" />
<?php endif; 7>

<?php echo link to(

'Delete’,

'job/delete?id="'.$form->getObject()->getld(),
array('method' => 'delete', 'confirm' => 'Are you sure?')
) ?>

All the symfony helpers can be told to simulate whatever HTTP method you want by passing
the special sf method parameter

E symfony has other special parameters like sf method, all starting with the sf prefix. In
the generated routes above, you can see another one: sf format, which will be explained
further in this book.

Route Debugging

When you use collection routes, it is sometimes useful to list the generated routes. The
app: routes task outputs all the routes for a given application:

$ php symfony app:routes frontend Listing

5-34

You can also have a lot of debugging information for a route by passing its name as an
additional argument:

$ php symfony app:routes frontend job edit Listing

5-35

ass 3k

Day 5: The Routing 70

Default Routes

It is a good practice to define routes for all your URLs. As the job route defines all the routes
needed to describe the Jobeet application, go ahead and remove or comment the default
routes from the routing.yml configuration file:

Listing # apps/frontend/config/routing.yml
#default _index:
url: /:module
param: { action: index }

#
#default:
url: /:module/:action/*

The Jobeet application must still work as before.

Final Thoughts

Today was packed with a lot of new information. You have learned how to use the routing
framework of symfony and how to decouple your URLs from the technical implementation.

Tomorrow, we won'’t introduce any new concept, but rather spend time going deeper into
what we’ve covered so far.

ass 3k

Day 6: More with the Model 71

Day 6

More with the Model

Yesterday was great. You learned how to create pretty URLs and how to use the symfony
framework to automate a lot of things for you.

Today, we will enhance the Jobeet website by tweaking the code here and there. In the
process, you will learn more about all the features we have introduced during the first five
days of this tutorial.

The Doctrine Query Object

From the second day’s requirements:
“When a user comes to the Jobeet website, she sees a list of active jobs.”
But as of now, all jobs are displayed, whether they are active or not:

// apps/frontend/modules/job/actions/actions.class.php Listing
class jobActions extends sfActions

public function executeIndex(sfWebRequest $request)

{
$this->jobeet jobs = Doctrine::getTable('JobeetJob')
->createQuery('a')
->execute();
}
/7 ...

}

An active job is one that was posted less than 30 days ago. The
~Doctrine Query~::execute() method will make a request to the database. In the code
above, we are not specifying any where condition which means that all the records are
retrieved from the database.

Let’s change it to only select active jobs:

public function executeIndex(sfWebRequest $request) Listing
{ h
$g = Doctrine Query::create()
->from('JobeetJob j')
->where('j.created at > ?',
date('Y-m-d H:i:s', time() - 86400 * 30));

ass 3k

Listing
6-3

Day 6: More with the Model 72

$this->jobeet jobs = $qg->execute();

}

Debugging Doctrine generated SQL

As you don’t write the SQL statements by hand, Doctrine will take care of the differences
between database engines and will generate SQL statements optimized for the database
engine you choose during day 3. But sometimes, it is of great help to see the SQL generated
by Doctrine; for instance, to debug a query that does not work as expected. In the dev
environment, symfony logs these queries (along with much more) in the log/ directory.
There is one log file for every combination of an application and an environment. The file we
are looking for is named frontend dev.log:

log/frontend dev.log

Dec 04 13:58:33 symfony [info] {sfDoctrinelLogger} executeQuery : SELECT
j.id AS j id, j.category id AS j category id, j.type AS j type,
j.company AS j company, j.logo AS j logo, j.url AS j url,
j.position AS j position, j.location AS j location,

j.description AS j description, j.how to apply AS j how to apply,
j.token AS j token, j.is public AS j is public,

j.is activated AS j is activated, j.email AS j email,
j.expires at AS j expires at, j.created at AS j created at,
j.updated at AS j updated at FROM jobeet job j

WHERE j.created at > ? (2008-11-08 01:13:35)

You can see for yourself that Doctrine has a where clause for the created at column
(WHERE j.created at > ?).

The ? string in the query indicates that Doctrine generates prepared statements. The
actual value of ? (‘2008-11-08 01:13:35’ in the example above) is passed during the
execution of the query and properly escaped by the database engine. The use of prepared

statements dramatically reduces your exposure to SQL injection37 attacks.

This is good, but it’s a bit annoying to have to switch between the browser, the IDE, and the
log file every time you need to test a change. Thanks to the symfony web debug toolbar, all
the information you need is also available within the comfort of your browser:
SQAL queries config logs 1706.3 KB 51 ms 1

SELECT jobeet job.ID, jobeet job.CATEGORY_ID, jobeet job.TYPE, jobeet job.COMPANY, jobeet job.LOGO, jobeet_job.URL,
Jobeet_ob.POSTTION, jobeet_Job.LOCATION, jobeet _job.DESCRIPTION, Jobeet _job.HOW_TO_APPLY, jobeet job.TOKEN, jobeet job.IS_PUBLIC,
Jobeet_job.CREATED_AT, jobeet_job.UPDATED_ATFROM ‘jobeet job” WHERE jobeet_job.CREATED_AT=:p1 (:p1 = 2008-11-06 15:56:08")

Object Serialization

Even if the above code works, it is far from perfect as it does not take into account some
requirements from day 2:

“A user can come back to re-activate or extend the validity of the job ad for an extra 30
days...”

But as the above code only relies on the created at value, and because this column stores
the creation date, we cannot satisfy the above requirement.

But if you remember the database schema we have described during day 3, we also have
defined an expires at column. Currently, if this value is not set in fixture file, it remains

37. http://en.wikipedia.org/wiki/Sql injection

ass 3k

Day 6: More with the Model 73

always empty. But when a job is created, it can be automatically set to 30 days after the
current date.

When you need to do something automatically before a Doctrine object is serialized to the
database, you can override the save () method of the model class:

// lib/model/doctrine/JobeetJob.class.php Listing
class JobeetJob extends BaseJobeetJob '

{

public function save(Doctrine Connection $conn = null)

{
if ($this->isNew() && !'$this->getExpiresAt())

{
$now = $this->getCreatedAt() ?
$this->getDateTimeObject('created at')->format('U') : time();
$this->setExpiresAt(date('Y-m-d H:i:s', $now + 86400 * 30));
}

return parent::save($conn);

}

/...
}

The isNew() method returns true when the object has not been serialized yet in the
database, and false otherwise.

Now, let’s change the action to use the expires at column instead of the created at one
to select the active jobs:

public function executeIndex(sfWebRequest $request) Listing
{ D-J
$g = Doctrine Query::create()
->from('JobeetJob j')
->where('j.expires at > ?', date('Y-m-d H:i:s', time()));

$this->jobeet jobs = $g->execute();

}

We restrict the query to only select jobs with the expires at date in the future.

More with Fixtures

Refreshing the Jobeet homepage in your browser won’t change anything as the jobs in the
database have been posted just a few days ago. Let’s change the fixtures to add a job that is
already expired:

data/fixtures/jobs.yml Listing
JobeetJob: 7
other jobs

expired job:
JobeetCategory: programming

company': Sensio Labs

position: Web Developer

location: Paris, France

description: Lorem ipsum dolor sit amet, consectetur adipisicing

ass 3k

Listing
6-7

Listing
6-8

Listing

6-9

Listing
6-10

Listing
6-11

Day 6: More with the Model 74

elit.
how to apply: Send your resume to lorem.ipsum [at] dolor.sit
is public: true
is activated: true
created at: '2005-12-01 00:00:00'
token: job expired
email: job@example. com

E Be careful when you copy and paste code in a fixture file to not break the indentation. The
expired job must only have two spaces before it.

As you can see in the job we have added in the fixture file, the created at column value can
be defined even if it is automatically filled by Doctrine. The defined value will override the
default one. Reload the fixtures and refresh your browser to ensure that the old job does not
show up:

$ php symfony doctrine:data-load

You can also execute the following query to make sure that the expires at column is
automatically filled by the save () method, based on the created at value:

SELECT "position’, “created at’, “expires at’ FROM " jobeet job';

Custom Configuration

In the JobeetJob: :save() method, we have hardcoded the number of days for the job to
expire. It would have been better to make the 30 days configurable. The symfony framework
provides a built-in configuration file for application specific settings, the app.yml file. This
YAML file can contain any setting you want:

apps/frontend/config/app.yml
all:
active days: 30

In the application, these settings are available through the global sfConfig class:
sfConfig::get('app_active days')

The setting has been prefixed by app because the sfConfig class also provides access to
symfony settings as we will see later on.

Let’s update the code to take this new setting into account:

public function save(Doctrine Connection $conn = null)
{
if ($this->isNew() && !$this->getExpiresAt())
{
$now = $this->getCreatedAt() ?
$this->getDateTimeObject('created at')->format('U') : time();
$this->setExpiresAt(date('Y-m-d H:i:s', $now + 86400 *
sfConfig::get('app active days')));
}

return parent::save($conn);

}

ass 3k

Day 6: More with the Model 75

The app.yml configuration file is a great way to centralize global settings|Global Settings for
your application.

Last, if you need project-wide settings, just create a new app.yml file in the config folder at
the root of your symfony project.

Refactoring

Although the code we have written works fine, it’s not quite right yet. Can you spot the
problem?

The Doctrine Query code does not belong to the action (the Controller layer), it belongs to
the Model layer. In the MVC model, the Model defines all the business logic, and the
Controller only calls the Model to retrieve data from it. As the code returns a collection of
jobs, let’s move the code to the JobeetJobTable class and create a getActiveJobs()
method:

// lib/model/doctrine/JobeetJobTable.class.php
class JobeetJobTable extends Doctrine Table

{
public function getActiveJobs()

{
$q = $this->createQuery('j"')
->where('j.expires_at > ?', date('Y-m-d H:i:s', time()));

return $q->execute();

}
}

Now the action code can use this new method to retrieve the active jobs.

public function executeIndex(sfWebRequest $request)

{
$this->jobeet jobs =
Doctrine Core::getTable('JobeetJob')->getActivedobs();
}

This refactoring has several benefits over the previous code:

* The logic to get the active jobs is now in the Model, where it belongs

* The code in the controller is thinner and much more readable

* The getActiveJobs () method is re-usable (for instance in another action)
* The model code is now unit testable

Let’s sort the jobs by the expires at column:

public function getActiveJdobs()

{
$g = $this->createQuery('j"')
->where('j.expires at > ?', date('Y-m-d H:i:s', time()))
->orderBy('j.expires at DESC');

return $qg->execute();

}

The orderBy methods sets the ORDER BY clause to the generated SQL (addOrderBy () also
exists).

ass 3k

Listing
6-12

Listing
6-13

Listing
6-14

Day 6: More with the Model 76

Categories on the Homepage

From the second day’s requirements:
“The jobs are sorted by category and then by publication date (newer jobs first).”

Until now, we have not taken the job category into account. From the requirements, the
homepage must display jobs by category. First, we need to get all categories with at least one
active job.

Open the JobeetCategoryTable class and add a getWithJobs () method:

Listing // lib/model/doctrine/JobeetCategoryTable.class.php
"7 class JobeetCategoryTable extends Doctrine Table

public function getWithJobs()
{
$g = $this->createQuery('c')
->leftJoin('c.JobeetJobs j')
->where('j.expires at > ?', date('Y-m-d H:i:s', time()));

return $q->execute();
}
}

Change the index action accordingly:

Listing // apps/frontend/modules/job/actions/actions.class.php
~ public function executeIndex(sfWebRequest $request)
{
$this->categories =
Doctrine Core::getTable('JobeetCategory')->getWithJobs();
}

In the template, we need to iterate through all categories and display the active jobs:

Lising // apps/frontend/modules/job/templates/indexSuccess.php
6-17 .
<?php use stylesheet('jobs.css') 7>

<div id="jobs">

<?php foreach ($categories as $category): ?>
<div class="category <?php echo Jobeet::slugify($category->getName())
>

?>
<div class="category">
<div class="feed">
Feed
</div>
<h1><?php echo $category ?></hl>
</div>

<table class="jobs">
<?php foreach ($category->getActivelobs() as $i => $job): 7>
<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' 7>">

<td class="location">
<?php echo $job->getLocation() 7>

</td>

<td class="position">
<?php echo link to($job->getPosition(), 'job show user',

$job) 7>

ass 3k

Day 6: More with the Model 77

</td>
<td class="company">
<?php echo $job->getCompany() 7>

</td>
</tr>
<?php endforeach; 7>
</table>
</div>
<?php endforeach; 7>
</div>

To display the category name in the template, we have used echo $category. Does this
sound weird? $category is an object, how can echo magically display the category name?
The answer was given during day 3 when we have defined the magic = toString()
method for all the model classes.

For this to work, we need to add the getActiveJobs() method to the JobeetCategory
class:

// lib/model/doctrine/JobeetCategory.class.php
public function getActiveldobs()

{
$g = Doctrine Query::create()
->from('JobeetJob j')
->where('j.category id = ?', $this->getId());

return Doctrine Core::getTable('JobeetJob')->getActivelobs($q);
}

The JobeetCategory: :getActivelobs() method uses the
Doctrine Core::getTable('JobeetJob')->getActiveJobs() method to retrieve the
active jobs for the given category.

When calling the Doctrine Core::getTable('JobeetJob')->getActivelobs(), we
want to restrict the condition even more by providing a category. Instead of passing the
category object, we have decided to pass a Doctrine Query object as this is the best way to
encapsulate a generic condition.

The getActiveJobs() needs to merge this Doctrine Query object with its own query. As
the Doctrine Query is an object, this is quite simple:

// lib/model/doctrine/JobeetJobTable.class.php
public function getActiveJobs(Doctrine Query $q = null)

{
if (is_null($q))
{
$q = Doctrine Query::create()
->from('JobeetJob j');
}

$q->andWhere('j.expires at > ?', date('Y-m-d H:i:s', time()))
->addOrderBy('j.expires at DESC');

return $g->execute();

ass 3k

Listing
6-18

Listing
6-19

Listing
6-20

Listing
6-21

Listing

Day 6: More with the Model 78

Limit the Results

There is still one requirement to implement for the homepage job list:

“For each category, the list only shows the first 10 jobs and a link allows to list all the jobs for
a given category.”

That’s simple enough to add to the getActiveJobs () method:

// lib/model/doctrine/JobeetCategory.class.php
public function getActiveJobs($max = 10)
{
$q = Doctrine Query::create()
->from('JobeetJob j')
->where('j.category id = ?', $this->getId())
->limit ($max);

return Doctrine Core::getTable('JobeetJob')->getActiveJobs($q);
}

The appropriate LIMIT clause is now hard-coded into the Model, but it is better for this value
to be configurable. Change the template to pass a maximum number of jobs set in app.yml:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->

<?php foreach
($category->getActivelobs(sfConfig::get('app _max_jobs on homepage')) as $i
=> $job): ?>

and add a new setting in app.yml:

all:
active days: 30
max_jobs on homepage: 10

S¥ £ cont

Jobeet i

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

Paris, France Web Developer Sensio Labs
DESIGN & FEED
Paris, France Web Designer Extreme Sensio

About Jobeet [Full feed Jobeet APl Affiliates Jomgtmmreu B symiony]

symfony Brought to you by SENSIOLABS 3K

Day 6: More with the Model 79

Dynamic Fixtures

Unless you lower the max jobs on homepage setting to one, you won’t see any difference.
We need to add a bunch of jobs to the fixture. So, you can copy and paste an existing job ten
or twenty times by hand... but there’s a better way. Duplication is bad, even in fixture files.

symfony to the rescue! YAML files in symfony can contain PHP code that will be evaluated
just before the parsing of the file. Edit the jobs.yml fixtures file and add the following code
at the end:

Starts at the beginning of the line (no whitespace before) Ligg
<?php for ($i = 100; $i <= 130; $i++): 7>
job <?php echo $i ?>:
JobeetCategory: programming

company: Company <?php echo $i."\n" 7>
position: Web Developer
location: Paris, France

description: Lorem ipsum dolor sit amet, consectetur adipisicing elit.
how to apply: |
Send your resume to lorem.ipsum [at] company <?php echo $i ?>.sit

is public: true

is activated: true

token: job <?php echo $i."\n" 7>
email: job@example. com

<?php endfor 7>

Be careful, the YAML parser won't like you if you mess up with Indentation|Code Formatting.
Keep in mind the following simple tips when adding PHP code to a YAML file:

* The <?php 7> statements must always start the line or be embedded in a value.
* Ifa<?php 7> statement ends a line, you need to explicly output a new line (“\n”).

You can now reload the fixtures with the doctrine:data-1load task and see if only 10 jobs
are displayed on the homepage for the Programming category. In the following screenshot,
we have changed the maximum number of jobs to five to make the image smaller:

ass 3k

Day 6: More with the Model 80

Sf " contg

Jobeet —

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

DESICN

Paris, France Web Designer Extreme Sensio
Paris, France Web Developer Sensio Labs
Paris, France Web Developer Company 100
Paris, France Web Developer Company 101
Paris, France Web Developer Company 102
Paris, France Web Developer Company 103
About Jobeet Full feed Jobeet APl Affiliates J{]me powered by

Secure the Job Page

When a job expires, even if you know the URL, it must not be possible to access it anymore.
Try the URL for the expired job (replace the id with the actual id in your database - SELECT
id, token FROM jobeet job WHERE expires at < NOW()):

Listing /frontend dev.php/job/sensio-labs/paris-france/ID/web-developer-expired

Instead of displaying the job, we need to forward the user to a 404 page. But how can we do
this as the job is retrieved automatically by the route?

tistng # apps/frontend/config/routing.ymt
" job_show user:

url: /job/:company slug/:location slug/:id/:position slug
class: sfDoctrineRoute
options:

model: JobeetJob

type: object

method for query: retrieveActiveJob
param: { module: job, action: show }
requirements:

id: \d+

sf method: [GET]

The retrieveActiveJob() method will receive the Doctrine Query object built by the
route:

Listing // lib/model/doctrine/JobeetJobTable.class.php
" class JobeetJobTable extends Doctrine Table

{

symfony Brought to you by SENSIOLABS 3K

Day 6: More with the Model 81

public function retrieveActiveJob(Doctrine Query $%q)

{

$q->andWhere('a.expires at > ?', date('Y-m-d H:i:s', time()));

return $qg->fetchOne();
}

//
}

Now, if you try to get an expired job, you will be forwarded to a 404 page.

)

404 | Not Found | sfError404Exception &
Unable to find the JobeetlobPeer object with the following parameters "array (

'company_slug' => 'sensio-labs’, 'location_slug' => 'paris-france’, 'id' => '8',
'position_slug' => 'web-developer-expired’,)").

stack trace

1. at()

in 5F_ROOT_DIR/lib/vendor/symfony/lib/routing/sfObjectRoute.class.php line 111 ...
108.
109. if (I{$this->cbject = Sthis->getObjectPorParameters($this->parameters)) && (lisset($this->q
110. {
111. throw new sfErroriOd4Exception(sprintf('Unable to find the iz object wikh the following pa
11z2. }
113.
114. return $this->object;

2. at sfObjectRoute->getObject()
in 5F_ROOT_DIR/apps/frontend/modules/job/actions/actions.class.php line 20 ...
3. at jobActions->executeShow(object{'sfWebRequest'))
in 5F_ROOT_DIR/lib/vendor/symfony/lib/action/sfActions.class.php line 53 ...
4. at sfActions->execute(object('sfWebRequest'))
in 5F_ROOT._DIR/lib/vendor/symfony/lib/filter/sfExecutionFilter.class.php line 90 ...
5. at sfE i ilter- Acti object('jobActions'))
in 5F_ROOT_DIR/lib/vendor/symfony/lib/filter/sfExecutionFilter.class.php line 76 ..
6. at sfExecutionFilter->handleAction{object{'sfFilterChain'), object{'jobActions'y)
in 5F_ROOT_DIR/lib/vendor/symfony/lib/filter/sfExecutionFilter.class.php line 42 ...
7. at sfExecutionFilter->execute(object{'sfFilterChain"))
in 5F_ROOT_DIR/ib/vendor/symfony/lib/filter/sfFilterChain.class.php line 53 ...
8. at sfFilterChain->execute()
in 5F_ROOT._DIR/ib/vendor/symfony/lib/filtery/sfCommonFilter.class.php line 29 ...
9. at sfCommonFilter-»execute(ohject{'sfFilterChain'))
in 5F_ROOT_DIR/lib/vendor/symfony/lib/filter/sFilterChain.class.php line 53 ...
10. at sfFilterChain->execute()
in SF_ROOT_DIR/lib/vendor/symfony/lib/filter/sfRenderingFilter.class.php line 33 ...

LI A R U U T Sy DOy RSy O S LY

Link to the Category Page

Now, let’s add a link to the category page on the homepage and create the category page.

But, wait a minute. the hour is not yet over and we haven’t worked that much. So, you have
plenty of free time and enough knowledge to implement this all by yourself! Let’'s make an
exercise of it. Check back tomorrow for our implementation.

Final Thoughts

Do work on an implementation on your local Jobeet project. Please, abuse the online API

documentation®® and all the free documentation3® available on the symfony website to help
you out. Tomorrow, we will give you the solution on how to implement this feature.

38. http://www.symfony-project.org/api/1 4/
39. http://www.symfony-project.orqg/doc/1 4/

ass 3k

Listing
7-1

Listing
7-2

Day 7: Playing with the Category Page 82

Day 7

Playing with the Category Page

Yesterday, you expanded your knowledge of symfony in a lot of different areas: querying with
Doctrine, fixtures, routing, debugging, and custom configuration. And we finished with a little
challenge to start today.

We hope you worked on the Jobeet category page as today will then be much more valuable
for you.

Ready? Let’s talk about a possible implementation.

The Category Route

First, we need to add a route to define a pretty URL for the category page. Add it at the
beginning of the routing file:

apps/frontend/config/routing.yml

category:
url: /category/:slug
class: sfDoctrineRoute
param: { module: category, action: show }

options: { model: JobeetCategory, type: object }

Whenever you start implementing a new feature, it is a good practice to first think about
the URL and create the associated route. And it is mandatory if you removed the default
routing rules.

A route can use any column from its related object as a parameter. It can also use any other
value if there is a related accessor defined in the object class. Because the slug parameter
has no corresponding column in the category table, we need to add a virtual accessor in
JobeetCategory to make the route works:

// lib/model/doctrine/JobeetCategory.class.php
public function getSlug()

{
return Jobeet::slugify($this->getName());

}

ass 3k

Day 7: Playing with the Category Page 83

The Category Link

Now, edit the indexSuccess.php template of the job module to add the link to the
category page:

<!-- some HTML code --> Lﬂ?g
<hl>
<?php echo link to($category, 'category', $category) 7>
</hl>
<!-- some HTML code -->
</table>

<?php if (($count = $category->countActiveJobs() -
sfConfig::get('app _max jobs on homepage')) > 0): ?>
<div class="more jobs">
and <?php echo link to($count, 'category', $category) 7>

more...
</div>
<?php endif; 7>
</div>
<?php endforeach; 7>

</div>

We only add the link if there are more than 10 jobs to display for the current category. The
link contains the number of jobs not displayed. For this template to work, we need to add the
countActivelobs () method to JobeetCategory:

// lib/model/doctrine/JobeetCategory.class.php Listing
public function countActivelobs() '

{
$g = Doctrine Query::create()
->from('Jobeetlob j')
->where('j.category id = ?', $this->getId());

return Doctrine Core::getTable('JobeetJob')->countActiveJobs($q);

}

The countActiveJobs () method uses a countActiveJobs () method that does not exist
yet in JobeetJobTable. Replace the content of the JobeetJobTable.php file with the
following code:

// lib/model/doctrine/JobeetJobTable.class.php Listing
class JobeetJobTable extends Doctrine Table v

{

public function retrieveActiveJob(Doctrine Query $q)

{
}

return $this->addActivelobsQuery($q)->fetchOne();

public function getActiveJobs(Doctrine Query $q = null)
{

}

return $this->addActivelobsQuery($q)->execute();

ass 3k

Day 7: Playing with the Category Page 84

public function countActivelJobs(Doctrine Query $q = null)

{
}

return $this->addActiveJobsQuery($q)->count();

public function addActiveJobsQuery(Doctrine Query $q = null)
{
if (is _null($q))
{
$q = Doctrine Query::create()
->from('JobeetJob j');

}
$alias = $gq->getRootAlias();
$q->andWhere($alias . '.expires at > ?', date('Y-m-d H:i:s', time()))
->addOrderBy($alias . '.created at DESC');
return $q;
}
}

As you can see for yourself, we have refactored the whole code of JobeetJobTable to
introduce a new shared addActiveJobsQuery() method to make the code more DRY (Don't
Repeat Yourself).

The first time a piece of code is re-used, copying the code may be sufficient. But if you find
another use for it, you need to refactor all uses to a shared function or a method, as we
have done here.

In the countActiveJobs() method, instead of using execute() and then count the
number of results, we have used the much faster count () method.

We have changed a lot of files, just for this simple feature. But each time we have added some
code, we have tried to put it in the right layer of the application and we have also tried to
make the code reusable. In the process, we have also refactored some existing code. That's a
typical workflow when working on a symfony project. In the following screenshot we are
showing 5 jobs to keep it short, you should see 10 (the max _jobs on_homepage setting):

ass 3k

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Day 7: Playing with the Category Page 85

Jobeet e

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

DESICN

Paris, France Web Designer Extreme Sensio
PROGRAMMING

Paris, France Web Developer Sensio Labs

Paris, France Web Developer Company 100

Paris, France Web Developer Company 101

Paris, France Web Developer Company 102

Paris, France Web Developer Company 103

AND 27 MORE...
About Jobeet Full feed Jobeet APl Affiliates Jﬂnee powered by TR

It’s time to create the category module:
$ php symfony generate:module frontend category Listing

7-6

If you have created a module, you have probably used the doctrine:generate-module.
That’s fine but as we won't need 90% of the generated code, I have used the
generate:module which creates an empty module.

@ Why not add a category action to the job module? We could, but as the main subject of
the category page is a category, it feels more natural to create a dedicated category
module.

When accessing the category page, the category route will have to find the category
associated with the request slug variable. But as the slug is not stored in the database, and
because we cannot deduce the category name from the slug, there is no way to find the
category associated with the slug.

Update the Database

We need to add a slug column for the category table:

This slug column can be taken care of by a Doctrine behavior named Sluggable. We simply
need to enable the behavior on our JobeetCategory model and it will take care of
everything for you.

symfony Brought to you by SENSIOLABS 3K

Listing
7-7

Listing
7-8

Listing
7-9

Listing
7-10

Day 7: Playing with the Category Page 86

config/doctrine/schema.yml
JobeetCategory:
actAs:
Timestampable: ~
Sluggable:
fields: [name]
columns:
name:
type: string(255)
notnull: true

Now that slug is a real column, you need to remove the getSlug() method from
JobeetCategory.

F The setting of the slug column is taken care of automatically when you save a record. The
slug is built using the value of the name field and set to the object.

Use the doctrine:build --all --and-load task to update the database tables, and
repopulate the database with our fixtures:

$ php symfony doctrine:build --all --and-load --no-confirmation

We have now everything in place to create the executeShow() method. Replace the content
of the category actions file with the following code:

// apps/frontend/modules/category/actions/actions.class.php
class categoryActions extends sfActions

{
public function executeShow(sfWebRequest $request)
{
$this->category = $this->getRoute()->getObject();
}
}

T Because we have removed the generated executeIndex() method, you can also remove
the automatically generated indexSuccess.php template (apps/frontend/modules/
category/templates/indexSuccess.php).

The last step is to create the showSuccess. php template:

// apps/frontend/modules/category/templates/showSuccess.php
<?php use stylesheet('jobs.css') 7>

<?php slot('title', sprintf('Jobs in the %s category',
$category->getName())) ?>

<div class="category">
<div class="feed">
Feed
</div>
<h1l><?php echo $category ?></hl>
</div>

<table class="jobs">

<?php foreach ($category->getActivelobs() as $i => $job): 7>
<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' 7?>">

ass 3k

Day 7: Playing with the Category Page 87

<td class="location">
<?php echo $job->getlLocation() 7>
</td>
<td class="position">
<?php echo link to($job->getPosition(), 'job show user', $job) 7>
</td>
<td class="company">
<?php echo $job->getCompany() ?>
</td>
</tr>
<?php endforeach; 7>
</table>

Partials

Notice that we have copied and pasted the <table> tag that create a list of jobs from the job
indexSuccess.php template. That’s bad. Time to learn a new trick. When you need to reuse
some portion of a template, you need to create a partial. A partial is a snippet of template
code that can be shared among several templates. A partial is just another template that
starts with an underscore ().

Create the list.php file:

// apps/frontend/modules/job/templates/ list.php Listing
<table class="jobs">
<?php foreach ($jobs as $i => $job): 7>
<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">
<td class="location">
<?php echo $job->getlLocation() 7>
</td>
<td class="position">
<?php echo link to($job->getPosition(), 'job show user', $job) 7>
</td>
<td class="company">
<?php echo $job->getCompany() ?>
</td>
</tr>
<?php endforeach; 7>
</table>

You can include a partial by using the include partial() helper:

<?php include partial('job/list', array('jobs' => $jobs)) 7> Listing
The first argument of include partial() is the partial name (made of the module name, a

/, and the partial name without the leading). The second argument is an array of variables

to pass to the partial.

E Why not use the PHP built-in include() method instead of the include partial()
helper? The main difference between the two is the built-in cache support of the
include partial() helper.

Replace the <table> HTML code from both templates with the call to include partial():

// in apps/frontend/modules/job/templates/indexSuccess.php Listing
<?php include partial('job/list', array('jobs' => '

ass 3k

Day 7: Playing with the Category Page 88

$category->getActivelobs(sfConfig::get('app _max_jobs on homepage')))) ?>

// in apps/frontend/modules/category/templates/showSuccess.php
<?php include partial('job/list', array('jobs' =>
$category->getActivelobs())) 7>

List Pagination

From the second day’s requirements:
“The list is paginated with 20 jobs per page.”
To paginate a list of Doctrine objects, symfony provides a dedicated class:

stoctrinePager4q In the category action, instead of passing the job objects to the
showSuccess template, we pass a pager:

Listing // apps/frontend/modules/category/actions/actions.class.php
" public function executeShow(sfWebRequest $request)

{
$this->category = $this->getRoute()->getObject();

$this->pager = new sfDoctrinePager(
'JobeetJob’,
sfConfig::get('app _max jobs on category')
);
$this->pager->setQuery($this->category->getActiveJobsQuery());
$this->pager->setPage($request->getParameter('page', 1));
$this->pager->init();

The sfRequest::getParameter() method takes a default value as a second argument.
In the action above, if the page request parameter does not exist, then getParameter()
will return 1.

The sfDoctrinePager constructor takes a model class and the maximum number of items
to return per page. Add the latter value to your configuration file:

Listing # apps/frontend/config/app.yml
all:
active days: 30
max_jobs on homepage: 10
max_jobs on category: 20

The sfDoctrinePager: :setQuery() method takes a Doctrine Query object to use when
selecting items from the database.

Add the getActiveJobsQuery () method:

Listing // lib/model/doctrine/JobeetCategory.class.php
"7 public function getActiveJobsQuery()

{
$q = Doctrine Query::create()
->from('JobeetJob j')
->where('j.category id = ?', $this->getId());

40. http://www.symfony-project.org/api/1 4/sfDoctrinePager

ass 3k

Day 7: Playing with the Category Page 89

return Doctrine Core::getTable('JobeetJob')->addActiveJobsQuery($q);
}

Now that we have defined the getActiveJobsQuery() method, we can refactor other
JobeetCategory methods to use it:

// lib/model/doctrine/JobeetCategory.class.php Listing
public function getActivelobs($max = 10) '
{

$q = $this->getActiveJobsQuery()
->limit($max);

return $q->execute();

}
public function countActivelobs()
{
return $this->getActiveJobsQuery()->count();
}

Finally, let’s update the template:

<!-- apps/frontend/modules/category/templates/showSuccess.php --> Listing
<?php use stylesheet('jobs.css') 7> '

<?php slot('title', sprintf('Jobs in the %s category',
$category->getName())) 7>

<div class="category">
<div class="feed">
Feed
</div>
<h1l><?php echo $category 7></hl>
</div>

<?php include partial('job/list', array('jobs' => $pager->getResults())) 7>

<?php if ($pager->haveToPaginate()): 7>
<div class="pagination">
<a href="<?php echo url for('category', $category) ?>?page=1">
<img src="http://www.symfony-project.org/images/first.png"
alt="First page" title="First page" />

<a href="<?php echo url for('category', $category) ?>?page=<?php echo
$pager->getPreviousPage() 7>">
<img src="http://www.symfony-project.org/images/previous.png"
alt="Previous page" title="Previous page" />

<?php foreach ($pager->getLinks() as $page): 7>
<?php if ($page == $pager->getPage()): ?>
<?php echo $page 7>
<?php else: 7>
<a href="<?php echo url for('category', $category) ?>?page=<?php
echo $page ?>"><?php echo $page ?>
<?php endif; 7>
<?php endforeach; 7>

ass 3k

Day 7: Playing with the Category Page 90

<a href="<?php echo url for('category', $category) ?>?page=<?php echo
$pager->getNextPage() ?>">
<img src="http://www.symfony-project.org/images/next.png" alt="Next
page" title="Next page" />

<a href="<?php echo url for('category', $category) ?>?page=<?php echo
$pager->getlLastPage() ?>">
<img src="http://www.symfony-project.org/images/last.png" alt="Last
page" title="Last page" />

</div>
<?php endif; 7>

<div class="pagination desc">
<?php echo count($pager) ?> jobs in this category

<?php if ($pager->haveToPaginate()): ?>
- page <?php echo $pager->getPage() ?>/<?php echo
$pager->getlLastPage() ?>
<?php endif; 7>
</div>

Most of this code deals with the links to other pages. Here are the list of sfDoctrinePager
methods used in this template:

getResults(): Returns an array of Doctrine objects for the current page
getNbResults(): Returns the total number of results
haveToPaginate(): Returns true if there is more than one page
getLinks (): Returns a list of page links to display
getPage(): Returns the current page number
getPreviousPage(): Returns the previous page number
getNextPage(): Returns the next page number
getlLastPage(): Returns the last page number

As sfDoctrinePager also implements the Iterator and Countable interfaces, you can
use count () function to get the number of results instead of the getNbResults () method.

ass 3k

Day 7: Playing with the Category Page 91

Jobeet oo

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

PROGRAMMING & FEED

Paris, France Web Developer Sensio Labs
Paris, France Web Developer Company 100
Paris, France Web Developer Company 101
Paris, France Web Developer Company 102
Paris, France Web Developer Company 103
32 jobs in this category - page 1/7 12345
About Jobeet Full feed Jobeet APl Affiliates Jﬂngg powered by EVIIENN

Final Thoughts

If you worked on your own implementation in day 6 and feel that you didn’t learn much here,
it means that you are getting used to the symfony philosophy. The process to add a new
feature to a symfony website is always the same: think about the URLs, create some actions,
update the model, and write some templates. And, if you can apply some good development
practices to the mix, you will become a symfony master very fast.

Tomorrow will be the start of a new week for Jobeet. To celebrate, we will talk about a brand
new topic: automated tests.

symfony Brought to you by SENSIOLABS 3K

Day 8: The Unit Tests 92

Day 8

The Unit Tests

During the last two days, we reviewed all the features learned during the first five days of the
Practical symfony book to customize Jobeet features and add new ones. In the process, we
have also touched on other more advanced symfony features.

Today, we will start talking about something completely different: automated tests. As the
topic is quite large, it will take us two full days to cover everything.

Tests in symfony

There are two different kinds of automated tests in symfony: unit tests|Unit Testing and
functional tests.

Unit tests verify that each method and function is working properly. Each test must be as
independent as possible from the others.

On the other hand, functional tests verify that the resulting application behaves correctly as a
whole.

All tests in symfony are located under the test/ directory of the project. It contains two sub-
directories, one for unit tests (test/unit/) and one for functional tests (test/
functional/).

Unit tests will be covered today, whereas tomorrow will be dedicated to functional tests.

Unit Tests

Writing unit tests is perhaps one of the hardest web development best practices to put into
action. As web developers are not really used to testing their work, a lot of questions arise:
Do I have to write tests before implementing a feature? What do I need to test? Do my tests
need to cover every single edge case|Edge Cases? How can I be sure that everything is well
tested? But usually, the first question is much more basic: Where to start?

Even if we strongly advocate testing, the symfony approach is pragmatic: it’s always better to
have some tests than no test at all. Do you already have a lot of code without any test? No
problem. You don’t need to have a full test suite to benefit from the advantages of having
tests. Start by adding tests whenever you find a bug in your code. Over time, your code will
become better, the code coverage|Code Coverage will rise, and you will become more
confident about it. By starting with a pragmatic approach, you will feel more comfortable with
tests over time. The next step is to write tests for new features. In no time, you will become a
test addict.

The problem with most testing libraries is their steep learning curve. That’s why symfony
provides a very simple testing library, lime, to make writing test insanely easy.

ass 3k

Day 8: The Unit Tests 93

E Even if this tutorial describes the lime built-in library extensively, you can use any testing
library, like the excellent PHPUnit*! library.

The lime Testing Framework

All unit tests written with the lime framework start with the same code:

require once dirname(_ FILE).'/../bootstrap/unit.php’; Listing

$t = new lime test(1);
First, the unit.php bootstrap file is included to initialize a few things. Then, a new

lime test object is created and the number of tests planned to be launched is passed as an
argument.

E The plan allows lime to output an error message in case too few tests are run (for instance
when a test generates a PHP fatal error).

Testing works by calling a method or a function with a set of predefined inputs and then
comparing the results with the expected output. This comparison determines whether a test
passes or fails.

To ease the comparison, the lime_ test object provides several methods:

Method Description

ok($test) Tests a condition and passes if it is true

is($valuel, $value2) Compares two values and passes if they are
equal (==

isnt($valuel, $value2) Compares two values and passes if they are
not equal

like($string, $regexp) Tests a string against a regular expression

unlike($string, $regexp) Checks that a string doesn’t match a regular
expression

is deeply($arrayl, $array2) Checks that two arrays have the same values

You may wonder why lime defines so many test methods, as all tests can be written just by
using the ok () method. The benefit of alternative methods lies in much more explicit error
messages in case of a failed test and in improved readability of the tests.

The lime test object also provides other convenient testing methods:

Method Description
fail() Always fails—useful for testing exceptions
pass() Always passes—useful for testing exceptions

skip($msg, $nb_tests) Counts as $nb_tests tests—useful for conditional

41. http://www.phpunit.de/

ass 3k

Listing
8-2

Listing
8-3

Listing
8-4

Day 8: The Unit Tests 94

Method Description
tests

todo() Counts as a test—useful for tests yet to be
written

Finally, the comment ($msg) method outputs a comment but runs no test.

Running Unit Tests

All unit tests are stored under the test/unit/ directory. By convention, tests are named
after the class they test and suffixed by Test. Although you can organize the files under the
test/unit/ directory anyway you like, we recommend you replicate the directory structure
of the 1ib/ directory.

To illustrate unit testing, we will test the Jobeet class.
Create a test/unit/JobeetTest.php file and copy the following code inside:

// test/unit/JobeetTest.php
require_once dirname(_ FILE).'/../bootstrap/unit.php’;

$t = new lime test(1);
$t->pass('This test always passes.');

To launch the tests, you can execute the file directly:
$ php test/unit/JobeetTest.php
Or use the test:unit task:

$ php symfony test:unit Jobeet

rk/jobeet $ php symfony test:unit Jobeet

WO

1,

1
Ll - This test always passes.
5 like eve ing went fine.

work/jobeet %

T Windows command line unfortunately cannot highlight test results in red or green color.
But if you use Cygwin, you can force symfony to use colors by passing the - -color option
to the task.

Testing slugify

Let’s start our trip to the wonderful world of unit testing by writing tests for the
Jobeet: :slugify() method.

We created the ~slug|Slug~ify() method during day 5 to clean up a string so that it can
be safely included in a URL. The conversion consists in some basic transformations like
converting all non-ASCII characters to a dash (-) or converting the string to lowercase:

ass 3k

Day 8: The Unit Tests 95

Input Output
Sensio Labs sensio-labs

Paris, France paris-france

Replace the content of the test file with the following code:

// test/unit/JobeetTest.php Listng
require once dirname(_ FILE).'/../bootstrap/unit.php' N

~e

$t = new lime test(6);

$t->is(Jobeet::slugify('Sensio'), 'sensio');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs');
$t->is(Jobeet::slugify('paris,france'), 'paris-france');
$t->is(Jobeet::slugify(' sensio'), 'sensio');
$t->is(Jobeet::slugify('sensio '), 'sensio');

If you take a closer look at the tests we have written, you will notice that each line only tests
one thing. That’s something you need to keep in mind when writing unit tests. Test one thing
at a time.

You can now execute the test file. If all tests pass, as we expect them to, you will enjoy the
“green bar”. If not, the infamous “red bar” will alert you that some tests do not pass and that
you need to fix them.

work/jobeet % php symfony test:unit Jobeet

o /Jjobeet . 4

Luuks like mriﬂ'rlng went fine,

If a test fails, the output will give you some information about why it failed; but if you have
hundreds of tests in a file, it can be difficult to quickly identify the behavior that fails.

All lime test methods take a string as their last argument that serves as the description for
the test. It’s very convenient as it forces you to describe what you are really testing. It can
also serve as a form of documentation for a method’s expected behavior. Let’s add some
messages to the slugify test file:

require once dirname(_ FILE).'/../bootstrap/unit.php'; Listing

$t = new lime test(6);

$t->comment('::slugify()"');
$t->is(Jobeet::slugify('Sensio'), 'sensio',
"::s5lugify() converts all characters to lower case');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs',
"::5lugify() replaces a white space by a -');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs',
"::slugify() replaces several white spaces by a single -');
$t->is(Jobeet::slugify(' sensio'), 'sensio',
"::5lugify() removes - at the beginning of a string');

ass 3k

Day 8: The Unit Tests 96

$t->is(Jobeet::slugify('sensio '), 'sensio',
"::5lugify() removes - at the end of a string');

$t->is(Jobeet::slugify('paris,france'), 'paris-france',
"::5lugify() replaces non-ASCII characters by a -');

/jobeet $ php symfony test:unit Jobeet

sluglfy(}

() converts all characters to lower case
replaces a white space by a -
replaces several white spaces by a single -

replaces non-ASCII characters by a -
removes - at the beginning of a string
removes - at the end of a string

kas lilm mriﬂ'rlng went fine,
~/work/jobeet %

The test description string is also a valuable tool when trying to figure out what to test. You
can see a pattern in the test strings: they are sentences describing how the method must
behave and they always start with the method name to test.

Code Coverage

When you write tests, it is easy to forget a portion of the code.

To help you check that all your code is well tested, symfony provides the test:coverage
task. Pass this task a test file or directory and a lib file or directory as arguments and it will
tell you the code coverage of your code:

Lising $ php symfony test:coverage test/unit/JobeetTest.php lib/Jobeet.class.php

8-7

If you want to know which lines are not covered by your tests, pass the - -detailed option:

Listing $ php symfony test:coverage --detailed test/unit/JobeetTest.php lib/

Listing
8-9

8-8

Jobeet.class.php

Keep in mind that when the task indicates that your code is fully unit tested, it just means
that each line has been executed, not that all the edge cases have been tested.

As the test:coverage relies on XDebug to collect its information, you need to install it
and enable it first.

Adding Tests for new Features

The slug for an empty string is an empty string. You can test it, it will work. But an empty
string in a URL is not that a great idea. Let’s change the slugify() method so that it
returns the “n-a” string in case of an empty string.

You can write the test first, then update the method, or the other way around. It is really a
matter of taste but writing the test first gives you the confidence that your code actually
implements what you planned:

$t->is(Jobeet::slugify(''), 'n-a',
"::slugify() converts the empty string to n-a');

This development methodology, where you first write tests then implement features, is known
as Test Driven Development (TDD)42.

ass 3k

Day 8: The Unit Tests 97

If you launch the tests now, you must have a red bar. If not, it means that the feature is
already implemented or that your test does not test what it is supposed to test.

Now, edit the Jobeet class and add the following condition at the beginning:

// lib/Jobeet.class.php Listing
static public function slugify($text) '

{
if (empty($text))

{
}

/...
}

return 'n-a‘';

The test must now pass as expected, and you can enjoy the green bar, but only if you have
remembered to update the test plan. If not, you will have a message that says you planned six
tests and ran one extra. Having the planned test count up to date is important, as it you will
keep you informed if the test script dies early on.

Adding Tests because of a Bug

Let’s say that time has passed and one of your users reports a weird bug: some job links point
to a 404 error page. After some investigation, you find that for some reason, these jobs have
an empty company, position, or location slug.

How is it possible?

You look through the records in the database and the columns are definitely not empty. You
think about it for a while, and bingo, you find the cause. When a string only contains non-
ASCII characters, the slugify() method converts it to an empty string. So happy to have
found the cause, you open the Jobeet class and fix the problem right away. That’s a bad
idea. First, let’s add a test:

$t->is(Jobeet::slugify(' - '), 'n-a’', Listing
"::slugify() converts a string that only contains non-ASCII characters '
to n-a');

k/jobeet § php symfony test:unit Jobeet

sluglfy(]
converts all characters to lower case
replaces a white space by a -
replaces several white spaces by a single -
replaces non-ASCII characters by a -
removes - at the beginning of a string
removes - at the end of a string
_ replaces the empty string by n-a
"~1qu v() replaces a string that only contains non-ASCII c
Failed test (/Users/fabien/work/symfony/dev/1.2/1ib/vendor/1ime/11
got:
b expected: 'n-a’
Looks like you failed 1 tests of 8.
~/work/jobeet $ I

42. http://en.wikipedia.org/wiki/Test Driven Development

ass 3k

Listing
8-12

Day 8: The Unit Tests 98

After checking that the test does not pass, edit the Jobeet class and move the empty string
check to the end of the method:

static public function slugify($text)
{

/] ...
if (empty($text))
{
return 'n-a‘';
}

return $text;

}

The new test now passes, as do all the other ones. The slugify() had a bug despite our
100% coverage.

You cannot think about all edge cases when writing tests, and that’s fine. But when you
discover one, you need to write a test for it before fixing your code. It also means that your
code will get better over time, which is always a good thing.

ass 3k

Day 8: The Unit Tests 99

Towards a better slugify Method

You probably know that symfony has been created by French people, so let’s add a test with
a French word that contains an “accent”:

$t->is(Jobeet::slugify('Développeur Web'), 'developpeur-web', Listing
'::slugify() removes accents'); 813

The test must fail. Instead of replacing é by e, the slugify() method has replaced it by a
dash (-). That’s a tough problem, called transliteration. Hopefully, if you have “iconv”
installed, it will do the job for us. Replace the code of the slugify method with the
following:

// code derived from http://php.vrana.cz/vytvoreni-pratelskeho-url.php Listing
static public function slugify($text) i

{
// replace non letter or digits by -
$text = preg replace('#[~\\pL\d]+#u', '-', $text);

// trim
$text = trim($text, '-');

// transliterate
if (function_exists('iconv'))

{
}

$text = iconv('utf-8', 'us-ascii//TRANSLIT', $text);
// lowercase
$text = strtolower($text);

// remove unwanted characters
$text = preg replace('#["-\w]+#', '', $text);

if (empty($text))
{

}

return 'n-a‘';

return $text;

}

Remember to save all your PHP files with the UTF-8 encoding, as this is the default symfony
encoding, and the one used by “iconv” to do the transliteration.

Also change the test file to run the test only if “iconv” is available:

if (function exists('iconv')) ngg

{ =10
$t->is(Jobeet::slugify('Développeur Web'), 'developpeur-web',

'::slugify() removes accents');

}

else

$t->skip('::slugify() removes accents - iconv not installed');

}

ass 3k

Day 8: The Unit Tests 100

Doctrine Unit Tests

Database Configuration

Unit testing a Doctrine model class is a bit more complex as it requires a database
connection. You already have the one you use for your development, but it is a good habit to
create a dedicated database for tests.

At the beginning of this book, we introduced the environments as a way to vary an
application’s settings. By default, all symfony tests are run in the test environment, so let’s
configure a different database for the test environment:

Listing $ php symfony configure:database --name=doctrine
--class=sfDoctrineDatabase --env=test
"mysql:host=1localhost;dbname=jobeet test" root mYsEcret

The env option tells the task that the database configuration is only for the test
environment. When we used this task during day 3, we did not pass any env option, so the
configuration was applied to all environments.

E If you are curious, open the config/databases.yml configuration file to see how
symfony makes it easy to change the configuration depending on the environment.

Now that we have configured the database, we can bootstrap it by using the
doctrine:insert-sql task:

Listing $ mysqladmin -uroot -pmYsEcret create jobeet test
$ php symfony doctrine:insert-sql --env=test

ass 3k

Day 8: The Unit Tests 101

Configuration Principles in symfony

During day 4, we saw that settings coming from configuration files can be defined at
different levels.

These settings can also be environment dependent. This is true for most configuration files
we have used until now: databases.yml, app.yml, view.yml, and settings.yml. In all
those files, the main key is the environment, the all key indicating its settings are for all
environments:

config/databases.yml Listing
dev:]
doctrine:

class: sfDoctrineDatabase

test:
doctrine:
class: sfDoctrineDatabase
param:
dsn: 'mysql:host=localhost;dbname=jobeet test'
all:
doctrine:
class: sfDoctrineDatabase
param:
dsn: 'mysql:host=localhost;dbname=jobeet"'
username: root
password: null
Test Data

Now that we have a dedicated database for our tests, we need a way to load some test data.
During day 3, you learned to use the doctrine:data-load task, but for tests, we need to
reload the data each time we run them to put the database in a known state.

The doctrine:data-load task internally uses the Doctrine Core::loadData() method
to load the data:

Doctrine Core::loadData(sfConfig::get('sf test dir').'/fixtures');

E The sfConfig object can be used to get the full path of a project sub-directory. Using it
allows for the default directory structure to be customized.

The loadData() method takes a directory or a file as its first argument. It can also take an
array of directories and/or files.

We have already created some initial data in the data/fixtures/ directory. For tests, we
will put the fixtures into the test/fixtures/ directory. These fixtures will be used for
Doctrine unit and functional tests.

For now, copy the files from data/fixtures/ to the test/fixtures/ directory.

Testing JobeetJob

Let’s create some unit tests for the JobeetJob model class.

ass 3k

Listing
819

Day 8: The Unit Tests 102

As all our Doctrine unit tests will begin with the same code, create a Doctrine.php file in
the bootstrap/ test directory with the following code:

Listing // test/bootstrap/Doctrine.php
" include(dirname(_FILE).'/unit.php');

$configuration =
ProjectConfiguration::getApplicationConfiguration(
'frontend', 'test', true);

new sfDatabaseManager($configuration);
Doctrine Core::loadData(sfConfig::get('sf test dir').'/fixtures');
The script is pretty self-explanatory:

* As for the front controllers, we initialize a configuration object for the test
environment:

Listing $configuration =
' ProjectConfiguration: :getApplicationConfiguration(
'frontend', 'test', true);

* We create a database manager. It initializes the Doctrine connection by loading the
databases.yml configuration file.

ng’;gf’ new sfDatabaseManager($configuration);

* We load our test data by using Doctrine Core::loadData():

Listing Doctrine Core::loadData(sfConfig::get('sf test dir').'/fixtures');

Doctrine connects to the database only if it has some SQL statements to execute.

Now that everything is in place, we can start testing the JobeetJob class.
First, we need to create the JobeetJobTest.php file in test/unit/model:

Listing // test/unit/model/JobeetJobTest.php
~ include(dirname(FILE).'/../../bootstrap/Doctrine.php');

$t = new lime test(1l);
Then, let’s start by adding a test for the getCompanySlug () method:
Listing $t->comment (' ->getCompanySlug()"');
" $job = Doctrine Core::getTable('JobeetJob')->createQuery()->fetchOne();

$t->is($job->getCompanySlug(), Jobeet::slugify($job->getCompany()),
'->getCompanySlug() return the slug for the company');

Notice that we only test the getCompanySlug() method and not if the slug is correct or not,
as we are already testing this elsewhere.

Writing tests for the save () method is slightly more complex:

Lsing $t->comment (' ->save()');
" $job = create_job();

ass 3k

Day 8: The Unit Tests 103

$job->save();
$expiresAt = date('Y-m-d', time() + 86400

* sfConfig::get('app_active days'));
$t->is($job->getDateTimeObject('expires at')->format('Y-m-d'), $expiresAt,
'->save() updates expires at if not set');

$job = create job(array('expires at' => '2008-08-08'));
$job->save();

$t->is($job->getDateTimeObject('expires at')->format('Y-m-d'),
'2008-08-08', '->save() does not update expires at if set');

function create job($defaults = array())
{

static $category = null;

if (is _null($category))

{
$category = Doctrine Core::getTable('JobeetCategory')
->createQuery()
->limit (1)
->fetchOne();
}

$job = new JobeetJob();
$job->fromArray(array merge(array(
'category id' => $category->getId(),

"company' => 'Sensio Labs',
"position’ => 'Senior Tester',
'location’ => 'Paris, France',
'description' => 'Testing is fun',
"how to apply' => 'Send e-Mail',
'email’ => 'job@example.com',
"token' => rand(1111, 9999),

'is _activated' => true,
), $defaults));

return $job;

E Each time you add tests, don’t forget to update the number of expected tests (the plan) in
the lime test constructor method. For the JobeetJobTest file, you need to change it
from 1 to 3.

Test other Doctrine Classes

You can now add tests for all other Doctrine classes. As you are now getting used to the
process of writing unit tests, it should be quite easy.

Unit Tests Harness

The test:unit task can also be used to launch all unit tests for a project:
$ php symfony test:unit Listing

The task outputs whether each test file passes or fails:

ass 3k

Day 8: The Unit Tests 104

-/work/jobeet % ./symfony test:unit
JobeetTest
model/JobeetlobTest

All tests successful,
Files=2, Tests=12

/work/jobeet % I

If the test:unit task returns a “dubious status” for a file, it indicates that the script died
before end. Running the test file alone will give you the exact error message.

Final Thoughts

Even if testing an application is quite important, I know that some of you might have been
tempted to just skip this day. I'm glad you have not.

Sure, embracing symfony is about learning all the great features the framework provides, but
it’s also about its philosophy of development and the best practices it advocates. And testing
is one of them. Sooner or later, unit tests will save the day for you. They give you a solid
confidence about your code and the freedom to refactor it without fear. Unit tests are a safe
guard that will alert you if you break something. The symfony framework itself has more than
9000 tests.

Tomorrow, we will write some functional tests for the job and category modules. Until
then, take some time to write more unit tests for the Jobeet model classes.

ass 3k

Day 9: The Functional Tests 105

Day 9

The Functional Tests

Yesterday, we saw how to unit test our Jobeet classes using the lime testing library packaged
with symfony. Today, we will write functional tests for the features we have already
implemented in the job and category modules.

Functional Tests

Functional tests are a great tool to test your application from end to end: from the request
made by a browser to the response sent by the server. They test all the layers of an
application: the routing, the model, the actions, and the templates. They are very similar to
what you probably already do manually: each time you add or modify an action, you need to
go to the browser and check that everything works as expected by clicking on links and
checking elements on the rendered page. In other words, you run a scenario corresponding to
the use case you have just implemented.

As the process is manual, it is tedious and error prone. Each time you change something in
your code, you must step through all the scenarios to ensure that you did not break
something. That’s insane. Functional tests in symfony provide a way to easily describe
scenarios. Each scenario can then be played automatically over and over again by simulating
the experience a user has in a browser. Like unit tests, they give you the confidence to code
in peace.

T The functional test framework does not replace tools like “Selenium*3”. Selenium runs
directly in the browser to automate testing across many platforms and browsers and as
such, it is able to test your application’s JavaScript.

The sfBrowser class

In symfony, functional tests are run through a special browser, implemented by the

sfBrowser®* class. It acts as a browser tailored for your application and directly connected
to it, without the need for a web server. It gives you access to all symfony objects before and
after each request, giving you the opportunity to introspect them and do the checks you want
programatically.

sfBrowser provides methods that simulates navigation done in a classic browser:

43. http://selenium.seleniumhqg.org/
44. http://www.symfony-project.org/api/1 4/sfBrowser

ass 3k

Day 9: The Functional Tests 106

Method Description

get() Gets a URL

post() Posts to a URL

call() Calls a URL (used for PUT and DELETE methods)
back() Goes back one page in the history

forward() Goes forward one page in the history
reload() Reloads the current page

click() Clicks on a link or a button
select() selects a radiobutton or checkbox
deselect() deselects a radiobutton or checkbox
restart() Restarts the browser

Here are some usage examples of the sfBrowser methods:
Lz‘;tzln.q $browser = new sfBrowser();

$browser->
get('/')->
click('Design')->
get('/category/programming?page=2"')->
get('/category/programming', array('page' => 2))->
post('search', array('keywords' => 'php'))

’

sfBrowser contains additional methods to configure the browser behavior:

Method Description

setHttpHeader() Setsan HTTP header

setAuth() Sets the basic authentication credentials
setCookie() Set a cookie

removeCookie() Removes a cookie
clearCookies() Clears all current cookies
followRedirect () Follows a redirect

The sfTestFunctional class

We have a browser, but we need a way to introspect the symfony objects to do the actual
testing. It can be done with lime and some sfBrowser methods like getResponse() and
getRequest () but symfony provides a better way.

The test methods are provided by another class, sfTestFunct ional®® that takes a
sfBrowser instance in its constructor. The sfTestFunctional class delegates the tests to
tester objects. Several testers are bundled with symfony, and you can also create your own.

As we saw in day 8, functional tests are stored under the test/functional/ directory. For
Jobeet, tests are to be found in the test/functional/frontend/ sub-directory as each
application has its own subdirectory. This directory already contains two files:

45. http://www.symfony-project.org/api/1 4/sfTestFunctional

ass 3k

Day 9: The Functional Tests 107
categoryActionsTest.php, and jobActionsTest.php as all tasks that generate a
module automatically create a basic functional test file:

// test/functional/frontend/categoryActionsTest.php Listing
include(dirname(FILE).'/../../bootstrap/functional.php'); B

$browser = new sfTestFunctional(new sfBrowser());

$browser->
get('/category/index')->

with('request')->begin()->

isParameter('module', 'category')->
isParameter('action', 'index')->
end()->

with('response')->begin()->

isStatusCode(200) ->

checkElement('body', '!/This is a temporary page/')->
end()

’

At first sight, the script above may look a bit strange to you. That’s because methods of

sfBrowser and sfTestFunctional implement a fluent interface*0 by always returning
$this. It allows you to chain method calls for better readability. The above snippet is
equivalent to:

// test/functional/frontend/categoryActionsTest.php Listing
include(dirname(FILE).'/../../bootstrap/functional.php'); N

$browser = new sfTestFunctional(new sfBrowser());

$browser->get('/category/index');
$browser->with('request')->begin();
$browser->isParameter('module', 'category');
$browser->isParameter('action', 'index');
$browser->end();

$browser->with('response')->begin();
$browser->isStatusCode(200);

$browser->checkElement('body', '!/This is a temporary page/');
$browser->end();

Tests are run within a tester block context. A tester block context begins with with (' TESTER
NAME') ->begin() and ends with end():

$browser-> Lng
with('request')->begin()->)
isParameter('module', 'category')->
isParameter('action', 'index')->
end()

’

The code tests that the request parameter module equals category and action equals
index.

46. http://en.wikipedia.org/wiki/Fluent interface

ass 3k

Day 9: The Functional Tests 108

When you only need to call one test method on a tester, you don’t need to create a block:
with('request')->isParameter('module', 'category').

The Request Tester

The request tester provides tester methods to introspect and test the sfWebRequest object:

Method Description

isParameter() Checks a request parameter value

isFormat() Checks the format of a request

isMethod() Checks the method

hasCookie() Checks whether the request has a cookie with the
given name

isCookie() Checks the value of a cookie

The Response Tester

There is also a response tester class that provides tester methods against the
sfWebResponse object:

Method Description

checkElement () Checks if a response CSS selector match some criteria
checkForm() Checks an sfForm form object

debug() Prints the response output to ease debug

matches() Tests a response against a regexp

isHeader() Checks the value of a header

isStatusCode() Checks the response status code

)
isRedirected() Checks if the current response is a redirect

isValid() Checks if a response is well-formed XML (you also validate the response
again its document type be passing true as an argument)

We will describe more testers classes in the coming days (for forms, user, cache, ...).

Running Functional Tests

As for unit tests, launching functional tests can be done by executing the test file directly:
Listing $ php test/functional/frontend/categoryActionsTest.php
Or by using the test: functional task:

Listing $ php symfony test:functional frontend categoryActions

ass 3k

Day 9: The Functional Tests 109

-/work/jobeet % ./symfony test:functional frontend categoryActions
get /category/index
ck 1 = request parameter module is cotegory
not ok 2 - request parameter action is index
Failed test (/Users/fabien/work/symfony/dev/1,2/1ib/test/sfTesterRequest,class.php at line 48)
got: 'show’
expected: 'index’
not ok 3 - status code is 200

Failed test (/Users/fabien/work/symfony/dev/1.2/1ib/test/sfTesterResponse.class.php at line 257)
got: 484

expected: 200

ck 4 - response selector body does not match regex /This is a temporary page/

Looks like you failed 2 tests of 4.
~/work/jobeet $]

Test Data

As for Doctrine unit tests, we need to load test data each time we launch a functional test. We
can reuse the code we have written previously:

include(dirname(FILE).'/../../bootstrap/functional.php'); Listing

9-7

$browser = new sfTestFunctional(new sfBrowser());
Doctrine Core::loadData(sfConfig::get('sf test dir').'/fixtures');

Loading data in a functional test is a bit easier than in unit tests as the database has already
been initialized by the bootstrapping script.

As for unit tests, we won’t copy and paste this snippet of code in each test file, but we will
rather create our own functional class that inherits from sfTestFunctional:

// lib/test/JobeetTestFunctional.class.php Listing
class JobeetTestFunctional extends sfTestFunctional .

{
public function loadData()

{

Doctrine Core::loadData(sfConfig::get('sf test dir').'/fixtures');
return $this;

}
}

Writing Functional Tests

Writing functional tests is like playing a scenario in a browser. We already have written all
the scenarios we need to test as part of the day 2 stories.

First, let’s test the Jobeet homepage by editing the jobActionsTest.php test file. Replace
the code with the following one:

Expired jobs are not listed

// test/functional/frontend/jobActionsTest.php Listing
include(dirname(_ FILE).'/../../bootstrap/functional.php'); .

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

ass 3k

Day 9: The Functional Tests 110

$browser->info('l - The homepage')->

get('/')->
with('request')->begin()->
isParameter('module', 'job')->
isParameter('action', 'index')->
end()->

with('response')->begin()->
info(' 1.1 - Expired jobs are not listed')->
checkElement('.jobs td.position:contains("expired")', false)->
end()

’

As with lime, an informational message can be inserted by calling the info() method to
make the output more readable. To verify the exclusion of expired jobs from the homepage,
we check that the CSS selector .jobs td.position:contains("expired") does not
match anywhere in the response HTML content (remember that in the fixture files, the only
expired job we have contains “expired” in the position). When the second argument of the
checkElement () method is a Boolean, the method tests the existence of nodes that match
the CSS selector.

@ The checkElement () method is able to interpret most valid CSS3 selectors.

Only n jobs are listed for a category
Add the following code at the end of the test file:

Listing // test/functional/frontend/jobActionsTest.php

o $max = sfConfig::get('app _max jobs on homepage');

$browser->info('l - The homepage')->
get('/")->
info(sprintf(' 1.2 - Only %s jobs are listed for a category', $max))->
with('response')->
checkElement('.category programming tr', $max)

’

The checkElement () method can also check that a CSS selector matches ‘n’ nodes in the
document by passing an integer as its second argument.

A category has a link to the category page only if too many jobs

Listing // test/functional/frontend/jobActionsTest.php
) $browser->info('l - The homepage')->
get('/")->
info(' 1.3 - A category has a link to the category page only if too
many jobs')->
with('response')->begin()->
checkElement('.category design .more jobs', false)->
checkElement('.category programming .more jobs')->
end()

ass 3k

Day 9: The Functional Tests 111

In these tests, we check that there is no “more jobs” link for the design category
(.category design .more_ jobs does not exist), and that there is a “more jobs” link for
the programming category (.category programming .more_jobs does exist).

Jobs are sorted by date

$q = Doctrine Query::create() Listng
->select('j.*") '
->from('JobeetJob j')
->leftJoin('j.JobeetCategory c')
->where('c.slug = ?', 'programming')
->andWhere('j.expires at > ?', date('Y-m-d', time()))
->orderBy('j.created at DESC');
$job = $q->fetchOne();
$browser->info('l - The homepage')->
get('/")->
info(' 1.4 - Jobs are sorted by date')->
with('response')->begin()->
checkElement (sprintf('.category programming tr:first a[href*="/%d/"]',
$job->getId()))->
end()
To test if jobs are actually sorted by date, we need to check that the first job listed on the
homepage is the one we expect. This can be done by checking that the URL contains the
expected primary key. As the primary key can change between runs, we need to get the
Doctrine object from the database first.
Even if the test works as is, we need to refactor the code a bit, as getting the first job of the
programming category can be reused elsewhere in our tests. We won’t move the code to the
Model layer as the code is test specific. Instead, we will move the code to the
JobeetTestFunctional class we have created earlier. This class acts as a Domain Specific
functional tester class for Jobeet:
// lib/test/JobeetTestFunctional.class.php Listing
class JobeetTestFunctional extends sfTestFunctional '
{
public function getMostRecentProgrammingJob()
{
$q = Doctrine Query::create()
->select('j.*")
->from('JobeetJob j')
->leftJoin('j.JobeetCategory c')
->where('c.slug = ?', 'programming');
$q = Doctrine Core::getTable('Jobeetlob')->addActivelobsQuery($q);
return $qg->fetchOne();
}
/7 ...
}
You can now replace the previous test code by the following one:
Listing

9-14

ass 3k

Day 9: The Functional Tests 112

// test/functional/frontend/jobActionsTest.php
$browser->info('l - The homepage')->
get('/")->
info(' 1.4 - Jobs are sorted by date')->
with('response')->begin()->
checkElement (sprintf('.category programming tr:first alhref*="/%d/"]1",
$browser->getMostRecentProgrammingJob() ->getId()))->
end()

Each job on the homepage is clickable
Listing $job = $browser->getMostRecentProgrammingJob();

$browser->info('2 - The job page')->
get('/')->

info(' 2.1 - Each job on the homepage is clickable and give detailed
information')->

click('Web Developer', array(), array('position' => 1))->

with('request')->begin()->
isParameter('module', 'job')->
isParameter('action', 'show')->
isParameter('company slug', $job->getCompanySlug())->
isParameter('location slug', $job->getLocationSlug())->
isParameter('position slug', $job->getPositionSlug())->
isParameter('id', $job->getId())->

end()

’

To test the job link on the homepage, we simulate a click on the “Web Developer” text. As
there are many of them on the page, we have explicitly to asked the browser to click on the
first one (array('position’ => 1)).

Each request parameter is then tested to ensure that the routing has done its job correctly.

Learn by the Example

In this section, we have provided all the code needed to test the job and category pages. Read
the code carefully as you may learn some new neat tricks:

Listing // lib/test/JobeetTestFunctional.class.php
" class JobeetTestFunctional extends sfTestFunctional

{ public function loadData()
{ Doctrine Core::loadData(sfConfig::get('sf test dir').'/fixtures');
return $this;
}
?ublic function getMostRecentProgrammingJob ()

$g = Doctrine Query::create()
->select('j.*")
->from('Jobeetlob j')

ass 3k

Day 9: The Functional Tests 113

->leftJoin('j.JobeetCategory c')
->where('c.slug = ?', 'programming');
$q = Doctrine Core::getTable('JobeetJob')->addActiveJobsQuery($q);

return $qg->fetchOne();
}

public function getExpiredJob()
{

$q = Doctrine Query::create()
->from('JobeetJob j')
->where('j.expires at < ?', date('Y-m-d', time()));

return $q->fetchOne();
}
}

// test/functional/frontend/jobActionsTest.php
include(dirname(FILE).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

$browser->info('l - The homepage')->

get('/')->
with('request')->begin()->
isParameter('module', 'job')->
isParameter('action', 'index')->
end()->

with('response')->begin()->
info(' 1.1 - Expired jobs are not listed')->
checkElement('.jobs td.position:contains("expired")', false)->
end()

$max = sfConfig::get('app _max_jobs on homepage');

$browser->info('l - The homepage')->
info(sprintf(' 1.2 - Only %s jobs are listed for a category', $max))->
with('response')->
checkElement('.category programming tr', $max)

.
’

$browser->info('l - The homepage')->
get('/")->
info(' 1.3 - A category has a link to the category page only if too
many jobs')->
with('response')->begin()->
checkElement('.category design .more jobs', false)->
checkElement('.category programming .more jobs')->
end()

’

$browser->info('l - The homepage')->
info(' 1.4 - Jobs are sorted by date')->
with('response')->begin()->
checkElement (sprintf('.category programming tr:first a[href*="/%d/"]"',
$browser->getMostRecentProgrammingJob () ->getId()))->

ass 3k

Day 9: The Functional Tests 114

end()

$job = $browser->getMostRecentProgrammingJob();

$browser->info('2 - The job page')->
get('/')->

info(' 2.1 - Each job on the homepage is clickable and give detailed
information')->

click('Web Developer', array(), array('position' => 1))->

with('request')->begin()->
isParameter('module', 'job')->
isParameter('action', 'show')->
isParameter('company slug', $job->getCompanySlug())->
isParameter('location slug', $job->getLocationSlug())->
isParameter('position slug', $job->getPositionSlug())->
isParameter('id', $job->getId())->

end()->

info(' 2.2 - A non-existent job forwards the user to a 404')->
get('/job/foo-inc/milano-italy/0/painter')->
with('response')->isStatusCode(404)->

info(' 2.3 - An expired job page forwards the user to a 404')->

get(sprintf('/job/sensio-labs/paris-france/%d/web-developer',
$browser->getExpiredJob()->getId()))->

with('response')->isStatusCode(404)

’

// test/functional/frontend/categoryActionsTest.php
include(dirname(FILE).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

$browser->info('l - The category page')->
info(' 1.1 - Categories on homepage are clickable')->
get('/")->
click('Programming') ->
with('request')->begin()->

isParameter('module', 'category')->

isParameter('action', 'show')->

isParameter('slug', 'programming')->
end()->

info(sprintf(' 1.2 - Categories with more than %s jobs also have a
"more" link', sfConfig::get('app _max jobs on homepage')))->

get('/")->

click('27')->

with('request')->begin()->

isParameter('module', 'category')->

isParameter('action', 'show')->

isParameter('slug', 'programming')->
end()->

info(sprintf(' 1.3 - Only %s jobs are listed',
sfConfig::get('app _max_jobs on category')))->

ass 3k

Day 9: The Functional Tests 115

with('response')->checkElement('.jobs tr',
sfConfig::get('app _max _jobs on category'))->

info(' 1.4 - The job listed is paginated')->

with('response')->begin()->
checkElement('.pagination desc', '/32 jobs/')->
checkElement('.pagination desc', '#page 1/2#')->

end()->
click('2")->
with('request')->begin()->
isParameter('page', 2)->
end()->
with('response')->checkElement('.pagination desc', '#page 2/2#')

Debugging Functional Tests

Sometimes a functional test fails. As symfony simulates a browser without any graphical
interface, it can be hard to diagnose the problem. Thankfully, symfony provides the
~debug|Debug~() method to output the response header and content:

$browser->with('response')->debug(); Listing

9-17

The debug () method can be inserted anywhere in a response tester block and will halt the
script execution.

Functional Tests Harness

The test: functional task can also be used to launch all functional tests for an application:

$ php symfony test:functional frontend Listing

9-18

The task outputs a single line for each test file:

$./symfony test:functional frontend
categoryActionsTest
jobActionsTest

All tests successful.
Files=2, Tests=27
s 1

Tests Harness
As you may expect, there is also a task to launch all tests for a project (unit and functional):

$ php symfony test:all Listing

9-19

ass 3k

Day 9: The Functional Tests 116

$./symfony test:all
functional /frontend/categoryActionsTest
functicnal/frontend/jobActionsTest
unit/JobeetTest

unit/model/JobeetlobTest
All tests suceessful.

Files=4, Tests=39

s 1

When you have a large suite of tests, it can be very time consuming to launch all tests every
time you make a change, especially if some tests fail. That’s because each time you fix a test,
you should run the whole test suite again to ensure that you have not break something else.
But as long as the failed tests are not fixed, there is no point in re-executing all other tests.
The test:all tasks have a --only-failed option that forces the task to only re-execute
tests that failed during the previous run:

Listing $ php symfony test:all --only-failed
The first time you run the task, all tests are run as usual. But for subsequent test runs, only
tests that failed last time are executed. As you fix your code, some tests will pass, and will be
removed from subsequent runs. When all tests pass again, the full test suite is run... you can
then rinse and repeat.

@ If you want to integrate your test suite in a continuous integration process, use the - -xml
option to force the test:all task to generate a JUnit compatible XML output.

Listing $ php symfony test:all --xml=log.xml

Final Thoughts

That wraps up our tour of the symfony test tools. You have no excuse anymore to not test your
applications! With the lime framework and the functional test framework, symfony provides
powerful tools to help you write tests with little effort.

We have just scratched the surface of functional tests. From now on, each time we implement
a feature, we will also write tests to learn more features of the test framework.

Tomorrow, we will talk about yet another great feature of symfony: the form framework.

ass 3k

Day 10: The Forms 117

Day 10

The Forms

Previous day of this Jobeet tutorial got off to a flying start with the introduction of the
symfony test framework. We will continue today with the form framework.

The Form Framework

Any website has forms; from the simple contact form to the complex ones with lots of fields.
Writing forms is also one of the most complex and tedious task for a web developer: you need
to write the HTML form, implement validation rules for each field, process the values to store
them in a database, display error messages, repopulate fields in case of errors, and much
more...

Of course, instead of reinventing the wheel over and over again, symfony provides a
framework to ease form management. The form framework is made of three parts:

* validation: The validation sub-framework provides classes to validate inputs
(integer, string, email address, ...)

* widgets: The widget sub-framework provides classes to output HTML fields (input,
textarea, select, ...)

* forms: The form classes represent forms made of widgets and validators and
provide methods to help manage the form. Each form field has its own validator and
widget.

Forms

A symfony form is a class made of fields. Each field has a name, a validator, and a widget. A
simple ContactForm can be defined with the following class:

class ContactForm extends sfForm
{
public function configure()
{
$this->setWidgets(array(
"email’ => new sfWidgetFormInputText(),
'message' => new sfWidgetFormTextarea(),
));

$this->setValidators(array(
"email'’ => new sfValidatorEmail(),
'message’ => new sfValidatorString(array('max_ length' => 255)),

ass 3k

Listing
10-1

Listing
10-3

Listing
104

Day 10: The Forms 118

));
}
}

Form fields are configured in the configure() method, by using the setValidators()
and setWidgets () methods.

The form framework comes bundled with a lot of widgets47 and validators*®. The API
describes them quite extensively with all the options, errors, and default error messages.

The widget and validator class names are quite explicit: the email field will be rendered as
an HTML <input> tag (sfWidgetFormInputText) and validated as an email address
(sfValidatorEmail). The message field will be rendered as a <textarea> tag
(sfWidgetFormTextarea), and must be a string of no more than 255 characters
(sfvalidatorString).

By default all fields are required, as the default value for the required option is true. So,
the validation definition for email is equivalent to new
sfValidatorEmail(array('required' => true)).

You can merge a form in another one by using the mergeForm() method, or embed one by
using the embedForm() method:

Listing $this->mergeForm(new AnotherForm());
102 $this->embedForm('name', new AnotherForm());

Doctrine Forms

Most of the time, a form has to be serialized to the database. As symfony already knows
everything about your database model, it can automatically generate forms based on this
information. In fact, when you launched the doctrine:build --all task during day 3,
symfony automatically called the doctrine:build --forms task:

$ php symfony doctrine:build --forms

The doctrine:build --forms task generates form classes in the 1ib/form/ directory.
The organization of these generated files is similar to that of 1ib/model/. Each model class
has a related form class (for instance JobeetJob has JobeetJobForm), which is empty by
default as it inherits from a base class:

// lib/form/doctrine/JobeetJobForm.class.php
class JobeetJobForm extends BaseJobeetJobForm
{

public function configure()

{

}
}

47. http://www.symfony-project.org/api/1 4/widget
48. http://www.symfony-project.org/api/1 4/validator

ass 3k

Day 10: The Forms 119

@ By browsing the generated files under the 1ib/form/doctrine/base/ sub-directory, you
will see a lot of great usage examples of symfony built-in widgets and validators.

@ You can disable form generation on certain models by passing parameters to the symfony
Doctrine behavior:

SomeModel: Listing
. 10-5
options:
symfony:
form: false
filter: false

Customizing the Job Form

The job form is a perfect example to learn form customization|Forms (Customization). Let’s
see how to customize it, step by step.

First, change the “Post a Job” link in the layout to be able to check changes directly in your
browser:

<!-- apps/frontend/templates/layout.php --> Listing
<a href="<?php echo url for('job new') ?>">Post a Job v

By default, a Doctrine form displays fields for all the table columns. But for the job form,
some of them must not be editable by the end user. Removing fields from a form is as simple
as unsetting them:

// lib/form/doctrine/JobeetJobForm.class.php Listing
class JobeetJobForm extends BaseJobeetJobForm ‘
{
public function configure()
{
unset (
$this['created at'], $this['updated at'],
$this['expires at'], $this['is activated']
);
}
}

Unsetting a field means that both the field widget and validator are removed.

Instead of unsetting the fields you don’t want to display, you can also explicitly list the fields
you want by using the useFields () method:

// lib/form/doctrine/JobeetJobForm.class.php Listing
class JobeetJobForm extends BaseJobeetJobForm '

public function configure()

{
$this->useFields(array('category id', 'type', 'company', 'logo',
‘url', 'position', 'location', 'description', 'how to apply’,
'token', 'is public', 'email'));
}

ass 3k

Day 10: The Forms 120

The useFields() method does two things automatically for you: it adds the hidden fields
and the array of fields is used to change the fields order.

Explicitly listing the form fields you want to display means that when adding new fields to a
base form, they won’t automagically appear in your form (think of a model form where you
add a new column to the related table).

The form configuration must sometimes be more precise than what can be introspected from
the database schema. For example, the email column is a varchar in the schema, but we
need this column to be validated as an email. Let’s change the default sfValidatorString
toa sfValidatorEmail:

Listng // 1ib/form/doctrine/JobeetJobForm.class.php
10-9 . . .
public function configure()

{
/] ...

$this->validatorSchema['email'] = new sfValidatorEmail();

}

Replacing the default validator is not always the best solution, as the default validation rules
introspected from the database schema are lost (new
sfValidatorString(array('max _length' => 255))). It is almost always better to add
the new validator to the existing ones by using the special sfValidatorAnd validator:

Listing // 1ib/form/doctrine/JobeetJobForm.class.php
10-10 . : .
public function configure()

{
/...

$this->validatorSchema['email'] = new sfValidatorAnd(array/(
$this->validatorSchemal['email'],

new sfValidatorEmail(),

));

}

The sfValidatorAnd validator takes an array of validators that must pass for the value to
be wvalid. The trick here 1is to reference the current validator ($this-
>validatorSchema['email']), and to add the new one.

F You can also use the sfValidatorOr validator to force a value to pass at least one
validator. And of course, you can mix and match sfValidatorAnd and sfValidatorOr
validators to create complex boolean based validators.

Even if the type column is also a varchar in the schema, we want its value to be restricted
to a list of choices: full time, part time, or freelance.

First, let’s define the possible values in JobeetJobTable

Listing // lib/model/doctrine/Jobeet]obTable.class.php
class JobeetJobTable extends Doctrine Table
{
static public $types = array(
"full-time' => 'Full time',
'part-time' => 'Part time',
'freelance' => 'Freelance',
);

ass 3k

Day 10: The Forms 121

public function getTypes()
{

}

/] ...
}

return self::$types;

Then, use sfWidgetFormChoice for the type widget:

$this->widgetSchemal ' 'type'] = new sfWidgetFormChoice(array(lﬁT§
'choices' => Doctrine Core::getTable('JobeetJob')->getTypes(), '

'expanded' => true,

));

sfWidgetFormChoice represents a choice widget which can be rendered by a different
widget according to some configuration options (expanded and multiple):

* Dropdown list (<select>): array('multiple' => false, 'expanded' =>
false)
* Dropdown box (<select multiple="multiple">): array('multiple' =>

true, 'expanded' => false)
* List of radio buttons: array('multiple' => false, 'expanded' => true)
» List of checkboxes: array('multiple' => true, 'expanded' => true)

T If you want one of the radio button to be selected by default (full-time for instance), you
can change the default value in the database schema.

Even if you think nobody can submit a non-valid value, a hacker can easily bypass the widget

choices by using tools like curl® or the Firefox Web Developer Toolbar®?. Let’s change the
validator to restrict the possible choices:

$this->validatorSchema['type'] = new sfValidatorChoice(array/(Listing
'choices' => h

array keys(Doctrine Core::getTable('JobeetJob')->getTypes()),

));

As the 1ogo column will store the filename of the logo associated with the job, we need to
change the widget to a file input tag:

$this->widgetSchema['logo'] = new sfWidgetFormInputFile(array/(Listing
'label' => 'Company logo', '

));

For each field, symfony automatically generates a label (which will be used in the rendered
<label> tag). This can be changed with the label option.

You can also change labels in a batch with the setLabels () method of the widget array:

$this->widgetSchema->setlLabels(array(Listing
‘category id' => 'Category', -
'is public' => 'Public?’',

49. http://curl.haxx.se/
50. http://chrispederick.com/work/web-developer/

ass 3k

Day 10: The Forms

"how to apply' => 'How to apply?’',
));

We also need to change the default validator:

Listing $this->validatorSchema['logo'] = new sfValidatorFile(array/(
'required’ => false,
'path’ => sfConfig::get('sf upload dir').'/jobs"',
'mime types' => 'web images',
));

sfValidatorFile is quite interesting as it does a number of things:

* Validates that the uploaded file is an image in a web format (mime_ types)
* Renames the file to something unique

+ Stores the file in the given path

* Updates the Logo column with the generated name

122

T You need to create the logo directory (web/uploads/jobs/) and check that it is writable

by the web server.

As the validator only saves the filename in the database, change the path used in the

showSuccess template:

Listing // apps/frontend/modules/job/templates/showSuccess.php

<img src="http://www.symfony-project.org/uploads/jobs/<?php echo
$job->getlLogo() ?>" alt="<?php echo $job->getCompany() ?> logo" />

(;) If a generatelLogoFilename() method exists in the model, it will be called by the
validator and the result will override the default generated logo filename. The method

takes the sfValidatedFile object as an argument.

Just as you can override the generated label of any field, you can also define a help message.

Let’s add one for the is public column to better explain its significance:

Listing $this->widgetSchema->setHelp('is public', 'Whether the job can also be

10 published on affiliate websites or not. '),

The final JobeetJobForm class reads as follows

Listing // lib/form/doctrine/JobeetJobForm.class.php
’ class JobeetJobForm extends BaseJobeetJobForm

{

public function configure()

{

unset (
$this['created at'], $this['updated at'],
$this['expires at'], $this['is activated']

);

$this->validatorSchema['email'] = new sfValidatorAnd(array(
$this->validatorSchema['email'],
new sfValidatorEmail(),

));

$this->widgetSchemal['type'] = new sfWidgetFormChoice(array/(

Laes >k

Day 10: The Forms 123

'choices' => Doctrine Core::getTable('JobeetJob')->getTypes(),
'expanded' => true,
));
$this->validatorSchema['type'] = new sfValidatorChoice(array/(
'choices' =>
array keys(Doctrine Core::getTable('JobeetJob')->getTypes()),
));

$this->widgetSchema['logo'] = new sfWidgetFormInputFile(array(
'label' => 'Company logo',
));

$this->widgetSchema->setlLabels(array(

‘category id' => 'Category',
'is public' => 'Public?',
"how to apply' => 'How to apply?',

));

$this->validatorSchema['logo'] = new sfValidatorFile(array/(
'required’ => false,
'path’ => sfConfig::get('sf upload dir').'/jobs"',
'mime types' => 'web images',

));

$this->widgetSchema->setHelp('is public', 'Whether the job can also be
published on affiliate websites or not.');

}
}

The Form Template

Now that the form class has been customized, we need to display it. The template for the
form is the same whether you want to create a new job or edit an existing one. In fact, both
newSuccess.php and editSuccess. php templates are quite similar:

<!-- apps/frontend/modules/job/templates/newSuccess.php --> Listing
<?php use stylesheet('job.css') ?>)

<h1>Post a Job</hl>

<?php include partial('form', array('form' => $form)) 7>

F If you have not added the job stylesheet yet, it is time to do so in both templates (<?php
use stylesheet('job.css') ?>).

The form itself is rendered in the form partial. Replace the content of the generated form
partial with the following code:

<!-- apps/frontend/modules/job/templates/ form.php --> Listing
<?php use stylesheets for form($form) ?> i
<?php use javascripts for form($form) 7>

<?php echo form tag for($form, '@job') 7>
<table id="job form">
<tfoot>
<tr>

ass 3k

Day 10: The Forms 124

<td colspan="2">
<input type="submit" value="Preview your job" />
</td>
</tr>
</tfoot>
<tbody>
<?php echo $form 7>
</tbody>
</table>
</form>

The use javascripts for form() and use stylesheets for form() helpers include
JavaScript and stylesheet dependencies needed for the form widgets.

Even if the job form does not need any JavaScript or stylesheet file, it is a good habit to
keep these helper calls “just in case”. It can save your day later if you decide to change a
widget that needs some JavaScript or a specific stylesheet.

The form tag for() helper generates a <form> tag for the given form and route and
changes the HTTP methods to POST|POST (HTTP Method) or PUT depending on whether the
object is new or not. It also takes care of the multipart attribute if the form has any file
input tags.

Eventually, the <?php echo $form 7> renders the form widgets.

ass 3k

Day 10: The Forms 125

Customizing the Look and Feel of a Form

By default, the <?php echo $form 7> renders the form widgets as table rows.

Most of the time, you will need to customize the layout of your forms. The form object
provides many useful methods for this customization:

Method Description

render () Renders the form (equivalent to the output of
echo $form)

renderHiddenFields () Renders the hidden fields

hasErrors () Returns true if the form has some errors
hasGlobalErrors () Returns true if the form has global errors
getGlobalErrors() Returns an array of global errors

renderGlobalErrors() Renders the global errors

The form also behaves like an array of fields. You can access the company field with
$form['company']. The returned object provides methods to render each element of the
field:

Method Description
renderRow() Renders the field row
render() Renders the field widget

renderLabel() Renders the field label
renderError() Renders the field error messages if any
renderHelp() Renders the field help message

The echo $form statement is equivalent to:
<?php foreach ($form as $widget): 7> Listing

<?php echo $widget->renderRow() ?> N
<?php endforeach 7>

The Form Action

We now have a form class and a template that renders it. Now, it’s time to actually make it
work with some actions.

The job form is managed by five methods in the job module:

All

new: Displays a blank form to create a new job

edit: Displays a form to edit an existing job

create: Creates a new job with the user submitted values

update: Updates an existing job with the user submitted values

processForm: Called by create and update, it processes the form (validation,
form repopulation, and serialization to the database)

forms have the following life-cycle:

ass 3k

Day 10: The Forms 126

GET /frontend_dev.php/job/new w newsuccess

$this->form = new JobeetJobForm(}; PostaJob Posta Job <Iphp echo Sfomm 1>
Category id | Dasign] Catagory id [“Design &
Type Foll e 580 Type Full ime 59

Company Company Heguimd

w Laga Eroaue File | o file seloctad

url weww google.com

POST /frontend_dev.php/job 2 Form Submission

$this-»>form->bind{$1equest->getParameter ($form->getlame())); /\

if ($this->form->isvalid()) Form is valid

$job = $this-sform-ssave();

$this-s>redirect{$this->generatelrl(’ job_show’, $job));

GET /frontend_dev.php/job/TOKEN showSuccess

As we have created a Doctrine route collection 5 days sooner for the job module, we can
simplify the code for the form management methods:

Listing // apps/frontend/modules/job/actions/actions.class.php
= public function executeNew(sfWebRequest $request)

{

$this->form = new JobeetJobForm();

}

public function executeCreate(sfWebRequest $request)
{
$this->form = new JobeetJobForm();
$this->processForm($request, $this->form);
$this->setTemplate('new');

}

public function executeEdit(sfWebRequest $request)

{
$this->form = new JobeetJobForm($this->getRoute()->getObject());
}

public function executeUpdate(sfWebRequest $request)

{
$this->form = new JobeetJobForm($this->getRoute()->getObject());
$this->processForm($request, $this->form);
$this->setTemplate('edit');

}

public function executeDelete(sfWebRequest $request)
{
$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();

ass 3k

Day 10: The Forms 127

$job->delete();

$this->redirect('job/index');

}

protected function processForm(sfWebRequest $request, sfForm $form)
{

$form->bind(
$request->getParameter($form->getName()),
$request->getFiles($form->getName())
);

if ($form->isValid())
{

$job = $form->save();

$this->redirect('job show', $job);
}
}

When you browse to the /job/new page, a new form instance is created and passed to the
template (new action).

When the user submits the form (create action), the form is bound (bind() method) with
the user submitted values and the validation is triggered.

Once the form is bound, it is possible to check its validity using the isValid () method: If the
form is valid (returns true), the job is saved to the database ($form->save()), and the user
is redirected to the job preview page; if not, the newSuccess.php template is displayed
again with the user submitted values and the associated error messages.

The setTemplate() method changes the template used for a given action. If the
submitted form is not valid, the create and update methods use the same template as the
new and edit action respectively to re-display the form with error messages.

The modification of an existing job is quite similar. The only difference between the new and
the edit action is that the job object to be modified is passed as the first argument of the
form constructor. This object will be used for default widget values in the template (default
values are an object for Doctrine forms, but a plain array for simple forms).

You can also define default values for the creation form. One way is to declare the values in
the database schema. Another one is to pass a pre-modified Job object to the form
constructor.

Change the executeNew() method to define full-time as the default value for the type
column:

// apps/frontend/modules/job/actions/actions.class.php
public function executeNew(sfWebRequest $request)

{
$job = new JobeetJob();
$job->setType('full-time');

$this->form = new JobeetJobForm($job);
}

ass 3k

Listing
10-24

Listing
10-25

Listing
10-26

Listing
10-27

Day 10: The Forms 128

E When the form is bound, the default values are replaced with the user submitted ones. The
user submitted values will be used for form repopulation when the form is redisplayed in
case of validation errors.

Protecting the Job Form with a Token

Everything must work fine by now. As of now, the user must enter the token for the job. But
the job token must be generated automatically when a new job is created, as we don’t want to
rely on the user to provide a unique token.

Update the save() method of JobeetJob to add the logic that generates the token before a
new job is saved:

// lib/model/doctrine/JobeetJob.class.php
public function save(Doctrine Connection $conn = null)

{
/..

if (!'$this->getToken())
{

}

$this->setToken(shal($this->getEmail().rand(11111, 99999)));

return parent::save($conn);

}

You can now remove the token field from the form:

// lib/form/doctrine/JobeetJobForm.class.php
class JobeetJobForm extends BaseJobeetJobForm

{
public function configure()
{
unset(
$this['created at'], $this['updated at'],
$this['expires at'], $this['is activated'],
$this['token']
);
/7 ...
}
/7 ...
}

If you remember the user stories from day 2, a job can be edited only if the user knows the
associated token. Right now, it is pretty easy to edit or delete any job, just by guessing the
URL. That'’s because the edit URL is like /job/ID/edit, where ID is the primary key of the
job.

By default, a sfDoctrineRouteCollection route generates URLs with the primary key,
but it can be changed to any unique column by passing the column option

apps/frontend/config/~routing|Routing~.yml

job:
class: sfDoctrineRouteCollection

ass 3k

Day 10: The Forms 129

options: { model: JobeetJob, column: token }
requirements: { token: \w+ }

Notice that we have also changed the token parameter requirement to match any string as
the symfony default requirements is \d+ for the unique key.

Now, all routes related to the jobs, except the job show user one, embed the token. For
instance, the route to edit a job is now of the following pattern:

http://www. jobeet.com.localhost/job/TOKEN/edit Listing

10-28

You will also need to change the “Edit” link in the showSuccess template:

<!-- apps/frontend/modules/job/templates/showSuccess.php --> Listing
<a href="<?php echo url for('job edit', $job) ?>">Edit '

The Preview Page

The preview page is the same as the job page display. Thanks to the routing, if the user
comes with the right token, it will be accessible in the token request parameter.

If the user comes in with the tokenized URL, we will add an admin bar at the top. At the
beginning of the showSuccess template, add a partial to host the admin bar and remove the
edit link at the bottom:

<!-- apps/frontend/modules/job/templates/showSuccess.php --> Listing
<?php if ($sf request->getParameter('token') == $job->getToken()): 7>

<?php include partial('job/admin', array('job' => $job)) 7>
<?php endif 7>

Then, create the admin partial:

<!-- apps/frontend/modules/job/templates/ admin.php --> Listing
<div id="job actions"> ‘
<h3>Admin</h3>

<?php if (!'$job->getIsActivated()): ?>
<?php echo link to('Edit', 'job edit', $job) ?>
<?php echo link to('Publish', 'job edit', $job) ?>
<?php endif 7>
<?php echo link to('Delete', 'job delete', $job, array('method' =
'delete', 'confirm' => 'Are you sure?')) 7>
<?php if ($job->getIsActivated()): ?>
<li<?php $job->expiresSoon() and print ' class="expires soon"' 7>>
<?php if ($job->isExpired()): ?>
Expired
<?php else: 7>
Expires in <?php echo $job->getDaysBeforeExpires()
?7> days
<?php endif 7>

|
\%

<?php if ($job->expiresSoon()): ?>
- Extend for another <?php echo
sfConfig::get('app_active days') ?> days
<?php endif 7>

<?php else: 7>

ass 3k

Day 10: The Forms 130

[Bookmark this <?php echo link to('URL', 'job show', $job, true)
7> to manage this job in the future.]

<?php endif 7>

</div>

There is a lot of code, but most of the code is simple to understand.

To make the template more readable, we have added a bunch of shortcut methods in the
JobeetJob class:

Listing // lib/model/doctrine/JobeetJob.class.php
" public function getTypeName()

{
$types = Doctrine Core::getTable('JobeetJob')->getTypes();
return $this->getType() ? $types[$this->getType()] : '';

}

public function isExpired()

{
}

return $this->getDaysBeforeExpires() < 0;

public function expiresSoon()

{
}

return $this->getDaysBeforeExpires() < 5;

public function getDaysBeforeExpires()

{

return ceil(($this->getDateTimeObject('expires at')->format('U"') -
time()) / 86400);
}

The admin bar displays the different actions depending on the job status:

L L

Enter some keywords (city, country, position, ...)

Admin Edit Publish Delete [Bookmark this URL to manage this job in the future.]

SENSIO LABS Paris, France

Web Developer - full-time

= L - J D

Enter some keywords (city, country, position, ...)

Admin Delete Expires in 29 days

SENSIO LABS Paris, France

Web Developer - full-time

symfony Brought to you by SENSIOLABS 3K

Day 10: The Forms 131

You will be able to see the “activated” bar after the next section.

Job Activation and Publication

In the previous section, there is a link to publish the job. The link needs to be changed to
point to a new publish action. Instead of creating a new route, we can just configure the
existing job route:

apps/frontend/config/routing.yml Listing
job: ‘
class: sfDoctrineRouteCollection
options:
model: JobeetJob
column: token
object actions: { publish: put }
requirements:
token: \w+

The object actions takes an array of additional actions for the given object. We can now
change the link of the “Publish” link:

<!-- apps/frontend/modules/job/templates/ admin.php --> Listing

 -
<?php echo link to('Publish', 'job publish', $job, array('method' =>

'put')) 7>

The last step is to create the publish action:

// apps/frontend/modules/job/actions/actions.class.php Listing
public function executePublish(sfWebRequest $request) -
{

$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();
$job->publish();

$this->getUser()->setFlash('notice', sprintf('Your job is now online for
%s days.', sfConfig::get('app _active days')));

$this->redirect('job show user', $job);

}

The astute reader will have noticed that the “Publish” link is submitted with the HTTP put
method. To simulate the put method, the link is automatically converted to a form when you
click on it.

And because we have enabled the CSRF protection, the link to() helper embeds a CSRF
token in the link and the checkCSRFProtection() method of the request object checks the
validity of it on submission.

The executePublish() method uses a new publish() method that can be defined as
follows:

ass 3k

Listing
10-36

Listing
10-37

Day 10: The Forms 132

// lib/model/doctrine/JobeetJob.class.php
public function publish()

{
$this->setIsActivated(true);

$this->save();

}

You can now test the new publish feature in your browser.

But we still have something to fix. The non-activated jobs must not be accessible, which
means that they must not show up on the Jobeet homepage, and must not be accessible by
their URL. As we have created an addActiveJobsQuery() method to restrict a
Doctrine Query to active jobs, we can just edit it and add the new requirements at the end:

// lib/model/doctrine/JobeetJobTable.class.php
public function addActiveJobsQuery(Doctrine Query $q = null)

{
/...

$g->andWhere($alias . '.is activated = ?', 1);

return $q;

}

That’s all. You can test it now in your browser. All non-activated jobs have disappeared from
the homepage; even if you know their URLs, they are not accessible anymore. They are,
however, accessible if one knows the job’s token URL. In that case, the job preview will show
up with the admin bar.

That’s one of the great advantages of the MVC pattern and the refactorization we have done
along the way. Only a single change in one method was needed to add the new requirement.

T When we created the getWithJobs() method, we forgot to wuse the
addActiveJobsQuery() method. So, we need to edit it and add the new requirement:

Listing class JobeetCategoryTable extends Doctrine Table

public function getWithJobs()
{

/...
$g->andWhere('j.is activated = ?', 1);

return $q->execute();

}

Final Thoughts

Today was packed with a lot of new information, but hopefully you now have a better
understanding of symfony’s form framework.

We know that some of you noticed that we forgot something here... We have not implemented
any test for the new features. Because writing tests is an important part of developing an
application, this is the first thing we will do tomorrow.

ass 3k

Day 11: Testing your Forms 133

Day 11

Testing your Forms

In day 10, we created our first form with symfony. People are now able to post a new job on
Jobeet but we ran out of time before we could add some tests. That’s what we will do along
these lines. Along the way, we will also learn more about the form framework.

Using the Form Framework without symfony

The symfony framework components are quite decoupled. This means that most of them can
be used without using the whole MVC framework. That’s the case for the form framework,
which has no dependency on symfony. You can use it in any PHP application by getting the
lib/form/, lib/widgets/, and lib/validators/ directories.

Another reusable component is the routing framework. Copy the lib/routing/ directory
in your non-symfony project, and benefit from pretty URLs for free.

The components that are symfony independent form the symfony platform:

[szequest] [szouting] [stogger] [st‘IBN] [stserl [szesponsel

NG -
[sfStorage] [stache] [stutputEscaper]

s \
[sfValidator] [sfWidget l sfCoreAutoload
platform

[sfYAML l [st atabase] [sfFo rm]

Submitting a Form

Let’'s open the jobActionsTest file to add functional tests for the job creation and
validation process.

At the end of the file, add the following code to get the job creation page:
// test/functional/frontend/jobActionsTest.php Listing

$browser->info('3 - Post a Job page')-> e
info(' 3.1 - Submit a Job')->

get('/job/new')->

with('request')->begin()->
isParameter('module', 'job')->

ass 3k

Listing
11-2

Listing
11-3

Day 11: Testing your Forms 134

isParameter('action', 'new')->
end()

’

We have already used the click() method to simulate clicks on links. The same click()
method can be used to submit a form. For a form, you can pass the values to submit for each
field as a second argument of the method. Like a real browser, the browser object will merge
the default values of the form with the submitted values.

But to pass the field values, we need to know their names. If you open the source code or use
the Firefox Web Developer Toolbar “Forms > Display Form Details” feature, you will see that
the name for the company field is jobeet job[company].

F When PHP encounters an input field with a name like jobeet job[company], it
automatically converts it to an array of name jobeet job.

To make things look a bit more clean, let’s change the format to job[%s] by adding the
following code at the end of the configure() method of JobeetJobForm:

// lib/form/doctrine/JobeetJobForm.class.php
$this->widgetSchema->setNameFormat('job[%s]');

After this change, the company name should be job[company] in your browser. It is now
time to actually click on the “Preview your job” button and pass valid values to the form:

// test/functional/frontend/jobActionsTest.php
$browser->info('3 - Post a Job page')->
info(' 3.1 - Submit a Job')->

get('/job/new')->
with('request')->begin()->

isParameter('module', 'job')->
isParameter('action', 'new')->
end()->

click('Preview your job', array('job' => array(

'company' => 'Sensio Labs',

"url' => 'http://www.sensio.com/"',

'logo’ => sfConfig::get('sf upload dir').'/jobs/
sensio-labs.gif’',

"position’ => 'Developer’',

'location' => 'Atlanta, USA',

'description' => 'You will work with symfony to develop websites for

our customers.',
"how to apply' => 'Send me an email',
'email’ => 'for.a.job@example.com',
'is public' => false,
)))->

with('request')->begin()->

isParameter('module', 'job')->
isParameter('action', 'create')->
end()

.
’

The browser also simulates file uploads if you pass the absolute path to the file to upload.
After submitting the form, we checked that the executed action is create.

ass 3k

Day 11: Testing your Forms 135

The Form Tester

The form we have submitted should be valid. You can test this by using the form tester:

with('form')->begin()-> Listing
hasErrors(false) -> i
end()->

The form tester has several methods to test the current form status, like the errors.

If you make a mistake in the test, and the test does not pass, you can use the
with('response')->~debug|Debug~() statement we have seen during day 9. But you

will have to dig into the generated HTML to check for error messages. That’s not really
convenient. The form tester also provides a debug () method that outputs the form status and

all error messages associated with it:

with('form')->debug() Listing

11-5

Redirection Test

As the form is valid, the job should have been created and the user redirected to the show
page:

with('response')->isRedirected()-> Listing
followRedirect()-> v

with('request')->begin()->

isParameter('module', 'job')->
isParameter('action', 'show')->
end()->

The isRedirected() tests if the page has been redirected and the followRedirect()
method follows the redirect.

F The browser class does not follow redirects automatically as you might want to introspect
objects before the redirection.

The Doctrine Tester

Eventually, we want to test that the job has been created in the database and check that the
is activated column is set to false as the user has not published it yet.

This can be done quite easily by using yet another tester, the Doctrine tester. As the
Doctrine tester is not registered by default, let’s add it now:

$browser->setTester('doctrine', 'sfTesterDoctrine'); L;slm;g

The Doctrine tester provides the check() method to check that one or more objects in the
database match the criteria passed as an argument.

with('doctrine')->begin()-> Lﬁgg
check('JobeetJob', array('
'location' => 'Atlanta, USA',

ass 3k

Day 11: Testing your Forms 136

'is activated' => false,
'is public' => false,
))->
end()

The criteria can be an array of values like above, or a Doctrine Query instance for more
complex queries. You can test the existence of objects matching the criteria with a Boolean as
the third argument (the default is true), or the number of matching objects by passing an
integer.

Testing for Errors

The job form creation works as expected when we submit valid values. Let’s add a test to
check the behavior when we submit non-valid data:

Listing $b rowser->

11-9

Listing
11-10

info(' 3.2 - Submit a Job with invalid values')->

get('/job/new')->
click('Preview your job', array('job' => array(

'company' => 'Sensio Labs',
"position’ => 'Developer’,

'location' => 'Atlanta, USA',
'email’ => 'not.an.email’,

)))->

with('form')->begin()->
hasErrors(3) ->
isError('description', 'required')->
isError('how to apply', 'required')->
isError('email', 'invalid')->

end()

’

The hasErrors() method can test the number of errors if passed an integer. The
isError() method tests the error code for a given field.

@ In the tests we have written for the non-valid data submission, we have not re-tested the
entire form all over again. We have only added tests for specific things.

You can also test the generated HTML to check that it contains the error messages, but it is
not necessary in our case as we have not customized the form layout.

Now, we need to test the admin bar found on the job preview page. When a job has not been
activated yet, you can edit, delete, or publish the job. To test those three links, we will need to
first create a job. But that’s a lot of copy and paste. As I don’t like to waste e-trees, let’s add a
job creator method in the JobeetTestFunctional class

// lib/test/JobeetTestFunctional.class.php
class JobeetTestFunctional extends sfTestFunctional

{

public function createlob($values = array())

{

return $this->
get('/job/new')->
click('Preview your job', array('job' => array merge(array/(

ass 3k

Day 11: Testing your Forms 137

'company' => 'Sensio Labs',

"url' => 'http://www.sensio.com/',

'position’ => 'Developer',

'location' => 'Atlanta, USA',

'description' => 'You will work with symfony to develop websites

for our customers.',
"how to apply' => 'Send me an email',
'email’ => 'for.a.job@example.com',
'is public' => false,
), $values)))->
followRedirect()

}

/] ...
}

The createJob () method creates a job, follows the redirect and returns the browser to not
break the fluent interface. You can also pass an array of values that will be merged with some
default values.

Forcing the HTTP Method of a link

Testing the “Publish” link is now more simple:

$browser->info(' 3.3 - On the preview page, you can publish the job')-> Listing
createlJob(array('position' => 'F001'))->
click('Publish', array(), array('method' => 'put', ' with csrf' =>

true))->

with('doctrine')->begin()->

check('JobeetJob', array(
'position’ => 'F001',

'is activated' => true,

If you remember from day 10, the “Publish” link has been configured to be called with the
HTTP PUT method. As browsers don't understand PUT requests, the link to() helper
converts the link to a form with some JavaScript. As the test browser does not execute
JavaScript, we need to force the method to PUT by passing it as a third option of the click()
method. Moreover, the link to() helper also embeds a CSRF token as we have enabled
CSREF protection during the very first day; the with csrf option simulates this token.

Testing the “Delete” link is quite similar:

$browser->info(' 3.4 - On the preview page, you can delete the job')-> Listing
createJob(array('position' => 'F002'))->
click('Delete', array(), array('method' => 'delete', ' with csrf' =>

true))->

with('doctrine')->begin()->
check('JobeetJob', array(
'position' => 'F002',
), false)->

ass 3k

Day 11: Testing your Forms 138

end()

Tests as a SafeGuard

When a job is published, you cannot edit it anymore. Even if the “Edit” link is not displayed
anymore on the preview page, let’s add some tests for this requirement.

First, add another argument to the createJob() method to allow automatic publication of
the job, and create a getJobByPosition() method that returns a job given its position
value:

Listing // lib/test/JobeetTestFunctional.class.php
class JobeetTestFunctional extends sfTestFunctional
{

public function createlob($values = array(), $publish = false)

{
$this->
get('/job/new')->
click('Preview your job', array('job' => array merge(array/(

'company' => 'Sensio Labs',

"url' => 'http://www.sensio.com/',

'position’ => 'Developer',

'location' => 'Atlanta, USA',

'description' => 'You will work with symfony to develop websites

for our customers.',
"how to apply' => 'Send me an email',
'email’ => 'for.a.job@example.com',
'is public' => false,
), $values)))->
followRedirect()

’

if ($publish)
{
$this->
click('Publish', array(), array('method' => 'put', ' with csrf' =>
true))->
followRedirect()

}

return $this;

}

public function getJobByPosition($position)

{

$q = Doctrine Query::create()
->from('JobeetJob j')
->where('j.position = ?', $position);

return $q->fetchOne();
}

/] ...
}

ass 3k

Day 11: Testing your Forms 139

If a job is published, the edit page must return a 404 status code:

$browser->info(' 3.5 - When a job is published, it cannot be edited Listing
anymore')->

createlJob(array('position' => 'F003'), true)->

get(sprintf('/job/%s/edit',
$browser->getJobByPosition('F003')->getToken()))->

with('response')->begin()->
isStatusCode(404)->
end()

’

But if you run the tests, you won’t have the expected result as we forgot to implement this
security measure yesterday. Writing tests is also a great way to discover bugs, as you need to
think about all edge cases|Edge Cases.

Fixing the bug is quite simple as we just need to forward to a 404 page if the job is activated:

// apps/frontend/modules/job/actions/actions.class.php Listing
public function executeEdit(sfWebRequest $request) -

{
$job = $this->getRoute()->getObject();
$this->forward404If($job->getIsActivated());

$this->form = new JobeetJobForm($job);

}

The fix is trivial, but are you sure that everything else still works as expected? You can open
your browser and start testing all possible combinations to access the edit page. But there is
a simpler way: run your test suite; if you have introduced a regression, symfony will tell you
right away.

Back to the Future in a Test

When a job is expiring in less than five days, or if it is already expired, the user can extend
the job validation for another 30 days from the current date.

Testing this requirement in a browser is not easy as the expiration date is automatically set
when the job is created to 30 days in the future. So, when getting the job page, the link to
extend the job is not present. Sure, you can hack the expiration date in the database, or
tweak the template to always display the link, but that’s tedious and error prone. As you have
already guessed, writing some tests will help us one more time.

As always, we need to add a new route for the extend method first:

apps/frontend/config/routing.yml Listing
job:
class: sfDoctrineRouteCollection
options:
model: JobeetJob
column: token
object actions: { publish: PUT, extend: PUT }
requirements:
token: \w+

Then, update the “Extend” link code in the admin partial:

ass 3k

Listing
11-17

Listing
11-18

Listing
11-19

Listing
11-20

Day 11: Testing your Forms 140

<!-- apps/frontend/modules/job/templates/ admin.php -->
<?php if ($job->expiresSoon()): 7>

- <?php echo link to('Extend', 'job extend', $job, array('method' =>
'put')) ?> for another <?php echo sfConfig::get('app active days') ?> days
<?php endif 7>

Then, create the extend action:

// apps/frontend/modules/job/actions/actions.class.php
public function executeExtend(sfWebRequest $request)

{
$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();
$this->forward404Unless($job->extend());

$this->getUser()->setFlash('notice', sprintf('Your job validity has been
extended until %s.', $job->getDateTimeObject('expires at')->format('m/d/
Y')));

$this->redirect('job_show user', $job);

}

As expected by the action, the extend () method of JobeetJob returns true if the job has
been extended or false otherwise:

// lib/model/doctrine/JobeetJob.class.php
class JobeetJob extends BaselobeetJob

{

public function extend()

{
if (!'$this->expiresSoon())
{

return false;

}

$this->setExpiresAt(date('Y-m-d', time() + 86400 *
sfConfig::get('app_active days')));

$this->save();

return true;

}

/]
}

Eventually, add a test scenario:

$browser->info(' 3.6 - A job validity cannot be extended before the job
expires soon')->

createlJob(array('position' => 'F004'), true)->

call(sprintf('/job/%s/extend',
$browser->getJobByPosition('F004')->getToken()), 'put', array(' with csrf'
=> true))->

with('response')->begin()->

isStatusCode(404) ->
end()

ass 3k

Day 11: Testing your Forms 141

.
’

$browser->info(' 3.7 - A job validity can be extended when the job
expires soon')->
createJob(array('position' => 'F005'), true)

’

$job = $browser->getJobByPosition('F005");
$job->setExpiresAt(date('Y-m-d'));
$job->save();

$browser->
call(sprintf('/job/%s/extend', $job->getToken()), 'put',
array(' with csrf' => true))->
with('response')->isRedirected()

’

$job->refresh();

$browser->test()->is(

$job->getDateTimeObject('expires at')->format('y/m/d"),
date('y/m/d', time() + 86400 * sfConfig::get('app active days'))
);

This test scenario introduces a few new things:

* The call() method retrieves a URL with a method different from GET or POST

» After the job has been updated by the action, we need to reload the local object with
$job->refresh()

* At the end, we use the embedded lime object directly to test the new expiration
date.

Forms Security

Form Serialization Magic!

Doctrine forms are very easy to use as they automate a lot of work. For instance, serializing a
form to the database is as simple as a call to $form->save().

But how does it work? Basically, the save () method follows the following steps:

* Begin a transaction (because nested Doctrine forms are all saved in one fell swoop)

* Process the submitted values (by calling updateCOLUMNColumn () methods if they
exist)

* Call Doctrine object fromArray () method to update the column values

* Save the object to the database

¢ Commit the transaction

Built-in Security Features

The fromArray() method takes an array of values and updates the corresponding column
values. Does this represent a security issue? What if someone tries to submit a value for a
column for which he does not have authorization? For instance, can I force the token
column?

Let’s write a test to simulate a job submission with a token field:

ass 3k

Listing

Listing
11-22

Listing
11-23

Day 11: Testing your Forms 142

// test/functional/frontend/jobActionsTest.php
$browser->
get('/job/new')->
click('Preview your job', array('job' => array(
"token' => 'fake token',
)))->

with('form')->begin()->
hasErrors(7)->
hasGlobalError('extra fields')->
end()

’

When submitting the form, you must have an extra_ fields global error. That's because by
default forms do not allow extra fields to be present in the submitted values. That’s also why
all form fields must have an associated validator.

You can also submit additional fields from the comfort of your browser using tools like the
Firefox Web Developer Toolbar.

You can bypass this security measure by setting the allow extra fields option to true:

class MyForm extends sfForm

{ public function configure()
{//...
$this->validatorSchema->setOption('allow extra fields', true);
}}

The test must now pass but the token value has been filtered out of the values. So, you are
still not able to bypass the security measure. But if you really want the value, set the
filter extra fields optionto false:

$this->validatorSchema->setOption('filter extra fields', false);

T The tests written in this section are only for demonstration purpose. You can now remove
them from the Jobeet project as tests do not need to validate symfony features.

XSS and CSRF Protection

During day 1, you learned the generate:app task created a secured application by default.

First, it enabled the protection against XSS. It means that all variables used in templates are
escaped by default. If you try to submit a job description with some HTML tags inside, you
will notice that when symfony renders the job page, the HTML tags from the description are
not interpreted, but rendered as plain text.

Then, it enabled the CSRF protection. When a CSRF token is set, all forms embed a
_csrf _token hidden field.

ass 3k

Day 11: Testing your Forms 143

@ The escaping strategy and the CSRF secret can be changed at any time by editing the
apps/frontend/config/settings.yml configuration file. As for the databases.yml
file, the settings are configurable by environment:

all: Listing
.settings: 1
Form security secret (CSRF protection)
csrf secret: UniqueS$ecret

Output escaping settings
escaping strategy: true
escaping _method: ESC_SPECIALCHARS

Maintenance Tasks

Even if symfony is a web framework, it comes with a command line tool. You have already
used it to create the default directory structure of the project and the application, but also to
generate various files for the model. Adding a new task is quite easy as the tools used by the
symfony command line are packaged in a framework.

When a user creates a job, he must activate it to put it online. But if not, the database will
grow with stale jobs. Let’s create a task that remove stale jobs from the database. This task
will have to be run regularly in a cron job.

// lib/task/JobeetCleanupTask.class.php Listing
class JobeetCleanupTask extends sfBaseTask -
{
protected function configure()
{
$this->addOptions(array(
new sfCommandOption('application', null,
sfCommandOption: :PARAMETER REQUIRED, 'The application', 'frontend'),
new sfCommandOption('env', null,
sfCommandOption: :PARAMETER REQUIRED, 'The environement', ‘'prod'),
new sfCommandOption('days', null,

sfCommandOption: :PARAMETER REQUIRED, '', 90),
));
$this->namespace = 'jobeet';
$this->name = 'cleanup';
$this->briefDescription = 'Cleanup Jobeet database’;

$this->detailedDescription = <<<EOF
The [jobeet:cleanup|INFO] task cleans up the Jobeet database:

[./symfony jobeet:cleanup --env=prod --days=90|INFO]
EOF;
}

protected function execute($arguments = array(), $options = array())
{

$databaseManager = new sfDatabaseManager($this->configuration);

$nb = Doctrine Core::getTable('JobeetJob')->cleanup($options['days']);
$this->logSection('doctrine', sprintf('Removed %d stale jobs', $nb));

ass 3k

Day 11: Testing your Forms 144

}
}

The task configuration is done in the configure() method. Each task must have a unique
name (namespace:name), and can have arguments and options.

@ Browse the built-in symfony tasks (1ib/task/) for more examples of usage.

The jobeet:cleanup task defines two options: --env and --days with some sensible
defaults.

Running the task is similar to run any other symfony built-in task:

ising $ php symfony jobeet:cleanup --days=10 --env=dev

11-26

As always, the database cleanup code has been factored out in the JobeetJobTable class:

Listng // 1ib/model/doctrine/JobeetJobTable.class.php
11-27 . .
public function cleanup($days)

{
$qg = $this->createQuery('a')
->delete()
->andWhere('a.is activated = 7', 0)
->andWhere('a.created at < ?', date('Y-m-d', time() - 86400 * $days));
return $q->execute();
}

F The symfony tasks behave nicely with their environment as they return a value according
to the success of the task. You can force a return value by returning an integer explicitly at
the end of the task.

Final Thoughts

Testing is at the heart of the symfony philosophy and tools. Today, we have learned again how
to leverage symfony tools to make the development process easier, faster, and more
important, safer.

The symfony form framework provides much more than just widgets and validators: it gives
you a simple way to test your forms and ensure that your forms are secure by default.

Our tour of great symfony features do not end here. Tomorrow, we will create the backend
application for Jobeet. Creating a backend interface is a must for most web projects, and
Jobeet is no different. But how will we be able to develop such an interface in just one hour?
Simple, we will use the symfony admin generator framework.

ass 3k

Day 12: The Admin Generator 145

Day 12

The Admin Generator

With the addition we made in day 11 on Jobeet, the frontend application is now fully useable
by job seekers and job posters. It’s time to talk a bit about the backend application. Today,
thanks to the admin generator functionality of symfony, we will develop a complete backend
interface for Jobeet in just one hour.

Backend Creation

The very first step is to create the backend application. If your memory serves you well, you
should remember how to do it with the generate:app task:

$ php symfony generate:app backend
The backend application is now available at http://jobeet.localhost/backend.php/

for the prod environment, and at http://jobeet.localhost/backend dev.php/ for the
dev environment.

When you created the frontend application, the production front controller was named
index.php. As you can only have one index.php file per directory, symfony creates an
index. php file for the very first production front controller and names the others after the
application name.

If you try to reload the data fixtures with the doctrine:data-load task, it won’t work as
expected. That’s because the JobeetJob::save() method needs access to the app.yml
configuration file from the frontend application. As we have now two applications, symfony
uses the first it finds, which is now the backend one.

But as seen during day 8, the settings can be configured at different levels. By moving the
content of the apps/frontend/config/app.yml file to config/app.yml, the settings will
be shared among all applications and the problem will be fixed. Do the change now as we will
use the model classes quite extensively in the admin generator, and so we will need the
variables defined in app.yml in the backend application.

The doctrine:data-1load task also takes a - -application option. So, if you need some
specific settings from one application or another, this is the way to go:

$ php symfony doctrine:data-load --application=frontend

ass 3k

Listing
12-1

Listing
12-2

Listing
12-3

Listing
124

Listing
12-6

Day 12: The Admin Generator 146

Backend Modules

For the frontend application, the doctrine:generate-module task has been used to
bootstrap a basic CRUD module based on a model class. For the backend, the
doctrine:generate-admin task will be used as it generates a full working backend
interface for a model class:

$ php symfony doctrine:generate-admin backend JobeetJob --module=job
$ php symfony doctrine:generate-admin backend JobeetCategory
--module=category

These two commands create a job and a category module for the JobeetJob and the
JobeetCategory model classes respectively.

The optional - -module option overrides the module name generated by default by the task
(which would have been otherwise jobeet job for the JobeetJob class).

Behind the scenes, the task has also created a custom route for each module:

apps/backend/config/routing.yml

jobeet job:
class: sfDoctrineRouteCollection
options:
model: JobeetJob
module: job
prefix_ path: job
column: id

with wildcard routes: true

It should come as no surprise that the route class used by the admin generator|Admin
Generator is sfDoctrineRouteCollection, as the main goal of an admin interface is the
management of the life-cycle of model objects.

The route definition also defines some options we have not seen before:

* prefix_path: Defines the prefix path for the generated route (for instance, the
edit page will be something like /job/1/edit).

e column: Defines the table column to use in the URL for links that references an
object.

* with wildcard routes: As the admin interface will have more than the classic
CRUD operations, this option allows to define more object and collection actions
without editing the route.

@ As always, it is a good idea to read the help before using a new task.

Listing $ php symfony help doctrine:generate-admin

It will give you all the task’s arguments and options as well as some classic usage
examples.

Backend Look and Feel

Right off the bat, you can use the generated modules:

http://jobeet.localhost/backend dev.php/job
http://jobeet.localhost/backend dev.php/category

ass 3k

Day 12: The Admin Generator 147

The admin modules have many more features than the simple modules we have generated in
previous days. Without writing a single line of PHP, each module provides these great
features:

The list of objects is paginated

The list is sortable

The list can be filtered

Objects can be created, edited, and deleted
Selected ohjects can be deleted in a batch

The form validation is enabled

Flash messages give immediate feedback to the user
... and much much more

The admin generator provides all the features you need to create a backend interface in a
simple to configure package.

If you have a look at our two generated modules, you will notice there is no activated
webdesign whereas the symfony built-in admin generator feature has a basic graphic
interface by default. For now, assets from the sfDoctrinePlugin are not located under the
web/ folder. We need to publish them under the web/ folder thanks to the
plugin:publish-assets task:

$ php symfony plugin:publish-assets Listing
To make the user experience a bit better, we need to customize the default backend. We will
also add a simple menu to make it easy to navigate between the different modules.

Replace the default layout file content with the code below:

// apps/backend/templates/layout.php Listing
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1l/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Jobeet Admin Interface</title>
<link rel="shortcut icon" href="/favicon.ico" />
<?php use stylesheet('admin.css') 7>
<?php include javascripts() 7>
<?php include stylesheets() 7>
</head>
<body>
<div id="container">
<div id="header">
<hl>
<a href="<?php echo url for('homepage') ?>">
<img src="http://www.symfony-project.org/images/logo.jpg"
alt="Jobeet Job Board" />

</h1l>
</div>

<div id="menu">

<?php echo link to('Jobs', 'jobeet job') 7>

<?php echo link to('Categories', 'jobeet category') 7>

ass 3k

Listing
12-9

Listing
12-10

Day 12: The Admin Generator 148

</div>

<div id="content">
<?php echo $sf content 7>
</div>

<div id="footer">

powered by
<img src="http://www.symfony-project.org/images/symfony.gif"
alt="symfony framework" />
</div>
</div>
</body>
</html>

This layout uses an admin. css stylesheet. This file must already be present in web/css/ as
it was installed with the other stylesheets during day 4.

Jobeet

obs Categories

CATEGORY LIST

O 1d Name Slug Actions Name

=
[J 13 Design design # Edit ¥ Delete = Is empty
[0 14 Programming programming < Edit ¥ Delete Slug

O is empty
O 15 Manager manager # Edit ¥ Delete

Jobeet category affiliate list [

-

16 Administrator administrator # Edit ¥ Delete

Reset (Filter)
4 results —

Choose an action | :] @ New
Eventually, change the default symfony homepage in routing.yml:

apps/backend/config/routing.yml
homepage:

url: /

param: { module: job, action: index }

The symfony Cache

If you are curious enough, you have probably already opened the files generated by the task
under the apps/backend/modules/ directory. If not, please open them now. Surprise! The
templates directories are empty, and the actions.class.php files are quite empty as
well:

// apps/backend/modules/job/actions/actions.class.php

require once dirname(_ FILE).'/../lib/
jobGeneratorConfiguration.class.php';

require once dirname(FILE).'/../lib/jobGeneratorHelper.class.php';

sumfonu Brought to you by LABS *

Day 12: The Admin Generator 149

class jobActions extends autoJobActions
{
}

How can it possibly work? If you have a closer look, you will notice that the jobActions
class extends autoJobActions. The autoJobActions class is automatically generated by
symfony if it does not exist. It is to be found in the cache/backend/dev/modules/
autoJob/ directory, which contains the “real” module:

// cache/backend/dev/modules/autoJob/actions/actions.class.php Listing
class autoJobActions extends sfActions '
{

public function preExecute()

{

$this->configuration = new jobGeneratorConfiguration();

if ('$this->getUser()->hasCredential(
$this->configuration->getCredentials($this->getActionName())

))

{

/] ..

The way the admin generator works should remind you of some known behavior. In fact, it is
quite similar to what we have already learned about the model and form classes. Based on the
model schema definition, symfony generates the model and form classes. For the admin
generator, the generated module can be configured by editing the config/generator.yml
file found in the module:

apps/backend/modules/job/config/generator.yml Listing
generator:
class: sfDoctrineGenerator
param:
model class: JobeetJob
theme: admin
non verbose templates: true
with show: false
singular: ~
plural: ~
route prefix: jobeet job
with doctrine route: true

config:
actions:
fields:
list:
filter:
form:
edit:
new: ~

l

l

l

l

l

l

Each time you update the generator.yml file, symfony regenerates the cache. As we will
see later, customizing the admin generated modules is easy, fast, and fun.

T The automatic re-generation of cache files only occurs in the development environment. In
the production one, you will need to clear the cache manually with the cache: clear task.

ass 3k

Day 12: The Admin Generator 150

F The with show parameter has no effect. This parameter is only meaningful when
generating “standard” modules with the doctrine:generate-module task.

Backend Configuration

An admin module can be customized by editing the config key of the generator.yml file.
The configuration is organized in seven sections:

* actions: Default configuration for the actions found on the list and on the forms
» fields: Default configuration for the fields

* list: Configuration for the list

* filter: Configuration for filters

* form: Configuration for new and edit forms

* edit: Specific configuration for the edit page

* new: Specific configuration for the new page

Let’s start the customization.

Title Configuration

The list, edit, and new section titles of category module can be customized by defining a
title option:

Listing # apps/backend/modules/category/config/generator.yml
config:
actions: ~
fields: ~
list:
title: Category Management
filter:
form: ~
edit:
title: Editing Category "%%name%%"
new:
title: New Category

l

The title for the edit section contains dynamic values: all strings enclosed between %% are
replaced by their corresponding object column values.

Jobeet

obs Categories

EDITING CATEGORY "DESIGN"

Name Nacinn

The configuration for the job module is quite similar:

Listing # apps/backend/modules/job/config/generator.yml
- config:

ass 3k

Day 12: The Admin Generator 151

actions: ~
fields: ~
list:

title: Job Management
filter:
form: ~
edit:

title: Editing Job "%%company%% is looking for a %%position%%"
new:

title: Job Creation

l

Fields Configuration

The different views (1list, new, and edit) are composed of fields. A field can be a column of
the model class, or a virtual column as we will see later on.

The default fields configuration can be customized with the fields section:

apps/backend/modules/job/config/generator.yml Listing
config: -
fields:

is activated: { label: Activated?, help: Whether the user has
activated the job, or not }

is public: { label: Public?, help: Whether the job can also be
published on affiliate websites, or not }

Public? ™

Email job@example.com

® Delete Cancel (Save

The fields section overrides the fields configuration for all views, which means the label
for the is activated field will be changed for the 1ist, edit, and new views.

The admin generator configuration is based on a configuration cascade principle. For
instance, if you want to change a label for the 1ist view only, define a fields option under
the list section:

apps/backend/modules/job/config/generator.yml Listing
config:
list:
fields:
is public: { label: "Public? (label for the list)" }

Any configuration that is set under the main fields section can be overridden by view-
specific configuration. The overriding rules are the following:

* new and edit inherit from form which inherits from fields
¢ list inherits from fields
 filter inherits from fields

T For form sections (form, edit, and new), the label and help options override the ones
defined in the form classes.

ass 3k

Day 12: The Admin Generator 152

List View Configuration

display

By default, the columns of the list view are all the columns of the model, in the order of the
schema file. The display option overrides the default by defining the ordered columns to be
displayed:

Listng # apps/backend/modules/category/config/generator.yml

12-17

config:
list:
title: Category Management
display: [=name, slug]

The = sign before the name column is a convention to convert the string to a link.

Jobeet

obs Categories

CATEGORY MANAGEMENT

O Name Slug Actions Name

=
O Design design # Edit ¥ Delete = Is emply
[Programming programming < Edit ¥ Delete Slug

O is empty
[0 Manager manager # Edit ¥ Delete

Jobeet category affiliate list (5

(]

Administrator administrator «# Edit ¥ Delete

Reset (Filter)

4 results

Let’s do the same for the job module to make it more readable:

Listing # apps/backend/modules/job/config/generator.yml

12-18

config:
list:
title: Job Management
display: [company, position, location, url, is activated, emaill]

layout

The list can be displayed with different layouts. By default, the layout is tabular, which
means that each column value is in its own table column. But for the job module, it would be
better to use the stacked layout, which is the other built-in layout:

Listing # apps/backend/modules/job/config/generator.yml

12-19

config:
list:
title: Job Management
layout: stacked
display: [company, position, location, url, is activated, emaill]
params: |
%%1s activated%%s <small>%%category id%%</small> - %%comp
(%%email%%) is looking for a %%=position%% (%%

ass 3k

Day 12: The Admin Generator 153

In a stacked layout, each object is represented by a single string, which is defined by the
params option.

E The display option is still needed as it defines the columns that will be sortable by the
user.

“Virtual” columns

With this configuration, the %%category id%% segment will be replaced by the category
primary key. But it would be more meaningful to display the name of the category.

Whenever you use the %% notation, the variable does not need to correspond to an actual
column in the database schema. The admin generator only need to find a related getter in the
model class.

To display the category name, we can define a getCategoryName() method in the
JobeetJob model class and replace %%category id%% by %$%category nameS%.

But the JobeetJob class already has a getJobeetCategory() method that returns the
related category object. And if you use %%jobeet category%%, it works as the
JobeetCategory class has a magic toString() method that converts the object to a
string.

apps/backend/modules/job/config/generator.yml Listing
%%1is activated%%s <small>%%jobeet category%%</small> - %%company%%
(%%email%%) is looking for a %%=position%% (%%location%%)

Jobeet

obs Categories

JOB MANAGEMENT

[Company Position Location Url Activated? Email Actions Category id | :]
0 Programming — Sensio Labs (job@example.com) is & Edit Type

looking for a Web Developer (Paris, France) # Delete Ois empty
0 o i (i i i # Edit
U Design - Extreme Sensio (job@example.com) is looking

for a Web Designer (Paris, France) # Delete Company -

O is empty

=] Programming - Sensio Labs (job@example.com) is # Edit

looking for a Web Developer (Paris, France) # Delete Logo
- _ o) o . O is empty

sort

As an administrator, you will be probably more interested in seeing the latest posted jobs.
You can configure the default sort column by adding a sort option:

apps/backend/modules/job/config/generator.yml Listing
config:
list:
sort: [expires at, desc]

max_per_page

By default, the list is paginated and each page contains 20 items. This can be changed with
the max_per_page option:

ass 3k

Day 12: The Admin Generator 154

Listing # apps/backend/modules/job/config/generator.yml

Listing

Listing
12-24

config:

list:
max_per _page: 10

— FIOYIAMmIming = COipaiy L1us JULEUCARHIPIE. LU 13 e 15 empry
looking for a Web Developer (Paris, France) # Delete

) How to apply

8 programming — Company 105 (job@example.com) is # Edit Ois empty
looking for a Web Developer (Paris, France) # Delete

. i . Token

= programming - Company 106 (job@example.com) is # Edit —
looking for a Web Developer (Paris, France) ¥ Delete I Is empty

36 results (page 1/4) B@1234080 Public? Jyesornm:]

Activated? @
Choose an action | .] (go) New

batch actions

On a list, an action can be run on several objects. These batch actions are not needed for the
category module, so, let’s remove them:

apps/backend/modules/category/config/generator.yml
config:
list:
batch _actions: {}

Jobeet

obs Categories

CATEGORY MANAGEMENT

Name Slug Actions Name

=
Design design # Edit ¥ Delete = Is emply
Programming programming < Edit ¥ Delete Slug

O is empty

Manager manager & Edit # Delete
Jobeet category affiliate list [&)
Administrator administrator ¢ Edit ¥ Delete

Reset (Filter)

4 results

The batch actions option defines the list of batch actions. The empty array allows the
removal of the feature.

By default, each module has a delete batch action defined by the framework, but for the job
module, let’s pretend we need a way to extend the validity of some selected jobs for another
30 days:

apps/backend/modules/job/config/generator.yml
config:
list:
batch actions:
_delete: ~
extend: ~

All actions beginning with a _ are built-in actions provided by the framework. If you refresh

your browser and select the extend batch actions, symfony will throw an exception telling you
to create an executeBatchExtend () method:

symfony Brought to you by LaBs sk

Day 12: The Admin Generator 155

// apps/backend/modules/job/actions/actions.class.php Listing
class jobActions extends autoJobActions

{

public function executeBatchExtend(sfWebRequest $request)

{

$ids = $request->getParameter('ids');

$g = Doctrine Query::create()
->from('Jobeetlob j')
->whereIn('j.id', $ids);

foreach ($q->execute() as $job)

{
$job->extend(true);
}
$this->getUser()->setFlash('notice', 'The selected jobs have been

extended successfully.');

$this->redirect('jobeet job');
}
}

The selected primary keys are stored in the ids request parameter. For each selected job,
the JobeetJob::extend() method is called with an extra argument to bypass the
expiration check.

Update the extend () method to take this new argument into account:

// lib/model/doctrine/JobeetJob.class.php Listing
class JobeetJob extends BaselobeetlJob ’

{

public function extend($force = false)

{

if (!$force && !'$this->expiresSoon())

{

return false;
}
$this->setExpiresAt(date('Y-m-d', time() + 86400 *
sfConfig::get('app_active days')));
$this->save();

return true;

}

/]
}

After all jobs have been extended, the user is redirected to the job module homepage.

ass 3k

Day 12: The Admin Generator 156

Y) 4T AR L 13 — © 1s empry
looking for a Web Developer (Paris, France) #® Delete
How to apply
B8 Programming - Company 105 (job@example.com) is # Edit Ois empty
looking for a Web Developer (Paris, France) # Delete
- . . . Token
(= programming - Company 106 (job@example.com) is # Edit =
looking for a Web Developer (Paris, France) # Delete U is empty
36 results (page 1/4) @@1234pg Public? 'yesorno[)
Activated? @
| Choose an action | ¢) (go) New
Choose an action Email
Delete mal
Extend Ois empty

object actions

In the list, there is an additional column for actions you can run on a single object. For the
category module, let’s remove them as we have a link on the category name to edit it, and
we don’t really need to be able to delete one directly from the list:

Listing # apps/backend/modules/category/config/generator.yml
config:
list:
object actions: {}

For the job module, let’s keep the existing actions and add a new extend action similar to
the one we have added as a batch action:

Listing # apps/backend/modules/job/config/generator.yml
config:
list:
object actions:
extend: ~
_edit: ~
_delete: ~

As for batch actions, the delete and edit actions are the ones defined by the framework.
We need to define the listExtend() action to make the extend link work:

g?%z// apps/backend/modules/job/actions/actions.class.php
~ class jobActions extends autoJobActions

{

public function executelListExtend(sfWebRequest $request)

{
$job = $this->getRoute()->getObject();
$job->extend(true);

$this->getUser()->setFlash('notice', 'The selected jobs have been
extended successfully.');

$this->redirect('jobeet job');
}

//
}

ass 3k

Day 12: The Admin Generator 157

Jobeet

obs Categories

JOB MANAGEMENT

The selected jobs have been extended successfully.

[J Company Position Location Url Activated? Email Actions Category id [! :]
(] programming — Sensio Labs (job@example.com) is EXFEnd Type
looking for a Web Developer (Paris, France) # Edit =
Delete U is empty
8 Design - Extreme Sensio (job@example.com) is looking EXFEHG Company
for a Web Designer (Paris, France) & Edit O is empty
#® Delete
actions

We have already seen how to link an action to a list of objects or a single object. The actions
option defines actions that take no object at all, like the creation of a new object. Let’s
remove the default new action and add a new action that deletes all jobs that have not been
activated by the poster for more than 60 days:

apps/backend/modules/job/config/generator.yml ﬁfﬁ
config:
list:
actions:
deleteNeverActivated: { label: Delete never activated jobs }

Until now, all actions we have defined had ~, which means that symfony automatically
configures the action. Each action can be customized by defining an array of parameters. The
label option overrides the default label generated by symfony.

By default, the action executed when you click on the link is the name of the action prefixed
with list.

Create the listDeleteNeverActivated action in the job module:

// apps/backend/modules/job/actions/actions.class.php Listing
class jobActions extends autoJobActions '

{

public function executelListDeleteNeverActivated(sfWebRequest $request)

{
$nb = Doctrine Core::getTable('JobeetJob')->cleanup(60);

if ($nb)
{

$this->getUser()->setFlash('notice', sprintf('%d never activated
jobs have been deleted successfully.', $nb));

}

else

{
$this->getUser()->setFlash('notice', 'No job to delete.');

}

$this->redirect('jobeet job');
}

sumfonu Brought to you by LABS *

Day 12: The Admin Generator 158

//
}

We have reused the JobeetJobTable::cleanup() method defined yesterday. That’s
another great example of the reusability provided by the MVC pattern.

You can also change the action to execute by passing an action parameter:

Lf;“;f deleteNeverActivated: { label: Delete never activated jobs, action: foo }

— Frogramming — LOMpAany 1us (JODQEXATIIE.COM) 15 ‘—".LC"“' TOkEn
looking for a Web Developer (Paris, France) # Edit
Delete O is empty
0 Programming — Company 105 (job@example.com) is Extend Public? [yesornol#]
looking for a Web Developer (Paris, France) # Edit
¥ Delete Activated? [yes or no | :]
8 programming = Company 106 (job@example.com) is » E;'fend
looking for a Web Developer (Paris, France Edit '
g per () #® Delete Email
O is empty
36 results (page 1/4) D@l1234g a3
Expires at

| Choose an action | :] (go) Delete never activated jobs

(Created at [N P

table method

The number of database requests needed to display the job list page is 14, as shown by the
web debug toolbar.

If you click on that number, you will see that most requests are to retrieve the category name
for each job:
SQL queries [Sf) 1.23-DEV] config + logs 3469.3 KB 322 ms 14

SET NAMES "utfg'

SELECT COUNT(*) FROM “jobeet job™

SELECT jobeet_category.ID, jobeetl_category.NAME, jobeet_category.SLUG FROM "jobeet_category”

SELECT jobeet_job.ID, jobeet_job.CATEGORY_ID, jobeet_job.TYPE, jobeet_job.COMPANY, jobeet_job.LOGO, jobeet_job.URL, jobeet job.POSITION,
Jobeet_job.LOCATION, Jobeet_é'ob.DESCRlPT\ON. Jobeet F{ob.HOW_TQ_APPL_Y jobeet_Job. TOKEN, jobeet job.IS_PUBLIC, jobeet_job.IS_ACTIVATED,
Jjobeet_job.EMAIL, jobeet_job.EXPIRES_AT, jobeet_job.CREATED_AT, jobeet_job.UPDATED_AT FROM “jobeet_job™ LIMIT 10

SELECT jobeet_category.D, jobeet_category.NAME, jobeet_category.SLUG FROM “jobeet_category” WHERE jobeet_category.ID=14 LIMIT 1
SELECT jobeet_category.ID, jobeet_category.NAME, jobeet_category.SLUG FROM "jobeet_category” WHERE jobeet_category. ID=13 LIMIT 1
SELECT jobeet_category.iD, jobeet_category. NAME, jobeet_category.SLUG FROM “jobeet_category’ WHERE jobeet_category.ID=14 LIMIT 1

SELECT jobeet_category.ID, jobeet_category.NAME, jobeet_category.SLUG FROM “jobeet_category” WHERE jobeet_category.ID=14 LIMIT 1
SELECT jobeet_category.ID, jobeet_category.NAME, jobeet_category.SLUG FROM "jobeet_category” WHERE jobeet_category.|D=14 LIMIT 1
SELECT jobeet_category.ID, jobest_category.MAME, jobest_category. SLUG FROM “jobeet_category’ WHERE jobeet_category.ID=14 LIMIT 1
SELECT jobeet_category.iD, jobeet_category.NAME, jobeet_category.SLUG FROM “jobeet_category’ WHERE jobeet_category.ID=14 LIMIT 1
SELECT jobeet_category.ID, jobeet_category.NAME, jobest_category.SLUG FROM “jobeet_category’ WHERE jobeet_category.|D=14 LIMIT 1
SELECT jobeet_category.ID, jobeel_category.NAME, jobeet_category.SLUG FROM "jobeet_category’ WHERE jobeet_category.|D=14 LIMIT 1
SELECT jobeet_category.iD, jobeet_category.NAME, jobeet_category.SLUG FROM “jobeet_category’ WHERE jobeel_category.ID=14 LIMIT 1

] Programming — Sensio Labs (job@example.com) is E’@Wpe
looking for a Web Developer (Paris, France) # Edit —_
¥ Delete U is empty

To reduce the number of queries, we can change the default method used to get the jobs by
using the table method option:

Listing # apps/backend/modules/job/config/generator.yml
config:
list:
table method: retrieveBackendJobList

The retrieveBackendJobList() method adds a join between the job and the category
tables and automatically creates the category object related to each job.

Now you must create the retrieveBackendJobList method in JobeetJobTable located
in Lib/model/doctrine/JobeetJobTable.class.php.

Listing // lib/model/doctrine/JobeetJobTable.class.php
~ class JobeetJobTable extends Doctrine Table

ass 3k

Day 12: The Admin Generator 159

{ public function retrieveBackendJobList(Doctrine Query $q)
t $rootAlias = $q->getRootAlias();
$g->leftloin($rootAlias . '.JobeetCategory c');
return $q;
}
//

The retrieveBackendJobList() method adds a join between the job and the category
tables and automatically creates the category object related to each job.

The number of requests is now down to four:
SQL queries canfig logs 34457TKB ()281ms [Z4

SET NAMES "utfg'
SELECT COUNT(*) FROM ‘jobest_job®
SELECT jobeet_category.|D, jobeet_category.MAME, jobest_category.SLUG FROM jobeet_category’
SELECT jobeet job.ID, jobeet job.CATEGORY _ID, jobeet job.TYPE, jobeet job.COMPANY, jobeet job.LOGO, jobeet job.URL, jobeet job.POSITION,
jobeet_job.LOCATION, jobeet_job.DESCRIPTION, jobeet_job.HOW_TO_APPLY, jobeet_job. TOKEN, jobeet_job.IS_PUBLIC, jobeet_job.IS_ACTIVATED,
jobeet_job.EMAIL, jobeet job.EXPIRES_AT, jobeelﬁ'ob.CREATEDﬁA‘l" jobeet job.UPDATED AT, jobeet category.|D, jobeet category NAME,
jobeet_cateeory.ﬁLUG FROM ‘jobeet_job® LEFT JOIN jobeet category ON (jobeet job.CATEGORY _|D=jobeet category.ID) LIMIT 10

Jobs Lategories

JOB MANAGEMENT

[Company Position Location Url Activated? Email ActionEategory id [s
& Programming - Sensio Labs (job@example.com) is E’@Wpe
looking for a Web Developer (Paris, France) & Edit o
Delete is empty

Form Views Configuration

The form views configuration is done in three sections: form, edit, and new. They all have
the same configuration capabilities and the form section only exists as a fallback for the
edit and new sections.

display

As for the list, you can change the order of the displayed fields with the display option. But
as the displayed form is defined by a class, don’t try to remove a field as it could lead to
unexpected validation errors.

The display option for form views can also be used to arrange fields into groups:

apps/backend/modules/job/config/generator.yml ?ﬁ%
config:
form:
display:

Content: [category id, type, company, logo, url, position,
location, description, how to apply, is public, email]
Admin: [generated token, is activated, expires at]

The above configuration defines two groups (Content and Admin), each containing a subset
of the form fields.

ass 3k

Day 12: The Admin Generator 160

Jobeet

obs Categories

EDITING JOB "SENSIO LABS IS LOOKING FOR A WEB DEVELOPER"

Content

Category @

Type ® Full time O Part time O Freelance
Company Sensio Labs

Company logo (_mse..._
Url hitp://www.sensiolabs.com

F The columns in the Admin group do not show up in the browser yet because they have
been unset in the job form definition. They will appear in a few sections when we define a
custom job form class for the admin application.

The admin generator has built-in support for many to many relationship. On the category
form, you have an input for the name, one for the slug, and a drop-down box for the related
affiliates. As it does not make sense to edit this relation on this page, let’s remove it:

Listing // lib/form/doctrine/JobeetCategoryForm.class.php
" class JobeetCategoryForm extends BaselobeetCategoryForm
{
public function configure()
{
unset($this['created at'], $this['updated at'],
$this['jobeet affiliates list']);

}
}

“Virtual” columns

In the display options for the job form, the generated token field starts with an
underscore (). This means that the rendering for this field will be handled by a custom
partial named generated token.php.

Create this partial with the following content:

Listing // apps/backend/modules/job/templates/ generated token.php
<div class="sf admin form row">
<label>Token</label>
<?php echo $form->getObject()->getToken() ?>
</div>

In the partial, you have access to the current form ($form) and the related object is
accessible via the getObject () method.

You can also delegate the rendering to a component by prefixing the field name by a tilde
(~).

ass 3k

Day 12: The Admin Generator 161

class

As the form will be used by administrators, we have displayed more information than for the
user job form. But for now, some of them do not appear on the form as they have been
removed in the JobeetJobForm class

To have different forms for the frontend and the backend, we need to create two form classes.
Let’s create a BackendJobeetJobForm class that extends the JobeetJobForm class. As we
won’t have the same hidden fields, we also need to refactor the JobeetJobForm class a bit to
move the unset() statement in a method that will be overridden in
BackendJobeetJobForm:

// lib/form/doctrine/JobeetJobForm.class.php Listing
class JobeetJobForm extends BaseJobeetJobForm

public function configure()

{

$this->removeFields();

$this->validatorSchema['email'] = new sfValidatorAnd(array/(
$this->validatorSchema['email'],

new sfValidatorEmail(),

));

/] ...
}
protected function removeFields()
{
unset (
$this['created at'], $this['updated at'],
$this['expires at'], $this['is activated'],
$this['token']
);
}

}

// lib/form/doctrine/BackendJobeetJobForm.class.php
class BackendJobeetJobForm extends JobeetJobForm

{
protected function removeFields()
{
unset(
$this['created at'], $this['updated at'],
$this['token']
);
}
}

The default form class used by the admin generator can be overridden by setting the class
option:

apps/backend/modules/job/config/generator.yml Listing
config:
form:
class: BackendJobeetJobForm

ass 3k

Day 12: The Admin Generator 162

As we have added a new class, don’t forget to clear the cache.

The edit form still has a small annoyance. The current uploaded logo does not show up
anywhere and you cannot remove the current one. The sfWidgetFormInputFileEditable
widget adds editing capabilities to a simple input file widget:

Listng // 1ib/form/doctrine/BackendJobeetJobForm.class.php

" class BackendJobeetJobForm extends JobeetJobForm

{

public function configure()

{

parent::configure();

$this->widgetSchemal 'logo'] = new sfWidgetFormInputFileEditable(array(

'label! => 'Company logo',

'file src' => '/uploads/jobs/'.$this->getObject()->getLogo(),
'is image' => true,

'edit mode' => I$this->isNew(),

"template' => '<div>%file%
%input%
%delete%

%delete label%s</div>',

));

$this->validatorSchema['logo delete'] = new sfValidatorPass();

}

/] ...
}

The sfWidgetFormInputFileEditable widget takes several options to tweak its features
and rendering:

* file src: The web path to the current uploaded file

* is image: If true, the file will be rendered as an image
* edit mode: Whether the form is in edit mode or not

* with delete: Whether to display the delete checkbox

* template: The template to use to render the widget

Jobeet

obs Categories

EDITING JOB "SENSIO LABS IS LOOKING FOR A WEB DEVELOPER"

Content

Category @

Type @ rulltime OParttime O Freelance
Company Sensio Labs

Company logo LABS *

Browse...

O remove the current file

ass 3k

Day 12: The Admin Generator 163

@ The look of the admin generator can be tweaked very easily as the generated templates
define a lot of class and id attributes. For instance, the logo field can be customized by
using the st admin form field logo class. Each field also has a class depending on

the field type like sf admin text or sf admin boolean.

The edit _mode option uses the sfDoctrineRecord: :isNew() method.

It returns true if the model object of the form is new, and false otherwise. This is of great
help when you need to have different widgets or validators depending on the status of the
embedded object.

Filters Configuration

Configuring filters is quite the same as configuring the form views. As a matter of fact, filters
are just forms. And as for the forms, the classes have been generated by the
doctrine:build --all task. You can also re-generate them with the doctrine:build -
-filters task.

The form filter classes are located under the 1ib/filter/ directory and each model class
has an associated filter form class (JobeetJobFormFilter for JobeetJobForm).

Let’s remove them completely for the category module:

apps/backend/modules/category/config/generator.yml
config:
filter:
class: false

For the job module, let’s remove some of them:
apps/backend/modules/job/config/generator.yml
filter:
display: [category id, company, position, description, is activated,
is public, email, expires at]

As filters are always optional, there is no need to override the filter form class to configure
the fields to be displayed.

ass 3k

Listing
1241

Listing
12-42

Day 12: The Admin Generator

Jobeet

obs Categories

JOB MANAGEMENT

) Company Position Location Url Activated? Email Actions Category id .
(] Programming - Sensio Labs (job@example.com) is EXFend Company
looking for a Web Developer (Paris, France) # Edit =T
¥ Delete Uis empty
8 Dpesign - Extreme Sensio (job@example.com) is looking Extend Position
for a Web Designer (Paris, France) # Edit O'is empty
Delete
- . . . Description
(= Programming — Sensio Labssss (job@example.com) is Exffend .
looking for a Web Developer (Paris, France) # Edit = Is empty
Delete)
Activated? yes orno [3]
(] programming — Company 100 (job@example.com) is Extend
looking for a Web Developer (Paris, France) # Edit
¥ Delete Public? | yes or not :]
B8 programming - Company 101 (job@example.com) is Exf(end Email
looking for a Web Developer (Paris, France) ¢ Edit
Delete O is empty
(] Programming - Company 102 (job@example.com) is Extend = Expires at from | | C]f:
looking for a Web Developer (Paris, France) # Edit to [‘i =
Delete o -/
8 programming = Company 103 (job@example.com) is - E;'fend
Edit

looking for a Web Developer (Paris, France)

Actions Customization

W Nalata

164

When configuration is not sufficient, you can add new methods to the action class as we have
seen with the extend feature, but you can also override the generated action methods:

Method
executeIndex()
executeFilter()
executeNew()
executeCreate()
executeEdit()
executeUpdate()
executeDelete()
executeBatch()
executeBatchDelete()
processForm()
getFilters()
setFilters()
getPager()
getPage()
setPage()
buildCriteria()
addSortCriteria()

Description

list view action

Updates the filters

new view action

Creates a new Job

edit view action

Updates a Job

Deletes a Job

Executes a batch action

Executes the delete batch action
Processes the Job form

Returns the current filters

Sets the filters
Returns the list pager

Gets the pager page

Sets the pager page

Builds the Criteria for the list
Adds the sort Criteria for the list

Brought to you by

Laes >k

Day 12: The Admin Generator 165

Method Description
getSort() Returns the current sort column
setSort() Sets the current sort column

As each generated method does only one thing, it is easy to change a behavior without having
to copy and paste too much code.

Templates Customization

We have seen how to customize the generated templates thanks to the class and id
attributes added by the admin generator in the HTML code.

As for the classes, you can also override the original templates. As templates are plain PHP
files and not PHP classes, a template can be overridden by creating a template of the same
name in the module (for instance in the apps/backend/modules/job/templates/
directory for the job admin module):

Template Description
_assets.php Renders the CSS and JS to use for templates
_filters.php Renders the filters box
_filters field.php Renders a single filter field
_flashes.php Renders the flash messages
_form.php Displays the form
_form_actions.php Displays the form actions
_form_field.php Displays a single form field
_form_fieldset.php Displays a form fieldset
_form footer.php Displays the form footer
_form_header.php Displays the form header
_list.php Displays the list

_list actions.php Displays the list actions

_list batch actions.php Displays the list batch actions
_list field boolean.php Displays a single boolean field in the list

_list footer.php Displays the list footer

~list header.php Displays the list header

_list td actions.php Displays the object actions for a row
_list td batch actions.php Displays the checkbox for a row
_list td stacked.php Displays the stacked layout for a row
_list td tabular.php Displays a single field for the list

_list th stacked.php Displays a single column name for the header
_list th tabular.php Displays a single column name for the header
_pagination.php Displays the list pagination
editSuccess.php Displays the edit view

indexSuccess.php Displays the 1ist view

newSuccess.php Displays the new view

ass 3k

Listing
1243

Day 12: The Admin Generator 166

Final Configuration

The final configuration for the Jobeet admin is as follows:

apps/backend/modules/job/config/generator.yml

generator:
class: sfDoctrineGenerator
param:
model class: JobeetJob
theme: admin
non verbose templates: true
with show: false
singular: ~
plural: ~
route prefix: jobeet job
with doctrine route: true
config:
actions: ~
fields:

is_activated: { label: Activated?, help: Whether the user has
activated the job, or not }

is public: { label: Public? }
list:
title: Job Management
layout: stacked
display: [company, position, location, url, is activated,
email]
params: |

%%1is activated%%s <small>%%JobeetCategory%%</small> -
(%%email%%) is looking for a %%=position%%
(%%location%%)
max_per page: 10
sort: [expires at, desc]
batch actions:
_delete: ~
extend: ~
object actions:
extend: ~
_edit: ~
_delete: ~
actions:
deleteNeverActivated: { label: Delete never activated jobs }
table method: retrieveBackendJobList
filter:
display: [category id, company, position, description,
is activated, is public, email, expires at]
form:
class: BackendJobeetJobForm
display:
Content: [category id, type, company, logo, url, position,
location, description, how to apply, is public, email]
Admin: [generated token, is activated, expires at]
edit:
title: Editing Job "%%company%% is looking for a %%position%%"
new:
title: Job Creation

ass 3k

Day 12: The Admin Generator 167

apps/backend/modules/category/config/generator.yml

generator:
class: sfDoctrineGenerator
param:
model class: JobeetCategory
theme: admin
non_verbose templates: true
with show: false
singular: ~
plural: ~
route prefix: jobeet category
with doctrine route: true
config:
actions: ~
fields: ~
list:
title: Category Management

display: [=name, slug]
batch actions: {}
object actions: {}
filter:
class: false
form:
actions:
_delete: ~
_list: ~
_save: ~
edit:
title: Editing Category "%%name%%"
new:
title: New Category

With just these two configuration files, we have developed a great backend interface for
Jobeet in a matter of minutes.

You already know that when something is configurable in a YAML file, there is also the
possibility to use plain PHP code. For the admin generator, you can edit the apps/
backend/modules/job/lib/jobGeneratorConfiguration.class.php file. It gives
you the same options as the YAML file but with a PHP interface. To learn the method
names, have a look at the generated base class in cache/backend/dev/modules/
autoJob/lib/BaseJobGeneratorConfiguration.class.php

Final Thoughts

In just one hour, we have built a fully featured backend interface for the Jobeet project. And
all in all, we have written less than 50 lines of PHP code. Not too bad for so many features!

Tomorrow, we will see how to secure the backend application with a username and a
password. This will also be the occasion to talk about the symfony user class.

ass 3k

Listing
13-1

Day 13: The User 168

Day 13

The User

Yesterday was packed with a lot of information. With very few PHP lines of code, the symfony
admin generator allows the developer to create backend interfaces in a matter of minutes.

Today, we will discover how symfony manages persistent data between HTTP requests. As
you might know, the HTTP protocol is stateless, which means that each request is
independent from its preceding or proceeding ones. Modern websites need a way to persist
data between requests to enhance the user experience.

A user session can be identified using a cookie. In symfony, the developer does not need to
manipulate the session directly, but rather uses the sfUser object, which represents the
application end user.

User Flashes

We have already seen the user object in action with flashes. A flash|Flash Message is an
ephemeral message stored in the user session that will be automatically deleted after the very
next request. It is very useful when you need to display a message to the user after a redirect.
The admin generator uses flashes a lot to display feedback to the user whenever a job is
saved, deleted, or extended.

Jobeet

obs Categories

EDITING JOB "EXTREME SENSIO IS LOOKING FOR A WEB DESIGNER"

The item was updated successfully.

Content

Category "Design]

Type OFull time @ Parttime O Freelance

Company Extreme Sensio

Company logo

EXTREME
Browse...

O remove the current file

A flash is set by using the setFlash () method of sfUser:

ass 3k

Day 13: The User 169

// apps/frontend/modules/job/actions/actions.class.php
public function executeExtend(sfWebRequest $request)

{
$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();
$this->forward404Unless($job->extend());

$this->getUser()->setFlash('notice', sprintf('Your job validity has been
extended until %s.', $job->getDateTimeObject('expires at')->format('m/d/
Y')));

$this->redirect($this->generateUrl('job show user', $job));

}

The first argument is the identifier of the flash and the second one is the message to display.
You can define whatever flashes you want, but notice and error are two of the more
common ones (they are used extensively by the admin generator).

It is up to the developer to include the flash message in the templates. For Jobeet, they are
output by the layout.php:

// apps/frontend/templates/layout.php
<?php if ($sf user->hasFlash('notice')): 7>
<div class="flash notice"><?php echo $sf user->getFlash('notice"')
?7></div>
<?php endif 7>

<?php if ($sf user->hasFlash('error')): 7>
<div class="flash error"><?php echo $sf user->getFlash('error') ?></div>
<?php endif 7>

In a template, the user is accessible via the special $sf user variable.

T Some symfony objects are always accessible in the templates, without the need to explicitly
pass them from the action: $sf request, $sf user, and $sf response.

User Attributes

Unfortunately, the Jobeet user stories have no requirement that includes storing something in
the user session. So let’s add a new requirement: to ease job browsing, the last three jobs
viewed by the user should be displayed in the menu with links to come back to the job page
later on.

When a user access a job page, the displayed job object needs to be added in the user history
and stored in the session:

// apps/frontend/modules/job/actions/actions.class.php
class jobActions extends sfActions

{

public function executeShow(sfWebRequest $request)

{
$this->job = $this->getRoute()->getObject();

// fetch jobs already stored in the job history
$jobs = $this->getUser()->getAttribute('job history', array());

ass 3k

Listing
13-2

Listing
13-3

Day 13: The User 170

// add the current job at the beginning of the array
array unshift($jobs, $this->job->getId());

// store the new job history back into the session
$this->getUser()->setAttribute('job history', $jobs);

We could have feasibly stored the JobeetJob objects directly into the session. This is
strongly discouraged because the session variables are serialized between requests. And
when the session is loaded, the JobeetJob objects are de-serialized and can be “stalled” if
they have been modified or deleted in the meantime.

getAttribute(), setAttribute()

Given an identifier, the sfUser::getAttribute() method fetches values from the user
session. Conversely, the setAttribute() method stores any PHP variable in the session for
a given identifier.

The getAttribute() method also takes an optional default value to return if the identifier is
not yet defined.

The default value taken by the getAttribute() method is a shortcut for:
Listing if (!$value = $this->getAttribute('job history'))

13-
{
$value = array();

}

The myUser class

To better respect the separation of concerns, let’s move the code to the myUser class. The

myUser class overrides the default symfony base sfUse rol class with application specific
behaviors:

Listing // apps/frontend/modules/job/actions/actions.class.php
"7 class jobActions extends sfActions

{
public function executeShow(sfWebRequest $request)
{
$this->job = $this->getRoute()->getObject();

$this->getUser()->addJobToHistory($this->job);
}

/]
}

// apps/frontend/lib/myUser.class.php
class myUser extends sfBasicSecurityUser

51. http://www.symfony-project.orqg/api/1 4/sfUser

ass 3k

Day 13: The User 171

{
public function addJobToHistory(JobeetJob $job)

{
$ids = $this->getAttribute('job history', array());

if ('in_array($job->getId(), $ids))
{
array _unshift($ids, $job->getId());

$this->setAttribute('job history', array slice($ids, 0, 3));
}
}
}

The code has also been changed to take into account all the requirements:

 lin _array($job->getId(), $ids): A job cannot be stored twice in the history
* array slice($ids, 0, 3): Only the latest three jobs viewed by the user are
displayed
In the layout, add the following code before the $sf content variable is output:

// apps/frontend/templates/layout.php Listing
<div id="job _history"> ’
Recent viewed jobs:

<?php foreach ($sf user->getJobHistory() as $job): ?>

<?php echo link to($job->getPosition().' - '.$job->getCompany(),
'job_show user', $job) 7>

<?php endforeach 7>

</div>

<div class="content">
<?php echo $sf content 7>
</div>

The layout uses a new getJobHistory() method to retrieve the current job history:

// apps/frontend/lib/myUser.class.php Listing
class myUser extends sfBasicSecurityUser

{
public function getJobHistory()

{
$ids = $this->getAttribute('job history', array());

if ('empty($ids))
{
return Doctrine Core::getTable('JobeetJob')
->createQuery('a')
->whereIn('a.id', $ids)
->execute()

}

return array();

ass 3k

Listing
13-8

Day 13: The User 172

}

The getJobHistory() method uses a custom Doctrine Query object to retrieve several
JobeetJob objects in one call.

Jobeet oo

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

Recent viewed jobs: Web Designer - Extreme Sensio Web Developer - Company 100 Web Developer - Sensio Labs

DESIGN & FEED

Paris, France Web Designer Extreme Sensio

sfParameterHolder

To complete the job history API, let’s add a method to reset the history:

// apps/frontend/lib/myUser.class.php
class myUser extends sfBasicSecurityUser

{
public function resetJobHistory()
{
$this->getAttributeHolder()->remove('job history');
}
// ...
}

User’s attributes are managed by an object of class sfParameterHolder. The
getAttribute() and setAttribute() methods are proxy methods for
getParameterHolder()->get() and getParameterHolder()->set(). As the
remove () method has no proxy method in sfUser, you need to use the parameter holder
object directly.

The sfParameterHolder®? class is also used by sfRequest to store its parameters.

Application Security

Authentication

Like many other symfony features, security is managed by a YAML file, security.yml. For
instance, you can find the default configuration for the backend application in the config/
directory:

52. http://www.symfony-project.org/api/1 4/sfParameterHolder

symfony Brought to you by SENSIOLABS 3K

Day 13: The User 173

apps/backend/config/security.yml Listing
default: N
is secure: false

If you switch the is secure entry to true, the entire backend application will require the
user to be authenticated.

) Login Required

This page is not public.

How to access this page
You must proceed to the login page and enter your id and password.
What's Next

[Proceed to login
CF Back to previous page

@ In a YAML file, a Boolean can be expressed with the strings true and false.

If you have a look at the logs in the web debug toolbar, you will notice that the
executeLogin() method of the defaultActions class is called for every page you try to
access.

<! =Y FitgrChain =\TwUNY I Sicunmann

28 E,’ii’ FittarChain Executing fiter "sfValidationExecutionFitter™

29 E?d&fauttﬁ.{:tbns Call "defaulthctions- =executelogin()

30 Eiii’ PHPView Render "sf_symfony_lib_dir'controller/defaulttemplates/loginSuccess.php”

24 =N Manrnrato contant with ®of somdress ik dicrlsaedenllae fdafo b fammedatos dafaol] et mhe®

When an un-authenticated user tries to access a secured action, symfony forwards the
request to the Login action configured in settings.yml:

all: Listing
. 13-10
.actions:
login module: default
login_action: login

It is not possible to secure the login action. This is to avoid infinite recursion.

@ As we saw during day 4, the same configuration file can be defined in several places. This
is also the case for security.yml. To only secure or un-secure a single action or a whole
module, create a security.yml in the config/ directory of the module:

index: Listing
. 13-11
is secure: false

sumfonu Brought to you by LABS *

Day 13: The User 174

all:
is secure: true

By default, the myUser class extends szasicSecurityUserE% and not sfUser.

sfBasicSecurityUser provides additional methods to manage user authentication and
authorization.

To manage user authentication, use the isAuthenticated() and setAuthenticated()
methods:

Listing if (!$this->getUser()->isAuthenticated())

13-12
{

}

$this->getUser()->setAuthenticated(true);

Authorization

When a user is authenticated, the access to some actions can be even more restricted by
defining credentials. A user must have the required credentials to access the page:

Listing default:

13-13 .
is secure: false
credentials: admin

The credential system of symfony is quite simple and powerful. A credential can represent
anything you need to describe the application security model (like groups or permissions).

Complex Credentials

The credentials entry of security.yml supports Boolean operations to describe
complex credentials requirements.

If a user must have credential A and B, wrap the credentials with square brackets:

Listing index:
13-14 q
credentials: [A, B]

If a user must have credential A or B, wrap them with two pairs of square brackets:

Listing index:
1919 credentials: [[A, B]]

You can even mix and match brackets to describe any kind of Boolean expression with any
number of credentials.
To manage the user credentials, sfBasicSecurityUser provides several methods:
Listing // Add one or more credentials
" $user->addCredential('foo');

$user->addCredentials('foo', 'bar');

// Check if the user has a credential
echo $user->hasCredential('foo'); => true

53. http://www.symfony-project.orqg/api/1 4/sfBasicSecurityUser

ass 3k

Day 13: The User 175

// Check if the user has both credentials
echo $user->hasCredential(array('foo', 'bar')); => true

// Check if the user has one of the credentials
echo $user->hasCredential(array('foo', 'bar'), false); => true

// Remove a credential
$user->removeCredential('foo');
echo $user->hasCredential('foo'); => false

// Remove all credentials (useful in the logout process)
$user->clearCredentials();
echo $user->hasCredential('bar'); => false

For the Jobeet backend, we won’t use any credentials as we only have one profile: the
administrator.

Plugins
As we don’t like to reinvent the wheel, we won’t develop the login action from scratch.

Instead, we will install a symfony plugin.

One of the great strengths of the symfony framework is the plugin ecosystem. As we will see
in coming days, it is very easy to create a plugin. It is also quite powerful, as a plugin can
contain anything from configuration to modules and assets.

Today, we will install sfDoctrineGuardPl ugin54 to secure the backend application.

$ php symfony plugin:install sfDoctrineGuardPlugin Listing

13-17

The plugin:install task installs a plugin by name. All plugins are stored under the
plugins/ directory and each one has its own directory named after the plugin name.

PEAR must be installed for the plugin:install task to work.

When you install a plugin with the plugin:install task, symfony installs the latest stable
version of it. To install a specific version of a plugin, pass the - - release option.

The plugin page55 lists all available version grouped by symfony versions.

As a plugin is self-contained into a directory, you can also download the package‘r’6 from the
symfony website and unarchive it, or alternatively make an svn:externals link to its

Subversion repository57.

The plugin:install task automatically enables the plugin(s) it installs by automatically
updating the ProjectConfiguration.class.php file. But if you install a plugin via
Subversion or by downloading its archive, you need to enable it by hand in
ProjectConfiguration.class.php:

54. http://www.symfony-project.org/plugins/sfDoctrineGuardPlugin
55. http://www.symfony-project.org/plugins/
sfDoctrineGuardPlugin?tab=plugin all releases

56. http://www.symfony-project.org/plugins/
sfDoctrineGuardPlugin?tab=plugin installation

57. http://svn.symfony-project.com/plugins/sfDoctrineGuardPlugin

ass 3k

http://www.symfony-project.org/plugins/

Day 13: The User 176

?3%7// config/ProjectConfiguration.class.php
"7 class ProjectConfiguration extends sfProjectConfiguration

{

public function setup()

{
$this->enablePlugins(array(
'sfDoctrinePlugin',
'sfDoctrineGuardPlugin'
));
}

}

Backend Security

Each plugin has a README?®® file that explains how to configure it.

Let’s see how to configure the new plugin. As the plugin provides several new model classes
to manage users, groups, and permissions, you need to rebuild your model:

Listing $ php symfony doctrine:build --all --and-load --no-confirmation

@ Remember that the doctrine:build --all --and-load task removes all existing

tables before re-creating them. To avoid this, you can build the models, forms, and filters,

and then, create the new tables by executing the generated SQL statements stored in
data/sql/.

As sfDoctrineGuardPlugin adds several methods to the user class, you need to change
the base class of myUser to sfGuardSecurityUser:

Listing // apps/backend/lib/myUser.class.php
" class myUser extends sfGuardSecurityUser
{
}

sfDoctrineGuardPlugin provides a signin action in the sfGuardAuth module to
authenticate users.

Edit the settings.yml file to change the default action used for the login page:

Listing # apps/backend/config/settings.yml
T oall:
.settings:

enabled modules: [default, sfGuardAuth]

...
.actions:
login module: sfGuardAuth
login action: signin
...

58. http://www.symfony-project.org/plugins/
sfDoctrineGuardPlugin?tab=plugin readme

ass 3k

Day 13: The User 177

As plugins are shared amongst all applications of a project, you need to explicitly enable the
modules you want to use by adding them in the enabled modules setting.

Jobeet

obs Categories

Username

Password

Remember [

(signin)
The last step is to create an administrator user:

$ php symfony guard:create-user fabien SecretPass Listing
$ php symfony guard:promote fabien '

@ If you have installed sfDoctrineGuardPlugin from the Subversion trunk, you will have
to execute the following command to create a user and promote him at once:

$ php symfony guard:create-user fabien@example.com fabien SecretPass Listing
Fabien Potencier i

TIP The sfGuardPlugin provides tasks to manage users, groups, and permissions from
the command line. Use the 1ist task to list all tasks belonging to the guard namespace:

$ php symfony list guard Listing

13-24

When the user is not authenticated, we need to hide the menu bar:

// apps/backend/templates/layout.php Listin
<?php if ($sf user->isAuthenticated()): 7> o
<div id="menu">

<?php echo link to('Jobs', 'jobeet job') ?>
<?php echo link to('Categories', 'jobeet category') ?></1i>

</div>
<?php endif 7>

And when the user is authenticated, we need to add a logout link in the menu:

// apps/backend/templates/layout.php Listing
<?php echo link to('Logout', 'sf guard signout') ?7></1li> ’

@ To list all routes provided by sfDoctrineGuardPlugin, use the app: routes task.

To polish the Jobeet backend even more, let’s add a new module to manage the administrator
users. Thankfully, the plugin provides such a module. As for the sfGuardAuth module, you
need to enable it in settings.yml:

Listing
13-27

ass 3k

Day 13: The User 178

// apps/backend/config/settings.yml
all:
.settings:
enabled modules: [default, sfGuardAuth, sfGuardUser]

Add a link in the menu:

Listing // apps/backend/templates/layout.php
" <?php echo link to('Users', 'sf guard user') ?>

Jobeet

obs Categories Users Logout

USER LIST
[J Username Created at Last login Actions Username
=P
M fahian 1C lamiiane 1E lamians & Bdir — Is empty

We are done!

User Testing

Day 13 is not over as we have not yet talked about user testing. As the symfony browser
simulates cookies, it is quite easy to test user behaviors by using the built-in

sfTesterUser? tester

Let’s update the functional tests for the menu feature we have added until now. Add the
following code at the end of the job module functional tests:

Listing // test/functional/frontend/jobActionsTest.php
$browser->

info('4 - User job history')->

loadData() ->
restart()->

info(' 4.1 - When the user access a job, it is added to its history')->

get('/")->

click('Web Developer', array(), array('position' => 1))->

get('/")->

with('user')->begin()->

isAttribute('job history"',

array($browser->getMostRecentProgrammingJob() ->getId()))->

end()->

info(' 4.2 - A job is not added twice in the history')->
click('Web Developer', array(), array('position' => 1))->
get('/")->
with('user')->begin()->
isAttribute('job history"',
array($browser->getMostRecentProgrammingJob() ->getId()))->

59. http://symfony-project.org/api/1 4/sfTesterUser

ass 3k

Day 13: The User 179

end()
To ease testing, we first reload the fixtures data and restart the browser to start with a clean

session.
The isAttribute() method checks a given user attribute.

F The sfTesterUser tester also provides isAuthenticated() and hasCredential()
methods to test user authentication and autorizations.

Final Thoughts

The symfony user classes are a nice way to abstract the PHP session management. Coupled
with the great symfony plugin system and the sfGuardPlugin plugin, we have been able to
secure the Jobeet backend in a matter of minutes. And we have even added a clean interface
to manage our administrator users for free, thanks to the modules provided by the plugin.

ass 3k

Listing
14-1

Listing
14-2

Listing
14-3

Day 14: Feeds 180

Day 14

Feeds

Yesterday, you started developing your first very own symfony application. Don’t stop now. As
you learn more on symfony, try to add new features to your application, host it somewhere,
and share it with the community.

Let’s move on to something completely different. If you are looking for a job, you will
probably want to be informed as soon as a new job is posted. Because it is not very
convenient to check the website every other hour, we will add several job feeds here to keep
our Jobeet users up-to-date.

Formats

The symfony framework has native support for formats and mime-types. This means that the
same Model and Controller can have different templates based on the requested format. The
default format is HTML but symfony supports several other formats out of the box like txt,
js, ¢ss, json, xml, rdf, or atom.

The format can be set by using the setRequestFormat () method of the request object:
$request->setRequestFormat('xml');

But most of the time, the format is embedded in the URL. In this case, symfony will set it for
you if the special st format variable is used in the corresponding route. For the job list, the
list URL is:

http://www. jobeet.com.localhost/frontend dev.php/job

This URL is equivalent to:

http://www. jobeet.com.localhost/frontend dev.php/job.html

Both URLs are equivalent because the routes generated by the

sfDoctrineRouteCollection class have the sf format as the extension and because
html is the default format. You can check it for yourself by running the app: routes task:

Symiony) ass 3k

Day 14: Feeds 181

~/work/jobeet % ./symfony app:routes frontend
Current routes for application "frontend"
Method Pattern
ANY Jocategory/ :slug
GET /job. :sf_format
GET /job/new.:sf_format
job_create POST /job.:sf_format
job_edit GET /job/: token/edit. :sf_format
job_update PUT /job/:token. :sf_format
job_delete DELETE /job/:token.:sf_format
job_show GET /job/:token. :sf_format
job_publish PUT /job/ : token/publish. :sf_format
job_extend PUT /job/: token/extend. : sf_format
job_show_user GET /job/ : company_slug/:location_slug/:id/:position_slug
homepage ANY /

~/work/jobeet %

Feeds

Latest Jobs Feed

Supporting different formats is as easy as creating different templates. To create an Atom
feed®? for the latest jobs, create an indexSuccess.atom. php template:

<!-- apps/frontend/modules/job/templates/indexSuccess.atom.php --> Listing
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.0rg/2005/Atom">

<title>Jobeet</title>

<subtitle>Latest Jobs</subtitle>

<link href="" rel="self"/>

<link href=""/>

<updated></updated>

<author><name>Jobeet</name></author>

<id>Unique Id</id>

<entry>
<title>Job title</title>
<link href="" />
<id>Unique id</id>
<updated></updated>
<summary>Job description</summary>
<author><name>Company</name></author>

</entry>

</feed>

60. http://en.wikipedia.org/wiki/Atom (standard)

ass 3k

Day 14: Feeds 182

Template Names

As html is the most common format used for web applications, it can be omitted from the
template name. Both indexSuccess.php and indexSuccess.html.php templates are
equivalent and symfony uses the first one it finds.

Why are default templates suffixed with Success? An action can return a value to indicate
which template to render. If the action returns nothing, it is equivalent to the following
code:

“fffgg return sfView: :SUCCESS; // == 'Success'

If you want to change the suffix, just return something else:

Li]s4ti?g return sfView::ERROR; // == 'Error'

return 'Foo';

As seen yesterday, the name of the template can also be changed by using the
setTemplate() method:

Lisiil $this->setTemplate('foo');

By default, symfony will change the response Content-Type according to the format, and for
all non-HTML formats, the layout is disabled. For an Atom feed, symfony changes the
Content-Type to application/atom+xml;charset=utf-8

In the Jobeet footer, update the link to the feed:

Lising <1-- apps/frontend/templates/layout.php -->
14-8 .
<li class="feed">
<a href="<?php echo url for('job', array('sf format' => 'atom'))
?7>">Full feed

The internal URI is the same as for the job list with the st format added as a variable.

Add a <link> tag in the head section of the layout to allow automatic discover by the
browser of our feed:

Listing <!-- apps/frontend/templates/layout.php -->
~ <link rel="alternate" type="application/atom+xml" title="Latest Jobs"
href="<?php echo url for('job', array('sf format' => 'atom'), true) 7?>"

/>

For the link href attribute, an URL (Absolute) is used thanks to the second argument of the
url for() helper.

Replace the Atom template header with the following code:

Listing <!-- apps/frontend/modules/job/templates/indexSuccess.atom.php -->
<title>Jobeet</title>
<subtitle>Latest Jobs</subtitle>
<link href="<?php echo url for('job', array('sf format' => 'atom'), true)
?7>" rel="self"/>
<link href="<?php echo url for('@homepage', true) ?>"/>
<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ",
Doctrine Core::getTable('JobeetJob')->getLatestPost()->getDateTimeObject('created at')-:

ass 3k

Day 14: Feeds 183

?></updated>
<author>
<name>Jobeet</name>
</author>
<id><?php echo shal(url for('job', array('sf format' => 'atom'), true))
?></id>

Notice the usage of the U as an argument to format() to get the date as a timestamp. To get
the date of the latest post, create the getLatestPost () method:

// lib/model/doctrine/JobeetJobTable.class.php Listing
class JobeetJobTable extends Doctrine Table '
{

public function getlLatestPost()

{

$q = Doctrine Query::create()->from('JobeetJob j');
$this->addActiveJobsQuery($q);

return $q->fetchOne();
}

/...
}

The feed entries can be generated with the following code:

<!-- apps/frontend/modules/job/templates/indexSuccess.atom.php --> Listing
<?php use helper('Text') 7>
<?php foreach ($categories as $category): 7>
<?php foreach
($category->getActivelobs(sfConfig::get('app _max_jobs on homepage')) as
$job): 7>
<entry>
<title>
<?php echo $job->getPosition() ?> (<?php echo $job->getlLocation()
?7>)
</title>
<link href="<?php echo url for('job show user', $job, true) 7?>" />
<id><?php echo shal($job->getId()) ?></id>
<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ",
$job->getDateTimeObject('created at')->format('U')) ?></updated>
<summary type="xhtml">
<div xmlns="http://www.w3.0rg/1999/xhtml">
<?php if ($job->getLogo()): ?>
<div>
<a href="<?php echo $job->getUrl() ?>">
<img src="http://<?php echo $sf request->getHost().'/
uploads/jobs/'.$job->getLogo() ?>"
alt="<?php echo $job->getCompany() ?> logo" />

</div>
<?php endif 7>

<div>

<?php echo simple format text($job->getDescription()) 7>
</div>

ass 3k

Listing
14-13

Day 14: Feeds 184

<h4>How to apply?</h4>

<p><?php echo $job->getHowToApply() ?></p>

</div>

</summary>

<author>
<name><?php echo $job->getCompany() ?></name>

</author>

</entry>
<?php endforeach 7>
<?php endforeach 7>

The getHost () method of the request object ($sf request) returns the current host, which
comes in handy for creating an absolute link for the company logo.

Web Designer (Paris, France) DGR
(Q

EXTREME Article Length:
- —8 =

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt Sort By:

utlabore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco Date

laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in. Title
Source

Voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat New

non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

How to apply? Recent Articles:
All

Send your resume to fabien.potencier [at] sensio.com Today
Yesterday

Bead maore... Last Seven Days
This Month

Web Developer (Paris, France) =l

LaBs >k Source:

Jobeet

Vruihra alraadu davalnnad waheitac with evmfanu and wvanwant taoweoek with Oinan.Sooeea

When creating a feed, debugging is easier if you use command line tools like cu r18! or
wget62, as you see the actual content of the feed.

Latest Jobs in a Category Feed

One of the goals of Jobeet is to help people find more targeted jobs. So, we need to provide a
feed for each category.

First, let’s update the category route to add support for different formats:

// apps/frontend/config/routing.yml

category:
url: /category/:slug.:sf format
class: sfDoctrineRoute
param: { module: category, action: show, sf format: html }
options: { model: JobeetCategory, type: object }
requirements:

sf format: (?:html|atom)

61. http://curl.haxx.se/
62. http://www.gnu.org/software/wget/

symfony Brought to you by SENSIOLABS 3K

Day 14: Feeds 185

Now, the category route will understand both the html and atom formats. Update the links
to category feeds in the templates:

<!l-- apps/frontend/modules/job/templates/indexSuccess.php --> Listing
<div class="feed">
<a href="<?php echo url for('category', array('sf subject' => $category,
'sf format' => 'atom')) ?>">Feed
</div>
<!-- apps/frontend/modules/category/templates/showSuccess.php -->
<div class="feed">
<a href="<?php echo url for('category', array('sf subject' => $category,
'sf format' => 'atom')) ?>">Feed
</div>
The last step is to create the showSuccess.atom.php template. But as this feed will also list
jobs, we can refactor the code that generates the feed entries by creating a
_list.atom.php partial. As for the html format, partials are format specific:
<!l-- apps/frontend/modules/job/templates/ list.atom.php --> Listing

14-15

<?php use helper('Text') 7>

<?php foreach ($jobs as $job): 7>
<entry>
<title><?php echo $job->getPosition() 7> (<?php echo
$job->getlLocation() 7>)</title>
<link href="<?php echo url for('job show user', $job, true) 7?>" />
<id><?php echo shal($job->getId()) 7?></id>
<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ",
$job->getDateTimeObject('created at')->format('U')) ?></updated>
<summary type="xhtml">
<div xmlns="http://www.w3.0rg/1999/xhtml">
<?php if ($job->getLogo()): ?>
<div>
<a href="<?php echo $job->getUrl() ?>">
<img src="http://<?php echo $sf request->getHost().'/uploads/
jobs/'.$job->getlLogo() ?>"
alt="<?php echo $job->getCompany() ?> logo" />

</div>
<?php endif 7>

<div>
<?php echo simple format text($job->getDescription()) 7>
</div>

<h4>How to apply?</h4>

<p><?php echo $job->getHowToApply() ?></p>

</div>

</summary>

<author>
<name><?php echo $job->getCompany() ?></name>

</author>

</entry>
<?php endforeach 7>

You can use the list.atom.php partial to simplify the job feed template:

ass 3k

Day 14: Feeds 186

Listing <l -- apps/frontend/modules/job/templates/indexSuccess.atom.php -->
14-16 . .
<?xml version="1.0" encoding="utf-8"?7>
<feed xmlns="http://www.w3.0rg/2005/Atom">
<title>Jobeet</title>
<subtitle>Latest Jobs</subtitle>
<link href="<?php echo url for('job', array('sf format' => 'atom'),
true) ?>" rel="self"/>
<link href="<?php echo url for('@homepage', true) ?>"/>
<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ",
Doctrine Core::getTable('JobeetJob')->getLatestPost()->getDateTimeObject('created at')-:
?7></updated>
<author>
<name>Jobeet</name>
</author>
<id><?php echo shal(url for('job', array('sf format' => 'atom'), true))
?></id>

<?php foreach ($categories as $category): ?>

<?php include partial('job/list', array('jobs' =>
$category->getActivelobs(sfConfig::get('app _max_jobs on homepage')))) ?>
<?php endforeach 7>
</feed>

Eventually, create the showSuccess.atom. php template:

Lising <1 -- apps/frontend/modules/category/templates/showSuccess.atom.php -->
14-17 : .
<?xml version="1.0" encoding="utf-8"7>
<feed xmlns="http://www.w3.0rg/2005/Atom">
<title>Jobeet (<?php echo $category ?>)</title>

<subtitle>Latest Jobs</subtitle>

<link href="<?php echo url for('category', array('sf subject' =>
$category, 'sf format' => 'atom'), true) ?>" rel="self" />
<link href="<?php echo url for('category', array('sf subject' =>

$category), true) ?>" />

<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ",
$category->getLatestPost()->getDateTimeObject('created at')->format('U"'))
?7></updated>

<author>

<name>Jobeet</name>

</author>

<id><?php echo shal(url for('category', array('sf subject' =>
$category), true)) ?></id>

<?php include partial('job/list', array('jobs' => $pager->getResults()))
?>
</feed>

As for the main job feed, we need the date of the latest job for a category:

Listing // lib/model/doctrine/JobeetCategory.class.php
" class JobeetCategory extends BaselobeetCategory

{
public function getlLatestPost()
{
return $this->getActiveJobs(1l)->getFirst();
}

ass 3k

Day 14: Feeds 187

//
}

Jobeet (Design) 1 Total

Web Designer (Paris, France) Search Articles:
o~
EXTREME Article Length:
= —) =
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt Sort By:
utlabore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo Date
labaris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in. Title
Source
Voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat New
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
How to apply? Recent Articles:
All
Send your resume to fabien.potencier [at] sensio.com Today
Yesterday
Bead more... Last Seven Days
This Manth
Last Manth
Sourge:
Jobeet (Design)

Final Thoughts

As with many symfony features, the native format support allows you to add feeds to your
websites without effort. Today, we have enhanced the job seeker experience. Tomorrow, we
will see how to provide greater exposure to the job posters by providing a Web Service.

symfony Brought to you by SENSIOLABS 3K

Listing
15-1

Day 15: Web Services 188

Day 15

Web Services

With the addition of feeds on Jobeet, job seekers can now be informed of new jobs in real-
time.

On the other side of the fence, when you post a job, you will want to have the greatest
exposure possible. If your job is syndicated on a lot of small websites, you will have a better

chance to find the right person. That’s the power of the long tail®3. Affiliates will be able to
publish the latest posted jobs on their websites thanks to the web services we will develop
along this day.

Affiliates

As per day 2 requirements:
“Story F7: An affiliate retrieves the current active job list”

The Fixtures

Let’s create a new fixture file for the affiliates:

data/fixtures/affiliates.yml

JobeetAffiliate:
sensio labs:
url: http://www.sensio-labs.com/
email: fabien.potencier@example.com
is active: true
token: sensio labs

JobeetCategories: [programming]

symfony:
url: http://www.symfony-project.org/
email: fabien.potencier@example.org
is active: false
token: symfony

JobeetCategories: [design, programming]
Creating records for many-to-many relationships is as simple as defining an array with the
key which is the name of the relationship. The content of the array is the object names as

defined in the fixture files. You can link objects from different files, but the names must be
defined first.

63. http://en.wikipedia.org/wiki/The Long Tail

ass 3k

Day 15: Web Services 189

In the fixtures file, tokens are hardcoded to simplify the testing, but when an actual user
applies for an account, the token will need to be generated:

// lib/model/doctrine/JobeetAffiliate.class.php Listing
class JobeetAffiliate extends BaselJobeetAffiliate 7

public function save(Doctrine Connection $conn = null)

{
if (!'$this->getToken())

{
$this->setToken(shal($this->getEmail().rand(11111, 99999)));

}

return parent::save($conn);

}

/] ...
}

You can now reload the data:

$ php symfony doctrine:data-load Listing

15-3

The Job Web Service

As always, when you create a new resource, it’s a good habit to define the URL first:

apps/frontend/config/routing.yml Listing
api jobs:)
url: /api/:token/jobs.:sf format
class: sfDoctrineRoute
param: { module: api, action: list }
options: { model: JobeetJob, type: list, method: getForToken }
requirements:

st format: (?:xml|json]|yaml)

For this route, the special sf format variable ends the URL and the valid values are xml,
json, or yaml.

The getForToken() method is called when the action retrieves the collection of objects
related to the route. As we need to check that the affiliate is activated, we need to override
the default behavior of the route:

// lib/model/doctrine/JobeetJobTable.class.php Listing
class JobeetJobTable extends Doctrine Table ’“

{

public function getForToken(array $parameters)

{
$affiliate = Doctrine Core::getTable('JobeetAffiliate')

->findOneByToken($parameters['token']);
if (!'$affiliate || !$affiliate->getIsActive())
{

throw new sfErrord404Exception(sprintf('Affiliate with token "S%s"
does not exist or is not activated.', $parameters['token']));

}

return $affiliate->getActivelobs();

}

ass 3k

Listing
15-6

Listing
15-7

Listing
15-8

Day 15: Web Services 190

/...
}

If the token does not exist in the database, we throw an sfError404Exception exception.
This exception class is then automatically converted to a 404 response. This is the simplest
way to generate a 404 page from a model class.

The getForToken() method uses one new method named getActiveJobs() and returns
the list of currently active jobs:

// lib/model/doctrine/JobeetAffiliate.class.php
class JobeetAffiliate extends BaseJobeetAffiliate

{
public function getActiveldobs()

{
$q = Doctrine Query::create()
->select('j.*")
->from('JobeetJob j')
->leftJoin('j.JobeetCategory c')
->leftJoin('c.JobeetAffiliates a')
->where('a.id = ?', $this->getId());

$q = Doctrine Core::getTable('JobeetJob')->addActiveJobsQuery($q);

return $g->execute();

}

/] ...
}

The last step is to create the api action and templates. Bootstrap the module with the
generate:module task:

$ php symfony generate:module frontend api

T As we won't use the default index action, you can remove it from the action class, and
remove the associated template indexSucess.php.

The Action

All formats share the same 1ist action:

// apps/frontend/modules/api/actions/actions.class.php
public function executelList(sfWebRequest $request)
{

$this->jobs = array();

foreach ($this->getRoute()->getObjects() as $job)

{

$this->jobs[$this->generateUrl('job show user', $job, true)] =
$job->asArray($request->getHost());

ass 3k

Day 15: Web Services 191

Instead of passing an array of JobeetJob objects to the templates, we pass an array of
strings. As we have three different templates for the same action, the logic to process the
values has been factored out in the JobeetJob: :asArray() method:

// lib/model/doctrine/JobeetJob.class.php Listing
class JobeetJob extends BaseJobeetJob .
{
public function asArray($host)
{
return array(
'category' => $this->getJobeetCategory()->getName(),
"type' => $this->getType(),
"company' => $this->getCompany(),
'logo’ => $this->getlLogo() ? 'http://'.$host.'/uploads/jobs/
'.$this->getLogo() : null,
‘url' => $this->getUrl(),
'position’ => $this->getPosition(),
'location' => $this->getlLocation(),
'description' => $this->getDescription(),
"how to apply' => $this->getHowToApply(),
'expires at' => $this->getCreatedAt(),
);
}
/] ...

}

The xml Format

Supporting the xml format is as simple as creating a template:

<!-- apps/frontend/modules/api/templates/listSuccess.xml.php --> Listing
<?xml version="1.0" encoding="utf-8"7> 7
<jobs>

<?php foreach ($jobs as $url => $job): ?>

<job url="<?php echo $url ?>">
<?php foreach ($job as $key => $value): 7>

<<?php echo $key ?>><?php echo $value ?></<?php echo $key 7>>

<?php endforeach 7>

</job>
<?php endforeach 7>
</jobs>

The json Format

Support the JSON format®* is similar:

<!-- apps/frontend/modules/api/templates/listSuccess.json.php --> Listing
[.
<?php $nb = count($jobs); $i
{
"url": "<?php echo $url ?>",
<?php $nbl = count($job); $j = 0; foreach ($job as $key => $value): ++$j 7>
"<?php echo $key ?>": <?php echo json encode($value).($nbl == $j ? "'
|,|) ?>

0; foreach ($jobs as $url => $job): ++$i ?>

64. http://json.org/

ass 3k

Listing
15-12

Listing
15-13

Day 15: Web Services 192

<?php endforeach 7>
}<?php eCho $nb == $i rA |’| ?>

<?php endforeach 7>

]

The yaml Format

For built-in formats, symfony does some configuration in the background, like changing the
content type, or disabling the layout.

As the YAML format is not in the list of the built-in request formats, the response content type
can be changed and the layout disabled in the action:

class apiActions extends sfActions

public function executelList(sfWebRequest $request)
{
$this->jobs = array();
foreach ($this->getRoute()->getObjects() as $job)
{

$this->jobs[$this->generateUrl('job show user', $job, true)] =
$job->asArray($request->getHost());
}

switch ($request->getRequestFormat())
{
case 'yaml':

$this->setlLayout(false);
$this->getResponse()->setContentType('text/yaml');
break;

}

}
}

In an action, the setLayout() method changes the default layout|Layout (Disabling) or
disables it when set to false.

The template for YAML reads as follows:

<!l-- apps/frontend/modules/api/templates/listSuccess.yaml.php -->
<?php foreach ($jobs as $url => $job): 7>

url: <?php echo $url 7>

<?php foreach ($job as $key => $value): ?>
<?php echo $key ?>: <?php echo sfYaml::dump($value) ?>

<?php endforeach 7>
<?php endforeach 7>

If you try to call the web service with a non-valid token, you will have a 404 XML page for the
XML format, and a 404 JSON page for the JSON format. But for the YAML format, symfony
does not know what to render.

Whenever you create a format, a custom error template must be created. The template will be
used for 404 pages, and all other exceptions.

ass 3k

Day 15: Web Services 193

As the exception should be different in the production and development environment, two
files are needed (config/error/exception.yaml.php for debugging, and config/
error/error.yaml.php for production):

// config/error/exception.yaml.php Listing
<?php echo sfYaml: :dump(array(
‘error' => array(
'code’ => $code,
‘message’ => $message,
"debug’ => array(
"name’ => $name,
'message’ => $message,
'traces' => $traces,
)I
)), 4) 7>

// config/error/error.yaml.php
<?php echo sfYaml::dump(array(

‘error' => array(
'code’ => $code,
‘message’ => $message,

))) 7>
Before trying it, you must create a layout for YAML format:

// apps/frontend/templates/layout.yaml.php Lising
<?php echo $sf content ?> 515

~/work/jobeet $ curl http://jobeet.localhost/frontend_dev.php/api/sensio_lab/jobs.yaml
error:
code: 484
message: 'Affiliate with token “sensio_lab" does not exist or is not activated.’
debug:
name: sFErrord4@4Exception
message: 'Affiliate with token “sensio_lab” does not exist or is not activated.’
traces:
- 'at (O in SF_ROOT_DIR/lib/model/JobeetlobPeer.php line 12*
= "at JobeetlobPeer::getForToken(array(’ "token'' => ''sensio_lab’’', ''sf_format'®’
- 'at call_user_func(array(' 'JobeetJobPeer'®, '‘getForToken''), array(’'token’' =>
- 'at sfObjectRoute->getObjectForParameters(array(’ 'module’"® => "'api'’, '‘action
sfPropelPlugin/lib/routing/sfPropelRoute.class.php line 100"
- "at sfPropelRoute->getObjectsForParameters{array(’ "'module’" => ''api'’, "'actio
/sflbjectRoute.cla

Overriding the 404 error and exception templates for built-in templates is as simple as
creating a file in the config/error/ directory

Web Service Tests

To test the web service, copy the affiliate fixtures from data/fixtures/ to the test/
fixtures/ directory and replace the content of the auto-generated apiActionsTest.php
file with the following content:

// test/functional/frontend/apiActionsTest.php Listing
include(dirname(FILE).'/../../bootstrap/functional.php'); o

$browser = new JobeetTestFunctional(new sfBrowser());

ass 3k

Day 15: Web Services 194

$browser->loadData();

$browser->
info('l - Web service security')->

info(' 1.1 - A token is needed to access the service')->
get('/api/foo/jobs.xml"')->
with('response')->isStatusCode(404)->

info(' 1.2 - An inactive account cannot access the web service')->
get('/api/symfony/jobs.xml"')->
with('response')->isStatusCode(404)->

info('2 - The jobs returned are limited to the categories configured for
the affiliate')->
get('/api/sensio labs/jobs.xml')->
with('request')->isFormat('xml')->
with('response')->begin()->
isValid()->
checkElement('job', 32)->
end()->

info('3 - The web service supports the JSON format')->
get('/api/sensio labs/jobs.json')->
with('request')->isFormat('json')->
with('response')->matches('/"category"\: "Programming"/')->

info('4 - The web service supports the YAML format')->
get('/api/sensio labs/jobs.yaml')->
with('response')->begin()->
isHeader('content-type', 'text/yaml; charset=utf-8')->
matches('/category\: Programming/')->
end()

In this test, you will notice three new methods:

o 1isValid(): Checks whether or not the XML response is well formed

o isFormat(): It tests the format of a request

* matches(): For non-HTML format, if checks that the response verifies the regex
passed as an argument

The isValid() method accepts a boolean as first parameter that allows to validates the
XML response against its XSD.

$browser->with(‘response’)->isValid(true);

It also accepts the path to a special XSD file against to which the response has to be
validated.

$browser->with(‘response’)->isValid(‘/path/to/schema/xsd’);

The Affiliate Application Form

Now that the web service is ready to be used, let’s create the account creation form for
affiliates. We will yet again describe the classic process of adding a new feature to an
application.

ass 3k

Day 15: Web Services 195

Routing
You guess it. The route is the first thing we create:
apps/frontend/config/routing.yml Listing
affiliate: .
class: sfDoctrineRouteCollection
options:

model: JobeetAffiliate
actions: [new, createl
object actions: { wait: get }

It is a classic Doctrine collection route with a new configuration option: actions. As we don’t
need all the seven default actions defined by the route, the actions option instructs the
route to only match for the new and create actions. The additional wait route will be used
to give the soon-to-be affiliate some feedback about his account.

Bootstrapping

The classic second step is to generate a module:

$ php symfony doctrine:generate-module frontend affiliate JobeetAffiliate Listing
--non-verbose-templates ”

Templates

The doctrine:generate-module task generate the classic seven actions and their
corresponding templates. In the templates/ directory, remove all the files but the
_form.php and newSuccess.php ones. And for the files we keep, replace their content with
the following:

<!-- apps/frontend/modules/affiliate/templates/newSuccess.php --> Listing
<?php use stylesheet('job.css') ?> o

<h1l>Become an Affiliate</hl>
<?php include partial('form', array('form' => $form)) 7>

<!-- apps/frontend/modules/affiliate/templates/ form.php -->
<?php include stylesheets for form($form) 7>
<?php include javascripts for form($form) 7>

<?php echo form tag for($form, 'affiliate') 7>
<table id="job form">
<tfoot>
<tr>
<td colspan="2">
<input type="submit" value="Submit" />
</td>
</tr>
</tfoot>
<tbody>
<?php echo $form 7>
</tbody>
</table>
</form>

ass 3k

Day 15: Web Services 196

Create the waitSuccess.php template:

Listing <!-- apps/frontend/modules/affiliate/templates/waitSuccess.php -->
""" <hl>Your affiliate account has been created</hl>

<div style="padding: 20px">
Thank you!
You will receive an email with your affiliate token
as soon as your account will be activated.

</div>

Last, change the link in the footer to point to the affiliate module:

Listing // apps/frontend/templates/layout.php
"7 <1li class="last">
<a href="<?php echo url for('affiliate new') ?>">Become an affiliate

Actions

Here again, as we will only use the creation form, open the actions.class.php file and
remove all methods but executeNew(), executeCreate(), and processForm().

For the processForm() action, change the redirect URL to the wait action

Lising [/ apps/frontend/modules/affiliate/actions/actions.class.php
" $this->redirect($this->generateUrl('affiliate wait', $jobeet affiliate));

The wait action is simple as we don’t need to pass anything to the template:

Listing // apps/frontend/modules/affiliate/actions/actions.class.php
"* public function executeWait(sfWebRequest $request)

{

}

The affiliate cannot choose its token, nor can he activates his account right away. Open the
JobeetAffiliateForm file to customize the form:

Listing // lib/form/doctrine/JobeetAffiliateForm.class.php
" class JobeetAffiliateForm extends BaselobeetAffiliateForm
{
public function configure()
{
$this->useFields(array(
‘url',
'email'’,
'jobeet categories list'
));
$this->widgetSchema['jobeet categories list']->setOption('expanded’,
true);
$this->widgetSchema['jobeet categories list']->setlLabel('Categories');

$this->validatorSchemal'jobeet categories list']->setOption('required’,
true);

$this->widgetSchema['url']->setLabel('Your website URL');
$this->widgetSchema['url']->setAttribute('size', 50);

ass 3k

Day 15: Web Services 197

$this->widgetSchemal'email']->setAttribute('size', 50);

$this->validatorSchema['email'] = new
sfValidatorEmail(array('required' => true));
}
}

The new sfForm: :useFields () method allows to specify the white list of fields to keep. All
non mentionned fields will be removed from the form.

The form framework supports many-to-many relationship|Many to Many Relationships
(Forms) like any other column. By default, such a relation is rendered as a drop-down box
thanks to the sfWidgetFormPropelChoice widget. As seen during day 10, we have
changed the rendered tag by using the expanded option.

As emails and URLs tend to be quite longer than the default size of an input tag, default
HTML attributes can be set by using the setAttribute() method.

Jobeet i

ASK FOR A JOB

Enter some keywords {city, country, position, ...)

Recent viewed jobs:

BECOME AN AFFILIATE

Your website URL

Email
Categories [Design
[Programming

) Manager
O Administrator

Tests

The last step is to write some functional tests for the new feature.
Replace the generated tests for the affiliate module by the following code:

// test/functional/frontend/affiliateActionsTest.php Listing
include(dirname(FILE).'/../../bootstrap/functional.php');)

$browser = new JobeetTestFunctional (new sfBrowser());
$browser->loadData();

$browser->
info('l - An affiliate can create an account')->

get('/affiliate/new')->
click('Submit', array('jobeet affiliate' => array(

‘url' => 'http://www.example.com/"',
'email’ => 'foo@example.com',
'jobeet categories list' =>

array(Doctrine Core::getTable('JobeetCategory')->findOneBySlug('programming')->getId())

symfony Brought to you by SENSIOLABS 3K

Listing
15-26

Listing
15-27

Listing
15-28

Day 15: Web Services 198

)))->

with('response')->isRedirected()->

)
followRedirect()->
with('response')->checkElement('#content hl', 'Your affiliate account
has been created')->

info('2 - An affiliate must at least select one category')->

get('/affiliate/new')->
click('Submit', array('jobeet affiliate' => array(
‘url' => 'http://www.example.com/"',
'email' => 'foo@example.com',
)))->
with('form')->isError('jobeet categories list')

The Affiliate Backend

For the backend, an affiliate module must be created for affiliates to be activated by the
administrator:

$ php symfony doctrine:generate-admin backend JobeetAffiliate
--module=affiliate

To access the newly created module, add a link in the main menu with the number of affiliate
that need to be activated:

<!-- apps/backend/templates/layout.php -->

<a href="<?php echo url for('jobeet affiliate') 7?>">
Affiliates - <?php echo
Doctrine Core::getTable('JobeetAffiliate')->countToBeActivated()
?7>

// lib/model/doctrine/JobeetAffiliateTable.class.php
class JobeetAffiliateTable extends Doctrine Table

{

public function countToBeActivated()

{
$g = $this->createQuery('a')
->where('a.is active = 7', 0);

return $qg->count();

}
/...
}

As the only action needed in the backend is to activate or deactivate accounts, change the
default generator config section to simplify the interface a bit and add a link to activate
accounts directly from the list view:

ass 3k

Day 15: Web Services 199

apps/backend/modules/affiliate/config/generator.yml
config:
fields:
is active: { label: Active? }
list:
title: Affiliate Management
display: [is active, url, email, token]
sort: [is active]
object actions:
activate: ~
deactivate: ~
batch actions:
activate: ~
deactivate: ~
actions: {}
filter:
display: [url, email, is activel]

To make administrators more productive, change the default filters to only show affiliates to
be activated:

// apps/backend/modules/affiliate/lib/ Listing
affiliateGeneratorConfiguration.class.php o
class affiliateGeneratorConfiguration extends
BaseAffiliateGeneratorConfiguration

{
public function getFilterDefaults()

{
return array('is active' => '0');
}
}

The only other code to write is for the activate, deactivate actions:

// apps/backend/modules/affiliate/actions/actions.class.php Listing
class affiliateActions extends autoAffiliateActions “

{

public function executelListActivate()

{
$this->getRoute()->getObject()->activate();

$this->redirect('jobeet affiliate');

}

public function executelListDeactivate()

{
$this->getRoute()->getObject()->deactivate();

$this->redirect('jobeet affiliate');

}

public function executeBatchActivate(sfWebRequest $request)
{
$g = Doctrine Query::create()
->from('JobeetAffiliate a')
->wherelIn('a.id', $request->getParameter('ids'));

$affiliates = $q->execute();

ass 3k

Day 15: Web Services 200

foreach ($affiliates as $affiliate)

{

$affiliate->activate();

}

$this->redirect('jobeet affiliate');

}

public function executeBatchDeactivate(sfWebRequest $request)
{
$q = Doctrine Query::create()
->from('JobeetAffiliate a')
->wherelIn('a.id', $request->getParameter('ids'));

$affiliates = $g->execute();

foreach ($affiliates as $affiliate)

{

$affiliate->deactivate();

}

$this->redirect('jobeet affiliate');
}
}

// lib/model/doctrine/JobeetAffiliate.class.php
class JobeetAffiliate extends BaselobeetAffiliate

{

public function activate()

{

$this->setIsActive(true);

return $this->save();

}
public function deactivate()
{

$this->setIsActive(false);

return $this->save();

}
/...

ass 3k

Day 15: Web Services 201

Jobeet

obs Affiliates - 1 Categories Users Logout

AFFILIATE MANAGEMENT

O Active? &+ Url Email Token Actions Url
- . . . O is empty
a http:/ /www.symfony- fabien.potencier@example.org symfony Activate
project.org/ Deactivate ..
=] http:/ fwww.sensio— fabien.potencier@example.com sensio_labs Activate O'is empty
labs.com/ Deactivate ;
Active? yesornols

2 results

" Choose an action | 3] (go)

k-]

Final Thoughts

Thanks to the REST architecture of symfony, it is quite easy to implement web services for
your projects. Although, we wrote code for a read-only web service today, you have enough
symfony knowledge to implement a read-write web service.

The implementation of the affiliate account creation form in the frontend and its backend
counterpart was really easy as you are now familiar with the process of adding new features
to your project.

If you remember requirements from day 2:

“The affiliate can also limit the number of jobs to be returned, and refine his query by
specifying a category.”

The implementation of this feature is so easy that we will let you do it tonight.

Whenever an affiliate account is activated by the administrator, an email should be sent to
the affiliate to confirm his subscription and give him his token. Sending emails is the topic we
will talk about tomorrow.

sumfonu Brought to you by LABS *

Listing
16-1

Day 16: The Mailer 202

Day 16

The Maller

Yesterday, we added a read-only web service to Jobeet. Affiliates can now create an account
but it needs to be activated by the administrator before it can be used. In order for the
affiliate to get its token, we still need to implement the email notification. That’'s what we will
start doing in the coming lines.

The symfony framework comes bundled with one of the best PHP emailing solution: Swift

Mailer®®. Of course, the library is fully integrated with symfony, with some cool features
added on top of its default features.

Symfony 1.3/1.4 uses Swift Mailer version 4.1.

Sending simple Emails

Let’s start by sending a simple email to notify the affiliate when his account has been
confirmed and to give him the affiliate token.

Replace the activate action with the following code:

// apps/backend/modules/affiliate/actions/actions.class.php
class affiliateActions extends autoAffiliateActions
{
public function executelListActivate()
{
$affiliate = $this->getRoute()->getObject();
$affiliate->activate();

// send an email to the affiliate
$message = $this->getMailer()->compose(
array('jobeet@example.com' => 'Jobeet Bot'),
$affiliate->getEmail(),
'Jobeet affiliate token',
<<<EQF
Your Jobeet affiliate account has been activated.

Your token is {$affiliate->getToken()}.

The Jobeet Bot.
EOF

65. http://www.swiftmailer.org/

ass 3k

Day 16: The Mailer 203

);
$this->getMailer()->send($message);

$this->redirect('jobeet affiliate');

}

/...
}

F For the code to work properly, you should change the jobeet@example.com email
address to a real one.

Email management in symfony is centered around a mailer object, which can be retrieved
from an action with the getMailer () method.

The compose () method takes four arguments and returns an email message object:

the sender email address (from);
the recipient email address(es) (to);
the subject of the message;

the body of the message.

Sending the message is then as simple as calling the send () method on the mailer instance
and passing the message as an argument. As a shortcut, you can only compose and send an
email in one go by using the composeAndSend () method.

The email message is an instance of the Swift Message class. Refer to the Swift Mailer

official documentation®® to learn more about this object, and how to do more advanced
stuff like attaching files.

Configuration

By default, the send () method tries to use a local SMTP server to send the message to the
recipient. Of course, as many things in symfony, this is totally configurable.

Factories

During the previous days, we have already talked about symfony core objects like the user,
request, response, or the routing. These objects are automatically created, configured,
and managed by the symfony framework. They are always accessible from the sfContext
object, and like many things in the framework, they are configurable via a configuration file:
factories.yml. This file is configurable by environment.

When the sfContext initializes the core factories, it reads the factories.yml file for the
class names (class) and the parameters (param) to pass to the constructor:

response:
class: sfWebResponse

param:
send http headers: false

66. http://www.swiftmailer.org/docs

ass 3k

Listing
16-2

Day 16: The Mailer 204

In the above snippet, to create the response factory, symfony instantiates a sfWebResponse
object and passes the send _http headers option as a parameter.

The sfContext class

The sfContext object contains references to symfony core objects like the request, the
response, the user, and so on. As sfContext acts like a singleton, you can use the
sfContext::getInstance() statement to get it from anywhere and then have access to
any symfony core objects:

L;s({igg $mailer = sfContext::getInstance()->getMailer();

Whenever you want to use the sfContext::getInstance() in one of your class, think
twice as it introduces a strong coupling. It is quite always better to pass the object you need
as an argument.

You can even use sfContext as a registry and add your own objects using the set()
methods. It takes a name and an object as arguments and the get() method can be used
later on to retrieve an object by name:

Lising sfContext::getInstance()->set('job', $job);
"% ¢job = sfContext::getInstance()->get('job');

Delivery Strategy

Like many other core symfony objects, the mailer is a factory. So, it is configured in the
factories.yml configuration file. The default configuration reads as follows

Listing mailer:
” class: sfMailer

param:
logging: %SF _LOGGING ENABLED%
charset: %SF_CHARSETS
delivery strategy: realtime
transport:
class: Swift SmtpTransport
param:
host: localhost
port: 25
encryption: ~
username: ~
password: ~

When creating a new application, the local factories.yml configuration file overrides the
default configuration with some sensible defaults for the env and test environments:

Listing test:
16-6 .
mailer:
param:
delivery strategy: none

dev:
mailer:
param:
delivery strategy: none

ass 3k

Day 16: The Mailer 205

The delivery strategy setting tells symfony how to deliver emails. By default, symfony
comes with four different strategies:

* realtime: Messages are sent in realtime.

* single address: Messages are sent to a single address.
* spool: Messages are stored in a queue.

* none: Messages are simply ignored.

Whatever the strategy, emails are always logged and available in the “mailer” panel in the
web debug toolbar.

Mail Transport

Mail messages are actually sent by a transport. The transport is configured in the
factories.yml configuration file, and the default configuration uses the SMTP server of the
local machine:

transport:

class: Swift SmtpTransport

param:
host: localhost
port: 25
encryption: ~
username: ~
password: ~

Swift Mailer comes bundled with three different transport classes:

* Swift SmtpTransport: Uses a SMTP server to send messages.
 Swift SendmailTransport: Uses sendmail to send messages.
* Swift MailTransport: Uses the native PHP mail () function to send messages.

The “Transport Types"67 section of the Swift Mailer official documentation describes all

you need to know about the built-in transport classes and their different parameters.

Testing Emails

Now that we have seen how to send an email with the symfony mailer, let’s write some
functional tests to ensure we did the right thing. By default, symfony registers a mailer
tester (sfMailerTester) to ease mail testing in functional tests.

First, change the mailer factory’s configuration for the test environment if your web server
does not have a local SMTP server. We have to replace the current Swift SmtpTransport
class by Swift MailTransport:

apps/backend/config/factories.yml
test:

...
mailer:
param:

delivery strategy: none

67. http://swiftmailer.org/docs/transport-types

ass 3k

Listing
16-7

Listing
16-8

Day 16: The Mailer 206

transport:
class: Swift MailTransport

Then, add a new test/fixtures/administrators.yml file containing the following
YAML definition:

Listing sTGuardUser:
16-9 .
admin:
email address: admin@example.com
username: admin
password: admin
first name: Fabien
last name: Potencier
is super_admin: true

Finally, replace the affiliate functional test file for the backend application with the
following code:

7?%7// test/functional/backend/affiliateActionsTest.php
~ include(dirname(FILE).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

$browser->

info('l - Authentication')->

get('/affiliate')->

click('Signin', array(
'signin' => array('username' => 'admin', 'password' => 'admin'),
array(' with csrf' => true)

))->

with('response')->isRedirected()->

followRedirect()->

info('2 - When validating an affiliate, an email must be sent with its
token') ->
click('Activate', array(), array('position' => 1))->
with('mailer')->begin()->
checkHeader('Subject', '/Jobeet affiliate token/')->
checkBody('/Your token is symfony/')->
end()

’

Each sent email can be tested with the help of the checkHeader() and checkBody()
methods. The second argument of checkHeader () and the first argument of checkBody ()
can be one of the following:

* a string to check an exact match;

* aregular expression to check the value against it;

* a negative regular expression (a regular expression starting with a !) to check that
the value does not match.

By default, checks are done on the first email sent. If several emails have been sent, you
can choose the one you want to test with the withMessage() method. The
withMessage () takes a recipient as its first argument. It also takes a second argument to
indicate which email you want to test if several ones have been sent to the same recipient.

ass 3k

Day 16: The Mailer 207

@ Like other built-in testers, you can see the raw message by calling the debug () method.

Final Thoughts

Tomorrow, we will implement the last missing feature of the Jobeet website, the search
engine.

ass 3k

Day 17: Search 208

Day 17

Search

In day 14, we added some feeds to keep Jobeet users up-to-date with new job posts. Today
will help you to improve the user experience by implementing the latest main feature of the
Jobeet website: the search engine.

The Technology

Before we jump in head first, let’s talk a bit about the history of symfony. We advocate a lot of
best practices, like tests and refactoring, and we also try to apply them to the framework
itself. For instance, we like the famous “Don’t reinvent the wheel” motto.

As a matter of fact, the symfony framework started its life four years ago as the glue between
two existing Open-Source softwares: Mojavi and Propel. And every time we need to tackle a
new problem, we look for an existing library that does the job well before coding one ourself
from scratch.

Now, we want to add a search engine to Jobeet, and the Zend Framework provides a great

library, called Zend Lucene®®, which is a port of the well-know Java Lucene project. Instead of
creating yet another search engine for Jobeet, which is quite a complex task, we will use Zend
Lucene.

On the Zend Lucene documentation page, the library is described as follows:

... a general purpose text search engine written entirely in PHP 5. Since it stores its index on
the filesystem and does not require a database server, it can add search capabilities to almost
any PHP-driven website. Zend Search Lucene supports the following features:

* Ranked searching - best results returned first

* Many powerful query types: phrase queries, boolean queries, wildcard queries,
proximity queries, range queries and many others

* Search by specific field (e.g., title, author, contents)

F Today is not a tutorial about the Zend Lucene library, but how to integrate it into the
Jobeet website; or more generally, how to integrate third-party libraries into a symfony

project. If you want more information about this technology, please refer to the Zend

Lucene documentation®?,

68. http://framework.zend.com/manual/en/zend.search.lucene.html
69. http://framework.zend.com/manual/en/zend.search.lucene.html

ass 3k

Day 17: Search 209

Installing and Configuring the Zend Framework

The Zend Lucene library is part of the Zend Framework. We will only install the Zend
Framework into the 1ib/vendor/ directory, alongside the symfony framework itself.

First, download the Zend Framework’°

vendor/Zend/ directory.

and un-archive the files so that you have a lib/

The following explanations have been tested with the 1.10.3 version of the Zend
Framework.

@ You can clean up the directory by removing everything but the following files and
directories:

Exception.php
Loader/
Autoloader.php
Search/

Then, add the following code to the ProjectConfiguration class to provide a simple way
to register the Zend autoloader:

// config/ProjectConfiguration.class.php Lising
class ProjectConfiguration extends sfProjectConfiguration '

{

static protected $zendLoaded = false;

static public function registerZend()

{
if (self::$zendLoaded)
{
return;
}

set include path(sfConfig::get('sf lib dir').'/
vendor'.PATH SEPARATOR.get include path());
require once sfConfig::get('sf 1lib dir').'/vendor/Zend/Loader/
Autoloader.php';
Zend Loader Autoloader::getInstance();
self::$zendLoaded = true;
}

/] ...
}

Indexing

The Jobeet search engine should be able to return all jobs matching keywords entered by the
user. Before being able to search anything, an index|Index (Search Engine) has to be built for
the jobs; for Jobeet, it will be stored in the data/ directory.

70. http://framework.zend.com/download/overview

ass 3k

Listing
17-2

Listing
17-3

Listing
17-4

Day 17: Search 210

Zend Lucene provides two methods to retrieve an index depending whether one already
exists or not. Let’s create a helper method in the JobeetJobTable class that returns an
existing index or creates a new one for us:

// lib/model/doctrine/JobeetJobTable.class.php
static public function getLucenelIndex()

{

ProjectConfiguration::registerZend();

if (file exists($index = self::getLuceneIndexFile()))

{
}

return Zend Search Lucene::open($index);

return Zend Search Lucene::create($index);

}

static public function getLuceneIndexFile()

{
return sfConfig::get('sf data dir').'/
job.'.sfConfig::get('sf environment').'.index';

}

The save() method

Each time a job is created, updated, or deleted, the index must be updated. Edit JobeetJob
to update the index whenever a job is serialized to the database:

public function save(Doctrine Connection $conn = null)
{

/] ...

$ret = parent::save($conn);

$this->updatelLucenelndex();

return $ret;

}
And create the updateLuceneIndex() method that does the actual work:

// lib/model/doctrine/JobeetJob.class.php
public function updatelLuceneIndex()

{
$index = JobeetJobTable::getLuceneIndex();

// remove existing entries
foreach ($index->find('pk:'.$this->getId()) as $hit)

{
$index->delete($hit->id);
}
// don't index expired and non-activated jobs
if ($this->isExpired() || !$this->getIsActivated())
{
return;
}

ass 3k

Day 17: Search 211

$doc = new Zend Search Lucene Document();

// store job primary key to identify it in the search results
$doc->addField(Zend Search Lucene Field::Keyword('pk', $this->getId()));

// index job fields

$doc->addField(Zend Search Lucene Field::UnStored('position’,
$this->getPosition(), 'utf-8'));

$doc->addField(Zend Search Lucene Field::UnStored('company',
$this->getCompany(), 'utf-8'));

$doc->addField(Zend Search Lucene Field::UnStored('location’,
$this->getLocation(), 'utf-8'));

$doc->addField(Zend Search Lucene Field::UnStored('description’,
$this->getDescription(), 'utf-8'));

// add job to the index
$index->addDocument ($doc);
$index->commit();

}

As Zend Lucene is not able to update an existing entry, it is removed first if the job already
exists in the index

Indexing the job itself is simple: the primary key is stored for future reference when
searching jobs and the main columns (position, company, location, and description)
are indexed but not stored in the index as we will use the real objects to display the results.

Doctrine Transactions

What if there is a problem when indexing a job or if the job is not saved into the database?
Both Doctrine and Zend Lucene will throw an exception. But under some circumstances, we
might have a job saved in the database without the corresponding indexing. To prevent this
from happening, we can wrap the two updates in a transaction and rollback in case of an
error:

// lib/model/doctrine/JobeetJob.class.php Listing
public function save(Doctrine Connection $conn = null) "

{
/]

$conn = $conn ? $conn : $this->getTable()->getConnection();
$conn->beginTransaction();

try

{

$ret = parent::save($conn);
$this->updatelLucenelndex();
$conn->commit();

return $ret;

}

catch (Exception $e)

{
$conn->rollBack();
throw $e;

ass 3k

Day 17: Search 212

delete()

We also need to override the delete() method to remove the entry of the deleted job from
the index:

Listing // lib/model/doctrine/JobeetJob.class.php
” public function delete(Doctrine Connection $conn = null)

{
$index = JobeetJobTable::getLucenelndex();
foreach ($index->find('pk:'.$this->getId()) as $hit)
{
$index->delete($hit->id);
}

return parent::delete($conn);

Searching

Now that we have everything in place, you can reload the fixture data to index them:

Lising $ php symfony doctrine:data-load

17-7

@ For Unix-like users: as the index is modified from the command line and also from the web,
you must change the index directory permissions accordingly depending on your
configuration: check that both the command line user you use and the web server user can

write to the index directory.

You might have some warnings about the ZipArchive class if you don’'t have the zip
extension compiled in your PHP. It’s a known bug of the Zend Loader class.

Implementing the search in the frontend is a piece of cake. First, create a route:

Listing job search:
url: /search
param: { module: job, action: search }

And the corresponding action:

Listing // apps/frontend/modules/job/actions/actions.class.php
- class jobActions extends sfActions
{
public function executeSearch(sfWebRequest $request)
{
$this->forwardUnless($query = $request->getParameter('query'), 'job',
"index');

$this->jobs = Doctrine Core::getTable('Jobeet]Job')
->getForLuceneQuery($query);

ass 3k

Day 17: Search 213

The new forwardUnless() method forwards the user to the index action of the job
module if the query request parameter does not exist or is empty.

It’s just an alias for the following longer statement:
if (I$query = $request->getParameter(‘query’)) { $this->forward(‘job’, ‘index’); }

The template is also quite straightforward:

// apps/frontend/modules/job/templates/searchSuccess.php Listing
<?php use stylesheet('jobs.css') 7> '
<div id="jobs">
<?php include partial('job/list', array('jobs' => $jobs)) 7>
</div>
The search itself is delegated to the getForLuceneQuery () method:
// lib/model/doctrine/JobeetJobTable.class.php Listing
public function getForLuceneQuery($query) '
{
$hits = self::getLucenelIndex()->find($query);
$pks = array();
foreach ($hits as $hit)
{
$pks[] = $hit->pk;
}
if (empty($pks))
{
return array();
}
$g = $this->createQuery('j")
->whereIn('j.id', $pks)
->1imit(20);
$g = $this->addActiveJobsQuery($q);
return $q->execute();
}
After we get all results from the Lucene index, we filter out the inactive jobs, and limit the
number of results to 20.
To make it work, update the layout:
// apps/frontend/templates/layout.php Listng

<h2>Ask for a job</h2>

<form action="<?php echo url for('job search') ?>" method="get">
<input type="text" name="query" value="<?php echo

$sf request->getParameter('query') ?>" id="search keywords" />
<input type="submit" value="search" />
<div class="help">

ass 3k

Listing
17-13

Listing
17-14

Day 17: Search 214

Enter some keywords (city, country, position, ...)
</div>
</form>

T Zend Lucene defines a rich query language that supports operations like Booleans,
wildcards, fuzzy search, and much more. Everything is documented in the Zend Lucene

manual’?

Unit Tests

What kind of unit tests do we need to create to test the search engine? We obviously won’t
test the Zend Lucene library itself, but its integration with the JobeetJob class.

Add the following tests at the end of the JobeetJobTest. php file and don’t forget to update
the number of tests at the beginning of the file to 7:

// test/unit/model/JobeetJobTest.php

$t->comment('->getForLuceneQuery()');

$job = create job(array('position' => 'foobar', 'is activated' => false));
$job->save();

$jobs =

Doctrine Core::getTable('JobeetJob')->getForLuceneQuery('position:foobar');
$t->is(count($jobs), 0, '::getForLuceneQuery() does not return non
activated jobs');

$job = create job(array('position' => 'foobar', 'is activated' => true));
$job->save();

$jobs =

Doctrine Core::getTable('JobeetJob')->getForLuceneQuery('position:foobar');
$t->is(count($jobs), 1, '::getForLuceneQuery() returns jobs matching the
criteria');

$t->is($jobs[0] ->getId(), $job->getId(), '::getForLuceneQuery() returns

jobs matching the criteria');

$job->delete();

$jobs =

Doctrine Core::getTable('JobeetJob')->getForLuceneQuery('position:foobar');
$t->is(count($jobs), 0, '::getForLuceneQuery() does not return deleted
jobs');

We test that a non activated job, or a deleted one does not show up in the search results; we
also check that jobs matching the given criteria do show up in the results.

Tasks

Eventually, we need to create a task to cleanup the index from stale entries (when a job
expires for example) and optimize the index from time to time. As we already have a cleanup
task, let’s update it to add those features:

// lib/task/JobeetCleanupTask.class.php
protected function execute($arguments = array(), $options = array())

{

71. http://framework.zend.com/manual/en/zend.search.lucene.query-api.html

ass 3k

Day 17: Search 215

$databaseManager = new sfDatabaseManager($this->configuration);

// cleanup Lucene index
$index = JobeetJobTable::getLuceneIndex();

$q = Doctrine Query::create()
->from('JobeetJob j')
->where('j.expires at < ?', date('Y-m-d'));

$jobs = $g->execute();
foreach ($jobs as $job)

{
if ($hit = $index->find('pk:'.$job->getId()))
{
$index->delete($hit->id);
}
}

$index->optimize();
$this->logSection('lucene’', 'Cleaned up and optimized the job index');

// Remove stale jobs
$nb = Doctrine Core::getTable('JobeetJob')->cleanup($options['days']);

$this->logSection('doctrine', sprintf('Removed %d stale jobs', $nb));

}

The task removes all expired jobs from the index and then optimizes it thanks to the Zend
Lucene built-in optimize () method.

Final Thoughts

Along this day, we implemented a full search engine with many features in less than an hour.
Every time you want to add a new feature to your projects, check that it has not yet been
solved somewhere else.

First, check if something is not implemented natively in the symfony framework’?. Then,
check the symfony plugins73. And don’t forget to check the Zend Framework libraries’* and
the ezComponent’® ones too.

Tomorrow we will use some unobtrusive JavaScripts to enhance the responsiveness of the

search engine by updating the results in real-time as the user types in the search box. Of
course, this will be the occasion to talk about how to use AJAX with symfony.

72. http://www.symfony-project.org/api/1 4/
73. http://www.symfony-project.org/plugins/
74. http://framework.zend.com/manual/en/

75. http://ezcomponents.org/docs

ass 3k

Listing
18-1

Day 18: AJAX 216

Day 18

AJAX

Yesterday, we implemented a very powerful search engine for Jobeet, thanks to the Zend
Lucene library. In the following lines, to enhance the responsiveness of the search engine, we

will take advantage of AJAX76 to convert the search engine to a live one.
As the form should work with and without JavaScript enabled, the live search feature will be

implemented using unobtrusive]avaScript77. Using unobtrusive JavaScript also allows for a
better separation of concerns in the client code between HTML, CSS, and the JavaScript
behaviors.

Installing jQuery

Instead of reinventing the wheel and managing the many differences between browsers, we
will use a JavaScript framework, jQuery. The symfony framework itself is agnostic and can
work with any JavaScript library.

Go to the jQuery78 website, download the latest version, and put the . js file under web/js/.

Including jQuery

As we will need jQuery on all pages, update the layout to include it in the <head>. Be careful
to insert the use javascript() function before the include javascripts() call:

<!-- apps/frontend/templates/layout.php -->
<?php use javascript('jquery-1.4.2.min.js') ?>
<?php include javascripts() 7>

</head>

We could have included the jQuery file directly with a <script> tag, but using the
use javascript() helper ensures that the same JavaScript file won't be included twice.

F For performance reasons’?, you might also want to move the include javascripts()
helper call just before the ending </body> tag.

76. http://en.wikipedia.org/wiki/AJAX

77. http://en.wikipedia.org/wiki/Unobtrusive JavaScript

78. http://jquery.com/

79. http://developer.yahoo.com/performance/rules.html#js bottom

ass 3k

Day 18: AJAX 217

Adding Behaviors

Implementing a live search means that each time the user types a letter in the search box, a
call to the server needs to be triggered; the server will then return the needed information to
update some regions of the page without refreshing the whole page.

Instead of adding the behavior with an on*() HTML attributes, the main principle behind
jQuery is to add behaviors to the DOM after the page is fully loaded. This way, if you disable
JavaScript support in your browser, no behavior is registered, and the form still works as
before.

The first step is to intercept whenever a user types a key in the search box:

$('#search keywords').keyup(function(key)

{
if (this.value.length >= 3 || this.value == "'"')
{
// do something
}
});

F Don’t add the code for now, as we will modify it heavily. The final JavaScript code will be
added to the layout in the next section.

Every time the user types a key, jQuery executes the anonymous function defined in the
above code, but only if the user has typed more than 3 characters or if he removed everything
from the input tag.

Making an AJAX call to the server is as simple as using the load() method on the DOM
element:

$('#search keywords').keyup(function(key)
{
if (this.value.length >= 3 || this.value == ''")
{
$('#jobs").load(
$(this).parents('form').attr('action'), { query: this.value + '*' }
);
}
1)

To manage the AJAX Call, the same action as the “normal” one is called. The needed changes
in the action will be done in the next section.

Last but not least, if JavaScript is enabled, we will want to remove the search button:

$('.search input[type="submit"]"').hide();

User Feedback

Whenever you make an AJAX call, the page won’t be updated right away. The browser will
wait for the server response to come back before updating the page. In the meantime, you
need to provide visual feedback|Visual Feedback to the user to inform him that something is
going on.

A convention is to display a loader icon during the AJAX call. Update the layout to add the
loader image and hide it by default:

ass 3k

Listing
18-2

Listing
18-3

Listing
184

Day 18: AJAX 218

Listing <!-- apps/frontend/templates/layout.php -->
<div class="search">
<h2>Ask for a job</h2>
<form action="<?php echo url for('job search') ?>" method="get">
<input type="text" name="query" value="<?php echo
$sf request->getParameter('query') ?>" id="search keywords" />
<input type="submit" value="search" />
<img id="loader" src="http://www.symfony-project.org/images/
loader.gif" style="vertical-align: middle; display: none" />
<div class="help">
Enter some keywords (city, country, position, ...)
</div>
</form>
</div>

E The default loader is optimized for the current layout of Jobeet. If you want to create your
own, you will find a lot of free online services like http://www.ajaxload.info/.

Now that you have all the pieces needed to make the HTML work, create a search. js file
that contains the JavaScript we have written so far:

Listing// web/js/search.js
~ $(document).ready(function()

{
$('.search input[type="submit"]').hide();

$('#search keywords').keyup(function(key)

{
if (this.value.length >= 3 || this.value == '"')
{
$('#loader').show();
$('#jobs"').load(
$(this).parents('form').attr('action'),
{ query: this.value + '*' },
function() { $('#loader').hide(); }
);
}
})s
})s

You also need to update the layout to include this new file:

Lsting <! -- apps/frontend/templates/layout.php -->
18-7 . . .
<?php use javascript('search.js') 7>

ass 3k

Day 18: AJAX 219

JavaScript as an Action

Although the JavaScript we have written for the search engine is static, sometimes, you
need to call some PHP code (to use the url for() helper for instance).

JavaScript is just another format like HTML, and as seen some in previous days, symfony
makes format management quite easy. As the JavaScript file will contain behavior for a
page, you can even have the same URL as the page for the JavaScript file, but ending with
.js. For instance, if you want to create a file for the search engine behavior, you can
modify the job search route as follows and create a searchSuccess. js.php template:

job search: Listing
url: /search.:sf format N’
param: { module: job, action: search, sf format: html }
requirements:

sf format: (?:html]js)

AJAX in an Action

If JavaScript is enabled, jQuery will intercept all keys typed in the search box, and will call
the search action. If not, the same search action is also called when the user submits the
form by pressing the “enter” key or by clicking on the “search” button.

So, the search action now needs to determine if the call is made via AJAX or not. Whenever a
request is made with an AJAX call, the isXmlHttpRequest () method of the request object
returns true.

F The isXmlHttpRequest() method works with all major JavaScript libraries like
Prototype, Mootools, or jQuery.

// apps/frontend/modules/job/actions/actions.class.php Listing
public function executeSearch(sfWebRequest $request))

{
$this->forwardUnless($query = $request->getParameter('query'), 'job',
"index');

$this->jobs =
Doctrine Core::getTable('JobeetJob')->getForLuceneQuery($query);

if ($request->isXmlHttpRequest())
{
return $this->renderPartial('job/list', array('jobs' => $this->jobs));
}
}

As jQuery won't reload the page but will only replace the #jobs DOM element with the
response content, the page should not be decorated by the layout. As this is a common need,
the layout is disabled by default when an AJAX request comes in.

Moreover, instead of returning the full template, we only need to return the content of the
job/list partial. The renderPartial() method used in the action returns the partial as
the response instead of the full template.

ass 3k

Day 18: AJAX 220

If the user removes all characters in the search box, or if the search returns no result, we
need to display a message instead of a blank page. We will use the renderText () method to
render a simple test string:

Listing // apps/frontend/modules/job/actions/actions.class.php
" public function executeSearch(sfWebRequest $request)

{
$this->forwardUnless($query = $request->getParameter('query'), 'job',
"index');

$this->jobs =
Doctrine Core::getTable('JobeetJob')->getForLuceneQuery($query);

if ($request->isXmlHttpRequest())

{
if ('*' == $query || !'$this->jobs)
{
return $this->renderText('No results.');
}
return $this->renderPartial('job/list', array('jobs' => $this->jobs));
}

}

@ You can also return a component in an action by using the renderComponent () method.

Testing AJAX

As the symfony browser cannot simulate JavaScript, you need to help it when testing AJAX
calls. It mainly means that you need to manually add the header that jQuery and all other
major JavaScript libraries send with the request:

Listing // test/functional/frontend/jobActionsTest.php
$browser->setHttpHeader('X REQUESTED WITH', 'XMLHttpRequest');
$browser->

info('5 - Live search')->

get('/search?query=sens*')->
with('response')->begin()->

checkElement('table tr', 2)->
end()

’

The setHttpHeader () method sets an HTTP header for the very next request made with the
browser.

Final Thoughts

In day 17, we used the Zend Lucene library to implement the search engine. Today, we used
jQuery to make it more responsive. The symfony framework provides all the fundamental
tools to build MVC applications with ease, and also plays well with other components. As

ass 3k

Day 18: AJAX 221

always, try to use the best tool for the job. Tomorrow, we will explain how to internationalize
the Jobeet website.

ass 3k

Listing
19-1

Day 19: Internationalization and Localization 222

Day 19

Internationalization and Localization

Yesterday, we finished the search engine feature by making it more fun with the addition of
some AJAX goodness. Now, we will talk about Jobeet internationalization (or i18n) and
localization (or110n).

From Wikipediaso:

Internationalization is the process of designing a software application so that it can be
adapted to various languages and regions without engineering changes.

Localization is the process of adapting software for a specific region or language by adding
locale-specific components and translating text.

As always, the symfony framework has not reinvented the wheel and its i18n and 110n
supports is based on the ICU standard®’.

User

No internationalization is possible without a user. When your website is available in several
languages or for different regions of the world, the user is responsible for choosing the one
that fits him best.

We have already talked about the symfony User class during day 13.

The User Culture

The i18n and 110n features of symfony are based on the user culture. The culture is the
combination of the language and the country of the user. For instance, the culture for a user
that speaks French is fr and the culture for a user from France is fr FR.

You can manage the user culture by calling the setCulture() and getCulture() methods
on the User object:

// in an action

$this->getUser()->setCulture('fr BE');
echo $this->getUser()->getCulture();

80. http://en.wikipedia.org/wiki/Internationalization
81. http://www.icu-project.org/

ass 3k

Day 19: Internationalization and Localization 223

@ The language is coded in two lowercase characters, according to the ISO 639-1 standard®?,
and the country is coded in two uppercase characters, according to the ISO 3166-1

standard®3,

The Preferred Culture

By default, the user culture is the one configured in the settings.yml configuration file:

apps/frontend/config/settings.yml Listing
all: ‘
.settings:
default culture: it IT

As the culture is managed by the User object, it is stored in the user session. During
development, if you change the default culture, you will have to clear your session cookie
for the new setting to have any effect in your browser.

When a user starts a session on the Jobeet website, we can also determine the best culture,
based on the information provided by the Accept-Language HTTP header|HTTP Headers.

The getLanguages () method of the request object returns an array of accepted languages
for the current user, sorted by order of preference:

// in an action Listing
$languages = $request->getlLanguages(); ‘

But most of the time, your website won’t be available in the world’s 136 major languages. The
getPreferredCulture() method returns the best language by comparing the user
preferred languages and the supported languages of your website:

// in an action Listing
$language = $request->getPreferredCulture(array('en', 'fr')); -

In the previous call, the returned language will be English or French according to the user
preferred languages, or English (the first language in the array) if none match.

Culture in the URL

The Jobeet website will be available in English and French. As an URL can only represent a
single resource, the culture must be embedded in the URL. In order to do that, open the
routing.yml file, and add the special :sf culture variable for all routes but the
api_jobs and the homepage ones. For simple routes, add /:sf culture to the front of the
url. For collection routes, add a prefix_path option that starts with /:sf culture.

apps/frontend/config/routing.yml Listing
affiliate: Y
class: sfDoctrineRouteCollection
options:
model: JobeetAffiliate
actions: [new, create]

object actions: { wait: get }

82. http://en.wikipedia.org/wiki/IS0 639-1
83. http://en.wikipedia.orq/wiki/IS0O 3166-1

ass 3k

Day 19: Internationalization and Localization 224

prefix_path: /:sf _culture/affiliate
category:
url: /:sf culture/category/:slug.:sf format
class: sfDoctrineRoute
param: { module: category, action: show, sf format: html }
options: { model: JobeetCategory, type: object }
requirements:

sf format: (?:html|atom)

job search:
url: /:sf _culture/search
param: { module: job, action: search }

job:
class: sfDoctrineRouteCollection
options:
model: JobeetJob
column: token
object actions: { publish: put, extend: put }
prefix path: /:sf culture/job
requirements:
token: \w+

job show user:

url: /:sf culture/job/:company slug/:location slug/:id/:position slug
class: sfDoctrineRoute
options:

model: JobeetJob
type: object
method for query: retrieveActiveJob

param: { module: job, action: show }
requirements:
id: \d+

sf method: get

When the sf culture variable is used in a route, symfony will automatically use its value to
change the culture of the user.

As we need as many homepages as languages we support (/en/, /fr/, ...), the default
homepage (/) must redirect to the appropriate localized one, according to the user culture.
But if the user has no culture yet, because he comes to Jobeet for the first time, the preferred
culture will be chosen for him.

First, add the isFirstRequest () method to myUser. It returns true only for the very first
request of a user session:

Listing // apps/frontend/lib/myUser.class.php
~ public function isFirstRequest($boolean = null)

{
if (is_null($boolean))
{
return $this->getAttribute('first request', true);
}
$this->setAttribute('first request', $boolean);
}

Add a localized homepage route:

ass 3k

Day 19: Internationalization and Localization 225

apps/frontend/config/routing.yml Listing
localized homepage:)
url: /:sf culture/
param: { module: job, action: index }
requirements:
st culture: (?:fr|en)

Change the index action of the job module to implement the logic to redirect the user to the
“best” homepage on the first request of a session:

// apps/frontend/modules/job/actions/actions.class.php Listing
public function executeIndex(sfWebRequest $request) N

{

if (!$request->getParameter('sf culture'))

{
if ($this->getUser()->isFirstRequest())
{
$culture = $request->getPreferredCulture(array('en', 'fr'));
$this->getUser()->setCulture($culture);
$this->getUser()->isFirstRequest(false);

}

else

{
$culture = $this->getUser()->getCulture();

}

$this->redirect('localized homepage');

}

$this->categories =
Doctrine Core::getTable('JobeetCategory')->getWithJobs();
}

If the st culture variable is not present in the request, it means that the user has come to
the / URL. If this is the case and the session is new, the preferred culture is used as the user
culture. Otherwise the user’s current culture is used.

The last step is to redirect the user to the localized homepage URL. Notice that the
sf culture variable has not been passed in the redirect call as symfony adds it
automatically for you.

Now, if you try to go to the /it/ URL, symfony will return a 404 error as we have restricted
the s _culture variable to en, or fr. Add this requirement to all the routes that embed the
culture:

requirements: Listing
sf culture: (?:fr]|en) .

Culture Testing

It is time to test our implementation. But before adding more tests, we need to fix the existing
ones. As all URLs have changed, edit all functional test files in test/functional/
frontend/ and add /en in front of all URLs. Don’t forget to also change the URLs in the
lib/test/JobeetTestFunctional.class.php file. Launch the test suite to check that
you have correctly fixed the tests:

$ php symfony test:functional frontend

ass 3k

Listing
19-10

Listing
19-11

Listing
19-12

Listing
19-13

Day 19: Internationalization and Localization 226

The user tester provides an isCulture() method that tests the current user’s culture. Open
the jobActionsTest file and add the following tests:

// test/functional/frontend/jobActionsTest.php
$browser->setHttpHeader ('ACCEPT LANGUAGE', 'fr FR,fr,en;q=0.7");
$browser->

info('6 - User culture')->

restart()->

info(' 6.1 - For the first request, symfony guesses the best culture')->
get('/")->

with('response')->isRedirected()->

followRedirect()->

with('user')->isCulture('fr')->

info(' 6.2 - Available cultures are en and fr')->
get('/it/')->
with('response')->isStatusCode(404)

.
’

$browser->setHttpHeader ('ACCEPT LANGUAGE', 'en,fr;q=0.7");
$browser->
info(' 6.3 - The culture guessing is only for the first request')->

get('/')->
with('response')->isRedirected()->
followRedirect()->
with('user')->isCulture('fr')

Language Switching

For the user to change the culture, a language form must be added in the layout. The form
framework does not provide such a form out of the box but as the need is quite common for
internationalized websites, the symfony core team maintains the sfFormExt raPlugin84,
which contains validators, widgets, and forms which cannot be included with the main
symfony package as they are too specific or have external dependencies but are nonetheless

very useful.
Install the plugin with the plugin:install task:

$ php symfony plugin:install sfFormExtraPlugin
Or via Subversion with the following command:

$ svn co http://svn.symfony-project.org/plugins/sfFormExtraPlugin/
branches/1.3/ plugins/sfFormExtraPlugin

In order for plugin’s classes to be loaded, the sfFormExtraPlugin plugin must be activated
in the config/ProjectConfiguration.class.php file as shown below:

// config/ProjectConfiguration.class.php
public function setup()

84. http://www.symfony-project.org/plugins/
sfFormExtraPlugin?tab=plugin readme

ass 3k

Day 19: Internationalization and Localization 227

{
$this->enablePlugins(array/(
'sfDoctrinePlugin',
'sfDoctrineGuardPlugin',
'sfFormExtraPlugin'
));
}

E The sfFormExtraPlugin contains widgets that require external dependencies like

JavaScript libraries. You will find a widget for rich date selectors, one for a WYSIWYG

editor, and much more. Take the time to read the documentation as you will find a lot of
useful stuff.

The sfFormExtraPlugin plugin provides a sfFormLanguage form to manage the language
selection. Adding the language form can be done in the layout like this:

T The code below is not meant to be implemented. It is here to show you how you might be
tempted to implement something in the wrong way. We will go on to show you how to
implement it properly using symfony.

// apps/frontend/templates/layout.php
<div id="footer">
<div class="content">
<!-- footer content -->

<?php $form = new sfFormLanguage(
$sf user,
array('languages' => array('en', 'fr'))

?>)

<form action="<?php echo url for('change language') ?7>">
<?php echo $form ?><input type="submit" value="ok" />

</form>

</div>
</div>

Do you spot a problem? Right, the form object creation does not belong to the View layer. It
must be created from an action. But as the code is in the layout, the form must be created for
every action, which is far from practical.

In such cases, you should use a component. A component is like a partial but with some code
attached to it. Consider it as a lightweight action. Including a component from a template can
be done by using the include component () helper:

// apps/frontend/templates/layout.php
<div id="footer">
<div class="content">

<!-- footer content -->
<?php include component('language', 'language') 7>
</div>
</div>

The helper takes the module and the action as arguments. The third argument can be used to
pass parameters to the component.

ass 3k

Listing
19-14

Listing
19-15

Day 19: Internationalization and Localization 228

Create a language module to host the component and the action that will actually change
the user language

Listing $ php symfony generate:module frontend language

Components are to be defined in the actions/components.class.php file.
Create this file now:

Listing // apps/frontend/modules/language/actions/components.class.php
- class languageComponents extends sfComponents

{
public function executelLanguage(sfWebRequest $request)
{
$this->form = new sfFormLanguage(
$this->getUser(),
array('languages' => array('en', 'fr'))
);
}
}

As you can see, a components class is quite similar to an actions class.

The template for a component uses the same naming convention as a partial would: an
underscore (_) followed by the component name:

Lising // apps/frontend/modules/language/templates/ language.php
19-18 .
<form action="<?php echo url for('change language') ?>">
<?php echo $form ?><input type="submit" value="ok" />
</form>

As the plugin does not provide the action that actually changes the user culture, edit the
routing.yml file to create the change language route:

Lsing # apps/frontend/config/routing.yml
" change language:
url: /change_language

param: { module: language, action: changelLanguage }
And create the corresponding action:

Lising // apps/frontend/modules/language/actions/actions.class.php
19-20 . .
class languageActions extends sfActions

public function executeChangelLanguage(sfWebRequest $request)

{

$form = new sfFormLanguage(
$this->getUser(),
);

$form->process($request);

return $this->redirect('localized homepage');
}
}

The process () method of sfFormLanguage takes care of changing the user culture, based
on the user form submission.

ass 3k

Day 19: Internationalization and Localization 229

Paris, France Web Developer
AND 22 MORE...
About Jobeet B Full feed Jobeet APl Become an affiliate powerad u,-
A
Language | French 54 (ok) . : F ;
English in B in B
i E & i E B
: == s . : == s
< v -1 P . ab-- R0 A B

Internationalization

Languages, Charset, and Encoding

Different languages have different character sets. The English language is the simplest one as
it only uses the ASCII characters, the French language is a bit more complex with
accentuated characters like “é”, and languages like Russian, Chinese, or Arabic are much
more complex as all their characters are outside the ASCII range. Such languages are defined
with totally different character sets.

When dealing with internationalized data, it is better to use the unicode norm. The idea
behind unicode is to establish a universal set of characters that contains all characters for all
languages. The problem with unicode is that a single character can be represented with as
many as 21 octets. Therefore, for the web, we use UTF-8, which maps Unicode code points to
variable-length sequences of octets. In UTF-8, most used languages have their characters
coded with less than 3 octets.

UTF-8 is the default encoding used by symfony, and it is defined in the settings.yml
configuration file:

apps/frontend/config/settings.yml
all:
.settings:
charset: utf-8

Also, to enable the internationalization layer of symfony, you must set the 118n setting to
truein settings.yml:

apps/frontend/config/settings.yml
all:
.settings:
i18n: true

Templates

An internationalized website means that the user interface is translated into several
languages.

In a template, all strings that are language dependent must be wrapped with the () helper
(notice that there is two underscores).

The () helper is part of the I18N helper group, which contains helpers that ease i18n
management in templates. As this helper group is not loaded by default, you need to either
manually add it in each template with use helper('I18N') as we already did for the Text
helper group, or load it globally by adding it to the standard helpers setting:

ass 3k

Listing
19-21

Listing
19-22

Listing
19-23

Listing
19-24

Day 19: Internationalization and Localization 230

apps/frontend/config/settings.yml
all:
.settings:
standard _helpers: [Partial, Cache, I18N]

Here is how to use the () helper for the Jobeet footer:

// apps/frontend/templates/layout.php
<div id="footer">
<div class="content">

powered by
<img src="http://www.symfony-project.org/images/symfony.gif"
alt="symfony framework" />

<?php echo ('About Jobeet') 7>

<li class="feed">
<?php echo link to(('Full feed'), 'job', array('sf format' =>
'atom')) 7>

<?php echo ('Jobeet API') ?>

<li class="last">
<?php echo link to(('Become an affiliate'), 'affiliate new') 7>

<?php include component('language', 'language') 7>
</div>
</div>

E The () helper can take the string for the default language or you can also use a unique
identifier for each string. It is just a matter of taste. For Jobeet, we will use the former
strategy so templates are more readable.

When symfony renders a template, each time the () helper is called, symfony looks for a
translation for the current user’s culture. If a translation is found, it is used, if not, the first
argument is returned as a fallback value.

All translations are stored in a catalogue. The i18n framework provides a lot of different

strategies to store the translations. We will use the “XLIFF”® format, which is a standard and
the most flexible one. It is also the store used by the admin generator and most symfony
plugins.

T Other catalogue stores are gettext, MySQL, and SQLite. As always, have a look at the
i18n API®® for more details.

85. http://en.wikipedia.org/wiki/XLIFF
86. http://www.symfony-project.org/api/1 4/i18n

ass 3k

Day 19: Internationalization and Localization 231

il8n:extract

Instead of creating the catalogue file by hand, use the built-in i18n:extract task|I18n
Extraction Task:

$ php symfony il8n:extract frontend fr --auto-save Listing
The 118n:extract task finds all strings that need to be translated in fr in the frontend
application and creates or updates the corresponding catalogue. The --auto-save option
saves the new strings in the catalogue. You can also use the --auto-delete option to
automatically remove strings that do not exist anymore.

In our case, it populates the file we have created:

<!-- apps/frontend/il8n/fr/messages.xml --> Listing
<?xml version="1.0" encoding="UTF-8"?7> 1920
<IDOCTYPE xliff PUBLIC "-//XLIFF//DTD XLIFF//EN"
"http://www.0asis-open.org/committees/xliff/documents/xliff.dtd">
<x1liff version="1.0">
<file source-language="EN" target-language="fr" datatype="plaintext"
original="messages" date="2008-12-14T12:11:22Z"
product-name="messages">
<header/>
<body>
<trans-unit id="1">
<source>About Jobeet</source>
<target/>
</trans-unit>
<trans-unit id="2">
<source>Feed</source>
<target/>
</trans-unit>
<trans-unit id="3">
<source>Jobeet API</source>
<target/>
</trans-unit>
<trans-unit id="4">
<source>Become an affiliate</source>
<target/>
</trans-unit>
</body>
</file>
</xliff>

Each translation is managed by a trans-unit tag which has a unique id attribute. You can
now edit this file and add translations for the French language:

<!-- apps/frontend/il8n/fr/messages.xml --> Listing
<?xml version="1.0" encoding="UTF-8"?7> 1
<!DOCTYPE xliff PUBLIC "-//XLIFF//DTD XLIFF//EN"
"http://www.0asis-open.org/committees/x1liff/documents/x1liff.dtd">
<x1liff version="1.0">
<file source-language="EN" target-language="fr" datatype="plaintext"
original="messages" date="2008-12-14T12:11:22Z"
product-name="messages">
<header/>
<body>
<trans-unit id="1">

ass 3k

Day 19: Internationalization and Localization 232

<source>About Jobeet</source>
<target>A propos de Jobeet</target>
</trans-unit>
<trans-unit id="2">
<source>Feed</source>
<target>Fil RSS</target>
</trans-unit>
<trans-unit id="3">
<source>Jobeet API</source>
<target>API Jobeet</target>
</trans-unit>
<trans-unit id="4">
<source>Become an affiliate</source>
<target>Devenir un affilié</target>
</trans-unit>
</body>
</file>
</x1iff>

@ As XLIFF is a standard format, a lot of tools exist to ease the translation process. Open
Language Tools®” is an Open-Source Java project with an integrated XLIFF editor.

@ As XLIFF is a file-based format, the same precedence and merging rules that exist for other

symfony configuration files are also applicable. 118n files can exist in a project, an

application, or a module, and the most specific file overrides translations found in the more
global ones.

Translations with Arguments

The main principle behind internationalization is to translate whole sentences. But some
sentences embed dynamic values. In Jobeet, this is the case on the homepage for the
“more...” link:

Listing <!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<div class="more jobs">
and <?php echo link to($count, 'category', $category) ?> more...
</div>

The number of jobs is a variable that must be replaced by a placeholder for translation:

Listing <!-- apps/frontend/modules/job/templates/indexSuccess.php -->
" <div class="more jobs">

<?php echo _ ('and %count% more...', array('scount%' => link to($count,
'category', $category))) 7>
</div>

The string to be translated is now “and %count% more...”, and the %count% placeholder will
be replaced by the real number at runtime, thanks to the value given as the second argument
tothe () helper.

Add the new string manually by inserting a trans-unit tag in the messages.xml file, or
use the 118n:extract task to update the file automatically:

87. https://open-language-tools.dev.java.net/

ass 3k

Day 19: Internationalization and Localization 233

$ php symfony il8n:extract frontend fr --auto-save Listing

After running the task, open the XLIFF file to add the French translation:

<trans-unit id="6"> Listing
)) 19-31
<source>and %count% more...</source>
<target>et %count% autres...</target>
</trans-unit>

The only requirement in the translated string is to use the %count% placeholder somewhere.

Some other strings are even more complex as they involve plurals|Plurals (I18n). According to
some numbers, the sentence changes, but not necessarily the same way for all languages.
Some languages have very complex grammar rules for plurals, like Polish or Russian.

On the category page, the number of jobs in the current category is displayed:

<!-- apps/frontend/modules/category/templates/showSuccess.php --> Listing
<?php echo count($pager) ?> jobs in this category -

When a sentence has different translations according to a number, the
format number choice() helper should be used:

<?php echo format number choice(Listing
'"[0]INo job in this category|[1]One job in this 19
category| (1,+Inf]%count%s jobs in this category',
array('scount%' => ''.count($pager).'"'),
count ($pager)
)

?>

The format _number choice() helper takes three arguments:

* The string to use depending on the number
* An array of placeholders
* The number to use to determine which text to use

The string that describes the different translations according to the number is formatted as
follow:

» Each possibility is separated by a pipe character (|)
* Each string is composed of a range followed by the translation

The range can describe any range of numbers:

* [1,2]: Accepts values between 1 and 2, inclusive

* (1,2): Accepts values between 1 and 2, excluding 1 and 2

{1,2,3,4}: Only values defined in the set are accepted

[-Inf,0): Accepts values greater or equal to negative infinity and strictly less than
0

e {n: n%10 >1&& n % 10 < 5}: Matches numbers like 2, 3, 4, 22, 23, 24

Translating the string is similar to other message strings:

<trans-unit id="7"> Listing
<source>[0]No job in this category|[1]0ne job in this o
category| (1,+Inf]%count% jobs in this category</source>
<target>[0]Aucune annonce dans cette catégorie|[1l]Une annonce dans cette
catégorie| (1,+Inf]%count%s annonces dans cette catégorie</target>
</trans-unit>

ass 3k

Listing
19-35

Listing
-36

Day 19: Internationalization and Localization 234

Now that you know how to internationalize all kind of strings, take the time to add () calls
for all templates of the frontend application. We won’tt internationalize the backend
application.

Forms

The form classes contain many strings that need to be translated, like labels, error messages,
and help messages. All these strings are automatically internationalized by symfony, so you
only need to provide translations in the XLIFF files.

E Unfortunately, the 118n:extract task does not yet parse form classes for untranslated
strings.

Doctrine Objects

For the Jobeet website, we won’t internationalize all tables|Model Internationalization as it
does not make sense to ask the job posters to translate their job posts in all available
languages. But the category table definitely needs to be translated.

The Doctrine plugin supports i18n tables out of the box. For each table that contains localized
data, two tables need to be created: one for columns that are i18n-independent, and the other
one with columns that need to be internationalized. The two tables are linked by a one-to-
many relationship.

Update the schema.yml accordingly:

config/doctrine/schema.yml
JobeetCategory:
actAs:
Timestampable: ~
I18n:
fields: [name]
actAs:
Sluggable: { fields: [name], uniqueBy: [lang, name] }
columns:
name: { type: string(255), notnull: true }

By turning on the I18n behavior, a model named JobeetCategoryTranslation will be
automatically created and the specified fields are moved to that model.

Notice we simply turn on the I18n behavior and move the Sluggable behavior to be
attached to the JobeetCategoryTranslation model which is automatically created. The
uniqueBy option tells the Sluggable behavior which fields determine whether a slug is
unique or not. In this case each slug must be unique for each lang and name pair.

And update the fixtures for categories:

data/fixtures/categories.yml
JobeetCategory:
design:
Translation:
en:
name: Design
fr:
name: design
programming:
Translation:
en:

ass 3k

Day 19: Internationalization and Localization 235

name: Programming

fr:
name: Programmation
manager:
Translation:
en:
name: Manager
fr:

name: Manager
administrator:

Translation:
en:
name: Administrator
fr:

name: Administrateur

We also need to override the findOneBySlug() method in JobeetCategoryTable. Since
Doctrine provides some magic finders for all columns in a model, we need to simply create
the findOneBySlug() method so that we override the default magic functionality Doctrine
provides.

We need to make a few changes so that the category is retrieved based on the english slug in
the JobeetCategoryTranslation table.

// lib/model/doctrine/JobeetCategoryTable.cass.php
public function findOneBySlug($slug)
{
$g = $this->createQuery('a')
->leftJoin('a.Translation t')
->andWhere('t.lang = 7', 'en')
->andWhere('t.slug = 7', $slug);
return $qg->fetchOne();
}

Rebuild the model:

$ php symfony doctrine:build --all --and-load --no-confirmation
$ php symfony cc

@ As the doctrine:build --all --and-load removes all tables and data from the
database, don’t forget to re-create a user to access the Jobeet backend with the
guard:create-user task. Alternatively, you can add a fixture file to add it automatically

for you.

When using the I18n behavior, proxies are created between the JobeetCategory object
and the JobeetCategoryTranslation object so all the old functions for retrieving the
category name will still work and retrieve the value for the current culture.

$category = new JobeetCategory();
$category->setName('foo'); // sets the name for the current culture
$category->getName(); // gets the name for the current culture

$this->getUser()->setCulture('fr'); // from your actions class

$category->setName('foo'); // sets the name for French
echo $category->getName(); // gets the name for French

ass 3k

Listing
19-37

Listing
19-38

Listing
19-39

Day 19: Internationalization and Localization 236

@ To reduce the number of database requests, join the JobeetCategoryTranslation in
your queries. It will retrieve the main object and the i18n one in one query.

Listing $categories = Doctrine Query::create()

; ->from('JobeetCategory c')
->leftJoin('c.Translation t WITH t.lang = ?', $culture)
->execute();

The WITH keyword above will append a condition to the automatically added ON condition
of the query. So, the ON condition of the join will end up being.

Listing LEFT JOIN c.Translation t ON c.id = t.id AND t.lang = ?

19-41

As the category route is tied to the JobeetCategory model class and because the slug is
now part of the JobeetCategoryTranslation, the route is not able to retrieve the
Category object automatically. To help the routing system, let’s create a method that will
take care of object retrieval:

Since we already overrode the findOneBySlug() let’s refactor a little bit more so these
methods can be shared. We’ll create a new findOneBySlugAndCulture() and
doSelectForSlug() methods and change the findOneBySlug() method to simply use the
findOneBySlugAndCulture() method.

Listing // lib/model/doctrine/JobeetCategoryTable.class.php
"7 public function doSelectForSlug($parameters)
{
return $this->findOneBySlugAndCulture($parameters['slug'],
$parameters['sf culture']);

}

public function findOneBySlugAndCulture($slug, $culture = 'en')
{
$g = $this->createQuery('a')
->leftJoin('a.Translation t')
->andWhere('t.lang ?', $culture)
->andWhere('t.slug 7', $slug);
return $g->fetchOne();

}
public function findOneBySlug($slug)
{
return $this->findOneBySlugAndCulture($slug, 'en');
}

Then, use the method option to tell the category route to use the doSelectForSlug()
method to retrieve the object:

Listing # apps/frontend/config/routing.yml

1

category:
url: /:sf culture/category/:slug.:sf format
class: sfDoctrineRoute
param: { module: category, action: show, sf format: html }
options: { model: JobeetCategory, type: object, method: doSelectForSlug }
requirements:

st format: (?:html|atom)

We need to reload the fixtures to regenerate the proper slugs for the categories:

ass 3k

Day 19: Internationalization and Localization 237

$ php symfony doctrine:data-load Listing

19-44

Now the category route is internationalized and the URL for a category embeds the
translated category slug:

/frontend dev.php/fr/category/programmation Listing
/frontend dev.php/en/category/programming o

Admin Generator

For the backend, we want the French and the English translations to be edited in the same
form:

Jobeet

obs Affiliates - 1 Categories Users Logout

EDIT CATEGORY
English Name Programming
Slug programming
French Name Programmation
Slug programmation

Delete Cancel (Save)

Embedding an i18n form can be done by using the embedI18N() method:

// lib/form/JobeetCategoryForm.class.php Listing
class JobeetCategoryForm extends BaseJobeetCategoryForm

{

public function configure()
{

unset (
$this['jobeet affiliates list'],
$this['created at'], $this['updated at']
);

$this->embedIl8n(array('en', 'fr'));
$this->widgetSchema->setLabel('en', 'English');
$this->widgetSchema->setLabel('fr', 'French');
}
}

The admin generator interface supports internationalization out of the box. It comes with
translations for more than 20 languages, and it is quite easy to add a new one, or to
customize an existing one. Copy the file for the language you want to customize from symfony
(admin translations are to be found in T1lib/vendor/symfony/lib/plugins/
sfDoctrinePlugin/i18n/) in the application i18n directory. As the file in your application
will be merged with the symfony one, only keep the modified strings in the application file.

You will notice that the admin generator translation files are named like sf admin.fr.xml,
instead of fr/messages.xml. As a matter of fact, messages is the name of the default

ass 3k

Listing
1947

Listing
19-48

Listing
19-49

Listing
19-50

Day 19: Internationalization and Localization 238

catalogue used by symfony, and can be changed to allow a better separation between
different parts of your application. Using a catalogue other than the default one requires that
you specify it when using the () helper:

<?php echo _ ('About Jobeet', array(), 'jobeet') 7>
In the above () call, symfony will look for the “About Jobeet” string in the jobeet

catalogue.

Tests

Fixing tests is an integral part of the internationalization migration. First, update the test
fixtures for categories by copying the fixtures we have define above in test/fixtures/
categories.yml.

Don’t forget to update methods in the lib/test/JobeetTestFunctional.class.php file
in order to care of our modifications concerning the JobeetCategory’s internationalization.

public function getMostRecentProgrammingJob()

$q = Doctrine Query::create()
->select('j.*")
->from('JobeetJob j')
->leftJoin('j.JobeetCategory c')
->leftJoin('c.Translation t')
->where('t.slug = ?', 'programming');

$q = Doctrine Core::getTable('JobeetJob')->addActiveJobsQuery($q);

return $g->fetchOne();
}

Rebuild the model for the test environment:
$ php symfony doctrine:build --all --and-load --no-confirmation --env=test
You can now launch all tests to check that they are running fine:

$ php symfony test:all

T When we have developed the backend interface for Jobeet, we have not written functional
tests. But whenever you create a module with the symfony command line, symfony also
generate test stubs. These stubs are safe to remove.

Localization

Templates

Supporting different cultures also means supporting different way to format dates and
numbers. In a template, several helpers are at your disposal to help take all these differences
into account, based on the current user culture:

In the Date? helper group:

88. http://www.symfony-project.org/api/1 4/DateHelper

ass 3k

Day 19: Internationalization and Localization 239

Helper Description

format date() Formats a date

format datetime() Formats a date with a time (hours, minutes, seconds)

time ago _in words() Displays the elapsed time between a date and now in
words

distance of time in words() Displays the elapsed time between two dates in words
format daterange() Formats a range of dates

In the Number? helper group:

Helper Description
format number() Formats a number
format currency() Formats a currency

In the I18N%° helper group:

Helper Description
format country() Displays the name of a country
format language() Displays the name of a language

Forms (118n)

The form framework provides several widgets and validators for localized data:

* sfWidgetFormI 18nDate”!
* sfWidgetFormI 18nDateTime"?

* sfWidgetFormI 18nTime

. stidge’cFormIlSnChoiceCountry94
. stidgetFormIlSnChoiceCurrency95
. stidgetFormIlSnChoiceLanguage96

* sfWidgetFormI 18nChoiceTimezone®’

« sfvalidatorIl8nChoiceCountry%®
. stalidatorIlSnChoiceLanguage99
« sfValidatorI1l8nChoiceTimezone!%?

89. http://www.symfony-project.org/api/1l 4/NumberHelper

90. http://www.symfony-project.org/api/1 4/I18NHelper

91. http://www.symfony-project.org/api/1 4/sfWidgetFormIl8nDate

92. http://www.symfony-project.org/api/1l 4/sfWidgetFormI1l8nDateTime

93. http://www.symfony-project.org/api/1l 4/sfWidgetFormIl8nTime

94. http://www.symfony-project.org/api/1 4/sfWidgetFormI18nChoiceCountry
95. http://www.symfony-project.org/api/1 4/
sfWidgetFormIl8nChoiceCurrency

96. http://www.symfony-project.org/api/1 4/
sfWidgetFormI1l8nChoicelLanguage

97. http://www.symfony-project.org/api/1 4/
sfWidgetFormIl8nChoiceTimezone

98. http://www.symfony-project.org/api/l 4/sfValidatorIl8nChoiceCountry
99. http://www.symfony-project.org/api/1 4/sfValidatorIl8nChoicelLanguage
100. http://www.symfony-project.org/api/1 4/sfValidatorI1l8nChoiceTimezone

ass 3k

Day 19: Internationalization and Localization 240

Final Thoughts

Internationalization and localization are first-class citizens in symfony. Providing a localized
website to your users is very easy as symfony provides all the basic tools and even gives you
command line tasks to make it fast.

Be prepared for a very special day as we will be moving a lot of files around and exploring a
different approach to organizing a symfony project.

ass 3k

Day 20: The Plugins 241

Day 20

The Plugins

Yesterday, you learned how to internationalize and localize your symfony applications. Once
again, thanks to the ICU standard and a lot of helpers, symfony makes this really easy. Until
the end of these lines, we will talk about plugins: what they are, what you can bundle in a
plugin, and what they can be used for.

Plugins

A symfony Plugin

A symfony plugin offers a way to package and distribute a subset of your project files. Like a
project, a plugin can contain classes, helpers, configuration, tasks, modules, schemas, and
even web assets.

Private Plugins

The first usage of plugins is to ease sharing code between your applications, or even between
different projects. Recall that symfony applications only share the model. Plugins provide a
way to share more components between applications.

If you need to reuse the same schema for different projects, or the same modules, move them
to a plugin. As a plugin is just a directory, you can move it around quite easily by creating a
SVN repository and using svn:externals, or by just copying the files from one project to
another.

We call these “private plugins” because their usage is restricted to a single developer or a
company. They are not publicly available.

You can even create a package out of your private plugins, create your own symfony plugin
channel, and install them via the plugin:install task.

Public Plugins

Public plugins are available for the community to download and install. During this tutorial,
we have wused a couple of public plugins: sfDoctrineGuardPlugin and
sfFormExtraPlugin.

They are exactly the same as private plugins. The only difference is that anybody can install
them for their projects. You will learn later on how to publish and host a public plugin on the
symfony website.

ass 3k

Day 20: The Plugins 242

A Different Way to Organize Code

There is one more way to think about plugins and how to use them. Forget about re-usability
and sharing. Plugins can be used as a different way to organize your code. Instead of
organizing the files by layers: all models in the lib/model/ directory, templates in the
templates/ directory, ...; the files are put together by feature: all job files together (the
model, modules, and templates), all CMS files together, and so on.

Plugin File Structure

A plugin is just a directory structure with files organized in a pre-defined structure, according
to the nature of the files. Here, we will move most of the code we have written for Jobeet in a
sfJobeetPlugin. The basic layout we will use is as follows:

Listing sfJobeetPlugin/

20-1

config/
sfJlobeetPluginConfiguration.class.php // Plugin initialization
routing.yml // Routing
doctrine/
schema.yml // Database schema
lib/
Jobeet.class.php // Classes
helper/ // Helpers
filter/ // Filter classes
form/ // Form classes
model/ // Model classes
task/ // Tasks
modules/
job/ // Modules
actions/
config/
templates/
web/ // Assets like JS, CSS, and
images

The Jobeet Plugin

Bootstrapping a plugin is as simple as creating a new directory under plugins/. For Jobeet,
let’s create a sfJobeetPlugin directory:

Listing $ mkdir plugins/sfJobeetPlugin

20-2

Then, activate the sfJobeetPluginin config/ProjectConfiguration.class.php file.

Listing public function setup()

{
$this->enablePlugins(array(
'sfDoctrinePlugin',
'sfDoctrineGuardPlugin',
'sfFormExtraPlugin',
'sflobeetPlugin'
));
}

ass 3k

Day 20: The Plugins 243

E All plugins must end with the Plugin suffix. It is also a good habit to prefix them with sf,
although it is not mandatory.

The Model

First, move the config/doctrine/schema.yml file to plugins/sfJobeetPlugin/
config/:

$ mkdir plugins/sflobeetPlugin/config/ Listing
$ mkdir plugins/sfJobeetPlugin/config/doctrine

$ mv config/doctrine/schema.yml plugins/sfJobeetPlugin/config/doctrine/
schema.yml

E All commands are for Unix like environments. If you use Windows, you can drag and drop
files in the Explorer. And if you use Subversion, or any other tool to manage your code, use
the built-in tools they provide (like svn mv to move files).

Move model, form, and filter files to plugins/sfJobeetPlugin/lib/:

mkdir plugins/sfJobeetPlugin/lib/ Listing
mv lib/model/ plugins/sfJobeetPlugin/lib/

mv lib/form/ plugins/sfJobeetPlugin/lib/

mv lib/filter/ plugins/sfJobeetPlugin/lib/

“+r B

$ rm -rf plugins/sfJobeetPlugin/lib/model/doctrine/sfDoctrineGuardPlugin
$ rm -rf plugins/sflobeetPlugin/lib/form/doctrine/sfDoctrineGuardPlugin
$ rm -rf plugins/sflobeetPlugin/lib/filter/doctrine/sfDoctrineGuardPlugin

Remove the plugins/sfJobeetPlugin/lib/form/BaseForm.class. php file.

$ rm plugins/sflobeetPlugin/lib/form/BaseForm.class.php Listing

20-6

After you move the models, forms and filters the classes must be renamed, made abstract and
prefixed with the word Plugin.

Only prefix the auto-generated classes with Plugin and not all classes. For example do not
prefix any classes you wrote by hand. Only the auto-generated ones require the prefix.

Here is an example where we move the JobeetAffiliate and JobeetAffiliateTable
classes.

$ mv plugins/sflobeetPlugin/lib/model/doctrine/JobeetAffiliate.class.php Listing
plugins/sfJobeetPlugin/1lib/model/doctrine/PluginJobeetAffiliate.class.php '

And the code should be updated:

abstract class PluginJobeetAffiliate extends BaselobeetAffiliate Listing
: y
public function save(Doctrine Connection $conn = null)
{
if (!'$this->getToken())

{
$this->setToken(shal($object->getEmail().rand(11111, 99999)));

ass 3k

Listing
20-9

Listing
20-10

Listing
20-11

Listing
20-12

Day 20: The Plugins 244

}

parent::save($conn);

}

/]
}

Now lets move the JobeetAffiliateTable class:

$ mv plugins/sflobeetPlugin/lib/model/doctrine/
JobeetAffiliateTable.class.php plugins/sflobeetPlugin/lib/model/doctrine/
PluginJobeetAffiliateTable.class.php

The class definition should now look like the following:

abstract class PluginJobeetAffiliateTable extends Doctrine Table
{

/] ...
}

Now do the same thing for the forms and filter classes. Rename them to include a prefix with
the word Plugin.

Make sure to remove the base directory in plugins/sfJobeetPlugin/lib/*/doctrine/
for form, filter, and model directories:

$ rm -rf plugins/sflobeetPlugin/lib/form/doctrine/base
$ rm -rf plugins/sflobeetPlugin/lib/filter/doctrine/base
$ rm -rf plugins/sfJobeetPlugin/lib/model/doctrine/base

Once you have moved, renamed and removed some forms, filters and model classes run the
tasks to build the re-build all the classes:

$ php symfony doctrine:build --all-classes

Now you will notice some new directories created to hold the models created from the
schema included with the sfJobeetPlugin at lib/model/doctrine/sfJobeetPlugin/.

This directory contains the top level models and the base classes generated from the schema.
For example the model JobeetJob now has this class structure:

¢ JobeetJob (extends PluginJobeetJob) in lib/model/doctrine/
sfJobeetPlugin/JobeetJob.class.php: Top level class where all project model
functionality can be placed. This is where you can add and override functionality
that comes with the plugin models.

* PluginJobeetJob (extends BaseJobeetJob) in plugins/sfJobeetPlugin/
lib/model/doctrine/PluginJobeetJob. class. php: This class contains all the
plugin specific functionality. You can override functionality in this class and the base
by modifying the JobeetJob class.

« BaselJobeetJob (extends sfDoctrineRecord) in 1lib/model/doctrine/
sfJobeetPlugin/base/BaseJobeet]ob.class.php: Base class that is
generated from the yaml schema file each time you run doctrine:build --
model.

* JobeetJobTable (extends PluginJobeetJobTable) in lib/model/doctrine/
sfJlobeetPlugin/JobeetJobTable.class.php: Same as the JobeetJob class

ass 3k

Day 20: The Plugins 245

except this is the instance of Doctrine Table that will be returned when you call
Doctrine Core::getTable('JobeetJob').

* PluginJobeetJobTable (extends Doctrine Table) in lib/model/doctrine/
sfJlobeetPlugin/JobeetJobTable.class.php: This class contains all the
plugin specific functionality for the instance of Doctrine Table that will be
returned when you call Doctrine Core::getTable('JobeetJob').

With this generated structure you have the ability to customize the models of a plugin by
editing the top level JobeetJob class. You can customize the schema and add columns, add
relationships by overriding the setTableDefinition() and setUp() methods.

F When you move the form classes, be sure to change the configure() method to a
setup() method and call parent::setup(). Below is an example.

abstract class PluginJobeetAffiliateForm extends BaseJobeetAffiliateForm Listing

public function setup()

{

parent::setup();

}

/...
}

We need to make sure our plugin doesn’t have the base classes for all Doctrine forms. These
files are global for a project and will be re-generated with the doctrine:build --forms
and doctrine:build --filters.

Remove the files from the plugin:

$ rm plugins/sflobeetPlugin/1lib/form/doctrine/BaseFormDoctrine.class.php Listing

$ rm plugins/sflobeetPlugin/lib/filter/doctrine/ '

BaseFormFilterDoctrine.class.php

You can also move the Jobeet.class.php file to the plugin:

$ mv lib/Jobeet.class.php plugins/sfJobeetPlugin/lib/ Listing

As we have moved files around, clear the cache:

$ php symfony cc Listng
@ If you use a PHP accelerator like APC and things get weird at this point, restart Apache.

Now that all the model files have been moved to the plugin, run the tests to check that

everything still works fine:

$ php symfony test:all Listing

The Controllers and the Views

The next logical step is to move the modules to the plugin. To avoid module name collisions, it
is always a good habit to prefix plugin module names with the plugin name:

ass 3k

Day 20: The Plugins 246

Listing $ mkdir plugins/sfJobeetPlugin/modules/

20-18

$ mv apps/frontend/modules/affiliate plugins/sfJobeetPlugin/modules/

sflobeetAffiliate

$ mv apps/frontend/modules/api plugins/sfJobeetPlugin/modules/sfJobeetApi
$ mv apps/frontend/modules/category plugins/sfJobeetPlugin/modules/
sfJobeetCategory

$ mv apps/frontend/modules/job plugins/sfJobeetPlugin/modules/sfJobeet]ob
$ mv apps/frontend/modules/language plugins/sflobeetPlugin/modules/
sflobeetlLanguage

For each module, you also need to change the class name in all actions.class.php and
components.class.php files (for instance, the affiliateActions class needs to be
renamed to sfJobeetAffiliateActions).

The include partial() and include component() calls must also be changed in the
following templates:

sfJobeetAffiliate/templates/ form.php (change affiliate to
sflobeetAffiliate)
sflobeetCategory/templates/showSuccess.atom.php
sfJlobeetCategory/templates/showSuccess.php
sfJobeetJob/templates/indexSuccess.atom.php
sfJlobeetJob/templates/indexSuccess.php
sflobeetJob/templates/searchSuccess.php
sfJobeetJob/templates/showSuccess.php
apps/frontend/templates/layout.php

Update the search and delete actions:

Listing // plugins/sfJobeetPlugin/modules/sfJobeetJob/actions/actions.class.php

20-19

{

class sfJobeetJobActions extends sfActions

public function executeSearch(sfWebRequest $request)

{

$this->forwardUnless($query = $request->getParameter('query'),

'sflobeetJob', 'index');

}

$this->jobs = Doctrine Core::getTable('JobeetJob')
->getForLuceneQuery($query);

if ($request->isXmlHttpRequest())

{
if ('*' == $query || !'$this->jobs)
{
return $this->renderText('No results.');
}

return $this->renderPartial('sfJobeetJob/list’,
array('jobs' => $this->jobs));
}

public function executeDelete(sfWebRequest $request)

{

$request->checkCSRFProtection();

$jobeet job = $this->getRoute()->getObject();
$jobeet job->delete();

ass 3k

Day 20: The Plugins 247

$this->redirect('sfJobeetJob/index"');
}

/...
}

Now, modify the routing.yml file to take these changes into account:

apps/frontend/config/routing.yml Listing
affiliate:
class: sfDoctrineRouteCollection
options:
model: JobeetAffiliate
actions: [new, create]
object actions: { wait: GET }
prefix_ path: /:sf culture/affiliate
module: sfJobeetAffiliate
requirements:

sf culture: (?:frj|en)

api_jobs:
url: /api/:token/jobs.:sf format
class: sfDoctrineRoute
param: { module: sflobeetApi, action: list }

options: { model: JobeetJob, type: list, method: getForToken }
requirements:
sf format: (?:xml]|json]|yaml)

category:
url: /:sf culture/category/:slug.:sf format
class: sfDoctrineRoute
param: { module: sflobeetCategory, action: show, sf format: html }
options: { model: JobeetCategory, type: object, method: doSelectForSlug }
requirements:

sf format: (?:html|atom)
sf culture: (?:frj|en)

job search:
url: /:sf culture/search
param: { module: sflobeetJob, action: search }
requirements:

st culture: (?:fr|en)

job:

class: sfDoctrineRouteCollection

options:
model: JobeetJob
column: token
object actions: { publish: PUT, extend: PUT }
prefix path: /:sf culture/job
module: sfJobeetJob

requirements:
token: \w+

sf _culture: (?:frj|en)

job show user:
url: /:sf _culture/job/:company slug/:location slug/:id/:position slug

ass 3k

Listing
20-21

Listing
20-22

Listing
20-23

Day 20: The Plugins 248

class: sfDoctrineRoute
options:
model: JobeetJob
type: object
method for query: retrieveActiveJob

param: { module: sflobeetJob, action: show }
requirements:
id: \d+

sf method: GET
sf _culture: (?:frj|en)

change language:
url: /change_language
param: { module: sflobeetlLanguage, action: changelLanguage }

localized homepage:
url: /:sf _culture/
param: { module: sfJobeetJob, action: index }
requirements:
sf culture: (?:frj|en)

homepage:
url: /
param: { module: sfJobeetJob, action: index }

If you try to browse the Jobeet website now, you will have exceptions telling you that the
modules are not enabled. As plugins are shared amongst all applications in a project, you
need to specifically enable the module you need for a given application in its settings.yml
configuration file:

apps/frontend/config/settings.yml
all:
.settings:
enabled modules:
- default
- sflobeetAffiliate
- sfJobeetApi
- sfJobeetCategory
- sfJobeetJob
- sfJobeetlLanguage

The last step of the migration is to fix the functional tests where we test for the module name.

The Tasks

Tasks can be moved to the plugin quite easily:

$ mv lib/task plugins/sfJobeetPlugin/lib/

The i18n Files

A plugin can also contain XLIFF files:

$ mv apps/frontend/i18n plugins/sfJobeetPlugin/

ass 3k

Day 20: The Plugins 249

The Routing

A plugin can also contain routing rules:

$ mv apps/frontend/config/routing.yml plugins/sfJobeetPlugin/config/ Listing

20-24

The Assets

Even if it is a bit counter-intuitive, a plugin can also contain web assets like images,
stylesheets, and JavaScripts. As we don’t want to distribute the Jobeet plugin, it does not
really make sense, but it is possible by creating a plugins/sfJobeetPlugin/web/
directory.

A plugin’s assets must be accessible in the project’s web/ directory to be viewable from a
browser. The plugin:publish-assets addresses this by creating symlinks under Unix
system and by copying the files on the Windows platform:

$ php symfony plugin:publish-assets Listing

20-25

The User

Moving the myUser class methods that deal with job history is a bit more involved. We could
create a JobeetUser class and make myUser inherit from it. But there is a better way,
especially if several plugins want to add new methods to the class.

Core symfony objects notify events during their life-cycle that you can listen to. In our case,
we need to listen to the user.method not found event, which occurs when an undefined
method is called on the sfUser object.

When symfony is initialized, all plugins are also initialized if they have a plugin configuration
class:

// plugins/sflobeetPlugin/config/sfJobeetPluginConfiguration.class.php Listing
class sfJobeetPluginConfiguration extends sfPluginConfiguration -

public function initialize()
{
$this->dispatcher->connect('user.method not found',
array('JobeetUser', 'methodNotFound'));
}
}

Event notifications are managed by sfEventDispatche r'% the event dispatcher object.
Registering a listener is as simple as calling the connect () method. The connect () method
connects an event name to a PHP callable.

T A PHP callable!?? is a PHP variable that can be used by the call user func() function
and returns true when passed to the is callable() function. A string represents a
function, and an array can represent an object method or a class method.

With the above code in place, myUser object will call the static methodNotFound () method
of the JobeetUser class whenever it is unable to find a method. It is then up to the
methodNotFound () method to process the missing method or not.

Remove all methods from the myUser class and create the JobeetUser class:

101. http://www.symfony-project.org/api/1 4/sfEventDispatcher
102. http://www.php.net/manual/en/function.is-callable.php

ass 3k

Day 20: The Plugins 250

Listing // apps/frontend/lib/myUser.class.php
class myUser extends sfBasicSecurityUser

20-27

{
}

// plugins/sfJobeetPlugin/lib/JobeetUser.class.php
class JobeetUser

{

static public function methodNotFound(sfEvent $event)
{

if (method exists('JobeetUser', $event['method']))

{

$event->setReturnValue(call user func array(
array('JobeetUser', $event['method']),

array merge(array($event->getSubject()), $event['arguments'])
));

return true;

}
}

static public function isFirstRequest(sfUser $user, $boolean = null)

{
if (is_null($boolean))

{
return $user->getAttribute('first request', true);
}
else
{
$user->setAttribute('first request', $boolean);
}

}

static public function addJobToHistory(sfUser $user, JobeetJob $job)

{
$ids = $user->getAttribute('job history', array());

if ('in_array($job->getId(), $ids))
{

array _unshift($ids, $job->getId());

$user->setAttribute('job history', array slice($ids, 0, 3));
}

}
static public function getJobHistory(sfUser $user)
{
$ids = $user->getAttribute('job history', array());
if ('empty($ids))
{
return Doctrine Core::getTable('JobeetJob')
->createQuery('a')
->whereIn('a.id', $ids)
->execute();
}
return array();
}

ass 3k

Day 20: The Plugins 251

static public function resetJobHistory(sfUser $user)

{

}
}

$user->getAttributeHolder()->remove('job history');

When the dispatcher calls the methodNotFound () method, it passes a sfEvent!03 object.

If the method exists in the JobeetUser class, it is called and its returned value is
subsequently returned to the notifier. If not, symfony will try the next registered listener or
throw an Exception.

The getSubject () method returns the notifier of the event, which in this case is the current
myUser object.

The Default Structure vs. the Plugin Architecture

Using the plugin architecture allows you to organize your code in a different way:

Default Structure Plugin Architecture

apps/ plugins/
frontend/ stJlobeetPlugin/
config/ config/
routing.yml — —» routing.yml

ien/—— schema.yml
modules/ . 7411:;";
jobs . lib/
W filter/

config/
schema.yml — — form/

lib/ — model/
filter/ _ task/
form/ modules/
model/ sflobeetlob/
task/ B —=> web/

web/ ———

Using Plugins

When you start implementing a new feature, or if you try to solve a classic web problem, odds
are that someone has already solved the same problem and perhaps packaged the solution as
a symfony plugin. To you look for a public symfony plugin, go to the plugin section!® of the
symfony website.

As a plugin is self-contained in a directory, there are several way to install it:

* Using the plugin:install task (it only works if the plugin developer has created
a plugin package and uploaded it on the symfony website)

* Downloading the package and manually un-archive it under the plugins/ directory
(it also need that the developer has uploaded a package)

* Creating a svn:externals in plugins/ for the plugin (it only works if the plugin
developer host its plugin on Subversion)

103. http://www.symfony-project.org/api/1 4/sfEvent
104. http://www.symfony-project.orqg/plugins/

ass 3k

Day 20: The Plugins 252

The last two ways are easy but lack some flexibility. The first way allows you to install the
latest version according to the project symfony version, easily upgrade to the latest stable
release, and to easily manage dependencies between plugins.

Contributing a Plugin

Packaging a Plugin

To create a plugin package, you need to add some mandatory files to the plugin directory
structure. First, create a README file at the root of the plugin directory and explain how to
install the plugin, what it provides, and what not. The README file must be formatted with the

Markdown format'%. This file will be used on the symfony website as the main piece of
documentation. You can test the conversion of your README file to HTML by using the

symfony plugin dinguleG.
Plugin Development Tasks

If you find yourself frequently creating private and/or public plugins, consider taking

advantage of some of the tasks in the sfT askExtraPluginlm. This plugin, maintained by the
core team, includes a number of tasks that help you streamline the plugin lifecycle:

* generate:plugin
e plugin:package

You also need to create a LICENSE file. Choosing a license is not an easy task, but the
symfony plugin section only lists plugins that are released under a license similar to the
symfony one (MIT, BSD, LGPL, and PHP). The content of the LICENSE file will be displayed
under the license tab of your plugin’s public page.

The last step is to create a package.xml file at the root of the plugin directory. This
package.xml file follows the PEAR package syntaxlog.

F The best way to learn the package.xml syntax is certainly to copy the one used by an
existing pluginlog.

The package.xml file is composed of several parts as you can see in this template example:

Listing <!-- plugins/sfJobeetPlugin/package.xml -->

<?xml version="1.0" encoding="UTF-8"?7>

<package packagerversion="1.4.1" version="2.0"
xmlns="http://pear.php.net/dtd/package-2.0"
xmlns:tasks="http://pear.php.net/dtd/tasks-1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://pear.php.net/dtd/tasks-1.0
http://pear.php.net/dtd/tasks-1.0.xsd http://pear.php.net/dtd/

package-2.0
http://pear.php.net/dtd/package-2.0.xsd">

105. http://daringfireball.net/projects/markdown/syntax

106. http://www.symfony-project.org/plugins/markdown dingus

107. http://www.symfony-project.com/plugins/sfTaskExtraPlugin

108. http://pear.php.net/manual/en/guide-developers.php
109wpttp:/ﬁ§vn.symfony—project.com/p ugins/sfGuardPlugin/branches/1.2/
package.xm

ass 3k

Day 20: The Plugins 253

<name>sfJobeetPlugin</name>
<channel>plugins.symfony-project.org</channel>
<summary>A job board plugin.</summary>
<description>A job board plugin.</description>
<lead>
<name>Fabien POTENCIER</name>
<user>fabpot</user>
<email>fabien.potencier@symfony-project.com</email>
<active>yes</active>
</lead>
<date>2008-12-20</date>
<version>
<release>1.0.0</release>
<api>1.0.0</api>
</version>
<stability>
<release>stable</release>
<api>stable</api>
</stability>
<license uri="http://www.symfony-project.com/license">
MIT license
</license>
<notes />

<contents>
<!-- CONTENT -->
</contents>

<dependencies>
<!-- DEPENDENCIES -->
</dependencies>

<phprelease>
</phprelease>

<changelog>

<!-- CHANGELOG -->
</changelog>
</package>

The <contents> tag contains the files that need to be put into the package:

<contents> 15@?
<dir name="/">
<file role="data" name="README" />
<file role="data" name="LICENSE" />

<dir name="config">
<file role="data" name="config.php" />
<file role="data" name="schema.yml" />
</dir>

<l-- .., -->
</dir>
</contents>

The <dependencies> tag references all dependencies the plugin might have: PHP, symfony,
and also other plugins. This information is used by the plugin:install task to install the

ass 3k

Listing
20-30

Listing
20-31

Listing
20-32

Day 20: The Plugins 254

best plugin version for the project environment and to also install required plugin
dependencies if any.

<dependencies>
<required>
<php>
<min>5.0.0</min>
</php>
<pearinstaller>
<min>1.4.1</min>
</pearinstaller>
<package>
<name>symfony</name>
<channel>pear.symfony-project.com</channel>
<min>1.3.0</min>
<max>1.5.0</max>
<exclude>1.5.0</exclude>
</package>
</required>
</dependencies>

You should always declare a dependency on symfony, as we have done here. Declaring a
minimum and a maximum version allows the plugin:install to know what symfony
version is mandatory as symfony versions can have slightly different APIs.

Declaring a dependency with another plugin is also possible:

<package>
<name>sfFooPlugin</name>
<channel>plugins.symfony-project.org</channel>
<min>1.0.0</min>
<max>1.2.0</max>
<exclude>1.2.0</exclude>

</package>

The <changelog> tag is optional but gives useful information about what changed between
releases. This information is available under the “Changelog” tab and also in the plugin

feed!10,

<changelog>
<release>
<version>
<release>1.0.0</release>
<api>1.0.0</api>
</version>
<stability>
<release>stable</release>
<api>stable</api>
</stability>
<license uri="http://www.symfony-project.com/license">
MIT license
</license>
<date>2008-12-20</date>
<license>MIT</license>
<notes>
* fabien: First release of the plugin

110. http://www.symfony-project.org/plugins/recently.rss

ass 3k

Day 20: The Plugins 255

</notes>
</release>
</changelog>

Hosting a Plugin on the symfony Website

If you develop a useful plugin and you want to share it with the symfony community, create a
symfony account!!! if you don’t have one already and then, create a new plugin“z.
You will automatically become the administrator for the plugin and you will see an “admin”

tab in the interface. In this tab, you will find everything you need to manage your plugin and
upload your packages.

The plugin FAQ113 contains a lot of useful information for plugin developers.

Final Thoughts

Creating plugins, and sharing them with the community is one of the best ways to contribute
back to the symfony project. It is so easy, that the symfony plugin repository is full of useful,
fun, but also ridiculous plugins.

111. http://www.symfony-project.org/user/new
112. http://www.symfony-project.org/plugins/new
113. http://www.symfony-project.org/plugins/FAQ

ass 3k

Listing
21-1

Listing
21-2

Day 21: The Cache 256

Day 21

The Cache

Today, we will talk about caching. The symfony framework has many built-in cache strategies.
For instance, the YAML configuration files are first converted to PHP and then cached on the
filesystem. We have also seen that the modules generated by the admin generator are cached
for better performance.

But here, we will talk about another cache: the HTML cache. To improve your website
performance, you can cache whole HTML pages or just parts of them.

Creating a new Environment

By default, the template cache feature of symfony is enabled in the settings.yml
configuration file for the prod environment, but not for the test and dev ones:

prod:
.settings:
cache: true

dev:
.settings:
cache: false

test:
.settings:
cache: false

As we need to test the cache feature before going to production, we can activate the cache for
the dev environment or create a new environment. Recall that an environment is defined by
its name (a string), an associated front controller, and optionally a set of specific
configuration values.

To play with the cache system on Jobeet, we will create a cache environment, similar to the
prod environment, but with the log and debug information available in the dev environment.

Create the front controller associated with the new cache environment by copying the dev
front controller web/frontend dev.php toweb/frontend cache.php:

// web/frontend cache.php
if (!'in array(@$ SERVER['REMOTE ADDR'], array('127.0.0.1', '::1')))
{

die('You are not allowed to access this file. Check
'.basename(_FILE).' for more information.');

}

ass 3k

Day 21: The Cache 257

require once(dirname(_FILE).'/../config/
ProjectConfiguration.class.php');

$configuration =
ProjectConfiguration::getApplicationConfiguration('frontend', 'cache’,
true);

sfContext::createInstance($configuration)->dispatch();

That’s all there is to it. The new cache environment is now useable. The only difference is the
second argument of the getApplicationConfiguration() method which is the
environment name, cache.

You can test the cache environment in your browser by calling its front controller:

http://www. jobeet.com.localhost/frontend cache.php/ Listing

21-3

E The front controller script begins with a code that ensures that the front controller is only
called from a local IP address. This security measure is to protect the front controller from
being called on the production servers. We will talk about this in more details tomorrow.

For now, the cache environment inherits from the default configuration. Edit the
settings.yml configuration file to add the cache environment specific configuration:

apps/frontend/config/settings.yml Listing

cache: 214
.settings:
error_reporting: <?php echo (E ALL | E STRICT)."\n" ?>
web debug: true
cache: true
etag: false

In these settings, the symfony template cache feature has been activated with the cache
setting and the web debug toolbar has been enabled with the web debug setting.

As the default configuration caches all settings in the cache, you need to clear it before being
able to see the changes in your browser:

$ php symfony cc Listing

21-5

Now, if you refresh your browser, the web debug toolbar should be present in the top right
corner of the page, as it is the case for the dev environment.

Cache Configuration

The symfony template cache can be configured with the cache.yml configuration file. The
default configuration for the application is to be found in apps/frontend/config/
cache.yml:

default: Listing
enabled: false e
with layout: false
lifetime: 86400

By default, as all pages can contain dynamic information, the cache is globally disabled
(enabled: false). We don’t need to change this setting, because we will enable the cache
on a page by page basis.

ass 3k

Day 21: The Cache 258

The lifetime setting defines the server side life time of the cache in seconds (86400
seconds equals one day).

You can also work the other way around: enable the cache globally and then, disable it on
specific pages that cannot be cached. It depends on which represents the less work for
your application.

Page Cache

As the Jobeet homepage will probably be the most visited page of the website, instead of
requesting data from the database each time a user accesses it, it can be cached.

Create a cache.yml file for the sfJobeetJob module:

Listing # plugins/sfJobeetPlugin/modules/sfJobeetJob/config/cache.yml
"’ index:
enabled: true

with layout: true

@ The cache.yml configuration file has the same properties than any other symfony
configuration files like view.yml. It means for instance that you can enable the cache for
all actions of a module by using the special all key.

If you refresh your browser, you will see that symfony has decorated the page with a box
indicating that the content has been cached:

cache information 5 Bl EEEDPE] & (Ciconfig # logs [T]3230.0KB () 530ms [H9 i
|uri] stickestionindex?sf_culturemen

life bme] BAOD seconds

llast modifid] 0 seconds

POST AJOB >>

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

Recent viewed jobs: Web Developer - Sensio Labs Web Designer - Extreme Sensio Web Developer - Company 115

DESIGN S FEED

Paris, France Web Designer Extreme Sensio

The box gives some precious information about the cache key for debugging, like the lifetime
of the cache, and the age of it.

If you refresh the page again, the color of the box changed from green to yellow, indicating
that the page has been retrieved from the cache:

symfony Brought to you by SENSIOLABS 3K

Day 21: The Cache 259

SF G ooy 2 logs [16916KB (Deéms

~ Jobeet

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

Recent viewed jobs: Web Developer - Sensio Labs Web Designer - Extreme Sensio Web Developer - Company 115

DESIGN

Paris, France Web Designer Extreme Sensio

Also notice that no database request has been made in the second case, as shown in the web
debug toolbar.

@ Even if the language can be changed on a per-user basis, the cache still works as the
language is embedded in the URL.

When a page is cacheable, and if the cache does not exist yet, symfony stores the response
object in the cache at the end of the request. For all other future requests, symfony will send
the cached response without calling the controller:

show:
enabled: an
with_layout: true

yes

@ no

Browser i

L2 Acth - Lo - Layout 1

e - "

r

S

- Partial Partial Companent

This has a great impact on performance as you can measure for yourself by using tools like
114
JMeter .

T An incoming request with GET parameters or submitted with the POST, PUT, or DELETE
method will never be cached by symfony, regardless of the configuration.

The job creation page can also be cached:

plugins/sfJobeetPlugin/modules/sfJobeetJob/config/cache.yml Listing
ne:ﬁabled: true
index:
enabled: true
all:

with_ layout: true

As the two pages can be cached with the layout, we have created an all section that defines
the default configuration for the all sfJobeetJob module actions.

114. http://jakarta.apache.org/jmeter/

symfony Brought to you by SENSIOLABS 3K

Day 21: The Cache 260

Clearing the Cache

If you want to clear the page cache, you can use the cache: clear task:

Listing $ php symfony cc
The cache:clear task clears all the symfony caches stored under the main cache/
directory. It also takes options to selectively clear some parts of the cache. To only clear the
template cache for the cache environment, use the - -type and - -env options:

Listing $ php symfony cc --type=template --env=cache
Instead of clearing the cache each time you make a change, you can also disable the cache by
adding any query string to the URL, or by using the “Ignore cache” button from the web
debug toolbar:

i EEERE] & (config # logs []31794KB (5 109ms [EH6 1

POST A JOB >>

Action Cache

Sometimes, you cannot cache the whole page in the cache, but the action template itself can
be cached. Put another way, you can cache everything but the layout.

For the Jobeet application, we cannot cache the whole page because of the “history job” bar.
Change the configuration for the job module cache accordingly:

Lising # plugins/sfJobeetPlugin/modules/sfJobeetJob/config/cache.yml

21-11

new:

enabled: true
index:

enabled: true
all:

with layout: false

By changing the with Tlayout setting to false, you have disabled layout caching.

Clear the cache:
Listing $ php symfony cc

21-12

Refresh your browser to see the difference:

sumfonu Brought to you by LABS *

261

Day 21: The Cache

; § (Domfig 2 logs []32023KB ()50ims [F8 |

Jobeet —

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

Recent viewed jobs: Web Designer - Extreme Sensio

cache information ®
[F]=nTINT)]

Paris, France Web Designer Extreme Sensio

& FEED

PROGRAMMING

Paris, France Web Developer Company 128

Even if the flow of the request is quite similar in the simplified diagram, caching without the
layout is much more resource intensive.

show:
enabled: an
with_layout: false \

Browser Sarver
: D Layout 1 .
- ’
- Partial Partial Component
Mogel

¥

Partial and Component Cache

For highly dynamic websites, it is sometimes even impossible to cache the whole action
template. For those cases, you need a way to configure the cache at the finer-grained level.

Thankfully, partials and components can also be cached.

Brought to you by SENSIOLABS)*"

Day 21: The Cache 262

cache information B

Paris, France Web Designer Extreme Sensio
Paris, France Web Developer Company 128
Paris, France Web Developer Company 129
Paris, France Web Developer Company 130
Paris, France Web Developer Company 100
Paris, France Web Developer Company 101
Paris, France Web Developer Company 102
Paris, France Web Developer Company 103
Paris, France Web Developer Company 104
Paris, France Web Developer Company 105
Paris, France Web Developer Company 106
AND 22 MORE...
About Jobeet [Full feed Jobeet APl Become an affiliate Jﬂnget wered b

cache information. 5. gB . .

Let’'s cache the language component by creating a cache.yml file for the
sfJobeetlLanguage module:

e

gﬁgl# plugins/sfJobeetPlugin/modules/sfJobeetlLanguage/config/cache.yml
~~ _language:
enabled: true

Configuring the cache for a partial or a component is as simple as adding an entry with its
name. The with layout option is not taken into account for this type of cache as it does not
make any sense:

_list:
enabled: on

_language:
enabled: on

Browser o Template Sarver
: ,Lp - | Layour | -
Request Acdion ° 4 Response

no no

symfony Brought to you by SENSIOLABS 3K

Day 21: The Cache 263

Contextual or not?

The same component or partial can be used in many different templates. The job
_list.php partial for instance is used in the sfJobeetJob and sfJobeetCategory
modules. As the rendering is always the same, the partial does not depend on the context in
which it is used and the cache is the same for all templates (the cache is still obviously
different for a different set of parameters).

But sometimes, a partial or a component output is different, based on the action in which it
is included (think of a blog sidebar for instance, which is slightly different for the homepage
and the blog post page). In such cases the partial or component is contextual, and the cache
must be configured accordingly by setting the contextual option to true:

_sidebar: Listing

enabled: true 21-14
contextual: true

Forms in Cache
Storing the job creation page in the cache is problematic as it contains a form. To better

understand the problem, go to the “Post a Job” page in your browser to seed the cache. Then,

clear your session cookie, and try to submit a job. You must see an error message alerting you
of a “CSRF attack”:

Jobeet e

ASK FOR A JOB

Enter some keywords (city, country, position, ...)

Recent viewed jobs

csrf token: CSRF attack detected.

Category Design s]

Tyvpe @ Fulltime O Parttime O Freelance

Why? As we have configured a CSRF secret when we created the frontend application,
symfony embeds a CSRF token in all forms. To protect you against CSRF attacks, this token is
unique for a given user and for a given form.

The first time the page is displayed, the generated HTML form is stored in the cache with the
current user token. If another user comes afterwards, the page from the cache will be
displayed with the first user CSRF token. When submitting the form, the tokens do not match,
and an error is thrown.

How can we fix the problem as it seems legitimate to store the form in the cache? The job
creation form does not depend on the user, and it does not change anything for the current
user. In such a case, no CSRF protection is needed, and we can remove the CSRF token
altogether:

// plugins/sfJobeetPlugin/lib/form/doctrine/PluginJobeetJobForm.class.php Listing
abstract PluginJobeetJobForm extends BaseJobeetJobForm '

symfony Brought to you by SENSIOLABS 3K

Day 21: The Cache 264

{
public function configure()
{
$this->disableLocalCSRFProtection();
}
}

After doing this change, clear the cache and re-try the same scenario as above to prove it
works as expected now.

The same configuration must be applied to the language form as it is contained in the layout
and will be stored in the cache. As the default sfLanguageForm is used, instead of creating a
new class, just to remove the CSRF token, let’s do it from the action and component of the
sfJlobeetLanguage module:

Listing [/ plugins/sfJobeetPlugin/modules/sfJobeetlLanguage/actions/
~7 components.class.php
class sflobeetLanguageComponents extends sfComponents
{
public function executelLanguage(sfWebRequest $request)
{
$this->form = new sfFormLanguage($this->getUser(), array('languages'
=> array('en', 'fr')));
$this->form->disableLocalCSRFProtection();
}
}

// plugins/sflobeetPlugin/modules/sfJobeetlLanguage/actions/
actions.class.php
class sflobeetLanguageActions extends sfActions

{

public function executeChangelLanguage(sfWebRequest $request)

{

$form = new sfFormLanguage($this->getUser(), array('languages' =>
array('en', 'fr')));
$form->disableLocalCSRFProtection();

/] ...
}
}

The disableLocalCSRFProtection() method disables the CSRF token for this form.

Removing the Cache

Each time a user posts and activates a job, the homepage must be refreshed to list the new
job.

As we don’t need the job to appear in real-time on the homepage, the best strategy is to lower
the cache life time to something acceptable:

Listing #f plugins/sfJobeetPlugin/modules/sfJobeetJob/config/cache.yml
index:
enabled: true
lifetime: 600

ass 3k

Day 21: The Cache 265

Instead of the default configuration of one day, the cache for the homepage will be
automatically removed every ten minutes.

But if you want to update the homepage as soon as a user activates a new job, edit the
executePublish () method of the sfJobeetJob module to add manual cache cleaning:

// plugins/sfJobeetPlugin/modules/sfJobeetJob/actions/actions.class.php Listing
public function executePublish(sfWebRequest $request) '
{

$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();
$job->publish();

if ($cache = $this->getContext()->getViewCacheManager())
{

$cache->remove('sflobeetlob/index?sf culture=*');
$cache->remove('sfJobeetCategory/
show?id="'.$job->getJobeetCategory()->getId());
}

$this->getUser()->setFlash('notice', sprintf('Your job is now online for
%s days.', sfConfig::get('app active days')));

$this->redirect($this->generateUrl('job show user', $job));

}

The cache is managed by the sfViewCacheManager class. The remove() method removes
the cache associated with an internal URI. To remove cache for all possible parameters of a
variable, use the * as the value. The sf culture=* we have used in the code above means
that symfony will remove the cache for the English and the French homepage.

As the cache manager is null when the cache is disabled, we have wrapped the cache
removing in an if block.

Testing the Cache

Before starting, we need to change the configuration for the test environment to enable the
cache layer:

apps/frontend/config/settings.yml Listng
test: ’
.settings:
error_reporting: <?php echo ((E_ALL | E STRICT) ~ E NOTICE)."\n" 7>
cache: true
web debug: false
etag: false

Let’s test the job creation page:

// test/functional/frontend/jobActionsTest.php Listing

$browser-> ’
info(' 7 - Job creation page')->

get('/fr/")->
with('view cache')->isCached(true, false)->

ass 3k

Day 21: The Cache 266

createJob(array('category id' =>
Doctrine Core::getTable('JobeetCategory')->findOneBySlug('programming')->getId()),

true)->

get('/fr/')->
with('view cache')->isCached(true, false)->
with('response')->checkElement('.category programming .more jobs', '/23/

")
The view cache tester is used to test the cache. The isCached() method takes two
booleans:

* Whether the page must be in cache or not
* Whether the cache is with layout or not

@ Even with all the tools provided by the functional test framework, it is sometimes easier to
diagnose problems within the browser. It is quite easy to accomplish. Just create a front
controller for the test environment. The logs stored in log/frontend test.log can

also be very helpful.

Final Thoughts

Like many other symfony features, the symfony cache sub-framework is very flexible and
allows the developer to configure the cache at a very fine-grained level.

Tomorrow, we will talk about the last step of an application life-cycle: the deployment to the
production servers.

ass 3k

Day 22: The Deployment 267

Day 22

The Deployment

With the configuration of the cache system in the 21st day, the Jobeet website is ready to be
deployed on the production servers.

During twenty-two days, we have developed Jobeet on a development machine, and for most
of you, it probably means your local machine; except if you develop on the production server
directly, which is of course a very bad idea. Now, it is time to move the website to a
production server.

Now, we will see what needs to be done before going to production, what kind of deploying
strategies you can use, and also the tools you need for a successful deployment.

Preparing the Production Server

Before deploying the project to production, we need to be sure the production server is
configured correctly. You can re-read day 1, where we explained how to configure the web
Server.

In this section, we assume that you have already installed the web server, the database
server, and PHP 5.2.4 or later.

E If you don’t have an SSH access to the web server, skip the part where you need to have
access to the command line.

Server Configuration

First, you need to check that PHP is installed with all the needed extensions and is correctly
configured. As for day 1, we will use the check configuration.php script provided with
symfony. As we won’t install symfony on the production server, download the file directly
from the symfony website:

http://trac.symfony-project.org/browser/branches/1.4/data/bin/
check configuration.php?format=raw

Copy the file to the web root directory and run it from your browser and from the command
line:

$ php check configuration.php

Fix any fatal error the script finds and repeat the process until everything works fine in both
environments.

ass 3k

Listing
22-1

Listing
22-2

Listing
22-3

Listing
22-4

Day 22: The Deployment 268

PHP Accelerator

For the production server, you probably want the best performance possible. Installing a PHP
accelerator!!® will give you the best improvement for your money.

T From Wikipedia: A PHP accelerator works by caching the compiled bytecode of PHP scripts
to avoid the overhead of parsing and compiling source code on each request.

APC!® is one of the most popular one, and it is quite simple to install:
$ pecl install APC

Depending on your Operating System, you will also be able to install it with the OS native
package manager.

Take some time to learn how to configure Apct?’,

The symfony Libraries

Embedding symfony

One of the great strengths of symfony is that a project is self-contained. All the files needed
for the project to work are under the main root project directory. And you can move around
the project in another directory without changing anything in the project itself as symfony
only uses relative paths. It means that the directory on the production server does not have to
be the same as the one on your development machine.

The only absolute path that can possibly be found is in the config/
ProjectConfiguration.class.php file; but we took care of it during day 1. Check that it
actually contains a relative path to the symfony core autoloader:

// config/ProjectConfiguration.class.php
require once dirname(_FILE).'/../lib/vendor/symfony/lib/autoload/
sfCoreAutoload.class.php';

Upgrading symfony

Even if everything is self-contained in a single directory, upgrading symfony to a newer
release is nonetheless insanely easy.

You will want to upgrade symfony to the latest minor release from time to time, as we
constantly fix bugs and possibly security issues. The good news is that all symfony versions
are maintained for at least a year and during the maintenance period, we never ever add new
features, even the smallest one. So, it is always fast, safe, and secure to upgrade from one
minor release to another.

Upgrading symfony is as simple as changing the content of the lib/vendor/symfony/
directory. If you have installed symfony with the archive, remove the current files and replace
them with the newest ones.

115. http://en.wikipedia.org/wiki/PHP accelerator
116. http://www.php.net/apc
117. http://www.php.net/manual/en/apc.configuration.php

ass 3k

Day 22: The Deployment 269

If you use Subversion for your project, you can also link your project to the latest symfony 1.4
tag:

$ svn propedit svn:externals lib/vendor/ Listing
symfony http://svn.symfony-project.com/tags/RELEASE 1 4 3/ N

Upgrading symfony is then as simple as changing the tag to the latest symfony version.
You can also use the 1.4 branch to have fixes in real-time:

$ svn propedit svn:externals lib/vendor/ L;Z”g“
symfony http://svn.symfony-project.com/branches/1.4/ '

Now, each time you do an svn up, you will have the latest symfony 1.4 version.

When upgrading to a new version, you are advised to always clear the cache, especially in the
production environment:

$ php symfony cc Listing

22-7

If you also have an FTP access to the production server, you can simulate a symfony cc
by simply removing all the files and directories under the cache/ directory.

You can even test a new symfony version without replacing the existing one. If you just want
to test a new release, and want to be able to rollback easily, install symfony in another
directory (lib/vendor/symfony test for instance), change the path in the
ProjectConfiguration class, clear the cache, and you are done. Rollbacking is as simple
as removing the directory, and change back the path in ProjectConfiguration.

Tweaking the Configuration

Database Configuration

Most of the time, the production database has different credentials than the local one. Thanks
to the symfony environments, it is quite simple to have a different configuration for the
production database:

$ php symfony configure:database Listing
"mysql:host=1localhost;dbname=prod dbname" prod user prod pass '

You can also edit the databases.yml configuration file directly.

Assets

As Jobeet uses plugins that embed assets, symfony created relative symbolic links in the web/
directory. The plugin:publish-assets task regenerates or creates them if you install
plugins without the plugin:install task:

$ php symfony plugin:publish-assets Listing

22-9

Customizing Error Pages

Before going to production, it is better to customize default symfony pages|Default symfony
Pages, like the “Page Not Found” page, or the default exception page.

ass 3k

Day 22: The Deployment 270

We have already configured the error page for the YAML format during day 15, by creating an
error.yaml.php and an exception.yaml.php files in the config/error/ directory. The
error.yaml.php file is used by symfony in the prod environment, whereas
exception.yaml.php is used in the dev environment.

So, to customize the default exception page for the HTML format, create two files: config/
error/error.html.php and config/error/exception.html.php.

The 404 page (page not found) can be customized by changing the error 404 module and
error 404 action settings:

Listing # apps/frontend/config/settings.yml
all:
.actions:
error 404 module: default
error 404 action: error404

Customizing the Directory Structure

To better structure and standardize your code, symfony has a default directory structure with
pre-defined names. But sometimes, you don’t have the choice but to change the structure
because of some external constraints.

Configuring the directory ~ names can be done in the config/
ProjectConfiguration.class.php class.

The Web Root Directory

On some web hosts, you cannot change the web root directory name. Let’s say that on your
web host, it is named public_html/ instead of web/:

Listing // config/ProjectConfiguration.class.php
- class ProjectConfiguration extends sfProjectConfiguration
{
public function setup()

{

}
}

$this->setWebDir($this->getRootDir().'/public_html');

The setWebDir () method takes the absolute path of the web root directory. If you also move
this directory elsewhere, don’t forget to edit the controller scripts to check that paths to the
config/ProjectConfiguration.class.php file are still valid:

Listing require once(dirname(_ FILE).'/../config/
" ProjectConfiguration.class.php');

The Cache and Log Directory

The symfony framework only writes in two directories: cache/ and log/. For security
reasons, some web hosts do not set write permissions|Write Permissions in the main
directory. If this is the case, you can move these directories elsewhere on the filesystem:

Listing // config/ProjectConfiguration.class.php
" class ProjectConfiguration extends sfProjectConfiguration

{

public function setup()

ass 3k

Day 22: The Deployment 271

{
$this->setCacheDir('/tmp/symfony cache');
$this->setLogDir('/tmp/symfony logs');
}
}

As for the setWebDir () method, setCacheDir() and setLogDir() take an absolute path
to the cache/ and log/ directories respectively.

Customizing symfony core Objects (aka factories)

During day 16, we talked a bit about the symfony factories. Being able to customize the
factories means that you can use a custom class for symfony core objects instead of the
default one. You can also change the default behavior of these classes by changing the
parameters send to them.

Let’s take a look at some classic customizations you may want to do.

Cookie Name

To handle the user session, symfony uses a cookie. This cookie has a default name of
symfony, which can be changed in factories.yml. Under the all key, add the following
configuration to change the cookie name to jobeet:

apps/frontend/config/factories.yml Listing
storage:

class: sfSessionStorage

param:

session name: jobeet

Session Storage

The default session storage class is sfSessionStorage. It uses the filesystem to store the
session information. If you have several web servers, you would want to store the sessions in
a central place, like a database table:

apps/frontend/config/factories.yml Listing
storage: ‘
class: sfPDOSessionStorage
param:
session name: jobeet
db table: session
database: doctrine
db id col: id

db data col: data
db time col: time
Session Timeout

By default, the user session timeout if 1800 seconds. This can be changed by editing the
user entry:

apps/frontend/config/factories.yml Listing

22-16
user:
class: myUser

ass 3k

Listing
22-17

Listing
22-18

Day 22: The Deployment 272

param:
timeout: 1800

Logging

By default, there is no logging in the prod environment because the logger class name is
sfNoLogger:

apps/frontend/config/factories.yml

prod:
logger:
class: sfNoLogger
param:
level: err
loggers: ~

You can for instance enable logging on the filesystem by changing the logger class name to
sfFileLogger:

apps/frontend/config/factories.yml

logger:
class: sfFilelLogger
param:
level: err
loggers: ~
file: %SF _LOG_DIR%/%SF APP% %SF ENVIRONMENTS.log

T In the factories.yml configuration file, %XXX% strings are replaced with their

corresponding value from the sfConfig object. So, %SF_APP% in a configuration file is

equivalent to sfConfig::get('sf app') in PHP code. This notation can also be used in

the app.yml configuration file. It is very useful when you need to reference a path in a
configuration file without hardcoding the path (SF_ROOT DIR, SF_WEB DIR, ...).

Deploying

What to deploy?
When deploying the Jobeet website to the production server, we need to be careful not to
deploy unneeded files or override files uploaded by our users, like the company logos.

In a symfony project, there are three directories to exclude from the transfer: cache/, log/,
and web/uploads/. Everything else can be transfered as is.

For security reasons, you also don’t want to transfer the “non-production” front controllers,
like the frontend dev.php, backend dev.php and frontend cache.php scripts.

Deploying Strategies

In this section, we will assume that you have full control over the production server(s). If you
can only access the server with a FTP account, the only deployment solution possible is to
transfer all files every time you deploy.

The simplest way to deploy your website is to use the built-in project:deploy task. It uses
SSH and rsync to connect and transfer the files from one computer to another one.

ass 3k

Day 22: The Deployment 273

Servers for the project:deploy task can be configured in the config/properties.ini
configuration file:

config/properties.ini Listng
[production] ;
host=www. jobeet.org
port=22

user=jobeet
dir=/var/www/jobeet/

To deploy to the newly configured production server, use the project:deploy task:

$ php symfony project:deploy production Listing

22-20

E Before running the project:deploy task for the first time, you need to connect to the
server manually to add the key in the known hosts file.

@ If the command does not work as expected, you can pass the -t option to see the real-time
output of the rsync command.

If you run this command, symfony will only simulate the transfer. To actually deploy the
website, add the - -go option:

$ php symfony project:deploy production --go Listing

22-21

E Even if you can provide the SSH password in the properties.ini file, it is better to
configure your server with a SSH key to allow password-less connections.

By default, symfony won't transfer the directories we have talked about in the previous
section, nor it will transfer the dev front controller script. That’'s because the
project:deploy task exclude files and directories are configured in the config/
rsync_exclude. txt file:

config/rsync_exclude.txt Listing
.svn

/web/uploads/*

/cache/*

/log/*

/web/* dev.php

For Jobeet, we need to add the frontend cache.php file

config/rsync_exclude.txt Listing
.svn

/web/uploads/*

/cache/*

/log/*

/web/* dev.php

/web/frontend cache.php

You can also create a config/rsync_include. txt file to force some files or directories
to be transfered.

ass 3k

Listing
22-24

Listing
22-25

Day 22: The Deployment 274

Even if the project:deploy task is very flexible, you might want to customize it even
further. As deploying can be very different based on your server configuration and topology,
don’t hesitate to extend the default task.

Each time you deploy a website to production, don’t forget to at least clear the configuration
cache on the production server:

$ php symfony cc --type=config
If you have changed some routes, you will also need to clear the routing cache:

$ php symfony cc --type=routing

F Clearing the cache selectively allows to keep some parts of the cache, such as the template
cache.

Final Thoughts

The deployment of a project is the very last step of the symfony development life-cycle. It
does not mean that you are done. This is quite the contrary. A website is something that has a
life by itself. You will probably have to fix bugs and you will also want to add new features
over time. But thanks to the symfony structure and the tools at your disposal, upgrading your
website is simple, fast, and safe.

Tomorrow, will be the last day of the Jobeet tutorial. It will be time to take a step back and
have a look at what you learned during the twenty-three days of Jobeet.

ass 3k

Day 23: Another Look at symfony 275

Day 23

Another Look at symfony

Today is the last stop of our trip to the wonderful world of symfony. During these twenty-
three last days, you learned symfony by example: from the design patterns used by the
framework, to the powerful built-in features. You are not a symfony master yet, but you have
all the needed knowledge to start building your symfony applications with confidence.

As we wrap up the Jobeet tutorial, let’s have another look at the framework. Forget Jobeet for
an hour, and recall all the features you learned during this whole book.

What is symfony?

The symfony framework is a set of cohesive but decoupled sub-frameworks (page 133), that
forms a full-stack MVC framework (page 43) (Model, View, Controller).

Before coding head first, take some time to read the symfony history and philosophy (page 12).
Then, check the framework prerequisites (page 13) and use the check configuration.php
script (page 14) to validate your configuration.

Eventually, install symfony (page 14). After some time you will also want to upgrade (page 268)
to the latest version of the framework.

The framework also provides tools to ease deployment (page 272).

The Model

The Model part of symfony can be done with the help of the Doctrine ORM!!8. Based on the
database description (page 33), it generates classes for objects (page 36), forms (page 118), and
filters (page 163). Doctrine also generates the SQL (page 36) statements used to create the
tables in the database.

The database configuration can be done with a task (page 36) or by editing a configuration file
(page 36). Beside its configuration, it is also possible to inject initial data, thanks to fixture
files (page 38). You can even make these files dynamic (page 79).

Doctrine objects can also be easily internationalized (page 234).

The View

By default, the View layer of the MVC architecture uses plain PHP files as templates.

118. http://www.doctrine-project.org/

ass 3k

Day 23: Another Look at symfony 276

Templates can use helpers (page 47) for recurrent tasks like creating an URL (page 67) or a
link (page 67).

A template can be decorated by a layout (page 44) to abstract the header and footer of pages.
To make views even more reusable, you can define slots (page 54), partials (page 87), and
components (page 226).

To speed up things, you can use the cache sub-framework (page 257) to cache a whole page
(page 258), just the action (page 260), or even just partials or components (page 261). You can
also remove the cache (page 264) manually.

The Controller

The Controller part is managed by front controllers (page 22) and actions (page 40).

Tasks can be used to create simple modules (page 85), CRUD modules (page 40), or even to
generate fullly working admin modules (page 146) for model classes.

Admin modules allows you to built a fully functional application without coding anything.

To abstract the technical implementation of a website, symfony uses a routing (page 61) sub-
framework that generates pretty URLs (page 60). To make implementing web services even
easier, symfony supports formats (page 180) out of the box. You can also create your own
formats (page 192).

An action can be forwarded (page 57) to another one, or redirected (page 67).

Configuration

The symfony framework makes it easy to have different configuration settings for different
environments. An environment (page 22) is a set of settings that allows different behaviors on
the development or production servers. You can also create new environments (page 256).

The symfony configuration files can be defined at different levels (page 49) and most of them
are environment aware (page 101):

app.yml (page 74)
cache.yml (page 257)
databases.yml (page 36)
factories.yml (page 203)
generator.yml (page 148)
routing.yml (page 61)
schema.yml (page 33)
security.yml (page 172)
settings.yml (page 141)
view.yml (page 47)

The configuration files mostly use the YAML format (page 35).

Instead of using the default directory structure and organize your application files by layers,
you can also organize them by feature, and bundle them in a plugin (page 242). Speaking of
the default directory structure, you can also customize it (page 270) according to your needs.

Debugging

From logging (page 72) to the web debug toolbar (page 72), and meaningful exceptions (page
22), symfony provides a lot of useful tools to help the developer debug problems faster.

ass 3k

Day 23: Another Look at symfony 277

Main symfony Objects

The symfony framework provides quite a few core objects that abstract recurrent needs in
web projects: the request (page 57), the response (page 58), the user (page 170), the logging
(page 272), the routing (page 61), the mailer (page 202), and the view cache manager (page 204).

These core objects are managed by the sfContext object (page 204), and they are configured
via the factories (page 203).

The user manages user authentication (page 172), authorization (page 174), flashes (page 168),
and attributes (page 169) to be serialized in the session.

Security

The symfony framework has built-in protections against XSS (page 17) and CSRF (page 17).
These settings can be configured from the command line (page 17), or by editing a
configuration file (page 142).

The form framework also provides built-in security features (page 141).

Forms

As managing forms is one of the most tedious task for a web developer, symfony provides a
form sub-framework (page 117). The form framework comes bundled with a lot of widgets119
and validators'?’. One of the strength of the form sub-framework is that templates are very
easily customizables (page 125).

If you use Doctrine, the form framework also makes it easy to generate forms and filters (page
118) based on your models.

Internationalization and Localization

Internationalization (page 229) and localization (page 238) are supported by symfony, thanks to
the ICU standard. The user culture (page 222) determines the language and the country of the
user. It can be defined by the user itself, or embedded in the URL (page 223).

Tests

The lime library, used for unit tests, provides a lot of testing methods (page 93). The Doctrine
objects can also be tested (page 100) from a dedicated database (page 100) and with dedicated
fixtures (page 101).

Unit tests can be run one at a time (page 94) or all together (page 103).

Functional tests are written with the sfFunctionalTest (page 106) class, which uses a
browser simulator (page 105) and allows symfony core objects introspection through Testers
(page 106). Testers exist for the request object (page 108), the response object (page 108), the
user object (page 178), the current form object (page 135), the cache layer (page 265) and the
Doctrine objects (page 135).

You can also use debugging tools for the response (page 115) and forms (page 135).

119. http://www.symfony-project.org/api/1 4/widget
120. http://www.symfony-project.org/api/1 4/validator

ass 3k

Day 23: Another Look at symfony 278

As for the unit tests, functional tests can be run one by one (page 108) or all together (page
115).

You can also run all tests together (page 115).

Plugins

The symfony framework only provides the foundation for your web applications and relies on
plugins (page 251) to add more features. In this tutorial, we have talked about
sfGuardPlugin (page 175), sfFormExtraPlugin (page 226), and sfTaskExtraPlugin
(page 252).

A plugin must be activated (page 0) after installation.
Plugins are the best way to contribute back (page 252) to the symfony project.

Tasks

The symfony CLI provides a lot of tasks, and the most useful have been discussed in this
tutorial:

app:routes (page 69)

cache:clear (page 260)
configure:database (page 36)
generate:project (page 17)
generate:app (page 17)
generate:module (page 85)

help (page 36)

il8n:extract (page 231)

list (page 176)

plugin:install (page 175)
plugin:publish-assets (page 249)
project:deploy (page 272)
doctrine:build --all (page 36)
doctrine:build --all -and-load (page 85)

doctrine:
doctrine:
doctrine:
doctrine:
doctrine:
doctrine:
doctrine:
doctrine:
doctrine:

build --all (page 36)

build --all -and-load (page 85)
build --forms (page 118)
build-model (page 36)

build-sql (page 36)

data-load (page 38)
generate-admin (page 146)
generate-module (page 40)
insert-sql (page 36)

test:all (page 115)
test:coverage (page 96)
test: functional (page 108)
test:unit (page 94)

You can also create your own tasks (page 143).

Laes >k

Day 23: Another Look at symfony 279

See you soon

Learning by Practicing

The symfony framework, as does any piece of software, has a learning curve. In the learning
process, the first step is to learn from practical examples with a book like this one. The
second step is to practice. Nothing will ever replace practicing.

That’s what you can start doing today. Think about the simplest web project that still provides
some value: a todo list manager, a simple blog, a time or currency converter, whatever...
Choose one and start implementing it with the knowledge you have today. Use the task help
messages to learn the different options, browse the code generated by symfony, use a text
editor that has PHP auto-completion support like Eclipse121, and refer to the reference

guide122 to browse all the configuration provided by the framework.
Enjoy all the free material you have at your disposal to learn more about symfony.

The community

Before you leave, I would like to talk about one last thing about symfony. The framework has
a lot of great features and a lot of free documentation. But, one of the most valuable asset an
Open-Source can have is its community. And symfony has one of the most amazing and active
community around. If you start using symfony for your projects, consider joining the symfony
community:

* Subscribe to the user mailing-list123

* Subscribe to the official blog feed!4
* Subscribe to the symfony planet feed!??
* Come and chat on the #symfony IRC!?® channel on freenode

121. http://www.eclipse.org/

122. http://www.symfony-project.org/reference/1 4/
123. http://groups.google.com/group/symfony-users
124. http://feeds.feedburner.com/symfony/blog

125. http://feeds.feedburner.com/symfony/planet
126. irc://irc.freenode.net/symfony

ass 3k

Appendices 280

Appendices

ass 3k

Appendix A: License 281

Appendix A

License

Attribution-Share Alike 3.0 Unported License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. “Adaptation” means a work based upon the Work, or upon the Work and other
pre-existing works, such as a translation, adaptation, derivative work, arrangement of
music or other alterations of a literary or artistic work, or phonogram or performance
and includes cinematographic adaptations or any other form in which the Work may
be recast, transformed, or adapted including in any form recognizably derived from
the original, except that a work that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image (“synching”) will be considered an Adaptation
for the purpose of this License.

b. “Collection” means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or broadcasts, or other
works or subject matter other than works listed in Section 1(f) below, which, by
reason of the selection and arrangement of their contents, constitute intellectual
creations, in which the Work is included in its entirety in unmodified form along with
one or more other contributions, each constituting separate and independent works
in themselves, which together are assembled into a collective whole. A work that
constitutes a Collection will not be considered an Adaptation (as defined below) for
the purposes of this License.

c. “Creative Commons Compatible License” means a license that is listed at
http://creativecommons.org/compatiblelicenses that has been approved by Creative
Commons as being essentially equivalent to this License, including, at a minimum,
because that license: (i) contains terms that have the same purpose, meaning and
effect as the License Elements of this License; and, (ii) explicitly permits the
relicensing of adaptations of works made available under that license under this

ass 3k

Appendix A: License 282

License or a Creative Commons jurisdiction license with the same License Elements
as this License.

d. “Distribute” means to make available to the public the original and copies of the
Work or Adaptation, as appropriate, through sale or other transfer of ownership.

e. “License Elements” means the following high-level license attributes as selected
by Licensor and indicated in the title of this License: Attribution, ShareAlike.

f. “Licensor” means the individual, individuals, entity or entities that offer(s) the
Work under the terms of this License.

g. “Original Author” means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a performance the actors,
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play
in, interpret or otherwise perform literary or artistic works or expressions of folklore;
(ii) in the case of a phonogram the producer being the person or legal entity who first
fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts,
the organization that transmits the broadcast.

h. “Work” means the literary and/or artistic work offered under the terms of this
License including without limitation any production in the literary, scientific and
artistic domain, whatever may be the mode or form of its expression including digital
form, such as a book, pamphlet and other writing; a lecture, address, sermon or other
work of the same nature; a dramatic or dramatico-musical work; a choreographic
work or entertainment in dumb show; a musical composition with or without words; a
cinematographic work to which are assimilated works expressed by a process
analogous to cinematography; a work of drawing, painting, architecture, sculpture,
engraving or lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied art; an
illustration, map, plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

i. “You” means an individual or entity exercising rights under this License who has
not previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

j. “Publicly Perform” means to perform public recitations of the Work and to
communicate to the public those public recitations, by any means or process,
including by wire or wireless means or public digital performances; to make available
to the public Works in such a way that members of the public may access these
Works from a place and at a place individually chosen by them; to perform the Work
to the public by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to broadcast and
rebroadcast the Work by any means including signs, sounds or images.

k. “Reproduce” means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram in
digital form or other electronic medium.

2. Fair Dealing Rights

Nothing in this License is intended to reduce, limit, or restrict any uses free from
copyright or rights arising from limitations or exceptions that are provided for in
connection with the copyright protection under copyright law or other applicable
laws.

ass 3k

Appendix A: License 283

3. License Grant

Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and
to Reproduce the Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including
any translation in any medium, takes reasonable steps to clearly label, demarcate or
otherwise identify that changes were made to the original Work. For example, a
translation could be marked “The original work was translated from English to
Spanish,” or a modification could indicate “The original work has been modified.”;

c. to Distribute and Publicly Perform the Work including as incorporated in
Collections; and,

d. to Distribute and Publicly Perform Adaptations.
e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme
cannot be waived, the Licensor reserves the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme can
be waived, the Licensor waives the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as
are technically necessary to exercise the rights in other media and formats. Subject
to Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions

The license granted in Section 3 above is expressly made subject to and limited by
the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this
License. You must include a copy of, or the Uniform Resource Identifier (URI) for,
this License with every copy of the Work You Distribute or Publicly Perform. You may
not offer or impose any terms on the Work that restrict the terms of this License or
the ability of the recipient of the Work to exercise the rights granted to that recipient
under the terms of the License. You may not sublicense the Work. You must keep
intact all notices that refer to this License and to the disclaimer of warranties with
every copy of the Work You Distribute or Publicly Perform. When You Distribute or
Publicly Perform the Work, You may not impose any effective technological measures
on the Work that restrict the ability of a recipient of the Work from You to exercise
the rights granted to that recipient under the terms of the License. This Section 4(a)
applies to the Work as incorporated in a Collection, but this does not require the
Collection apart from the Work itself to be made subject to the terms of this License.
If You create a Collection, upon notice from any Licensor You must, to the extent
practicable, remove from the Collection any credit as required by Section 4(c), as
requested. If You create an Adaptation, upon notice from any Licensor You must, to

ass 3k

Appendix A: License 284

the extent practicable, remove from the Adaptation any credit as required by Section
4(c), as requested.

b. You may Distribute or Publicly Perform an Adaptation only under the terms of: (i)
this License; (ii) a later version of this License with the same License Elements as
this License; (iii) a Creative Commons jurisdiction license (either this or a later
license version) that contains the same License Elements as this License (e.g.,
Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible License. If you
license the Adaptation under one of the licenses mentioned in (iv), you must comply
with the terms of that license. If you license the Adaptation under the terms of any of
the licenses mentioned in (i), (ii) or (iii) (the “Applicable License”), you must comply
with the terms of the Applicable License generally and the following provisions: (I)
You must include a copy of, or the URI for, the Applicable License with every copy of
each Adaptation You Distribute or Publicly Perform; (II) You may not offer or impose
any terms on the Adaptation that restrict the terms of the Applicable License or the
ability of the recipient of the Adaptation to exercise the rights granted to that
recipient under the terms of the Applicable License; (III) You must keep intact all
notices that refer to the Applicable License and to the disclaimer of warranties with
every copy of the Work as included in the Adaptation You Distribute or Publicly
Perform; (IV) when You Distribute or Publicly Perform the Adaptation, You may not
impose any effective technological measures on the Adaptation that restrict the
ability of a recipient of the Adaptation from You to exercise the rights granted to that
recipient under the terms of the Applicable License. This Section 4(b) applies to the
Adaptation as incorporated in a Collection, but this does not require the Collection
apart from the Adaptation itself to be made subject to the terms of the Applicable
License.

c. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections,
You must, unless a request has been made pursuant to Section 4(a), keep intact all
copyright notices for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if
supplied, and/or if the Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity, journal) for attribution
(“Attribution Parties”) in Licensor’s copyright notice, terms of service or by other
reasonable means, the name of such party or parties; (ii) the title of the Work if
supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not refer to the
copyright notice or licensing information for the Work; and (iv) , consistent with
Ssection 3(b), in the case of an Adaptation, a credit identifying the use of the Work in
the Adaptation (e.g., “French translation of the Work by Original Author,” or
“Screenplay based on original Work by Original Author”). The credit required by this
Section 4(c) may be implemented in any reasonable manner; provided, however, that
in the case of a Adaptation or Collection, at a minimum such credit will appear, if a
credit for all contributing authors of the Adaptation or Collection appears, then as
part of these credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the Original
Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the
Work, without the separate, express prior written permission of the Original Author,
Licensor and/or Attribution Parties.

d. Except as otherwise agreed in writing by the Licensor or as may be otherwise
permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the
Work either by itself or as part of any Adaptations or Collections, You must not
distort, mutilate, modify or take other derogatory action in relation to the Work

ass 3k

Appendix A: License 285

which would be prejudicial to the Original Author’s honor or reputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right
granted in Section 3(b) of this License (the right to make Adaptations) would be
deemed to be a distortion, mutilation, modification or other derogatory action
prejudicial to the Original Author’s honor and reputation, the Licensor will waive or
not assert, as appropriate, this Section, to the fullest extent permitted by the
applicable national law, to enable You to reasonably exercise Your right under
Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES
OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING
OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon
any breach by You of the terms of this License. Individuals or entities who have
received Adaptations or Collections from You under this License, however, will not
have their licenses terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual
(for the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to
stop distributing the Work at any time; provided, however that any such election will
not serve to withdraw this License (or any other license that has been, or is required
to be, granted under the terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the
Licensor offers to the recipient a license to the Work on the same terms and
conditions as the license granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the
license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provision
shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

ass 3k

Appendix A: License 286

d. No term or provision of this License shall be deemed waived and no breach
consented to unless such waiver or consent shall be in writing and signed by the
party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to
the Work licensed here. There are no understandings, agreements or representations
with respect to the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from You. This License
may not be modified without the mutual written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of
Literary and Artistic Works (as amended on September 28, 1979), the Rome
Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and
Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on
July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction
in which the License terms are sought to be enforced according to the corresponding
provisions of the implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are deemed to
be included in the License; this License is not intended to restrict the license of any
rights under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in
connection with the Work. Creative Commons will not be liable to You or any party on any
legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. Notwithstanding
the foregoing two (2) sentences, if Creative Commons has expressly identified itself as the
Licensor hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed under the
CCPL, Creative Commons does not authorize the use by either party of the trademark
“Creative Commons” or any related trademark or logo of Creative Commons without the
prior written consent of Creative Commons. Any permitted use will be in compliance with
Creative Commons’ then-current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to time. For the avoidance of
doubt, this trademark restriction does not form part of the License.

Creative Commons may be contacted at http://creativecommons.org/.

ass 3k

Laes >k

Appendix A: License 289

Appendix A: License 291

Laes >k

Laes >k

	Practical symfony
	symfony 1.3 & 1.4 | Doctrine

	Table of Contents
	About the Author
	About Sensio Labs
	Which symfony Version?
	Starting up the Project
	Introduction
	This Book is different
	What for Today?
	Prerequisites
	Third-Party Software
	Command Line Interface
	PHP Configuration

	Symfony Installation
	Initializing the Project Directory
	Choosing the Symfony Version
	Choosing the Symfony Installation Location
	Installing Symfony
	Installing from an Archive
	Installing from Subversion (recommended)
	Installation Verification

	Project Setup
	Project Creation
	Application Creation
	Directory Structure Rights

	Web Server Configuration: The ugly Way
	Web Server Configuration: The secure Way
	Web Server Configuration
	Test the New Configuration

	The Environments
	Subversion
	Final Thoughts

	The Project
	The Project Pitch
	The Project User Stories
	Story F1: On the homepage, the user sees the latest active jobs
	Story F2: A user can ask for all the jobs in a given category
	Story F3: A user refines the list with some keywords
	Story F4: A user clicks on a job to see more detailed information
	Story F5: A user posts a job
	Story F6: A user applies to become an affiliate
	Story F7: An affiliate retrieves the current active job list
	Story B1: An admin configures the website
	Story B2: An admin manages the jobs
	Story B3: An admin manages the affiliates

	Final Thoughts

	The Data Model
	The Relational Model
	The Schema
	The Database
	The ORM
	The Initial Data
	See it in Action in the Browser
	Final Thoughts

	The Controller and the View
	The MVC Architecture
	The Layout
	The Stylesheets, Images, and JavaScripts
	The Job Homepage
	The Action
	The Template

	The Job Page Template
	Slots
	The Job Page Action
	The Request and the Response
	The Request
	The Response

	Final Thoughts

	The Routing
	URLs
	Routing Configuration
	Route Customizations
	Requirements
	Route Class
	Object Route Class
	Routing in Actions and Templates
	Collection Route Class
	Route Debugging
	Default Routes
	Final Thoughts

	More with the Model
	The Doctrine Query Object
	Debugging Doctrine generated SQL
	Object Serialization
	More with Fixtures
	Custom Configuration
	Refactoring
	Categories on the Homepage
	Limit the Results
	Dynamic Fixtures
	Secure the Job Page
	Link to the Category Page
	Final Thoughts

	Playing with the Category Page
	The Category Route
	The Category Link
	Job Category Module Creation
	Update the Database
	Partials
	List Pagination
	Final Thoughts

	The Unit Tests
	Tests in symfony
	Unit Tests
	The lime Testing Framework
	Running Unit Tests
	Testing slugify
	Adding Tests for new Features
	Adding Tests because of a Bug
	Doctrine Unit Tests
	Database Configuration
	Test Data
	Testing JobeetJob
	Test other Doctrine Classes

	Unit Tests Harness
	Final Thoughts

	The Functional Tests
	Functional Tests
	The sfBrowser class
	The sfTestFunctional class
	The Request Tester
	The Response Tester

	Running Functional Tests
	Test Data
	Writing Functional Tests
	Expired jobs are not listed
	Only n jobs are listed for a category
	A category has a link to the category page only if too many jobs
	Jobs are sorted by date
	Each job on the homepage is clickable

	Learn by the Example
	Debugging Functional Tests
	Functional Tests Harness
	Tests Harness
	Final Thoughts

	The Forms
	The Form Framework
	Forms
	Doctrine Forms
	Customizing the Job Form
	The Form Template
	The Form Action
	Protecting the Job Form with a Token

	The Preview Page
	Job Activation and Publication
	Final Thoughts

	Testing your Forms
	Submitting a Form
	The Form Tester
	Redirection Test
	The Doctrine Tester
	Testing for Errors
	Forcing the HTTP Method of a link
	Tests as a SafeGuard
	Back to the Future in a Test
	Forms Security
	Form Serialization Magic!
	Built-in Security Features
	XSS and CSRF Protection

	Maintenance Tasks
	Final Thoughts

	The Admin Generator
	Backend Creation
	Backend Modules
	Backend Look and Feel
	The symfony Cache
	Backend Configuration
	Title Configuration
	Fields Configuration
	List View Configuration
	display
	layout
	“Virtual” columns
	sort
	max_per_page
	batch_actions
	object_actions
	actions
	table_method

	Form Views Configuration
	display
	“Virtual” columns
	class

	Filters Configuration
	Actions Customization
	Templates Customization
	Final Configuration
	Final Thoughts

	The User
	User Flashes
	User Attributes
	getAttribute(), setAttribute()
	The myUser class
	sfParameterHolder

	Application Security
	Authentication
	Authorization

	Plugins
	Backend Security
	User Testing
	Final Thoughts

	Feeds
	Formats
	Feeds
	Latest Jobs Feed
	Latest Jobs in a Category Feed

	Final Thoughts

	Web Services
	Affiliates
	The Fixtures
	The Job Web Service
	The Action
	The xml Format
	The json Format
	The yaml Format

	Web Service Tests
	The Affiliate Application Form
	Routing
	Bootstrapping
	Templates
	Actions
	Tests

	The Affiliate Backend
	Final Thoughts

	The Mailer
	Sending simple Emails
	Configuration
	Factories
	Delivery Strategy
	Mail Transport

	Testing Emails
	Final Thoughts

	Search
	The Technology
	Installing and Configuring the Zend Framework
	Indexing
	The save() method
	Doctrine Transactions
	delete()

	Searching
	Unit Tests
	Tasks
	Final Thoughts

	AJAX
	Installing jQuery
	Including jQuery
	Adding Behaviors
	User Feedback
	AJAX in an Action
	Testing AJAX
	Final Thoughts

	Internationalization and Localization
	User
	The User Culture
	The Preferred Culture

	Culture in the URL
	Culture Testing
	Language Switching
	Internationalization
	Languages, Charset, and Encoding
	Templates
	i18n:extract
	Translations with Arguments
	Forms
	Doctrine Objects
	Admin Generator
	Tests

	Localization
	Templates
	Forms (I18n)

	Final Thoughts

	The Plugins
	Plugins
	A symfony Plugin
	Private Plugins
	Public Plugins
	A Different Way to Organize Code

	Plugin File Structure
	The Jobeet Plugin
	The Model
	The Controllers and the Views
	The Tasks
	The i18n Files
	The Routing
	The Assets
	The User
	The Default Structure vs. the Plugin Architecture

	Using Plugins
	Contributing a Plugin
	Packaging a Plugin
	Hosting a Plugin on the symfony Website

	Final Thoughts

	The Cache
	Creating a new Environment
	Cache Configuration
	Page Cache
	Clearing the Cache
	Action Cache
	Partial and Component Cache
	Forms in Cache
	Removing the Cache
	Testing the Cache
	Final Thoughts

	The Deployment
	Preparing the Production Server
	Server Configuration
	PHP Accelerator

	The symfony Libraries
	Embedding symfony
	Upgrading symfony

	Tweaking the Configuration
	Database Configuration
	Assets
	Customizing Error Pages

	Customizing the Directory Structure
	The Web Root Directory
	The Cache and Log Directory

	Customizing symfony core Objects (aka factories)
	Cookie Name
	Session Storage
	Session Timeout
	Logging

	Deploying
	What to deploy?
	Deploying Strategies

	Final Thoughts

	Another Look at symfony
	What is symfony?
	The Model
	The View
	The Controller
	Configuration
	Debugging
	Main symfony Objects
	Security
	Forms
	Internationalization and Localization
	Tests
	Plugins
	Tasks
	See you soon
	Learning by Practicing
	The community

	Appendices
	License
	Attribution-Share Alike 3.0 Unported License

