
Practical symfony

symfony 1.3 & 1.4 | Doctrine

This PDF is brought to you by

License: Creative Commons Attribution-Share Alike 3.0 Unported License
Version: jobeet-1.4-doctrine-en-2011-08-18

Table of Contents

About the Author... 9
About Sensio Labs... 10
Which symfony Version? ... 11
Day 1: Starting up the Project .. 12

Introduction ... 12
This Book is different... 12
What for Today?... 13
Prerequisites.. 13

Third-Party Software .. 13
Command Line Interface .. 13
PHP Configuration.. 14

Symfony Installation .. 14
Initializing the Project Directory .. 14
Choosing the Symfony Version... 15
Choosing the Symfony Installation Location .. 15
Installing Symfony.. 15

Project Setup ... 17
Project Creation ... 17
Application Creation... 17
Directory Structure Rights ... 18

Web Server Configuration: The ugly Way ... 19
Web Server Configuration: The secure Way ... 19

Web Server Configuration.. 19
Test the New Configuration ... 20

The Environments.. 22
Subversion ... 24
Final Thoughts ... 25

Day 2: The Project... 26
The Project Pitch ... 26
The Project User Stories.. 27

Story F1: On the homepage, the user sees the latest active jobs 27
Story F2: A user can ask for all the jobs in a given category ... 28
Story F3: A user refines the list with some keywords .. 29
Story F4: A user clicks on a job to see more detailed information 29
Story F5: A user posts a job ... 30
Story F6: A user applies to become an affiliate ... 31
Story F7: An affiliate retrieves the current active job list.. 31
Story B1: An admin configures the website ... 32
Story B2: An admin manages the jobs.. 32
Story B3: An admin manages the affiliates .. 32

Table of Contents ii

----------------- Brought to you by

Final Thoughts ... 32
Day 3: The Data Model.. 33

The Relational Model... 33
The Schema ... 33
The Database ... 36
The ORM.. 36
The Initial Data .. 38
See it in Action in the Browser .. 40
Final Thoughts ... 42

Day 4: The Controller and the View .. 43
The MVC Architecture ... 43
The Layout ... 44
The Stylesheets, Images, and JavaScripts ... 47
The Job Homepage... 50

The Action .. 50
The Template.. 51

The Job Page Template .. 52
Slots ... 54
The Job Page Action... 55
The Request and the Response.. 57

The Request.. 57
The Response ... 58

Final Thoughts ... 59
Day 5: The Routing ... 60

URLs .. 60
Routing Configuration ... 61
Route Customizations .. 62
Requirements... 63
Route Class .. 63
Object Route Class... 64
Routing in Actions and Templates ... 67
Collection Route Class ... 67
Route Debugging ... 69
Default Routes ... 70
Final Thoughts ... 70

Day 6: More with the Model.. 71
The Doctrine Query Object .. 71
Debugging Doctrine generated SQL ... 72
Object Serialization ... 72
More with Fixtures .. 73
Custom Configuration.. 74
Refactoring .. 75
Categories on the Homepage .. 76
Limit the Results.. 78
Dynamic Fixtures... 79
Secure the Job Page... 80
Link to the Category Page ... 81
Final Thoughts ... 81

Table of Contents iii

----------------- Brought to you by

Day 7: Playing with the Category Page ... 82
The Category Route ... 82
The Category Link ... 83
Job Category Module Creation .. 85
Update the Database ... 85
Partials... 87
List Pagination ... 88
Final Thoughts ... 91

Day 8: The Unit Tests.. 92
Tests in symfony .. 92
Unit Tests... 92
The lime Testing Framework ... 93
Running Unit Tests .. 94
Testing slugify ... 94
Adding Tests for new Features.. 96
Adding Tests because of a Bug.. 97
Doctrine Unit Tests.. 100

Database Configuration.. 100
Test Data .. 101
Testing JobeetJob .. 101
Test other Doctrine Classes ... 103

Unit Tests Harness .. 103
Final Thoughts ... 104

Day 9: The Functional Tests ... 105
Functional Tests .. 105
The sfBrowser class .. 105
The sfTestFunctional class ... 106

The Request Tester .. 108
The Response Tester .. 108

Running Functional Tests .. 108
Test Data.. 109
Writing Functional Tests ... 109

Expired jobs are not listed.. 109
Only n jobs are listed for a category .. 110
A category has a link to the category page only if too many jobs 110
Jobs are sorted by date... 111
Each job on the homepage is clickable .. 112

Learn by the Example.. 112
Debugging Functional Tests .. 115
Functional Tests Harness .. 115
Tests Harness .. 115
Final Thoughts ... 116

Day 10: The Forms .. 117
The Form Framework .. 117
Forms... 117
Doctrine Forms .. 118

Customizing the Job Form.. 119
The Form Template .. 123
The Form Action ... 125
Protecting the Job Form with a Token ... 128

Table of Contents iv

----------------- Brought to you by

The Preview Page .. 129
Job Activation and Publication... 131
Final Thoughts ... 132

Day 11: Testing your Forms .. 133
Submitting a Form... 133
The Form Tester .. 135
Redirection Test... 135
The Doctrine Tester ... 135
Testing for Errors .. 136
Forcing the HTTP Method of a link ... 137
Tests as a SafeGuard ... 138
Back to the Future in a Test .. 139
Forms Security .. 141

Form Serialization Magic! .. 141
Built-in Security Features .. 141
XSS and CSRF Protection... 142

Maintenance Tasks .. 143
Final Thoughts ... 144

Day 12: The Admin Generator... 145
Backend Creation .. 145
Backend Modules... 146
Backend Look and Feel.. 146
The symfony Cache.. 148
Backend Configuration .. 150
Title Configuration... 150
Fields Configuration .. 151
List View Configuration ... 152
display ... 152
layout ... 152
“Virtual” columns ... 153
sort ... 153
max_per_page .. 153
batch_actions .. 154
object_actions .. 156
actions ... 157
table_method .. 158

Form Views Configuration... 159
display ... 152
“Virtual” columns ... 153
class ... 161

Filters Configuration ... 163
Actions Customization ... 164
Templates Customization .. 165
Final Configuration.. 166
Final Thoughts ... 167

Day 13: The User... 168
User Flashes .. 168
User Attributes .. 169
getAttribute(), setAttribute()... 170
The myUser class ... 170
sfParameterHolder .. 172

Table of Contents v

----------------- Brought to you by

Application Security .. 172
Authentication .. 172
Authorization .. 174

Plugins ... 175
Backend Security ... 176
User Testing .. 178
Final Thoughts ... 179

Day 14: Feeds .. 180
Formats.. 180
Feeds ... 181

Latest Jobs Feed ... 181
Latest Jobs in a Category Feed... 184

Final Thoughts ... 187
Day 15: Web Services .. 188

Affiliates... 188
The Fixtures ... 188
The Job Web Service .. 189
The Action .. 190
The xml Format.. 191
The json Format.. 191
The yaml Format.. 192

Web Service Tests ... 193
The Affiliate Application Form... 194

Routing ... 195
Bootstrapping ... 195
Templates ... 195
Actions.. 196
Tests ... 197

The Affiliate Backend... 198
Final Thoughts ... 201

Day 16: The Mailer.. 202
Sending simple Emails... 202
Configuration... 203

Factories... 203
Delivery Strategy.. 204
Mail Transport.. 205

Testing Emails ... 205
Final Thoughts ... 207

Day 17: Search .. 208
The Technology.. 208
Installing and Configuring the Zend Framework .. 209
Indexing ... 209

The save() method ... 210
Doctrine Transactions .. 211
delete() ... 212

Searching... 212
Unit Tests... 214
Tasks.. 214
Final Thoughts ... 215

Day 18: AJAX ... 216

Table of Contents vi

----------------- Brought to you by

Installing jQuery .. 216
Including jQuery .. 216
Adding Behaviors... 217
User Feedback... 217
AJAX in an Action... 219
Testing AJAX .. 220
Final Thoughts ... 220

Day 19: Internationalization and Localization ... 222
User ... 222

The User Culture .. 222
The Preferred Culture .. 223

Culture in the URL... 223
Culture Testing .. 225
Language Switching .. 226
Internationalization ... 229

Languages, Charset, and Encoding.. 229
Templates ... 229
i18n:extract .. 231
Translations with Arguments ... 232
Forms.. 234
Doctrine Objects... 234
Admin Generator .. 237
Tests ... 238

Localization.. 238
Templates ... 229
Forms (I18n)... 239

Final Thoughts ... 240
Day 20: The Plugins .. 241

Plugins ... 241
A symfony Plugin .. 241
Private Plugins ... 241
Public Plugins ... 241
A Different Way to Organize Code ... 242

Plugin File Structure ... 242
The Jobeet Plugin... 242

The Model... 243
The Controllers and the Views ... 245
The Tasks.. 248
The i18n Files ... 248
The Routing .. 249
The Assets .. 249
The User ... 249
The Default Structure vs. the Plugin Architecture... 251

Using Plugins... 251
Contributing a Plugin .. 252

Packaging a Plugin ... 252
Hosting a Plugin on the symfony Website .. 255

Final Thoughts ... 255
Day 21: The Cache... 256

Creating a new Environment ... 256
Cache Configuration .. 257

Table of Contents vii

----------------- Brought to you by

Page Cache .. 258
Clearing the Cache .. 260
Action Cache.. 260
Partial and Component Cache ... 261
Forms in Cache.. 263
Removing the Cache .. 264
Testing the Cache .. 265
Final Thoughts ... 266

Day 22: The Deployment ... 267
Preparing the Production Server... 267

Server Configuration .. 267
PHP Accelerator ... 268

The symfony Libraries ... 268
Embedding symfony ... 268
Upgrading symfony .. 268

Tweaking the Configuration .. 269
Database Configuration.. 269
Assets ... 269
Customizing Error Pages.. 269

Customizing the Directory Structure .. 270
The Web Root Directory ... 270
The Cache and Log Directory... 270

Customizing symfony core Objects (aka factories).. 271
Cookie Name .. 271
Session Storage .. 271
Session Timeout ... 271
Logging... 272

Deploying... 272
What to deploy? .. 272
Deploying Strategies .. 272

Final Thoughts ... 274
Day 23: Another Look at symfony ... 275

What is symfony? ... 275
The Model .. 275
The View .. 275
The Controller.. 276
Configuration... 276
Debugging ... 276
Main symfony Objects.. 277
Security.. 277
Forms... 277
Internationalization and Localization .. 277
Tests... 277
Plugins ... 278
Tasks.. 278
See you soon .. 279

Learning by Practicing ... 279
The community ... 279

Appendix A: License .. 281
Attribution-Share Alike 3.0 Unported License .. 281

Table of Contents viii

----------------- Brought to you by

About the Author

Fabien Potencier discovered the Web in 1994, at a time when connecting to the Internet
was still associated with the harmful strident sounds of a modem. Being a developer by
passion, he immediately started to build websites with Perl. But with the release of PHP 5, he
decided to switch focus to PHP, and created the symfony framework project in 2004 to help
his company leverage the power of PHP for its customers.
Fabien is a serial-entrepreneur, and among other companies, he created Sensio, a services
and consulting company specialized in web technologies and Internet marketing, in 1998.
Fabien is also the creator of several other Open-Source projects, a writer, a blogger, a
speaker at international conferences, and a happy father of two wonderful kids.
His Website: http://fabien.potencier.org/
On Twitter: http://www.twitter.com/fabpot

About the Author ix

----------------- Brought to you by

http://www.symfony-project.org/
http://www.sensio.com/

About Sensio Labs

Sensio Labs is a services and consulting company specialized in Open-Source Web
technologies and Internet marketing.
Founded in 1998 by Fabien Potencier, Gregory Pascal, and Samuel Potencier, Sensio
benefited from the Internet growth of the late 1990s and situated itself as a major player for
building complex web applications. It survived the Internet bubble burst by applying
professional and industrial methods to a business where most players seemed to reinvent the
wheel for each project. Most of Sensio’s clients are large corporations, who hire its teams to
deal with small- to middle-scale projects with strong time-to-market and innovation
constraints.
Sensio Labs develops interactive web applications, both for dot-com and traditional
companies. Sensio Labs also provides auditing, consulting, and training on Internet
technologies and complex application deployment. It helps define the global Internet strategy
of large-scale industrial players. Sensio Labs has projects in France and abroad.
For its own needs, Sensio Labs develops the symfony framework and sponsors its deployment
as an Open-Source project. This means that symfony is built from experience and is employed
in many web applications, including those of large corporations.
Since its beginnings eleven years ago, Sensio has always based its strategy on strong
technical expertise. The company focuses on Open-Source technologies, and as for dynamic
scripting languages, Sensio offers developments in all LAMP platforms. Sensio acquired
strong experience on the best frameworks using these languages, and often develops web
applications in Django, Rails, and, of course, symfony.
Sensio Labs is always open to new business opportunities, so if you ever need help developing
a web application, learning symfony, or evaluating a symfony development, feel free to
contact us at fabien.potencier@sensio.com. The consultants, project managers, web
designers, and developers of Sensio can handle projects from A to Z.

About Sensio Labs x

----------------- Brought to you by

Which symfony Version?

This book has been written for both symfony 1.3 and symfony 1.4. As writing a single book for
two different versions of a software is quite unusual, this section explains what the main
differences are between the two versions, and how to make the best choice for your projects.
Both the symfony 1.3 and symfony 1.4 versions have been released at about the same time (at
the end of 2009). As a matter of fact, they both have the exact same feature set. The only
difference between the two versions is how each supports backward compatibility with older
symfony versions.
Symfony 1.3 is the release you’ll want to use if you need to upgrade a legacy project that uses
an older symfony version (1.0, 1.1, or 1.2). It has a backward compatibility layer and all the
features that have been deprecated during the 1.3 development period are still available. It
means that upgrading is easy, simple, and safe.
If you start a new project today, however, you should use symfony 1.4. This version has the
same feature set as symfony 1.3 but all the deprecated features, including the entire
compatibility layer, have been removed. This version is cleaner and also a bit faster than
symfony 1.3. Another big advantage of using symfony 1.4 is its longer support. Being a Long
Term Support release, it will be maintained by the symfony core team for three years (until
November 2012).
Of course, you can migrate your projects to symfony 1.3 and then slowly update your code to
remove the deprecated features and eventually move to symfony 1.4 in order to benefit from
the long term support. You have plenty of time to plan the move as symfony 1.3 will be
supported for a year (until November 2010).
As this book does not describe deprecated features, all examples work equally well on both
versions.

Which symfony Version? xi

----------------- Brought to you by

Day 1

Starting up the Project

Introduction
The symfony1 framework has been an Open-Source project for more than four years and has
become one of the most popular PHP frameworks thanks to its great features and great
documentation.
This book describes the creation of a web application with the symfony framework, step-by-
step from the specifications to the implementation. It is targeted at beginners who want to
learn symfony, understand how it works, and also learn about the best web development
practices.
The application to be designed could have been yet another blog engine. But we want to use
symfony on a useful project. The goal is to demonstrate that symfony can be used to develop
professional applications with style and little effort.
We will keep the content of the project secret for another day as we already have much for
now. However, let’s give it a name: Jobeet.
Each day of this book is meant to last between one and two hours, and will be the occasion to
learn symfony by coding a real website, from start to finish. Every day, new features will be
added to the application, and we’ll take advantage of this development to introduce you to
new symfony functionalities as well as good practices in symfony web development.

This Book is different
Remember the early days of PHP4. Ah, la Belle Epoque! PHP was one of the first languages
dedicated to the web and one of the easiest to learn.
But as web technologies evolve at a very fast pace, web developers need to keep up with the
latest best practices and tools. The best way to learn is of course by reading blogs, tutorials,
and books. We have read a lot of these, be they written for PHP, Python, Java, Ruby, or Perl,
and many of them fall short when the author starts giving snippets of codes as examples.
You are probably used to reading warnings like:
“For a real application, don’t forget to add validation and proper error handling.”
or
“Security is left as an exercise to the reader.”
or

1. http://www.symfony-project.org/

Day 1: Starting up the Project 12

----------------- Brought to you by

http://en.wikipedia.org/wiki/Belle_Époque

“You will of course need to write tests.”
What? These things are serious business. They are perhaps the most important part of any
piece of code. And as a reader, you are left alone. Without these concerns taken into account,
the examples are much less useful. You cannot use them as a good starting point. That’s bad!
Why? Because security, validation, error handling, and tests, just to name a few, take care to
code right.
In this book, you will never see statements like those as we will write tests, error handling,
validation code, and be sure we develop a secure application. That’s because symfony is
about code, but also about best practices and how to develop professional applications for the
enterprise. We will be able to afford this luxury because symfony provides all the tools needed
to code these aspects easily without writing too much code.
Validation, error handling, security, and tests are first-class citizens in symfony, so it won’t
take us too long to explain. This is just one of many reasons why to use a framework for “real
life” projects.
All the code you will read in this book is code you could use for a real project. We encourage
you to copy and paste snippets of code or steal whole chunks.

What for Today?
We won’t write PHP code. But even without writing a single line of code, you will start
understanding the benefits of using a framework like symfony, just by bootstrapping a new
project.
The objective of this day is to setup the development environment and display a page of the
application in a web browser. This includes installation of symfony, creation of an application,
and web server configuration.
As this book will mostly focus on the symfony framework, we will assume that you already
have a solid knowledge of PHP 5 and Object Oriented programming.

Prerequisites
Before installing symfony, you need to check that your computer has everything installed and
configured correctly. Take the time to conscientiously read this day and follow all the steps
required to check your configuration, as it may save your day further down the road.

Third-Party Software
First of all, you need to check that your computer has a friendly working environment for web
development. At a minimum, you need a web server (Apache, for instance), a database engine
(MySQL, PostgreSQL, SQLite, or any PDO2-compatible database engine), and PHP 5.2.4 or
later.

Command Line Interface
The symfony framework comes bundled with a command line tool that automates a lot of
work for you. If you are a Unix-like OS user, you will feel right at home. If you run a Windows
system, it will also work fine, but you will just have to type a few commands at the cmd
prompt.

2. http://www.php.net/PDO

Day 1: Starting up the Project 13

----------------- Brought to you by

Listing
1-1

Listing
1-2

Listing
1-3

Listing
1-4

Unix shell commands can come in handy in a Windows environment. If you would like to
use tools like tar, gzip or grep on Windows, you can install Cygwin3. The adventurous
may also like to try Microsoft’s Windows Services for Unix4.

PHP Configuration
As PHP configurations can vary a lot from one OS to another, or even between different Linux
distributions, you need to check that your PHP configuration meets the symfony minimum
requirements.
First, ensure that you have PHP 5.2.4 at a minimum installed by using the phpinfo() built-in
function or by running php -v on the command line. Be aware that on some configurations,
you might have two different PHP versions installed: one for the command line, and another
for the web.
Then, download the symfony configuration checker script at the following URL:

http://sf-to.org/1.4/check.php

Save the script somewhere under your current web root directory. Launch the configuration
checker script from the command line:

$ php check_configuration.php

If there is a problem with your PHP configuration, the output of the command will give you
hints on what to fix and how to fix it.
You should also execute the checker from a browser and fix the issues it might discover.
That’s because PHP can have a distinct php.ini configuration file for these two
environments, with different settings.

Don’t forget to remove the file from your web root directory afterwards.

Symfony Installation
Initializing the Project Directory
Before installing symfony, you first need to create a directory that will host all the files
related to Jobeet:

$ mkdir -p /home/sfprojects/jobeet
$ cd /home/sfprojects/jobeet

Or on Windows:

c:\> mkdir c:\development\sfprojects\jobeet
c:\> cd c:\development\sfprojects\jobeet

3. http://cygwin.com/
4. http://technet.microsoft.com/en-gb/interopmigration/bb380242.aspx

Day 1: Starting up the Project 14

----------------- Brought to you by

Listing
1-5

Listing
1-6

Windows users are advised to run symfony and to setup their new project in a path which
contains no spaces. Avoid using the Documents and Settings directory, including
anywhere under My Documents.

If you create the symfony project directory under the web root directory, you won’t need to
configure your web server. Of course, for production environments, we strongly advise you
to configure your web server as explained in the web server configuration section.

Choosing the Symfony Version
Now, you need to install symfony. As the symfony framework has several stable versions, you
need to choose the one you want to install by reading the installation page5 on the symfony
website.
This book assumes you want to install symfony 1.3 or symfony 1.4.

Choosing the Symfony Installation Location
You can install symfony globally on your machine, or embed it into each of your project. The
latter is the recommended one as projects will then be totally independent from each others.
Upgrading your locally installed symfony won’t break some of your projects unexpectedly. It
means you will be able to have projects on different versions of symfony, and upgrade them
one at a time as you see fit.
As a best practice, many people install the symfony framework files in the lib/vendor
project directory. So, first, create this directory:

$ mkdir -p lib/vendor

Installing Symfony

Installing from an Archive
The easiest way to install symfony is to download the archive for the version you choose from
the symfony website. Go to the installation page for the version you have just chosen, symfony
1.46 for instance.
Under the “Source Download” section, you will find the archive in .tgz or in .zip format.
Download the archive, put it under the freshly created lib/vendor/ directory, un-archive it,
and rename the directory to symfony:

$ cd lib/vendor
$ tar zxpf symfony-1.4.0.tgz
$ mv symfony-1.4.0 symfony
$ rm symfony-1.4.0.tgz

Under Windows, unzipping the zip file can be achieved using Windows Explorer. After you
rename the directory to symfony, there should be a directory structure similar to
c:\dev\sfprojects\jobeet\lib\vendor\symfony.

5. http://www.symfony-project.org/installation
6. http://www.symfony-project.org/installation/1_4

Day 1: Starting up the Project 15

----------------- Brought to you by

Listing
1-7

Listing
1-8

Listing
1-9

Listing
1-10

Listing
1-11

Listing
1-12

Listing
1-13

Installing from Subversion (recommended)
If you use Subversion, it is even better to use the svn:externals property to embed
symfony into your project in the lib/vendor/ directory:

$ svn pe svn:externals lib/vendor/

Importing your project in a new Subversion repository is explained at the end of this day.

If everything goes well, this command will run your favorite editor to give you the opportunity
to configure the external Subversion sources.

On Windows, you can use tools like TortoiseSVN7 to do everything without the need to use
the console.

If you are conservative, tie your project to a specific release (a subversion tag):

symfony http://svn.symfony-project.com/tags/RELEASE_1_4_0

Whenever a new release comes out (as announced on the symfony blog8), you will need to
change the URL to the new version.
If you want to go the bleeding-edge route, use the 1.4 branch:

symfony http://svn.symfony-project.com/branches/1.4/

Using the branch makes your project benefits from the bug fixes automatically whenever you
run a svn update.

Installation Verification
Now that symfony is installed, check that everything is working by using the symfony
command line to display the symfony version (note the capital V):

$ cd ../..
$ php lib/vendor/symfony/data/bin/symfony -V

On Windows:

c:\> cd ..\..
c:\> php lib\vendor\symfony\data\bin\symfony -V

If you are curious about what this command line tool can do for you, type symfony to list
the available options and tasks:

$ php lib/vendor/symfony/data/bin/symfony

On Windows:

c:\> php lib\vendor\symfony\data\bin\symfony

7. http://tortoisesvn.net/
8. http://www.symfony-project.org/blog/

Day 1: Starting up the Project 16

----------------- Brought to you by

Listing
1-14

Listing
1-15

The symfony command line is the developer’s best friend. It provides a lot of utilities that
improve your productivity for day-to-day activities like cleaning the cache, generating code,
and much more.

Project Setup
In symfony, applications sharing the same data model are regrouped into projects. For
most projects, you will have two different applications: a frontend and a backend.

Project Creation
From the sfprojects/jobeet directory, run the symfony generate:project task to
actually create the symfony project:

$ php lib/vendor/symfony/data/bin/symfony generate:project jobeet

On Windows:

c:\> php lib\vendor\symfony\data\bin\symfony generate:project jobeet

The generate:project task generates the default structure of directories and files needed
for a symfony project:

Directory Description
apps/ Hosts all project applications
cache/ The files cached by the framework
config/ The project configuration files
lib/ The project libraries and classes
log/ The framework log files
plugins/ The installed plugins
test/ The unit and functional test files
web/ The web root directory (see below)

Why does symfony generate so many files? One of the main benefits of using a full-stack
framework is to standardize your developments. Thanks to symfony’s default structure of
files and directories, any developer with some symfony knowledge can take over the
maintenance of any symfony project. In a matter of minutes, he will be able to dive into the
code, fix bugs, and add new features.

The generate:project task has also created a symfony shortcut in the project root
directory to shorten the number of characters you have to write when running a task.
So, from now on, instead of using the fully qualified path to the symfony program, you can use
the symfony shortcut.

Application Creation
Now, create the frontend application by running the generate:app task:

Day 1: Starting up the Project 17

----------------- Brought to you by

Listing
1-16

Listing
1-17

Listing
1-18

$ php symfony generate:app frontend

Because the symfony shortcut file is executable, Unix users can replace all occurrences of
‘php symfony’ by ‘./symfony’ from now on.
On Windows you can copy the ‘symfony.bat’ file to your project and use ‘symfony’
instead of ‘php symfony’:

c:\> copy lib\vendor\symfony\data\bin\symfony.bat .

Based on the application name given as an argument, the generate:app task creates the
default directory structure needed for the application under the apps/frontend/ directory:

Directory Description
config/ The application configuration files
lib/ The application libraries and classes
modules/ The application code (MVC)
templates/ The global template files

Security

By default, the generate:app task has secured our application from the two most
widespread vulnerabilities found on the web. That’s right, symfony automatically takes
security measures on our behalf.
To prevent XSS attacks, output escaping has been enabled; and to prevent CSRF attacks, a
random CSRF secret has been generated.
Of course, you can tweak these settings thanks to the following options:

• --escaping-strategy: Enables or disables output escaping
• --csrf-secret: Enables session tokens in forms

If you know nothing about XSS9 or CSRF10, take the time to learn more these security
vulnerabilities.

Directory Structure Rights
Before trying to access your newly created project, you need to set the write permissions on
the cache/ and log/ directories to the appropriate levels, so that your web server can write
to them:

$ chmod 777 cache/ log/

Tips for People using a SCM Tool

symfony only ever writes in two directories of a symfony project, cache/ and log/. The
content of these directories should be ignored by your SCM (by editing the svn:ignore
property if you use Subversion for instance).

9. http://en.wikipedia.org/wiki/Cross-site_scripting
10. http://en.wikipedia.org/wiki/CSRF

Day 1: Starting up the Project 18

----------------- Brought to you by

Listing
1-19

Web Server Configuration: The ugly Way
If you have created the project directory it somewhere under the web root directory of your
web server, you can already access the project in a web browser.
Of course, as there is no configuration, it is very fast to set up, but try to access the config/
databases.yml file in your browser to understand the bad consequences of such a lazy
attitude. If the user knows that your website is developed with symfony, he will have access
to a lot of sensitive files.
Never ever use this setup on a production server, and read the next section to learn how
to configure your web server properly.

Web Server Configuration: The secure Way
A good web practice is to put under the web root directory only the files that need to be
accessed by a web browser, like stylesheets, JavaScripts and images. By default, we
recommend to store these files under the web/ sub-directory of a symfony project.
If you have a look at this directory, you will find some sub-directories for web assets (css/
and images/) and the two front controller files. The front controllers are the only PHP files
that need to be under the web root directory. All other PHP files can be hidden from the
browser, which is a good idea as far as security is concerned.

Web Server Configuration
Now it is time to change your Apache configuration, to make the new project accessible to the
world.
Locate and open the httpd.conf configuration file and add the following configuration at
the end:

Be sure to only have this line once in your configuration
NameVirtualHost 127.0.0.1:8080

This is the configuration for your project
Listen 127.0.0.1:8080

<VirtualHost 127.0.0.1:8080>
DocumentRoot "/home/sfprojects/jobeet/web"
DirectoryIndex index.php
<Directory "/home/sfprojects/jobeet/web">

AllowOverride All
Allow from All

</Directory>

Alias /sf /home/sfprojects/jobeet/lib/vendor/symfony/data/web/sf
<Directory "/home/sfprojects/jobeet/lib/vendor/symfony/data/web/sf">

AllowOverride All
Allow from All

</Directory>
</VirtualHost>

The /sf alias gives you access to images and javascript files needed to properly display
default symfony pages and the web debug toolbar|Web Debug Toolbar.

Day 1: Starting up the Project 19

----------------- Brought to you by

Listing
1-20

Listing
1-21

Listing
1-22

Listing
1-23

Listing
1-24

On Windows, you need to replace the Alias line with something like:

Alias /sf "c:\dev\sfprojects\jobeet\lib\vendor\symfony\data\web\sf"

And /home/sfprojects/jobeet/web should be replaced with:

c:\dev\sfprojects\jobeet\web

This configuration makes Apache listen to port 8080 on your machine, so, after restarting
apache, the website will be accessible at the following URL:

http://~localhost~:8080/

You can change 8080 to any number, but favour numbers greater than 1024 as they do not
require administrator rights.

Configure a dedicated Domain Name

If you are an administrator on your machine, it is better to setup virtual hosts instead of
adding a new port each time you start a new project. Instead of choosing a port and add a
Listen statement, choose a domain name (for instance the real domain name with
.localhost added at the end) and add a ServerName statement:

This is the configuration for your project
<VirtualHost 127.0.0.1:80>

ServerName www.jobeet.com.localhost
<!-- same configuration as before -->

</VirtualHost>

The domain name www.jobeet.com.localhost used in the Apache configuration has to
be declared locally. If you run a Linux system, it has to be done in the /etc/hosts file. If
you run Windows XP, this file is located in the C:\WINDOWS\system32\drivers\etc\
directory.
Add in the following line:

127.0.0.1 www.jobeet.com.localhost

Test the New Configuration
Restart Apache, and check that you now have access to the new application by opening a
browser and typing http://localhost:8080/index.php/, or
http://www.jobeet.com.localhost/index.php/ depending on the Apache
configuration you chose in the previous section.

Day 1: Starting up the Project 20

----------------- Brought to you by

Listing
1-25

If you have the Apache mod_rewrite module installed, you can remove the index.php/
part of the URL. This is possible thanks to the rewriting rules configured in the web/
.htaccess file.

You should also try to access the application in the development environment (see the next
section for more information about environments). Type in the following URL:

http://www.jobeet.com.localhost/frontend_dev.php/

The web debug toolbar should show in the top right corner, including small icons proving that
your sf/ alias configuration is correct.

Day 1: Starting up the Project 21

----------------- Brought to you by

The setup is a little different if you want to run symfony on an IIS server in a Windows
environment. Find how to configure it in the related tutorial11.

The Environments
If you have a look at the web/ directory, you will find two PHP files: index.php and
frontend_dev.php. These files are called front controllers; all requests to the application
are made through them. But why do we have two front controllers for each application?
Both files point to the same application but for different environments. When you develop an
application, except if you develop directly on the production server, you need several
environments:

• The development environment: This is the environment used by web developers
when they work on the application to add new features, fix bugs, …

• The test environment: This environment is used to automatically test the
application.

• The staging environment: This environment is used by the customer to test the
application and report bugs or missing features.

• The production environment: This is the environment end users interact with.

What makes an environment unique? In the development environment for instance, the
application needs to log all the details of a request to ease debugging, but the cache system
must be disabled as all changes made to the code must be taken into account right away. So,
the development environment must be optimized for the developer. The best example is
certainly when an exception|Exception Handling occurs. To help the developer debug the
issue faster, symfony displays the exception with all the information it has about the current
request right into the browser:

11. http://www.symfony-project.com/cookbook/1_0/web_server_iis

Day 1: Starting up the Project 22

----------------- Brought to you by

Listing
1-26

But on the production environment, the cache layer must be activated and, of course, the
application must display customized error messages instead of raw exceptions. So, the
production environment must be optimized for performance and the user experience.

If you open the front controller files, you will see that their content is the same except for
the environment setting:

// web/index.php
<?php

require_once(dirname(__FILE__).'/../config/
ProjectConfiguration.class.php');

$configuration =
ProjectConfiguration::getApplicationConfiguration('frontend', 'prod',
false);
sfContext::createInstance($configuration)->dispatch();

Day 1: Starting up the Project 23

----------------- Brought to you by

Listing
1-27

Listing
1-28

Listing
1-29

Listing
1-30

Listing
1-31

The web debug toolbar is also a great example of the usage of environment. It is present on
all pages in the development environment and gives you access to a lot of information by
clicking on the different tabs: the current application configuration, the logs for the current
request, the SQL statements executed on the database engine, memory information, and time
information.

Subversion
It is a good practice to use source version control when developing a web application. Using a
source version control allows us to:

• work with confidence
• revert to a previous version if a change breaks something
• allow more than one person to work efficiently on the project
• have access to all the successive versions of the application

In this section, we will describe how to use Subversion12 with symfony. If you use another
source code control tool, it must be quite easy to adapt what we describe for Subversion.
We assume you have already access to a Subversion server and can access it via HTTP.

If you don’t have a Subversion server at your disposal, you can create a repository for free
on Google Code13 or just type “free subversion repository” in Google to have a lot more
options.

First, create a repository for the jobeet project on the repository server:

$ svnadmin create /path/to/jobeet/repository

On your machine, create the basic directory structure:

$ svn mkdir -m "created default directory structure"
http://svn.example.com/jobeet/trunk
http://svn.example.com/jobeet/tags
http://svn.example.com/jobeet/branches

And checkout the empty trunk/ directory:

$ cd /home/sfprojects/jobeet
$ svn co http://svn.example.com/jobeet/trunk/ .

Then, remove the content of the cache/ and log/ directories as we don’t want to put them
into the repository.

$ rm -rf cache/* log/*

Now, make sure to set the write permissions on the cache and logs directories to the
appropriate levels so that your web server can write to them:

$ chmod 777 cache/ log/

Now, import all the files and directories:

12. http://subversion.tigris.org/
13. http://code.google.com/hosting/

Day 1: Starting up the Project 24

----------------- Brought to you by

Listing
1-32

Listing
1-33

Listing
1-34

Listing
1-35

Listing
1-36

Listing
1-37

$ svn add *

As we will never want to commit files located in the cache/ and log/ directories, you need
to specify an ignore list:

$ svn propedit svn:ignore cache

The default text editor configured for SVN should launch. Subversion must ignore all the
content of this directory:

*

Save and quit. You’re done.
Repeat the procedure for the log/ directory:

$ svn propedit svn:ignore log

And enter:

*

Finally, commit these changes to the repository:

$ svn import -m "made the initial import" .
http://svn.example.com/jobeet/trunk

Windows users can use the great TortoiseSVN14 client to manage their subversion
repository.

Final Thoughts
Well, time is over! Even if we have not yet started talking about symfony, we have setup a
solid development environment, we have talked about web development best practices, and
we are ready to start coding.
Tomorrow, we will reveal what the application will do and talk about the requirements we
need to implement for Jobeet.

14. http://tortoisesvn.tigris.org/

Day 1: Starting up the Project 25

----------------- Brought to you by

Day 2

The Project

We have not written a single line of PHP yet, but in day 1, we setup the environment, created
an empty symfony project, and made sure we started with some good security defaults. If you
followed along, you have been looking at your screen delightedly since then, as it displays the
beautiful default symfony page for new applications.

But you want more. You want to learn all the nitty gritty details of symfony application
development. So, let’s resume our trip to symfony development nirvana.
Now, we will take the time to describe the requirements of the Jobeet project with some basic
mockups.

The Project Pitch
Everybody is talking about the crisis nowadays. Unemployment is rising again.
I know, symfony developers are not really concerned and that’s why you want to learn
symfony in the first place. But it is also quite difficult to find good symfony developers.
Where can you find a symfony developer? Where can you advertise your symfony skills?

Day 2: The Project 26

----------------- Brought to you by

You need to find a good job board. Monster you say? Think again. You need a focused job
board. One where you can find the best people, the experts. One where it is easy, fast, and
fun to look for a job, or to propose one.
Search no more. Jobeet is the place. Jobeet is Open-Source job board software that only
does one thing, but does it well. It is easy to use, customize, extend, and embed into your
website. It supports multiple languages out of the box, and of course uses the latest Web 2.0
technologies to enhance user experience. It also provides feeds and an API to interact with it
programatically.
Does it already exist? As a user, you will find a lot of job boards like Jobeet on the Internet.
But try to find one which is Open-Source, and as feature-rich as what we propose here.

If you are really looking for a symfony job or want to hire a symfony developer, you can go
to the symfonians15 website.

The Project User Stories
Before diving into the code head-first, let’s describe the project a bit more. The following
sections describe the features we want to implement in the first version/iteration of the
project with some simple stories.
The Jobeet website has four kind of users:

• admin: He owns the website and has the magic power
• user: He visits the website to look for a job
• poster: He visits the website to post a job
• affiliate: He re-publishes some jobs on his website

The project has two applications: the frontend (stories F1 to F7, below), where the users
interact with the website, and the backend (stories B1 to B3), where admins manage the
website.
The backend application is secured and requires credentials to access.

Story F1: On the homepage, the user sees the latest active jobs
When a user comes to the Jobeet website, he sees a list of active jobs. The jobs are sorted by
category and then by publication date (newer jobs first). For each job, only the location, the
position, and the company are displayed.
For each category, the list only shows the first 10 jobs and a link allows to list all the jobs for
a given category (Story F2).
On the homepage, the user can refine the job list (Story F3), or post a new job (Story F5).

15. http://symfonians.net/

Day 2: The Project 27

----------------- Brought to you by

Story F2: A user can ask for all the jobs in a given category
When a user clicks on a category name or on a “more jobs” link on the homepage, he sees all
the jobs for this category sorted by date.
The list is paginated with 20 jobs per page.

Day 2: The Project 28

----------------- Brought to you by

Story F3: A user refines the list with some keywords
The user can enter some keywords to refine his search. Keywords can be words found in the
location, the position, the category, or the company fields.

Story F4: A user clicks on a job to see more detailed information
The user can select a job from the list to see more detailed information.

Day 2: The Project 29

----------------- Brought to you by

Story F5: A user posts a job
A user can post a job. A job is made of several pieces of information:

• Company
• Type (full-time, part-time, or freelance)
• Logo (optional)
• URL (optional)
• Position
• Location
• Category (the user chooses in a list of possible categories)
• Job description (URLs and emails are automatically linked)
• How to apply (URLs and emails are automatically linked)
• Public (whether the job can also be published on affiliate websites)
• Email (email of the poster)

There is no need to create an account to post a job.
The process is straightforward with only two steps: first, the user fills in the form with all the
needed information to describe the job, then he validates the information by previewing the
final job page.
Even if the user has no account, a job can be modified afterwards thanks to a specific URL
(protected by a token given to the user when the job is created).

Day 2: The Project 30

----------------- Brought to you by

Each job post is online for 30 days (this is configurable by the admin - see Story B2). A user
can come back to re-activate or extend the validity of the job for an extra 30 days but only
when the job expires in less than 5 days.

Story F6: A user applies to become an affiliate
A user needs to apply to become an affiliate and be authorized to use the Jobeet API. To
apply, he must give the following information:

• Name
• Email
• Website URL

The affiliate account must be activated by the admin (Story B3). Once activated, the affiliate
receives a token to use with the API via email.
When applying, the affiliate can also choose to get jobs from a sub-set of the available
categories.

Story F7: An affiliate retrieves the current active job list
An affiliate can retrieve the current job list by calling the API with his affiliate token. The list
can be returned in the XML, JSON or YAML format.

Day 2: The Project 31

----------------- Brought to you by

The list contains the public information available for a job.
The affiliate can also limit the number of jobs to be returned, and refine his query by
specifying a category.

Story B1: An admin configures the website
An admin can edit the categories available on the website.

Story B2: An admin manages the jobs
An admin can edit and remove any posted job.

Story B3: An admin manages the affiliates
The admin can create or edit affiliates. He is responsible for activating an affiliate and can
also disable one.
When the admin activates a new affiliate, the system creates a unique token to be used by the
affiliate.

Final Thoughts
As for any web development, you never start coding the first day. You need to gather the
requirements first and work on a mockup design. That’s what we have done here.

Day 2: The Project 32

----------------- Brought to you by

Day 3

The Data Model

Those of you itching to open your text editor and lay down some PHP will be happy to know
today will get us into some development. We will define the Jobeet data model, use an ORM to
interact with the database, and build the first module of the application. But as symfony does
a lot of the work for us, we will have a fully functional web module without writing too much
PHP code.

The Relational Model
The user stories we saw yesterday describe the main objects of our project: jobs, affiliates,
and categories. Here is the corresponding entity relationship diagram:

In addition to the columns described in the stories, we have also added a created_at field to
some tables. Symfony recognizes such fields and sets the value to the current system time
when a record is created. That’s the same for updated_at fields: Their value is set to the
system time whenever the record is updated.

The Schema
To store the jobs, affiliates, and categories, we obviously need a relational database.

Day 3: The Data Model 33

----------------- Brought to you by

Listing
3-1

But as symfony is an Object-Oriented framework, we like to manipulate objects whenever we
can. For example, instead of writing SQL statements to retrieve records from the database,
we’d rather prefer to use objects.
The relational database information must be mapped to an object model. This can be done
with an ORM tool and thankfully, symfony comes bundled with two of them: Propel16 and
Doctrine17. In this tutorial, we will use Doctrine.
The ORM needs a description of the tables and their relationships to create the related
classes. There are two ways to create this description schema: by introspecting an existing
database or by creating it by hand.
As the database does not exist yet and as we want to keep Jobeet database agnostic, let’s
create the schema file by hand by editing the empty config/doctrine/schema.yml file:

config/doctrine/schema.yml
JobeetCategory:

actAs: { Timestampable: ~ }
columns:

name: { type: string(255), notnull: true, unique: true }

JobeetJob:
actAs: { Timestampable: ~ }
columns:

category_id: { type: integer, notnull: true }
type: { type: string(255) }
company: { type: string(255), notnull: true }
logo: { type: string(255) }
url: { type: string(255) }
position: { type: string(255), notnull: true }
location: { type: string(255), notnull: true }
description: { type: string(4000), notnull: true }
how_to_apply: { type: string(4000), notnull: true }
token: { type: string(255), notnull: true, unique: true }
is_public: { type: boolean, notnull: true, default: 1 }
is_activated: { type: boolean, notnull: true, default: 0 }
email: { type: string(255), notnull: true }
expires_at: { type: timestamp, notnull: true }

relations:
JobeetCategory: { onDelete: CASCADE, local: category_id, foreign: id,

foreignAlias: JobeetJobs }

JobeetAffiliate:
actAs: { Timestampable: ~ }
columns:

url: { type: string(255), notnull: true }
email: { type: string(255), notnull: true, unique: true }
token: { type: string(255), notnull: true }
is_active: { type: boolean, notnull: true, default: 0 }

relations:
JobeetCategories:

class: JobeetCategory
refClass: JobeetCategoryAffiliate
local: affiliate_id
foreign: category_id
foreignAlias: JobeetAffiliates

16. http://www.propelorm.org/
17. http://www.doctrine-project.org/

Day 3: The Data Model 34

----------------- Brought to you by

http://en.wikipedia.org/wiki/Object-relational_mapping

Listing
3-2

JobeetCategoryAffiliate:
columns:

category_id: { type: integer, primary: true }
affiliate_id: { type: integer, primary: true }

relations:
JobeetCategory: { onDelete: CASCADE, local: category_id, foreign: id }
JobeetAffiliate: { onDelete: CASCADE, local: affiliate_id, foreign: id

}

If you have decided to create the tables by writing SQL statements, you can generate the
corresponding schema.yml configuration file by running the doctrine:build-schema
task:

$ php symfony doctrine:build-schema

The above task requires that you have a configured database in databases.yml. We show
you how to configure the database in a later step. If you try and run this task now it won’t
work as it doesn’t know what database to build the schema for.

The schema is the direct translation of the entity relationship diagram in the YAML format.

The YAML Format

According to the official YAML18 website, YAML is “a human friendly data serialization
standard for all programming languages”
Put another way, YAML is a simple language to describe data (strings, integers, dates,
arrays, and hashes).
In YAML, structure is shown through indentation, sequence items are denoted by a dash,
and key/value pairs within a map are separated by a colon. YAML also has a shorthand
syntax to describe the same structure with fewer lines, where arrays are explicitly shown
with [] and hashes with {}.
If you are not yet familiar with YAML, it is time to get started as the symfony framework
uses it extensively for its configuration files. A good starting point is the symfony YAML
component documentation19.
There is one important thing you need to remember when editing a YAML file: indentation
must be done with one or more spaces, but never with tabulations.

The schema.yml file contains the description of all tables and their columns. Each column is
described with the following information:

• type: The column type (boolean, integer, float, decimal, string, array,
object, blob, clob, timestamp, time, date, enum, gzip)

• notnull: Set it to true if you want the column to be required
• unique: Set it to true if you want to create a unique index for the column.

The onDelete attribute defines the ON DELETE behavior of foreign keys, and Doctrine
supports CASCADE, SET NULL, and RESTRICT. For instance, when a job record is deleted,
all the jobeet_category_affiliate related records will be automatically deleted by
the database.

18. http://yaml.org/
19. http://components.symfony-project.org/yaml/documentation

Day 3: The Data Model 35

----------------- Brought to you by

Listing
3-3

Listing
3-4

Listing
3-5

Listing
3-6

Listing
3-7

The Database
The symfony framework supports all PDO-supported databases (MySQL, PostgreSQL, SQLite,
Oracle, MSSQL, …). PDO20 is the database abstraction layer|Database Abstraction Layer
bundled with PHP.
Let’s use MySQL for this tutorial:

$ mysqladmin -uroot -p create jobeet
Enter password: mYsEcret ## The password will echo as ********

Feel free to choose another database engine if you want. It won’t be difficult to adapt the
code we will write as we will use the ORM will write the SQL for us.

We need to tell symfony to use this database for the Jobeet project:

$ php symfony configure:database
"mysql:host=localhost;dbname=jobeet" root mYsEcret

The configure:database task takes three arguments: the PDO DSN21, the username, and
the password to access the database. If you don’t need a password to access your database on
the development server, just omit the third argument.

The configure:database task stores the database configuration into the config/
databases.yml configuration file. Instead of using the task, you can edit this file by hand.

Passing the database password on the command line is convenient but insecure22.
Depending on who has access to your environment, it might be better to edit the config/
databases.yml to change the password. Of course, to keep the password safe, the
configuration file access mode should also be restricted.

The ORM
Thanks to the database description from the schema.yml file, we can use some Doctrine
built-in tasks to generate the SQL statements needed to create the database tables:
First in order to generate the SQL you must build your models from your schema files.

$ php symfony doctrine:build --model

Now that your models are present you can generate and insert the SQL.

$ php symfony doctrine:build --sql

The doctrine:build --sql task generates SQL statements in the data/sql/ directory,
optimized for the database engine we have configured:

snippet from data/sql/schema.sql
CREATE TABLE jobeet_category (id BIGINT AUTO_INCREMENT, name VARCHAR(255)

20. http://www.php.net/PDO
21. http://www.php.net/manual/en/pdo.drivers.php
22. http://dev.mysql.com/doc/refman/5.1/en/password-security.html

Day 3: The Data Model 36

----------------- Brought to you by

Listing
3-8

Listing
3-9

Listing
3-10

Listing
3-11

Listing
3-12

NOT NULL COMMENT 'test', created_at DATETIME, updated_at DATETIME, slug
VARCHAR(255), UNIQUE INDEX sluggable_idx (slug), PRIMARY KEY(id))
ENGINE = INNODB;

To actually create the tables in the database, you need to run the doctrine:insert-sql
task:

$ php symfony doctrine:insert-sql

As for any command line tool, symfony tasks can take arguments and options. Each task
comes with a built-in help message that can be displayed by running the help task:

$ php symfony help doctrine:insert-sql

The help message lists all the possible arguments and options, gives the default values for
each of them, and provides some useful usage examples.

The ORM also generates PHP classes that map table records to objects:

$ php symfony doctrine:build --model

The doctrine:build --model task generates PHP files in the lib/model/ directory that
can be used to interact with the database.
By browsing the generated files, you have probably noticed that Doctrine generates three
classes per table. For the jobeet_job table:

• JobeetJob: An object of this class represents a single record of the jobeet_job
table. The class is empty by default.

• BaseJobeetJob: The parent class of JobeetJob. Each time you run
doctrine:build --model, this class is overwritten, so all customizations must be
done in the JobeetJob class.

• JobeetJobTable: The class defines methods that mostly return collections of
JobeetJob objects. The class is empty by default.

The column values of a record can be manipulated with a model object by using some
accessors (get*() methods) and mutators (set*() methods):

$job = new JobeetJob();
$job->setPosition('Web developer');
$job->save();

echo $job->getPosition();

$job->delete();

You can also define foreign keys directly by linking objects together:

$category = new JobeetCategory();
$category->setName('Programming');

$job = new JobeetJob();
$job->setCategory($category);

The doctrine:build --all task is a shortcut for the tasks we have run in this section and
some more. So, run this task now to generate forms and validators for the Jobeet model
classes:

Day 3: The Data Model 37

----------------- Brought to you by

Listing
3-13

Listing
3-14

$ php symfony doctrine:build --all --no-confirmation

You will see validators in action today and forms will be explained in great details on day 10.

The Initial Data
The tables have been created in the database but there is no data in them. For any web
application, there are three types of data:

• Initial data: Initial data are needed for the application to work. For example, Jobeet
needs some initial categories. If not, nobody will be able to submit a job. We also
need an admin user to be able to login to the backend.

• Test data: Test Data are needed for the application to be tested. As a developer,
you will write tests to ensure that Jobeet behaves as described in the user stories,
and the best way is to write automated tests. So, each time you run your tests, you
need a clean database with some fresh data to test on.

• User data: User data are created by the users during the normal life of the
application.

Each time symfony creates the tables in the database, all the data are lost. To populate the
database with some initial data, we could create a PHP script, or execute some SQL
statements with the mysql program. But as the need is quite common, there is a better way
with symfony: create YAML files in the data/fixtures/ directory and use the
doctrine:data-load task to load them into the database.
First, create the following fixture files:

data/fixtures/categories.yml
JobeetCategory:

design:
name: Design

programming:
name: Programming

manager:
name: Manager

administrator:
name: Administrator

data/fixtures/jobs.yml
JobeetJob:

job_sensio_labs:
JobeetCategory: programming
type: full-time
company: Sensio Labs
logo: sensio-labs.gif
url: http://www.sensiolabs.com/
position: Web Developer
location: Paris, France
description: |

You've already developed websites with symfony and you want to work
with Open-Source technologies. You have a minimum of 3 years
experience in web development with PHP or Java and you wish to
participate to development of Web 2.0 sites using the best
frameworks available.

how_to_apply: |
Send your resume to fabien.potencier [at] sensio.com

Day 3: The Data Model 38

----------------- Brought to you by

is_public: true
is_activated: true
token: job_sensio_labs
email: job@example.com
expires_at: '2010-10-10'

job_extreme_sensio:
JobeetCategory: design
type: part-time
company: Extreme Sensio
logo: extreme-sensio.gif
url: http://www.extreme-sensio.com/
position: Web Designer
location: Paris, France
description: |

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in.

Voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

how_to_apply: |
Send your resume to fabien.potencier [at] sensio.com

is_public: true
is_activated: true
token: job_extreme_sensio
email: job@example.com
expires_at: '2010-10-10'

The job fixture file references two images. You can download them
(http://www.symfony-project.org/get/jobeet/sensio-labs.gif,
http://www.symfony-project.org/get/jobeet/extreme-sensio.gif) and put
them under the web/uploads/jobs/ directory.

A fixtures file is written in YAML, and defines model objects, labelled with a unique name (for
instance, we have defined two jobs labelled job_sensio_labs and job_extreme_sensio).
This label is of great use to link related objects without having to define primary keys (which
are often auto-incremented and cannot be set). For instance, the job_sensio_labs job
category is programming, which is the label given to the ‘Programming’ category.

In a YAML file, when a string contains line breaks (like the description column in the job
fixture file), you can use the pipe (|) to indicate that the string will span several lines.

Although a fixture file can contain objects from one or several models, we have decided to
create one file per model for the Jobeet fixtures.

Propel requires that the fixtures files be prefixed with numbers to determine the order in
which the files will be loaded. With Doctrine this is not required as all fixtures will be
loaded and saved in the correct order to make sure foreign keys are set properly.

In a fixture file, you don’t need to define all columns values. If not, symfony will use the
default value defined in the database schema. And as symfony uses Doctrine to load the data

Day 3: The Data Model 39

----------------- Brought to you by

Listing
3-15

Listing
3-16

Listing
3-17

into the database, all the built-in behaviors (like automatically setting the created_at or
updated_at columns) and the custom behaviors you might have added to the model classes
are activated.
Loading the initial data into the database is as simple as running the doctrine:data-load
task:

$ php symfony doctrine:data-load

The doctrine:build --all --and-load task is a shortcut for the doctrine:build -
-all task followed by the doctrine:data-load task.

Run the doctrine:build --all --and-load task to make sure everything is generated
from your schema. This will generate your forms, filters, models, drop your database and re-
create it with all the tables.

$ php symfony doctrine:build --all --and-load

See it in Action in the Browser
We have used the command line interface a lot but that’s not really exciting, especially for a
web project. We now have everything we need to create Web pages that interact with the
database.
Let’s see how to display the list of jobs, how to edit an existing job, and how to delete a job.
As explained during the first day, a symfony project is made of applications. Each application
is further divided into modules. A module is a self-contained set of PHP code that represents
a feature of the application (the API module for example), or a set of manipulations the user
can do on a model object (a job module for example).
Symfony is able to automatically generate a module for a given model that provides basic
manipulation features:

$ php symfony doctrine:generate-module --with-show
--non-verbose-templates frontend job JobeetJob

The doctrine:generate-module generates a job module in the frontend application for
the JobeetJob model. As with most symfony tasks, some files and directories have been
created for you under the apps/frontend/modules/job/ directory:

Directory Description
actions/ The module actions
templates/ The module templates

The actions/actions.class.php file defines all the available action for the job module:

Action name Description
index Displays the records of the table
show Displays the fields and their values for a given record
new Displays a form to create a new record
create Creates a new record
edit Displays a form to edit an existing record

Day 3: The Data Model 40

----------------- Brought to you by

Listing
3-18

Listing
3-19

Action name Description
update Updates a record according to the user submitted values
delete Deletes a given record from the table

You can now test the job module in a browser:

http://www.jobeet.com.localhost/frontend_dev.php/job

If you try to edit a job, you will notice the Category id drop down has a list of all the category
names. The value of each option is gotten from the __toString() method.
Doctrine will try and provide a base __toString() method by guessing a descriptive column
name like, title, name, subject, etc. If you want something custom then you will need to
add your own __toString() methods like below. The JobeetCategory model is able to
guess the __toString() method by using the name column of the jobeet_category table.

// lib/model/doctrine/JobeetJob.class.php
class JobeetJob extends BaseJobeetJob
{

public function __toString()
{

return sprintf('%s at %s (%s)', $this->getPosition(),
$this->getCompany(), $this->getLocation());

}
}

// lib/model/doctrine/JobeetAffiliate.class.php
class JobeetAffiliate extends BaseJobeetAffiliate
{

public function __toString()
{

Day 3: The Data Model 41

----------------- Brought to you by

return $this->getUrl();
}

}

You can now create and edit jobs. Try to leave a required field blank, or try to enter an invalid
date. That’s right, symfony has created basic validation rules by introspecting the database
schema.

Final Thoughts
That’s all. I have warned you in the introduction. Today, we have barely written PHP code but
we have a working web module for the job model, ready to be tweaked and customized.
Remember, no PHP code also means no bugs!
If you still have some energy left, feel free to read the generated code for the module and the
model and try to understand how it works. If not, don’t worry and sleep well, as tomorrow we
will talk about one of the most used paradigm in web frameworks, the MVC design pattern23.

23. http://en.wikipedia.org/wiki/Model-view-controller

Day 3: The Data Model 42

----------------- Brought to you by

Day 4

The Controller and the View

Yesterday, we explored how symfony simplifies database management by abstracting the
differences between database engines, and by converting the relational elements to nice
object oriented classes. We have also played with Doctrine to describe the database schema,
create the tables, and populate the database with some initial data.
Today, we are going to customize the basic job module we created previously. The job
module already has all the code we need for Jobeet:

• A page to list all jobs
• A page to create a new job
• A page to update an existing job
• A page to delete a job

Although the code is ready to be used as is, we will refactor the templates to match closer to
the Jobeet mockups.

The MVC Architecture
If you are used to developing PHP websites without a framework, you probably use the one
PHP file per HTML page paradigm. These PHP files probably contain the same kind of
structure: initialization and global configuration, business logic related to the requested page,
database records fetching, and finally HTML code that builds the page.
You may use a templating engine to separate the logic from the HTML. Perhaps you use a
database abstraction layer to separate model interaction from business logic. But most of the
time, you end up with a lot of code that is a nightmare to maintain. It was fast to build, but
over time, it’s more and more difficult to make changes, especially because nobody except
you understands how it is built and how it works.
As with every problem, there are nice solutions. For web development, the most common
solution for organizing your code nowadays is the MVC design pattern24. In short, the MVC
design pattern defines a way to organize your code according to its nature. This pattern
separates the code into three layers:

• The Model layer defines the business logic (the database belongs to this layer). You
already know that symfony stores all the classes and files related to the Model in the
lib/model/ directory.

• The View is what the user interacts with (a template engine is part of this layer). In
symfony, the View layer is mainly made of PHP templates. They are stored in various
templates/ directories as we will see later in these lines.

24. http://en.wikipedia.org/wiki/Model-view-controller

Day 4: The Controller and the View 43

----------------- Brought to you by

• The Controller is a piece of code that calls the Model to get some data that it
passes to the View for rendering to the client. When we installed symfony at the
beginning of this book, we saw that all requests are managed by front controllers
(index.php and frontend_dev.php). These front controllers delegate the real
work to actions. As we saw previously, these actions are logically grouped into
modules.

Today, we will use the mockup defined in day 2 to customize the homepage and the job page.
We will also make them dynamic. Along the way, we will tweak a lot of things in many
different files to demonstrate the symfony directory structure and the way to separate code
between layers.

The Layout
First, if you have a closer look at the mockups, you will notice that much of each page looks
the same. You already know that code duplication is bad, whether we are talking about HTML
or PHP code, so we need to find a way to prevent these common view elements from resulting
in code duplication.
One way to solve the problem is to define a header and a footer and include them in each
template:

Day 4: The Controller and the View 44

----------------- Brought to you by

Listing
4-1

But here the header and the footer files do not contain valid HTML. There must be a better
way. Instead of reinventing the wheel, we will use another design pattern to solve this
problem: the decorator design pattern25. The decorator design pattern resolves the problem
the other way around: the template is decorated after the content is rendered by a global
template, called a layout in symfony:

The default layout of an application is called layout.php and can be found in the apps/
frontend/templates/ directory. This directory contains all the global templates for an
application.
Replace the default symfony layout with the following code:

<!-- apps/frontend/templates/layout.php -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Jobeet - Your best job board</title>
<link rel="shortcut icon" href="/favicon.ico" />
<?php include_javascripts() ?>
<?php include_stylesheets() ?>

</head>
<body>

<div id="container">
<div id="header">

<div class="content">
<h1><a href="<?php echo url_for('job/index') ?>">

<img src="http://www.symfony-project.org/images/logo.jpg"
alt="Jobeet Job Board" />

</h1>

<div id="sub_header">
<div class="post">

<h2>Ask for people</h2>
<div>

<a href="<?php echo url_for('job/index') ?>">Post a Job
</div>

</div>

<div class="search">
<h2>Ask for a job</h2>
<form action="" method="get">

<input type="text" name="keywords"
id="search_keywords" />

<input type="submit" value="search" />
<div class="help">

Enter some keywords (city, country, position, ...)

25. http://en.wikipedia.org/wiki/Decorator_pattern

Day 4: The Controller and the View 45

----------------- Brought to you by

</div>
</form>

</div>
</div>

</div>
</div>

<div id="content">
<?php if ($sf_user->hasFlash('notice')): ?>

<div class="flash_notice">
<?php echo $sf_user->getFlash('notice') ?>

</div>
<?php endif ?>

<?php if ($sf_user->hasFlash('error')): ?>
<div class="flash_error">

<?php echo $sf_user->getFlash('error') ?>
</div>

<?php endif ?>

<div class="content">
<?php echo $sf_content ?>

</div>
</div>

<div id="footer">
<div class="content">

<img src="http://www.symfony-project.org/images/

jobeet-mini.png" />
powered by
<img src="http://www.symfony-project.org/images/symfony.gif"

alt="symfony framework" />

About Jobeet
<li class="feed">Full feed
Jobeet API
<li class="last">Affiliates

</div>

</div>
</div>

</body>
</html>

A symfony template is just a plain PHP file. In the layout template, you see calls to PHP
functions and references to PHP variables. $sf_content is the most interesting variable: it
is defined by the framework itself and contains the HTML generated by the action.
If you browse the job module (http://www.jobeet.com.localhost/
frontend_dev.php/job), you will see that all actions are now decorated by the layout.

Day 4: The Controller and the View 46

----------------- Brought to you by

The Stylesheets, Images, and JavaScripts
As this tutorial is not about web design, we have already prepared all the needed assets we
will use for Jobeet: download the image files26 archive and put them into the web/images/
directory; download the stylesheet files27 archive and put them into the web/css/ directory.

In the layout, we have included a favicon. You can download the Jobeet one28 and put it
under the web/ directory.

By default, the generate:project task has created three directories for the project
assets: web/images/ for images, web/~css|CSS~/ for stylesheets, and web/js/ for
JavaScripts. This is one of the many conventions defined by symfony, but you can of course
store them elsewhere under the web/ directory.

The astute reader will have noticed that even if the main.css file is not mentioned anywhere
in the default layout, it is definitely present in the generated HTML. But not the other ones.
How is this possible?
The stylesheet file has been included by the include_stylesheets() function call found
within the layout <head> tag. The include_stylesheets() function is called a helper. A
helper is a function, defined by symfony, that can take parameters and returns HTML code.
Most of the time, helpers are time-savers, they package code snippets frequently used in
templates. The include_stylesheets() helper generates <link> tags for stylesheets.

26. http://www.symfony-project.org/get/jobeet/images.zip
27. http://www.symfony-project.org/get/jobeet/css.zip
28. http://www.symfony-project.org/get/jobeet/favicon.ico

Day 4: The Controller and the View 47

----------------- Brought to you by

Listing
4-2

Listing
4-3

Listing
4-4

Listing
4-5

But how does the helper know which stylesheets to include?
The View layer can be configured by editing the view.yml configuration file of the
application. Here is the default one generated by the generate:app task:

apps/frontend/config/view.yml
default:

http_metas:
content-type: text/html

metas:
#title: symfony project
#description: symfony project
#keywords: symfony, project
#language: en
#robots: index, follow

stylesheets: [main.css]

javascripts: []

has_layout: true
layout: layout

The view.yml file configures the default settings for all the templates of the application.
For instance, the stylesheets entry defines an array of stylesheet files to include for every
page of the application (the inclusion is done by the include_stylesheets() helper).

In the default view.yml configuration file, the referenced file is main.css, and not /css/
main.css. As a matter of fact, both definitions are equivalent as symfony prefixes relative
paths with /~css|CSS~/.

If many files are defined, symfony will include them in the same order as the definition:

stylesheets: [main.css, jobs.css, job.css]

You can also change the media attribute and omit the .css suffix:

stylesheets: [main.css, jobs.css, job.css, print: { media: print }]

This configuration will be rendered as:

<link rel="stylesheet" type="text/css" media="screen"
href="/css/main.css" />

<link rel="stylesheet" type="text/css" media="screen"
href="/css/jobs.css" />

<link rel="stylesheet" type="text/css" media="screen"
href="/css/job.css" />

<link rel="stylesheet" type="text/css" media="print"
href="/css/print.css" />

The view.yml configuration file also defines the default layout used by the application. By
default, the name is layout, and so symfony decorates every page with the layout.php
file. You can also disable the decoration process altogether by switching the has_layout
entry to false.

Day 4: The Controller and the View 48

----------------- Brought to you by

Listing
4-6

Listing
4-7

Listing
4-8

Listing
4-9

It works as is but the jobs.css file is only needed for the homepage and the job.css file is
only needed for the job page. The view.yml configuration file can be customized on a per-
module basis. Change the stylesheets key of the application view.yml file to only contain the
main.css file:

apps/frontend/config/view.yml
stylesheets: [main.css]

To customize the view for the job module, create a view.yml file in the apps/frontend/
modules/job/config/ directory:

apps/frontend/modules/job/config/view.yml
indexSuccess:

stylesheets: [jobs.css]

showSuccess:
stylesheets: [job.css]

Under the indexSuccess and showSuccess sections (they are the template names
associated with the index and show actions, as we will see later on), you can customize any
entry found under the default section of the application view.yml. All specific entries are
merged with the application configuration. You can also define some configuration for all
actions of a module with the special all section.

Configuration Principles in symfony

For many symfony configuration files, the same setting can be defined at different levels:

• The default configuration is located in the framework
• The global configuration for the project (in config/)
• The local configuration for an application (in apps/APP/config/)
• The local configuration restricted to a module (in apps/APP/modules/MODULE/

config/)

At runtime, the configuration system merges all the values from the different files if they
exist and caches the result for better performance.

As a rule of thumb, when something is configurable via a configuration file, the same can be
accomplished with PHP code. Instead of creating a view.yml file for the job module for
instance, you can also use the use_stylesheet() helper to include a stylesheet from a
template:

<?php use_stylesheet('main.css') ?>

You can also use this helper in the layout to include a stylesheet globally.
Choosing between one method or the other is really a matter of taste. The view.yml file
provides a way to define things for all actions of a module, which is not possible in a template,
but the configuration is quite static. On the other hand, using the use_stylesheet() helper
is more flexible and moreover, everything is in the same place: the stylesheet definition and
the HTML code. For Jobeet, we will use the use_stylesheet() helper, so you can remove
the view.yml we have just created and update the job templates with the
use_stylesheet() calls:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php use_stylesheet('jobs.css') ?>

Day 4: The Controller and the View 49

----------------- Brought to you by

Listing
4-10

Listing
4-11

Listing
4-12

<!-- apps/frontend/modules/job/templates/showSuccess.php -->
<?php use_stylesheet('job.css') ?>

Symmetrically, the JavaScript configuration is done via the javascripts entry of the
view.yml configuration file and the use_javascript() helper defines JavaScript files to
include for a template.

The Job Homepage
As seen in day 3, the job homepage is generated by the index action of the job module. The
index action is the Controller part of the page and the associated template,
indexSuccess.php, is the View part:

apps/
frontend/

modules/
job/

actions/
actions.class.php

templates/
indexSuccess.php

The Action
Each action is represented by a method of a class. For the job homepage, the class is
jobActions (the name of the module suffixed by Actions) and the method is
executeIndex() (execute suffixed by the name of the action). It retrieves all the jobs from
the database:

// apps/frontend/modules/job/actions/actions.class.php
class jobActions extends sfActions
{

public function executeIndex(sfWebRequest $request)
{

$this->jobeet_jobs = Doctrine::getTable('JobeetJob')
->createQuery('a')
->execute();

}

// ...
}

Let’s have a closer look at the code: the executeIndex() method (the Controller) calls the
Table JobeetJob to create a query to retrieve all the jobs. It returns a
Doctrine_Collection of JobeetJob objects that are assigned to the jobeet_jobs object
property. All such object properties are then automatically passed to the template (the View).
To pass data from the Controller to the View, just create a new property:

public function executeFooBar(sfWebRequest $request)
{

$this->foo = 'bar';
$this->bar = array('bar', 'baz');

}

Day 4: The Controller and the View 50

----------------- Brought to you by

Listing
4-13

Listing
4-14

This code will make $foo and $bar variables accessible in the template.

The Template
By default, the template name associated with an action is deduced by symfony thanks to a
convention (the action name suffixed by Success).
The indexSuccess.php template generates an HTML table for all the jobs. Here is the
current template code:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php use_stylesheet('jobs.css') ?>

<h1>Job List</h1>

<table>
<thead>

<tr>
<th>Id</th>
<th>Category</th>
<th>Type</th>

<!-- more columns here -->
<th>Created at</th>
<th>Updated at</th>

</tr>
</thead>
<tbody>

<?php foreach ($jobeet_jobs as $jobeet_job): ?>
<tr>

<td>
<a href="<?php echo url_for('job/show?id='.$jobeet_job->getId())

?>">
<?php echo $jobeet_job->getId() ?>

</td>
<td><?php echo $jobeet_job->getCategoryId() ?></td>
<td><?php echo $jobeet_job->getType() ?></td>

<!-- more columns here -->
<td><?php echo $jobeet_job->getCreatedAt() ?></td>
<td><?php echo $jobeet_job->getUpdatedAt() ?></td>

</tr>
<?php endforeach ?>

</tbody>
</table>

<a href="<?php echo url_for('job/new') ?>">New

In the template code, the foreach iterates through the list of Job objects ($jobeet_jobs),
and for each job, each column value is output. Remember, accessing a column value is as
simple as calling an accessor method which name begins with get and the camelCased
column name (for instance the getCreatedAt() method for the created_at column).
Let’s clean this up a bit to only display a sub-set of the available columns:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php use_stylesheet('jobs.css') ?>

<div id="jobs">

Day 4: The Controller and the View 51

----------------- Brought to you by

Listing
4-15

<table class="jobs">
<?php foreach ($jobeet_jobs as $i => $job): ?>

<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">
<td class="location"><?php echo $job->getLocation() ?></td>
<td class="position">

<a href="<?php echo url_for('job/show?id='.$job->getId()) ?>">
<?php echo $job->getPosition() ?>

</td>
<td class="company"><?php echo $job->getCompany() ?></td>

</tr>
<?php endforeach ?>

</table>
</div>

The url_for() function call in this template is a symfony helper that we will discuss
tomorrow.

The Job Page Template
Now let’s customize the template of the job page. Open the showSuccess.php file and
replace its content with the following code:

<!-- apps/frontend/modules/job/templates/showSuccess.php -->
<?php use_stylesheet('job.css') ?>
<?php use_helper('Text') ?>

<div id="job">
<h1><?php echo $job->getCompany() ?></h1>
<h2><?php echo $job->getLocation() ?></h2>
<h3>

<?php echo $job->getPosition() ?>
<small> - <?php echo $job->getType() ?></small>

</h3>

Day 4: The Controller and the View 52

----------------- Brought to you by

Listing
4-16

Listing
4-17

<?php if ($job->getLogo()): ?>
<div class="logo">

<a href="<?php echo $job->getUrl() ?>">
<img src="http://www.symfony-project.org/uploads/jobs/<?php echo

$job->getLogo() ?>"
alt="<?php echo $job->getCompany() ?> logo" />

</div>

<?php endif ?>

<div class="description">
<?php echo simple_format_text($job->getDescription()) ?>

</div>

<h4>How to apply?</h4>

<p class="how_to_apply"><?php echo $job->getHowToApply() ?></p>

<div class="meta">
<small>posted on <?php echo

$job->getDateTimeObject('created_at')->format('m/d/Y') ?></small>
</div>

<div style="padding: 20px 0">
<a href="<?php echo url_for('job/edit?id='.$job->getId()) ?>">

Edit

</div>
</div>

This template uses the $job variable passed by the action to display the job information. As
we have renamed the variable passed to the template from $jobeet_job to $job, you need
to also make this change in the show action (be careful, there are two occurrences of the
variable):

// apps/frontend/modules/job/actions/actions.class.php
public function executeShow(sfWebRequest $request)
{

$this->job = Doctrine::getTable('JobeetJob')->
find($request->getParameter('id'));

$this->forward404Unless($this->job);
}

Notice that date columns can be converted to PHP DateTime object instances. As we have
defined the created_at column as a timestamp, you can convert the column value to a
DateTime object by using the getDateTimeObject() method and then call the format()
method which takes a date formatting pattern as its first argument:

$job->getDateTimeObject('created_at')->format('m/d/Y');

The job description uses the simple_format_text() helper to format it as HTML, by
replacing carriage returns with
 for instance. As this helper belongs to the Text
helper group, which is not loaded by default, we have loaded it manually by using the
use_helper() helper.

Day 4: The Controller and the View 53

----------------- Brought to you by

Listing
4-18

Listing
4-19

Slots
Right now, the title of all pages is defined in the <title> tag of the layout:

<title>Jobeet - Your best job board</title>

But for the job page, we want to provide more useful information, like the company name and
the job position.
In symfony, when a zone of the layout depends on the template to be displayed, you need to
define a slot:

Add a slot to the layout to allow the title to be dynamic:

// apps/frontend/templates/layout.php
<title><?php include_slot('title') ?></title>

Each slot is defined by a name (title) and can be displayed by using the include_slot()
helper. Now, at the beginning of the showSuccess.php template, use the slot() helper to
define the content of the slot for the job page:

Day 4: The Controller and the View 54

----------------- Brought to you by

Listing
4-20

Listing
4-21

Listing
4-22

Listing
4-23

Listing
4-24

Listing
4-25

// apps/frontend/modules/job/templates/showSuccess.php
<?php slot(

'title',
sprintf('%s is looking for a %s', $job->getCompany(),

$job->getPosition()))
?>

If the title is complex to generate, the slot() helper can also be used with a block of code:

// apps/frontend/modules/job/templates/showSuccess.php
<?php slot('title') ?>

<?php echo sprintf('%s is looking for a %s', $job->getCompany(),
$job->getPosition()) ?>
<?php end_slot() ?>

For some pages, like the homepage, we just need a generic title. Instead of repeating the
same title over and over again in templates, we can define a default title in the layout:

// apps/frontend/templates/layout.php
<title>

<?php include_slot('title', 'Jobeet - Your best job board') ?>
</title>

The second argument of the include_slot() method is the default value for the slot if it
has not been defined. If the default value is longer or has some HTML tags, you can also
defined it like in the following code:

// apps/frontend/templates/layout.php
<title>

<?php if (!include_slot('title')): ?>
Jobeet - Your best job board

<?php endif ?>
</title>

The include_slot() helper returns true if the slot has been defined. So, when you define
the title slot content in a template, it is used; if not, the default title is used.

We have already seen quite a few helpers beginning with include_. These helpers output
the HTML and in most cases have a get_ helper counterpart to just return the content:

<?php include_slot('title') ?>
<?php echo get_slot('title') ?>

<?php include_stylesheets() ?>
<?php echo get_stylesheets() ?>

The Job Page Action
The job page is generated by the show action, defined in the executeShow() method of the
job module:

class jobActions extends sfActions
{

public function executeShow(sfWebRequest $request)

Day 4: The Controller and the View 55

----------------- Brought to you by

{
$this->job = Doctrine::getTable('JobeetJob')->

find($request->getParameter('id'));
$this->forward404Unless($this->job);

}

// ...
}

As in the index action, the JobeetJob table class is used to retrieve a job, this time by using
the find() method. The parameter of this method is the unique identifier of a job, its
primary key. The next section will explain why the $request->getParameter('id')
statement returns the job primary key.
If the job does not exist in the database, we want to forward the user to a 404 page, which is
exactly what the forward404Unless() method does. It takes a Boolean as its first argument
and, unless it is true, stops the current flow of execution. As the forward methods stops the
execution of the action right away by throwing a sfError404Exception, you don’t need to
return afterwards.
As for exceptions, the page displayed to the user is different in the prod environment and in
the dev environment:

Before you deploy the Jobeet website to the production server, you will learn how to
customize the default 404 page.

Day 4: The Controller and the View 56

----------------- Brought to you by

Listing
4-26

Listing
4-27

Listing
4-28

The “forward” Methods Family

The forward404Unless call is actually equivalent to:

$this->forward404If(!$this->job);

which is also equivalent to:

if (!$this->job)
{

$this->forward404();
}

The forward404() method itself is just a shortcut for:

$this->forward('default', '404');

The forward() method forwards to another action of the same application; in the previous
example, to the 404 action of the default module. The default module is bundled with
symfony and provides default actions to render 404, secure, and login pages.

The Request and the Response
When you browse to the /job or /job/show/id/1 pages in your browser, your are initiating
a round trip with the web server. The browser is sending a request and the server sends
back a response|HTTP Response.
We have already seen that symfony encapsulates the request in a sfWebRequest object (see
the executeShow() method signature). And as symfony is an Object-Oriented framework,
the response is also an object, of class sfWebResponse. You can access the response object
in an action by calling $this->getResponse().
These objects provide a lot of convenient methods to access information from PHP functions
and PHP global variables.

Why does symfony wrap existing PHP functionalities? First, because the symfony methods
are more powerful than their PHP counterpart. Then, because when you test an
application, it is much more easier to simulate a request or a response object than trying to
fiddle around with global variables or work with PHP functions like header() which do too
much magic behind the scene.

The Request
The sfWebRequest class wraps the $_SERVER, $_COOKIE, $_GET, $_POST, and $_FILES
PHP global arrays:

Method name PHP equivalent
getMethod() $_SERVER['REQUEST_METHOD']
getUri() $_SERVER['REQUEST_URI']
getReferer() $_SERVER['HTTP_REFERER']
getHost() $_SERVER['HTTP_HOST']
getLanguages() $_SERVER['HTTP_ACCEPT_LANGUAGE']

Day 4: The Controller and the View 57

----------------- Brought to you by

Method name PHP equivalent
getCharsets() $_SERVER['HTTP_ACCEPT_CHARSET']
isXmlHttpRequest() $_SERVER['X_REQUESTED_WITH'] == 'XMLHttpRequest'
getHttpHeader() $_SERVER
getCookie() $_COOKIE
isSecure() $_SERVER['HTTPS']
getFiles() $_FILES
getGetParameter() $_GET
getPostParameter() $_POST
getUrlParameter() $_SERVER['PATH_INFO']
getRemoteAddress() $_SERVER['REMOTE_ADDR']

We have already accessed request parameters by using the getParameter() method. It
returns a value from the $_GET or $_POST global variable, or from the PATH_INFO variable.
If you want to ensure that a request parameter comes from a particular one of these
variables, you need use the getGetParameter(), getPostParameter(), and
getUrlParameter() methods respectively.

When you want to restrict an action for a specific HTTP method, for instance when you
want to ensure that a form is submitted as a POST, you can use the isMethod() method:
$this->forwardUnless($request->isMethod('POST'));.

The Response
The sfWebResponse class wraps the header() and setrawcookie() PHP methods:

Method name PHP equivalent
setCookie() setrawcookie()
setStatusCode() header()
setHttpHeader() header()
setContentType() header()
addVaryHttpHeader() header()
addCacheControlHttpHeader() header()

Of course, the sfWebResponse class also provides a way to set the content of the response
(setContent()) and send the response to the browser (send()).
Earlier today we saw how to manage stylesheets and JavaScripts in both the view.yml file
and in templates. In the end, both techniques use the response object addStylesheet() and
addJavascript() methods.

The sfAction29, sfRequest30, and sfResponse31 classes provide a lot of other useful
methods. Don’t hesitate to browse the API documentation32 to learn more about all
symfony internal classes.

29. http://www.symfony-project.org/api/1_4/sfAction
30. http://www.symfony-project.org/api/1_4/sfRequest
31. http://www.symfony-project.org/api/1_4/sfResponse

Day 4: The Controller and the View 58

----------------- Brought to you by

Final Thoughts
Today, we have described some design patterns used by symfony. Hopefully the project
directory structure now makes more sense. We have played with templates by manipulating
the layout and template files. We have also made them a bit more dynamic thanks to slots and
actions.
Tomorrow, we will be dedicated to the url_for() helper we have used here, and the routing
sub-framework associated with it.

32. http://www.symfony-project.org/api/1_4/

Day 4: The Controller and the View 59

----------------- Brought to you by

Listing
5-1

Listing
5-2

Listing
5-3

Day 5

The Routing

If you’ve completed day 4, you should now be familiar with the MVC pattern and it should be
feeling like a more and more natural way of coding. Spend a bit more time with it and you
won’t look back. To practice a bit, we customized the Jobeet pages and in the process, also
reviewed several symfony concepts, like the layout, helpers, and slots.
Today, we will dive into the wonderful world of the symfony routing framework.

URLs
If you click on a job on the Jobeet homepage, the URL looks like this: /job/show/id/1. If
you have already developed PHP websites, you are probably more accustomed to URLs like
/job.php?id=1. How does symfony make it work? How does symfony determine the action
to call based on this URL? Why is the id of the job retrieved with $request-
>getParameter('id')? Here, we will answer all these questions.
But first, let’s talk about URLs and what exactly they are. In a web context, a URL is the
unique identifier of a web resource. When you go to a URL, you ask the browser to fetch a
resource identified by that URL. So, as the URL is the interface between the website and the
user, it must convey some meaningful information about the resource it references. But
“traditional” URLs do not really describe the resource, they expose the internal structure of
the application. The user does not care that your website is developed with the PHP language
or that the job has a certain identifier in the database. Exposing the internal workings of your
application is also quite bad as far as security is concerned: What if the user tries to guess the
URL for resources he does not have access to? Sure, the developer must secure them the
proper way, but you’d better hide sensitive information.
URLs are so important in symfony that it has an entire framework dedicated to their
management: the routing framework. The routing manages internal URIs and external URLs.
When a request comes in, the routing parses the URL and converts it to an internal URI.
You have already seen the internal URI of the job page in the indexSuccess.php template:

'job/show?id='.$job->getId()

The url_for() helper converts this internal URI to a proper URL:

/job/show/id/1

The internal URI is made of several parts: job is the module, show is the action and the
query string adds parameters to pass to the action. The generic pattern for internal URIs is:

MODULE/ACTION?key=value&key_1=value_1&...

Day 5: The Routing 60

----------------- Brought to you by

Listing
5-4

Listing
5-5

As the symfony routing is a two-way process, you can change the URLs without changing the
technical implementation. This is one of the main advantages of the front-controller design
pattern.

Routing Configuration
The mapping between internal URIs and external URLs is done in the routing.yml
configuration file:

apps/frontend/config/routing.yml
homepage:

url: /
param: { module: default, action: index }

default_index:
url: /:module
param: { action: index }

default:
url: /:module/:action/*

The routing.yml file describes routes. A route has a name (homepage), a pattern
(/:module/:action/*), and some parameters (under the param key).
When a request comes in, the routing tries to match a pattern for the given URL. The first
route that matches wins, so the order in routing.yml is important. Let’s take a look at some
examples to better understand how this works.
When you request the Jobeet homepage, which has the /job URL, the first route that
matches is the default_index one. In a pattern, a word prefixed with a colon (:) is a
variable, so the /:module pattern means: Match a / followed by something. In our example,
the module variable will have job as a value. This value can then be retrieved with
$request->getParameter('module') in the action. This route also defines a default
value for the action variable. So, for all URLs matching this route, the request will also have
an action parameter with index as a value.
If you request the /job/show/id/1 page, symfony will match the last pattern: /:module/
:action/*. In a pattern, a star (*) matches a collection of variable/value pairs separated by
slashes (/):

Request parameter Value
module job
action show
id 1

The module and action variables are special as they are used by symfony to determine
the action to execute.

The /job/show/id/1 URL can be created from a template by using the following call to the
url_for() helper:

url_for('job/show?id='.$job->getId())

You can also use the route name by prefixing it by @:

Day 5: The Routing 61

----------------- Brought to you by

Listing
5-6

Listing
5-7

Listing
5-8

Listing
5-9

Listing
5-10

Listing
5-11

url_for('@default?module=job&action=show&id='.$job->getId())

Both calls are equivalent but the latter is much faster as the routing does not have to parse all
routes to find the best match, and it is less tied to the implementation (the module and action
names are not present in the internal URI).

Route Customizations
For now, when you request the / URL in a browser, you have the default congratulations
page of symfony. That’s because this URL matches the homepage route. But it makes sense
to change it to be the Jobeet homepage. To make the change, modify the module variable of
the homepage route to job:

apps/frontend/config/routing.yml
homepage:

url: /
param: { module: job, action: index }

We can now change the link of the Jobeet logo in the layout to use the homepage route:

<!-- apps/frontend/templates/layout.php -->
<h1>

<a href="<?php echo url_for('homepage') ?>">
<img src="http://www.symfony-project.org/images/logo.jpg" alt="Jobeet

Job Board" />

</h1>

That was easy!

When you update the routing configuration, the changes are immediately taken into
account in the development environment. But to make them also work in the production
environment, you need to clear the cache by calling the cache:clear task.

For something a bit more involved, let’s change the job page URL to something more
meaningful:

/job/sensio-labs/paris-france/1/web-developer

Without knowing anything about Jobeet, and without looking at the page, you can understand
from the URL that Sensio Labs is looking for a Web developer to work in Paris, France.

Pretty URLs are important because they convey information for the user. It is also useful
when you copy and paste the URL in an email or to optimize your website for search
engines.

The following pattern matches such a URL:

/job/:company/:location/:id/:position

Edit the routing.yml file and add the job_show_user route at the beginning of the file:

Day 5: The Routing 62

----------------- Brought to you by

Listing
5-12

Listing
5-13

Listing
5-14

Listing
5-15

job_show_user:
url: /job/:company/:location/:id/:position
param: { module: job, action: show }

If you refresh the Jobeet homepage, the links to jobs have not changed. That’s because to
generate a route, you need to pass all the required variables. So, you need to change the
url_for() call in indexSuccess.php to:

url_for('job/show?id='.$job->getId().'&company='.$job->getCompany().
'&location='.$job->getLocation().'&position='.$job->getPosition())

An internal URI can also be expressed as an array:

url_for(array(
'module' => 'job',
'action' => 'show',
'id' => $job->getId(),
'company' => $job->getCompany(),
'location' => $job->getLocation(),
'position' => $job->getPosition(),

))

Requirements
At the beginning of the book, we talked about validation and error handling for good reasons.
The routing system has a built-in validation feature. Each pattern variable can be validated by
a regular expression defined using the requirements entry of a route definition:

job_show_user:
url: /job/:company/:location/:id/:position
param: { module: job, action: show }
requirements:

id: \d+

The above requirements entry forces the id to be a numeric value. If not, the route won’t
match.

Route Class
Each route defined in routing.yml is internally converted to an object of class sfRoute33.
This class can be changed by defining a class entry in the route definition. If you are
familiar with the HTTP protocol, you know that it defines several “methods”, like GET, POST,
HEAD|HEAD (HTTP Method), DELETE, and PUT. The first three are supported by all
browsers, while the other two are not.
To restrict a route to only match for certain request methods, you can change the route class
to sfRequestRoute34 and add a requirement for the virtual sf_method variable:

job_show_user:
url: /job/:company/:location/:id/:position
class: sfRequestRoute
param: { module: job, action: show }

33. http://www.symfony-project.org/api/1_4/sfRoute
34. http://www.symfony-project.org/api/1_4/sfRequestRoute

Day 5: The Routing 63

----------------- Brought to you by

Listing
5-16

Listing
5-17

Listing
5-18

Listing
5-19

requirements:
id: \d+
sf_method: [get]

Requiring a route to only match for some HTTP methods is not totally equivalent to using
sfWebRequest::isMethod() in your actions. That’s because the routing will continue to
look for a matching route if the method does not match the expected one.

Object Route Class
The new internal URI for a job is quite long and tedious to write (url_for('job/
show?id='.$job->getId().'&company='.$job-
>getCompany().'&location='.$job->getLocation().'&position='.$job-
>getPosition())), but as we have just learned in the previous section, the route class can
be changed. For the job_show_user route, it is better to use sfDoctrineRoute35 as the
class is optimized for routes that represent Doctrine objects or collections of Doctrine objects:

job_show_user:
url: /job/:company/:location/:id/:position
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:

id: \d+
sf_method: [get]

The options entry customizes the behavior of the route. Here, the model option defines the
Doctrine model class (JobeetJob) related to the route, and the type option defines that this
route is tied to one object (you can also use list if a route represents a collection of objects).
The job_show_user route is now aware of its relation with JobeetJob and so we can
simplify the url_for() call to:

url_for(array('sf_route' => 'job_show_user', 'sf_subject' => $job))

or just:

url_for('job_show_user', $job)

The first example is useful when you need to pass more arguments than just the object.

It works because all variables in the route have a corresponding accessor in the JobeetJob
class (for instance, the company route variable is replaced with the value of getCompany()).
If you have a look at generated URLs, they are not quite yet as we want them to be:

http://www.jobeet.com.localhost/frontend_dev.php/job/Sensio+Labs/
Paris%2C+France/1/Web+Developer

We need to “slugify” the column values by replacing all non ASCII characters by a -. Open
the JobeetJob file and add the following methods to the class:

35. http://www.symfony-project.org/api/1_4/sfDoctrineRoute

Day 5: The Routing 64

----------------- Brought to you by

Listing
5-20

Listing
5-21

Listing
5-22

Listing
5-23

// lib/model/doctrine/JobeetJob.class.php
public function getCompanySlug()
{

return Jobeet::slugify($this->getCompany());
}

public function getPositionSlug()
{

return Jobeet::slugify($this->getPosition());
}

public function getLocationSlug()
{

return Jobeet::slugify($this->getLocation());
}

Then, create the lib/Jobeet.class.php file and add the slugify method in it:

// lib/Jobeet.class.php
class Jobeet
{

static public function slugify($text)
{

// replace all non letters or digits by -
$text = preg_replace('/\W+/', '-', $text);

// trim and lowercase
$text = strtolower(trim($text, '-'));

return $text;
}

}

In this tutorial, we never show the opening <?php statement in the code examples that
only contain pure PHP code to optimize space and save some trees. You should obviously
remember to add it whenever you create a new PHP file. Just remember to not add it to
template files.

We have defined three new “virtual” accessors: getCompanySlug(), getPositionSlug(),
and getLocationSlug(). They return their corresponding column value after applying it
the slugify() method. Now, you can replace the real column names by these virtual ones in
the job_show_user route:

job_show_user:
url: /job/:company_slug/:location_slug/:id/:position_slug
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:

id: \d+
sf_method: [get]

You will now have the expected URLs:

http://www.jobeet.com.localhost/frontend_dev.php/job/sensio-labs/
paris-france/1/web-developer

Day 5: The Routing 65

----------------- Brought to you by

Listing
5-24

Listing
5-25

But that’s only half the story. The route is able to generate a URL based on an object, but it is
also able to find the object related to a given URL. The related object can be retrieved with
the getObject() method of the route object. When parsing an incoming request, the routing
stores the matching route object for you to use in the actions. So, change the
executeShow() method to use the route object to retrieve the Jobeet object:

class jobActions extends sfActions
{

public function executeShow(sfWebRequest $request)
{

$this->job = $this->getRoute()->getObject();

$this->forward404Unless($this->job);
}

// ...
}

If you try to get a job for an unknown id, you will see a 404 error page but the error message
has changed:

That’s because the 404 error has been thrown for you automatically by the getRoute()
method. So, we can simplify the executeShow method even more:

class jobActions extends sfActions
{

public function executeShow(sfWebRequest $request)
{

$this->job = $this->getRoute()->getObject();
}

// ...
}

If you don’t want the route to generate a 404 error, you can set the allow_empty routing
option to true.

The related object of a route is lazy loaded. It is only retrieved from the database if you call
the getRoute() method.

Day 5: The Routing 66

----------------- Brought to you by

Listing
5-26

Listing
5-27

Listing
5-28

Listing
5-29

Listing
5-30

Listing
5-31

Routing in Actions and Templates
In a template, the url_for() helper converts an internal URI to an external URL. Some
other symfony helpers also take an internal URI as an argument, like the link_to() helper
which generates an <a> tag:

<?php echo link_to($job->getPosition(), 'job_show_user', $job) ?>

It generates the following HTML code:

Web Developer

Both url_for() and link_to() can also generate absolute URLs:

url_for('job_show_user', $job, true);

link_to($job->getPosition(), 'job_show_user', $job, true);

If you want to generate a URL from an action, you can use the generateUrl() method:

$this->redirect($this->generateUrl('job_show_user', $job));

The “redirect” Methods Family

Yesterday, we talked about the “forward” methods. These methods forward the current
request to another action without a round-trip with the browser.
The “redirect” methods redirect the user to another URL. As with forward, you can use the
redirect() method, or the redirectIf() and redirectUnless() shortcut methods.

Collection Route Class
For the job module, we have already customized the show action route, but the URLs for the
others methods (index, new, edit, create, update, and delete) are still managed by the
default route:

default:
url: /:module/:action/*

The default route is a great way to start coding without defining too many routes. But as
the route acts as a “catch-all”, it cannot be configured for specific needs.
As all job actions are related to the JobeetJob model class, we can easily define a custom
sfDoctrineRoute route for each as we have already done for the show action. But as the
job module defines the classic seven actions possible for a model, we can also use the
sfDoctrineRouteCollection36 class. Open the routing.yml file and modify it to read as
follows:

apps/frontend/config/routing.yml
job:

class: sfDoctrineRouteCollection
options: { model: JobeetJob }

36. http://www.symfony-project.org/api/1_4/sfDoctrineRouteCollection

Day 5: The Routing 67

----------------- Brought to you by

Listing
5-32

job_show_user:
url: /job/:company_slug/:location_slug/:id/:position_slug
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:

id: \d+
sf_method: [get]

default rules
homepage:

url: /
param: { module: job, action: index }

default_index:
url: /:module
param: { action: index }

default:
url: /:module/:action/*

The job route above is really just a shortcut that automatically generates the following seven
sfDoctrineRoute routes:

job:
url: /job.:sf_format
class: sfDoctrineRoute
options: { model: JobeetJob, type: list }
param: { module: job, action: index, sf_format: html }
requirements: { sf_method: get }

job_new:
url: /job/new.:sf_format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: new, sf_format: html }
requirements: { sf_method: get }

job_create:
url: /job.:sf_format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: create, sf_format: html }
requirements: { sf_method: post }

job_edit:
url: /job/:id/edit.:sf_format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: edit, sf_format: html }
requirements: { sf_method: get }

job_update:
url: /job/:id.:sf_format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: update, sf_format: html }

Day 5: The Routing 68

----------------- Brought to you by

Listing
5-33

Listing
5-34

Listing
5-35

requirements: { sf_method: put }

job_delete:
url: /job/:id.:sf_format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: delete, sf_format: html }
requirements: { sf_method: delete }

job_show:
url: /job/:id.:sf_format
class: sfDoctrineRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show, sf_format: html }
requirements: { sf_method: get }

Some routes generated by sfDoctrineRouteCollection have the same URL. The
routing is still able to use them because they all have different HTTP method requirements.

The job_delete and job_update routes requires HTTP methods that are not supported by
browsers (DELETE and PUT respectively). This works because symfony simulates them. Open
the _form.php template to see an example:

// apps/frontend/modules/job/templates/_form.php
<form action="..." ...>
<?php if (!$form->getObject()->isNew()): ?>

<input type="hidden" name="sf_method" value="PUT" />
<?php endif; ?>

<?php echo link_to(
'Delete',
'job/delete?id='.$form->getObject()->getId(),
array('method' => 'delete', 'confirm' => 'Are you sure?')

) ?>

All the symfony helpers can be told to simulate whatever HTTP method you want by passing
the special sf_method parameter.

symfony has other special parameters like sf_method, all starting with the sf_ prefix. In
the generated routes above, you can see another one: sf_format, which will be explained
further in this book.

Route Debugging
When you use collection routes, it is sometimes useful to list the generated routes. The
app:routes task outputs all the routes for a given application:

$ php symfony app:routes frontend

You can also have a lot of debugging information for a route by passing its name as an
additional argument:

$ php symfony app:routes frontend job_edit

Day 5: The Routing 69

----------------- Brought to you by

Listing
5-36

Default Routes
It is a good practice to define routes for all your URLs. As the job route defines all the routes
needed to describe the Jobeet application, go ahead and remove or comment the default
routes from the routing.yml configuration file:

apps/frontend/config/routing.yml
#default_index:
url: /:module
param: { action: index }
#
#default:
url: /:module/:action/*

The Jobeet application must still work as before.

Final Thoughts
Today was packed with a lot of new information. You have learned how to use the routing
framework of symfony and how to decouple your URLs from the technical implementation.
Tomorrow, we won’t introduce any new concept, but rather spend time going deeper into
what we’ve covered so far.

Day 5: The Routing 70

----------------- Brought to you by

Listing
6-1

Listing
6-2

Day 6

More with the Model

Yesterday was great. You learned how to create pretty URLs and how to use the symfony
framework to automate a lot of things for you.
Today, we will enhance the Jobeet website by tweaking the code here and there. In the
process, you will learn more about all the features we have introduced during the first five
days of this tutorial.

The Doctrine Query Object
From the second day’s requirements:
“When a user comes to the Jobeet website, she sees a list of active jobs.”
But as of now, all jobs are displayed, whether they are active or not:

// apps/frontend/modules/job/actions/actions.class.php
class jobActions extends sfActions
{

public function executeIndex(sfWebRequest $request)
{

$this->jobeet_jobs = Doctrine::getTable('JobeetJob')
->createQuery('a')
->execute();

}

// ...
}

An active job is one that was posted less than 30 days ago. The
~Doctrine_Query~::execute() method will make a request to the database. In the code
above, we are not specifying any where condition which means that all the records are
retrieved from the database.
Let’s change it to only select active jobs:

public function executeIndex(sfWebRequest $request)
{

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.created_at > ?',

date('Y-m-d H:i:s', time() - 86400 * 30));

Day 6: More with the Model 71

----------------- Brought to you by

Listing
6-3

$this->jobeet_jobs = $q->execute();
}

Debugging Doctrine generated SQL
As you don’t write the SQL statements by hand, Doctrine will take care of the differences
between database engines and will generate SQL statements optimized for the database
engine you choose during day 3. But sometimes, it is of great help to see the SQL generated
by Doctrine; for instance, to debug a query that does not work as expected. In the dev
environment, symfony logs these queries (along with much more) in the log/ directory.
There is one log file for every combination of an application and an environment. The file we
are looking for is named frontend_dev.log:

log/frontend_dev.log
Dec 04 13:58:33 symfony [info] {sfDoctrineLogger} executeQuery : SELECT
j.id AS j__id, j.category_id AS j__category_id, j.type AS j__type,
j.company AS j__company, j.logo AS j__logo, j.url AS j__url,
j.position AS j__position, j.location AS j__location,
j.description AS j__description, j.how_to_apply AS j__how_to_apply,
j.token AS j__token, j.is_public AS j__is_public,
j.is_activated AS j__is_activated, j.email AS j__email,
j.expires_at AS j__expires_at, j.created_at AS j__created_at,
j.updated_at AS j__updated_at FROM jobeet_job j
WHERE j.created_at > ? (2008-11-08 01:13:35)

You can see for yourself that Doctrine has a where clause for the created_at column
(WHERE j.created_at > ?).

The ? string in the query indicates that Doctrine generates prepared statements. The
actual value of ? (‘2008-11-08 01:13:35’ in the example above) is passed during the
execution of the query and properly escaped by the database engine. The use of prepared
statements dramatically reduces your exposure to SQL injection37 attacks.

This is good, but it’s a bit annoying to have to switch between the browser, the IDE, and the
log file every time you need to test a change. Thanks to the symfony web debug toolbar, all
the information you need is also available within the comfort of your browser:

Object Serialization
Even if the above code works, it is far from perfect as it does not take into account some
requirements from day 2:
“A user can come back to re-activate or extend the validity of the job ad for an extra 30
days…”
But as the above code only relies on the created_at value, and because this column stores
the creation date, we cannot satisfy the above requirement.
But if you remember the database schema we have described during day 3, we also have
defined an expires_at column. Currently, if this value is not set in fixture file, it remains

37. http://en.wikipedia.org/wiki/Sql_injection

Day 6: More with the Model 72

----------------- Brought to you by

Listing
6-4

Listing
6-5

Listing
6-6

always empty. But when a job is created, it can be automatically set to 30 days after the
current date.
When you need to do something automatically before a Doctrine object is serialized to the
database, you can override the save() method of the model class:

// lib/model/doctrine/JobeetJob.class.php
class JobeetJob extends BaseJobeetJob
{

public function save(Doctrine_Connection $conn = null)
{

if ($this->isNew() && !$this->getExpiresAt())
{

$now = $this->getCreatedAt() ?
$this->getDateTimeObject('created_at')->format('U') : time();

$this->setExpiresAt(date('Y-m-d H:i:s', $now + 86400 * 30));
}

return parent::save($conn);
}

// ...
}

The isNew() method returns true when the object has not been serialized yet in the
database, and false otherwise.
Now, let’s change the action to use the expires_at column instead of the created_at one
to select the active jobs:

public function executeIndex(sfWebRequest $request)
{

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.expires_at > ?', date('Y-m-d H:i:s', time()));

$this->jobeet_jobs = $q->execute();
}

We restrict the query to only select jobs with the expires_at date in the future.

More with Fixtures
Refreshing the Jobeet homepage in your browser won’t change anything as the jobs in the
database have been posted just a few days ago. Let’s change the fixtures to add a job that is
already expired:

data/fixtures/jobs.yml
JobeetJob:

other jobs

expired_job:
JobeetCategory: programming
company: Sensio Labs
position: Web Developer
location: Paris, France
description: Lorem ipsum dolor sit amet, consectetur adipisicing

Day 6: More with the Model 73

----------------- Brought to you by

Listing
6-7

Listing
6-8

Listing
6-9

Listing
6-10

Listing
6-11

elit.
how_to_apply: Send your resume to lorem.ipsum [at] dolor.sit
is_public: true
is_activated: true
created_at: '2005-12-01 00:00:00'
token: job_expired
email: job@example.com

Be careful when you copy and paste code in a fixture file to not break the indentation. The
expired_job must only have two spaces before it.

As you can see in the job we have added in the fixture file, the created_at column value can
be defined even if it is automatically filled by Doctrine. The defined value will override the
default one. Reload the fixtures and refresh your browser to ensure that the old job does not
show up:

$ php symfony doctrine:data-load

You can also execute the following query to make sure that the expires_at column is
automatically filled by the save() method, based on the created_at value:

SELECT `position`, `created_at`, `expires_at` FROM `jobeet_job`;

Custom Configuration
In the JobeetJob::save() method, we have hardcoded the number of days for the job to
expire. It would have been better to make the 30 days configurable. The symfony framework
provides a built-in configuration file for application specific settings, the app.yml file. This
YAML file can contain any setting you want:

apps/frontend/config/app.yml
all:

active_days: 30

In the application, these settings are available through the global sfConfig class:

sfConfig::get('app_active_days')

The setting has been prefixed by app_ because the sfConfig class also provides access to
symfony settings as we will see later on.
Let’s update the code to take this new setting into account:

public function save(Doctrine_Connection $conn = null)
{

if ($this->isNew() && !$this->getExpiresAt())
{

$now = $this->getCreatedAt() ?
$this->getDateTimeObject('created_at')->format('U') : time();

$this->setExpiresAt(date('Y-m-d H:i:s', $now + 86400 *
sfConfig::get('app_active_days')));

}

return parent::save($conn);
}

Day 6: More with the Model 74

----------------- Brought to you by

Listing
6-12

Listing
6-13

Listing
6-14

The app.yml configuration file is a great way to centralize global settings|Global Settings for
your application.
Last, if you need project-wide settings, just create a new app.yml file in the config folder at
the root of your symfony project.

Refactoring
Although the code we have written works fine, it’s not quite right yet. Can you spot the
problem?
The Doctrine_Query code does not belong to the action (the Controller layer), it belongs to
the Model layer. In the MVC model, the Model defines all the business logic, and the
Controller only calls the Model to retrieve data from it. As the code returns a collection of
jobs, let’s move the code to the JobeetJobTable class and create a getActiveJobs()
method:

// lib/model/doctrine/JobeetJobTable.class.php
class JobeetJobTable extends Doctrine_Table
{

public function getActiveJobs()
{

$q = $this->createQuery('j')
->where('j.expires_at > ?', date('Y-m-d H:i:s', time()));

return $q->execute();
}

}

Now the action code can use this new method to retrieve the active jobs.

public function executeIndex(sfWebRequest $request)
{

$this->jobeet_jobs =
Doctrine_Core::getTable('JobeetJob')->getActiveJobs();

}

This refactoring has several benefits over the previous code:

• The logic to get the active jobs is now in the Model, where it belongs
• The code in the controller is thinner and much more readable
• The getActiveJobs() method is re-usable (for instance in another action)
• The model code is now unit testable

Let’s sort the jobs by the expires_at column:

public function getActiveJobs()
{

$q = $this->createQuery('j')
->where('j.expires_at > ?', date('Y-m-d H:i:s', time()))
->orderBy('j.expires_at DESC');

return $q->execute();
}

The orderBy methods sets the ORDER BY clause to the generated SQL (addOrderBy() also
exists).

Day 6: More with the Model 75

----------------- Brought to you by

Listing
6-15

Listing
6-16

Listing
6-17

Categories on the Homepage
From the second day’s requirements:
“The jobs are sorted by category and then by publication date (newer jobs first).”
Until now, we have not taken the job category into account. From the requirements, the
homepage must display jobs by category. First, we need to get all categories with at least one
active job.
Open the JobeetCategoryTable class and add a getWithJobs() method:

// lib/model/doctrine/JobeetCategoryTable.class.php
class JobeetCategoryTable extends Doctrine_Table
{

public function getWithJobs()
{

$q = $this->createQuery('c')
->leftJoin('c.JobeetJobs j')
->where('j.expires_at > ?', date('Y-m-d H:i:s', time()));

return $q->execute();
}

}

Change the index action accordingly:

// apps/frontend/modules/job/actions/actions.class.php
public function executeIndex(sfWebRequest $request)
{

$this->categories =
Doctrine_Core::getTable('JobeetCategory')->getWithJobs();

}

In the template, we need to iterate through all categories and display the active jobs:

// apps/frontend/modules/job/templates/indexSuccess.php
<?php use_stylesheet('jobs.css') ?>

<div id="jobs">
<?php foreach ($categories as $category): ?>

<div class="category_<?php echo Jobeet::slugify($category->getName())
?>">

<div class="category">
<div class="feed">

Feed
</div>
<h1><?php echo $category ?></h1>

</div>

<table class="jobs">
<?php foreach ($category->getActiveJobs() as $i => $job): ?>

<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">
<td class="location">

<?php echo $job->getLocation() ?>
</td>
<td class="position">

<?php echo link_to($job->getPosition(), 'job_show_user',
$job) ?>

Day 6: More with the Model 76

----------------- Brought to you by

Listing
6-18

Listing
6-19

</td>
<td class="company">

<?php echo $job->getCompany() ?>
</td>

</tr>
<?php endforeach; ?>

</table>
</div>

<?php endforeach; ?>
</div>

To display the category name in the template, we have used echo $category. Does this
sound weird? $category is an object, how can echo magically display the category name?
The answer was given during day 3 when we have defined the magic __toString()
method for all the model classes.

For this to work, we need to add the getActiveJobs() method to the JobeetCategory
class:

// lib/model/doctrine/JobeetCategory.class.php
public function getActiveJobs()
{

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.category_id = ?', $this->getId());

return Doctrine_Core::getTable('JobeetJob')->getActiveJobs($q);
}

The JobeetCategory::getActiveJobs() method uses the
Doctrine_Core::getTable('JobeetJob')->getActiveJobs() method to retrieve the
active jobs for the given category.
When calling the Doctrine_Core::getTable('JobeetJob')->getActiveJobs(), we
want to restrict the condition even more by providing a category. Instead of passing the
category object, we have decided to pass a Doctrine_Query object as this is the best way to
encapsulate a generic condition.
The getActiveJobs() needs to merge this Doctrine_Query object with its own query. As
the Doctrine_Query is an object, this is quite simple:

// lib/model/doctrine/JobeetJobTable.class.php
public function getActiveJobs(Doctrine_Query $q = null)
{

if (is_null($q))
{

$q = Doctrine_Query::create()
->from('JobeetJob j');

}

$q->andWhere('j.expires_at > ?', date('Y-m-d H:i:s', time()))
->addOrderBy('j.expires_at DESC');

return $q->execute();
}

Day 6: More with the Model 77

----------------- Brought to you by

Listing
6-20

Listing
6-21

Listing
6-22

Limit the Results
There is still one requirement to implement for the homepage job list:
“For each category, the list only shows the first 10 jobs and a link allows to list all the jobs for
a given category.”
That’s simple enough to add to the getActiveJobs() method:

// lib/model/doctrine/JobeetCategory.class.php
public function getActiveJobs($max = 10)
{

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.category_id = ?', $this->getId())
->limit($max);

return Doctrine_Core::getTable('JobeetJob')->getActiveJobs($q);
}

The appropriate LIMIT clause is now hard-coded into the Model, but it is better for this value
to be configurable. Change the template to pass a maximum number of jobs set in app.yml:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php foreach
($category->getActiveJobs(sfConfig::get('app_max_jobs_on_homepage')) as $i
=> $job): ?>

and add a new setting in app.yml:

all:
active_days: 30
max_jobs_on_homepage: 10

Day 6: More with the Model 78

----------------- Brought to you by

Listing
6-23

Dynamic Fixtures
Unless you lower the max_jobs_on_homepage setting to one, you won’t see any difference.
We need to add a bunch of jobs to the fixture. So, you can copy and paste an existing job ten
or twenty times by hand… but there’s a better way. Duplication is bad, even in fixture files.
symfony to the rescue! YAML files in symfony can contain PHP code that will be evaluated
just before the parsing of the file. Edit the jobs.yml fixtures file and add the following code
at the end:

Starts at the beginning of the line (no whitespace before)
<?php for ($i = 100; $i <= 130; $i++): ?>

job_<?php echo $i ?>:
JobeetCategory: programming
company: Company <?php echo $i."\n" ?>
position: Web Developer
location: Paris, France
description: Lorem ipsum dolor sit amet, consectetur adipisicing elit.
how_to_apply: |

Send your resume to lorem.ipsum [at] company_<?php echo $i ?>.sit
is_public: true
is_activated: true
token: job_<?php echo $i."\n" ?>
email: job@example.com

<?php endfor ?>

Be careful, the YAML parser won’t like you if you mess up with Indentation|Code Formatting.
Keep in mind the following simple tips when adding PHP code to a YAML file:

• The <?php ?> statements must always start the line or be embedded in a value.
• If a <?php ?> statement ends a line, you need to explicly output a new line (“\n”).

You can now reload the fixtures with the doctrine:data-load task and see if only 10 jobs
are displayed on the homepage for the Programming category. In the following screenshot,
we have changed the maximum number of jobs to five to make the image smaller:

Day 6: More with the Model 79

----------------- Brought to you by

Listing
6-24

Listing
6-25

Listing
6-26

Secure the Job Page
When a job expires, even if you know the URL, it must not be possible to access it anymore.
Try the URL for the expired job (replace the id with the actual id in your database - SELECT
id, token FROM jobeet_job WHERE expires_at < NOW()):

/frontend_dev.php/job/sensio-labs/paris-france/ID/web-developer-expired

Instead of displaying the job, we need to forward the user to a 404 page. But how can we do
this as the job is retrieved automatically by the route?

apps/frontend/config/routing.yml
job_show_user:

url: /job/:company_slug/:location_slug/:id/:position_slug
class: sfDoctrineRoute
options:

model: JobeetJob
type: object
method_for_query: retrieveActiveJob

param: { module: job, action: show }
requirements:

id: \d+
sf_method: [GET]

The retrieveActiveJob() method will receive the Doctrine_Query object built by the
route:

// lib/model/doctrine/JobeetJobTable.class.php
class JobeetJobTable extends Doctrine_Table
{

Day 6: More with the Model 80

----------------- Brought to you by

public function retrieveActiveJob(Doctrine_Query $q)
{

$q->andWhere('a.expires_at > ?', date('Y-m-d H:i:s', time()));

return $q->fetchOne();
}

// ...
}

Now, if you try to get an expired job, you will be forwarded to a 404 page.

Link to the Category Page
Now, let’s add a link to the category page on the homepage and create the category page.
But, wait a minute. the hour is not yet over and we haven’t worked that much. So, you have
plenty of free time and enough knowledge to implement this all by yourself! Let’s make an
exercise of it. Check back tomorrow for our implementation.

Final Thoughts
Do work on an implementation on your local Jobeet project. Please, abuse the online API
documentation38 and all the free documentation39 available on the symfony website to help
you out. Tomorrow, we will give you the solution on how to implement this feature.

38. http://www.symfony-project.org/api/1_4/
39. http://www.symfony-project.org/doc/1_4/

Day 6: More with the Model 81

----------------- Brought to you by

Listing
7-1

Listing
7-2

Day 7

Playing with the Category Page

Yesterday, you expanded your knowledge of symfony in a lot of different areas: querying with
Doctrine, fixtures, routing, debugging, and custom configuration. And we finished with a little
challenge to start today.
We hope you worked on the Jobeet category page as today will then be much more valuable
for you.
Ready? Let’s talk about a possible implementation.

The Category Route
First, we need to add a route to define a pretty URL for the category page. Add it at the
beginning of the routing file:

apps/frontend/config/routing.yml
category:

url: /category/:slug
class: sfDoctrineRoute
param: { module: category, action: show }
options: { model: JobeetCategory, type: object }

Whenever you start implementing a new feature, it is a good practice to first think about
the URL and create the associated route. And it is mandatory if you removed the default
routing rules.

A route can use any column from its related object as a parameter. It can also use any other
value if there is a related accessor defined in the object class. Because the slug parameter
has no corresponding column in the category table, we need to add a virtual accessor in
JobeetCategory to make the route works:

// lib/model/doctrine/JobeetCategory.class.php
public function getSlug()
{

return Jobeet::slugify($this->getName());
}

Day 7: Playing with the Category Page 82

----------------- Brought to you by

Listing
7-3

Listing
7-4

Listing
7-5

The Category Link
Now, edit the indexSuccess.php template of the job module to add the link to the
category page:

<!-- some HTML code -->

<h1>
<?php echo link_to($category, 'category', $category) ?>

</h1>

<!-- some HTML code -->

</table>

<?php if (($count = $category->countActiveJobs() -
sfConfig::get('app_max_jobs_on_homepage')) > 0): ?>

<div class="more_jobs">
and <?php echo link_to($count, 'category', $category) ?>
more...

</div>
<?php endif; ?>

</div>
<?php endforeach; ?>

</div>

We only add the link if there are more than 10 jobs to display for the current category. The
link contains the number of jobs not displayed. For this template to work, we need to add the
countActiveJobs() method to JobeetCategory:

// lib/model/doctrine/JobeetCategory.class.php
public function countActiveJobs()
{

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.category_id = ?', $this->getId());

return Doctrine_Core::getTable('JobeetJob')->countActiveJobs($q);
}

The countActiveJobs() method uses a countActiveJobs() method that does not exist
yet in JobeetJobTable. Replace the content of the JobeetJobTable.php file with the
following code:

// lib/model/doctrine/JobeetJobTable.class.php
class JobeetJobTable extends Doctrine_Table
{

public function retrieveActiveJob(Doctrine_Query $q)
{

return $this->addActiveJobsQuery($q)->fetchOne();
}

public function getActiveJobs(Doctrine_Query $q = null)
{

return $this->addActiveJobsQuery($q)->execute();
}

Day 7: Playing with the Category Page 83

----------------- Brought to you by

public function countActiveJobs(Doctrine_Query $q = null)
{

return $this->addActiveJobsQuery($q)->count();
}

public function addActiveJobsQuery(Doctrine_Query $q = null)
{

if (is_null($q))
{

$q = Doctrine_Query::create()
->from('JobeetJob j');

}

$alias = $q->getRootAlias();

$q->andWhere($alias . '.expires_at > ?', date('Y-m-d H:i:s', time()))
->addOrderBy($alias . '.created_at DESC');

return $q;
}

}

As you can see for yourself, we have refactored the whole code of JobeetJobTable to
introduce a new shared addActiveJobsQuery() method to make the code more DRY (Don’t
Repeat Yourself).

The first time a piece of code is re-used, copying the code may be sufficient. But if you find
another use for it, you need to refactor all uses to a shared function or a method, as we
have done here.

In the countActiveJobs() method, instead of using execute() and then count the
number of results, we have used the much faster count() method.
We have changed a lot of files, just for this simple feature. But each time we have added some
code, we have tried to put it in the right layer of the application and we have also tried to
make the code reusable. In the process, we have also refactored some existing code. That’s a
typical workflow when working on a symfony project. In the following screenshot we are
showing 5 jobs to keep it short, you should see 10 (the max_jobs_on_homepage setting):

Day 7: Playing with the Category Page 84

----------------- Brought to you by

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Listing
7-6

Job Category Module Creation
It’s time to create the category module:

$ php symfony generate:module frontend category

If you have created a module, you have probably used the doctrine:generate-module.
That’s fine but as we won’t need 90% of the generated code, I have used the
generate:module which creates an empty module.

Why not add a category action to the job module? We could, but as the main subject of
the category page is a category, it feels more natural to create a dedicated category
module.

When accessing the category page, the category route will have to find the category
associated with the request slug variable. But as the slug is not stored in the database, and
because we cannot deduce the category name from the slug, there is no way to find the
category associated with the slug.

Update the Database
We need to add a slug column for the category table:
This slug column can be taken care of by a Doctrine behavior named Sluggable. We simply
need to enable the behavior on our JobeetCategory model and it will take care of
everything for you.

Day 7: Playing with the Category Page 85

----------------- Brought to you by

Listing
7-7

Listing
7-8

Listing
7-9

Listing
7-10

config/doctrine/schema.yml
JobeetCategory:

actAs:
Timestampable: ~
Sluggable:

fields: [name]
columns:

name:
type: string(255)
notnull: true

Now that slug is a real column, you need to remove the getSlug() method from
JobeetCategory.

The setting of the slug column is taken care of automatically when you save a record. The
slug is built using the value of the name field and set to the object.

Use the doctrine:build --all --and-load task to update the database tables, and
repopulate the database with our fixtures:

$ php symfony doctrine:build --all --and-load --no-confirmation

We have now everything in place to create the executeShow() method. Replace the content
of the category actions file with the following code:

// apps/frontend/modules/category/actions/actions.class.php
class categoryActions extends sfActions
{

public function executeShow(sfWebRequest $request)
{

$this->category = $this->getRoute()->getObject();
}

}

Because we have removed the generated executeIndex() method, you can also remove
the automatically generated indexSuccess.php template (apps/frontend/modules/
category/templates/indexSuccess.php).

The last step is to create the showSuccess.php template:

// apps/frontend/modules/category/templates/showSuccess.php
<?php use_stylesheet('jobs.css') ?>

<?php slot('title', sprintf('Jobs in the %s category',
$category->getName())) ?>

<div class="category">
<div class="feed">

Feed
</div>
<h1><?php echo $category ?></h1>

</div>

<table class="jobs">
<?php foreach ($category->getActiveJobs() as $i => $job): ?>

<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">

Day 7: Playing with the Category Page 86

----------------- Brought to you by

Listing
7-11

Listing
7-12

Listing
7-13

<td class="location">
<?php echo $job->getLocation() ?>

</td>
<td class="position">

<?php echo link_to($job->getPosition(), 'job_show_user', $job) ?>
</td>
<td class="company">

<?php echo $job->getCompany() ?>
</td>

</tr>
<?php endforeach; ?>

</table>

Partials
Notice that we have copied and pasted the <table> tag that create a list of jobs from the job
indexSuccess.php template. That’s bad. Time to learn a new trick. When you need to reuse
some portion of a template, you need to create a partial. A partial is a snippet of template
code that can be shared among several templates. A partial is just another template that
starts with an underscore (_).
Create the _list.php file:

// apps/frontend/modules/job/templates/_list.php
<table class="jobs">

<?php foreach ($jobs as $i => $job): ?>
<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">

<td class="location">
<?php echo $job->getLocation() ?>

</td>
<td class="position">

<?php echo link_to($job->getPosition(), 'job_show_user', $job) ?>
</td>
<td class="company">

<?php echo $job->getCompany() ?>
</td>

</tr>
<?php endforeach; ?>

</table>

You can include a partial by using the include_partial() helper:

<?php include_partial('job/list', array('jobs' => $jobs)) ?>

The first argument of include_partial() is the partial name (made of the module name, a
/, and the partial name without the leading _). The second argument is an array of variables
to pass to the partial.

Why not use the PHP built-in include() method instead of the include_partial()
helper? The main difference between the two is the built-in cache support of the
include_partial() helper.

Replace the <table> HTML code from both templates with the call to include_partial():

// in apps/frontend/modules/job/templates/indexSuccess.php
<?php include_partial('job/list', array('jobs' =>

Day 7: Playing with the Category Page 87

----------------- Brought to you by

Listing
7-14

Listing
7-15

Listing
7-16

$category->getActiveJobs(sfConfig::get('app_max_jobs_on_homepage')))) ?>

// in apps/frontend/modules/category/templates/showSuccess.php
<?php include_partial('job/list', array('jobs' =>
$category->getActiveJobs())) ?>

List Pagination
From the second day’s requirements:
“The list is paginated with 20 jobs per page.”
To paginate a list of Doctrine objects, symfony provides a dedicated class:
sfDoctrinePager40. In the category action, instead of passing the job objects to the
showSuccess template, we pass a pager:

// apps/frontend/modules/category/actions/actions.class.php
public function executeShow(sfWebRequest $request)
{

$this->category = $this->getRoute()->getObject();

$this->pager = new sfDoctrinePager(
'JobeetJob',
sfConfig::get('app_max_jobs_on_category')

);
$this->pager->setQuery($this->category->getActiveJobsQuery());
$this->pager->setPage($request->getParameter('page', 1));
$this->pager->init();

}

The sfRequest::getParameter() method takes a default value as a second argument.
In the action above, if the page request parameter does not exist, then getParameter()
will return 1.

The sfDoctrinePager constructor takes a model class and the maximum number of items
to return per page. Add the latter value to your configuration file:

apps/frontend/config/app.yml
all:

active_days: 30
max_jobs_on_homepage: 10
max_jobs_on_category: 20

The sfDoctrinePager::setQuery() method takes a Doctrine_Query object to use when
selecting items from the database.
Add the getActiveJobsQuery() method:

// lib/model/doctrine/JobeetCategory.class.php
public function getActiveJobsQuery()
{

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.category_id = ?', $this->getId());

40. http://www.symfony-project.org/api/1_4/sfDoctrinePager

Day 7: Playing with the Category Page 88

----------------- Brought to you by

Listing
7-17

Listing
7-18

return Doctrine_Core::getTable('JobeetJob')->addActiveJobsQuery($q);
}

Now that we have defined the getActiveJobsQuery() method, we can refactor other
JobeetCategory methods to use it:

// lib/model/doctrine/JobeetCategory.class.php
public function getActiveJobs($max = 10)
{

$q = $this->getActiveJobsQuery()
->limit($max);

return $q->execute();
}

public function countActiveJobs()
{

return $this->getActiveJobsQuery()->count();
}

Finally, let’s update the template:

<!-- apps/frontend/modules/category/templates/showSuccess.php -->
<?php use_stylesheet('jobs.css') ?>

<?php slot('title', sprintf('Jobs in the %s category',
$category->getName())) ?>

<div class="category">
<div class="feed">

Feed
</div>
<h1><?php echo $category ?></h1>

</div>

<?php include_partial('job/list', array('jobs' => $pager->getResults())) ?>

<?php if ($pager->haveToPaginate()): ?>
<div class="pagination">

<a href="<?php echo url_for('category', $category) ?>?page=1">
<img src="http://www.symfony-project.org/images/first.png"

alt="First page" title="First page" />

<a href="<?php echo url_for('category', $category) ?>?page=<?php echo
$pager->getPreviousPage() ?>">

<img src="http://www.symfony-project.org/images/previous.png"
alt="Previous page" title="Previous page" />

<?php foreach ($pager->getLinks() as $page): ?>
<?php if ($page == $pager->getPage()): ?>

<?php echo $page ?>
<?php else: ?>

<a href="<?php echo url_for('category', $category) ?>?page=<?php
echo $page ?>"><?php echo $page ?>

<?php endif; ?>
<?php endforeach; ?>

Day 7: Playing with the Category Page 89

----------------- Brought to you by

<a href="<?php echo url_for('category', $category) ?>?page=<?php echo
$pager->getNextPage() ?>">

<img src="http://www.symfony-project.org/images/next.png" alt="Next
page" title="Next page" />

<a href="<?php echo url_for('category', $category) ?>?page=<?php echo
$pager->getLastPage() ?>">

<img src="http://www.symfony-project.org/images/last.png" alt="Last
page" title="Last page" />

</div>

<?php endif; ?>

<div class="pagination_desc">
<?php echo count($pager) ?> jobs in this category

<?php if ($pager->haveToPaginate()): ?>
- page <?php echo $pager->getPage() ?>/<?php echo

$pager->getLastPage() ?>
<?php endif; ?>

</div>

Most of this code deals with the links to other pages. Here are the list of sfDoctrinePager
methods used in this template:

• getResults(): Returns an array of Doctrine objects for the current page
• getNbResults(): Returns the total number of results
• haveToPaginate(): Returns true if there is more than one page
• getLinks(): Returns a list of page links to display
• getPage(): Returns the current page number
• getPreviousPage(): Returns the previous page number
• getNextPage(): Returns the next page number
• getLastPage(): Returns the last page number

As sfDoctrinePager also implements the Iterator and Countable interfaces, you can
use count() function to get the number of results instead of the getNbResults() method.

Day 7: Playing with the Category Page 90

----------------- Brought to you by

Final Thoughts
If you worked on your own implementation in day 6 and feel that you didn’t learn much here,
it means that you are getting used to the symfony philosophy. The process to add a new
feature to a symfony website is always the same: think about the URLs, create some actions,
update the model, and write some templates. And, if you can apply some good development
practices to the mix, you will become a symfony master very fast.
Tomorrow will be the start of a new week for Jobeet. To celebrate, we will talk about a brand
new topic: automated tests.

Day 7: Playing with the Category Page 91

----------------- Brought to you by

Day 8

The Unit Tests

During the last two days, we reviewed all the features learned during the first five days of the
Practical symfony book to customize Jobeet features and add new ones. In the process, we
have also touched on other more advanced symfony features.
Today, we will start talking about something completely different: automated tests. As the
topic is quite large, it will take us two full days to cover everything.

Tests in symfony
There are two different kinds of automated tests in symfony: unit tests|Unit Testing and
functional tests.
Unit tests verify that each method and function is working properly. Each test must be as
independent as possible from the others.
On the other hand, functional tests verify that the resulting application behaves correctly as a
whole.
All tests in symfony are located under the test/ directory of the project. It contains two sub-
directories, one for unit tests (test/unit/) and one for functional tests (test/
functional/).
Unit tests will be covered today, whereas tomorrow will be dedicated to functional tests.

Unit Tests
Writing unit tests is perhaps one of the hardest web development best practices to put into
action. As web developers are not really used to testing their work, a lot of questions arise:
Do I have to write tests before implementing a feature? What do I need to test? Do my tests
need to cover every single edge case|Edge Cases? How can I be sure that everything is well
tested? But usually, the first question is much more basic: Where to start?
Even if we strongly advocate testing, the symfony approach is pragmatic: it’s always better to
have some tests than no test at all. Do you already have a lot of code without any test? No
problem. You don’t need to have a full test suite to benefit from the advantages of having
tests. Start by adding tests whenever you find a bug in your code. Over time, your code will
become better, the code coverage|Code Coverage will rise, and you will become more
confident about it. By starting with a pragmatic approach, you will feel more comfortable with
tests over time. The next step is to write tests for new features. In no time, you will become a
test addict.
The problem with most testing libraries is their steep learning curve. That’s why symfony
provides a very simple testing library, lime, to make writing test insanely easy.

Day 8: The Unit Tests 92

----------------- Brought to you by

Listing
8-1

Even if this tutorial describes the lime built-in library extensively, you can use any testing
library, like the excellent PHPUnit41 library.

The lime Testing Framework
All unit tests written with the lime framework start with the same code:

require_once dirname(__FILE__).'/../bootstrap/unit.php';

$t = new lime_test(1);

First, the unit.php bootstrap file is included to initialize a few things. Then, a new
lime_test object is created and the number of tests planned to be launched is passed as an
argument.

The plan allows lime to output an error message in case too few tests are run (for instance
when a test generates a PHP fatal error).

Testing works by calling a method or a function with a set of predefined inputs and then
comparing the results with the expected output. This comparison determines whether a test
passes or fails.
To ease the comparison, the lime_test object provides several methods:

Method Description
ok($test) Tests a condition and passes if it is true
is($value1, $value2) Compares two values and passes if they are

equal (==)
isnt($value1, $value2) Compares two values and passes if they are

not equal
like($string, $regexp) Tests a string against a regular expression
unlike($string, $regexp) Checks that a string doesn’t match a regular

expression
is_deeply($array1, $array2) Checks that two arrays have the same values

You may wonder why lime defines so many test methods, as all tests can be written just by
using the ok() method. The benefit of alternative methods lies in much more explicit error
messages in case of a failed test and in improved readability of the tests.

The lime_test object also provides other convenient testing methods:

Method Description
fail() Always fails—useful for testing exceptions
pass() Always passes—useful for testing exceptions
skip($msg, $nb_tests) Counts as $nb_tests tests—useful for conditional

41. http://www.phpunit.de/

Day 8: The Unit Tests 93

----------------- Brought to you by

Listing
8-2

Listing
8-3

Listing
8-4

Method Description
tests

todo() Counts as a test—useful for tests yet to be
written

Finally, the comment($msg) method outputs a comment but runs no test.

Running Unit Tests
All unit tests are stored under the test/unit/ directory. By convention, tests are named
after the class they test and suffixed by Test. Although you can organize the files under the
test/unit/ directory anyway you like, we recommend you replicate the directory structure
of the lib/ directory.
To illustrate unit testing, we will test the Jobeet class.
Create a test/unit/JobeetTest.php file and copy the following code inside:

// test/unit/JobeetTest.php
require_once dirname(__FILE__).'/../bootstrap/unit.php';

$t = new lime_test(1);
$t->pass('This test always passes.');

To launch the tests, you can execute the file directly:

$ php test/unit/JobeetTest.php

Or use the test:unit task:

$ php symfony test:unit Jobeet

Windows command line unfortunately cannot highlight test results in red or green color.
But if you use Cygwin, you can force symfony to use colors by passing the --color option
to the task.

Testing slugify
Let’s start our trip to the wonderful world of unit testing by writing tests for the
Jobeet::slugify() method.
We created the ~slug|Slug~ify() method during day 5 to clean up a string so that it can
be safely included in a URL. The conversion consists in some basic transformations like
converting all non-ASCII characters to a dash (-) or converting the string to lowercase:

Day 8: The Unit Tests 94

----------------- Brought to you by

Listing
8-5

Listing
8-6

Input Output
Sensio Labs sensio-labs
Paris, France paris-france

Replace the content of the test file with the following code:

// test/unit/JobeetTest.php
require_once dirname(__FILE__).'/../bootstrap/unit.php';

$t = new lime_test(6);

$t->is(Jobeet::slugify('Sensio'), 'sensio');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs');
$t->is(Jobeet::slugify('paris,france'), 'paris-france');
$t->is(Jobeet::slugify(' sensio'), 'sensio');
$t->is(Jobeet::slugify('sensio '), 'sensio');

If you take a closer look at the tests we have written, you will notice that each line only tests
one thing. That’s something you need to keep in mind when writing unit tests. Test one thing
at a time.
You can now execute the test file. If all tests pass, as we expect them to, you will enjoy the
“green bar”. If not, the infamous “red bar” will alert you that some tests do not pass and that
you need to fix them.

If a test fails, the output will give you some information about why it failed; but if you have
hundreds of tests in a file, it can be difficult to quickly identify the behavior that fails.
All lime test methods take a string as their last argument that serves as the description for
the test. It’s very convenient as it forces you to describe what you are really testing. It can
also serve as a form of documentation for a method’s expected behavior. Let’s add some
messages to the slugify test file:

require_once dirname(__FILE__).'/../bootstrap/unit.php';

$t = new lime_test(6);

$t->comment('::slugify()');
$t->is(Jobeet::slugify('Sensio'), 'sensio',

'::slugify() converts all characters to lower case');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs',

'::slugify() replaces a white space by a -');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs',

'::slugify() replaces several white spaces by a single -');
$t->is(Jobeet::slugify(' sensio'), 'sensio',

'::slugify() removes - at the beginning of a string');

Day 8: The Unit Tests 95

----------------- Brought to you by

Listing
8-7

Listing
8-8

Listing
8-9

$t->is(Jobeet::slugify('sensio '), 'sensio',
'::slugify() removes - at the end of a string');

$t->is(Jobeet::slugify('paris,france'), 'paris-france',
'::slugify() replaces non-ASCII characters by a -');

The test description string is also a valuable tool when trying to figure out what to test. You
can see a pattern in the test strings: they are sentences describing how the method must
behave and they always start with the method name to test.

Code Coverage

When you write tests, it is easy to forget a portion of the code.
To help you check that all your code is well tested, symfony provides the test:coverage
task. Pass this task a test file or directory and a lib file or directory as arguments and it will
tell you the code coverage of your code:

$ php symfony test:coverage test/unit/JobeetTest.php lib/Jobeet.class.php

If you want to know which lines are not covered by your tests, pass the --detailed option:

$ php symfony test:coverage --detailed test/unit/JobeetTest.php lib/
Jobeet.class.php

Keep in mind that when the task indicates that your code is fully unit tested, it just means
that each line has been executed, not that all the edge cases have been tested.
As the test:coverage relies on XDebug to collect its information, you need to install it
and enable it first.

Adding Tests for new Features
The slug for an empty string is an empty string. You can test it, it will work. But an empty
string in a URL is not that a great idea. Let’s change the slugify() method so that it
returns the “n-a” string in case of an empty string.
You can write the test first, then update the method, or the other way around. It is really a
matter of taste but writing the test first gives you the confidence that your code actually
implements what you planned:

$t->is(Jobeet::slugify(''), 'n-a',
'::slugify() converts the empty string to n-a');

This development methodology, where you first write tests then implement features, is known
as Test Driven Development (TDD)42.

Day 8: The Unit Tests 96

----------------- Brought to you by

Listing
8-10

Listing
8-11

If you launch the tests now, you must have a red bar. If not, it means that the feature is
already implemented or that your test does not test what it is supposed to test.
Now, edit the Jobeet class and add the following condition at the beginning:

// lib/Jobeet.class.php
static public function slugify($text)
{

if (empty($text))
{

return 'n-a';
}

// ...
}

The test must now pass as expected, and you can enjoy the green bar, but only if you have
remembered to update the test plan. If not, you will have a message that says you planned six
tests and ran one extra. Having the planned test count up to date is important, as it you will
keep you informed if the test script dies early on.

Adding Tests because of a Bug
Let’s say that time has passed and one of your users reports a weird bug: some job links point
to a 404 error page. After some investigation, you find that for some reason, these jobs have
an empty company, position, or location slug.
How is it possible?
You look through the records in the database and the columns are definitely not empty. You
think about it for a while, and bingo, you find the cause. When a string only contains non-
ASCII characters, the slugify() method converts it to an empty string. So happy to have
found the cause, you open the Jobeet class and fix the problem right away. That’s a bad
idea. First, let’s add a test:

$t->is(Jobeet::slugify(' - '), 'n-a',
'::slugify() converts a string that only contains non-ASCII characters

to n-a');

42. http://en.wikipedia.org/wiki/Test_Driven_Development

Day 8: The Unit Tests 97

----------------- Brought to you by

Listing
8-12

After checking that the test does not pass, edit the Jobeet class and move the empty string
check to the end of the method:

static public function slugify($text)
{

// ...

if (empty($text))
{

return 'n-a';
}

return $text;
}

The new test now passes, as do all the other ones. The slugify() had a bug despite our
100% coverage.
You cannot think about all edge cases when writing tests, and that’s fine. But when you
discover one, you need to write a test for it before fixing your code. It also means that your
code will get better over time, which is always a good thing.

Day 8: The Unit Tests 98

----------------- Brought to you by

Listing
8-13

Listing
8-14

Listing
8-15

Towards a better slugify Method

You probably know that symfony has been created by French people, so let’s add a test with
a French word that contains an “accent”:

$t->is(Jobeet::slugify('Développeur Web'), 'developpeur-web',
'::slugify() removes accents');

The test must fail. Instead of replacing é by e, the slugify() method has replaced it by a
dash (-). That’s a tough problem, called transliteration. Hopefully, if you have “iconv”
installed, it will do the job for us. Replace the code of the slugify method with the
following:

// code derived from http://php.vrana.cz/vytvoreni-pratelskeho-url.php
static public function slugify($text)
{

// replace non letter or digits by -
$text = preg_replace('#[^\\pL\d]+#u', '-', $text);

// trim
$text = trim($text, '-');

// transliterate
if (function_exists('iconv'))
{

$text = iconv('utf-8', 'us-ascii//TRANSLIT', $text);
}

// lowercase
$text = strtolower($text);

// remove unwanted characters
$text = preg_replace('#[^-\w]+#', '', $text);

if (empty($text))
{

return 'n-a';
}

return $text;
}

Remember to save all your PHP files with the UTF-8 encoding, as this is the default symfony
encoding, and the one used by “iconv” to do the transliteration.
Also change the test file to run the test only if “iconv” is available:

if (function_exists('iconv'))
{

$t->is(Jobeet::slugify('Développeur Web'), 'developpeur-web',
'::slugify() removes accents');
}
else
{

$t->skip('::slugify() removes accents - iconv not installed');
}

Day 8: The Unit Tests 99

----------------- Brought to you by

Listing
8-16

Listing
8-17

Doctrine Unit Tests
Database Configuration
Unit testing a Doctrine model class is a bit more complex as it requires a database
connection. You already have the one you use for your development, but it is a good habit to
create a dedicated database for tests.
At the beginning of this book, we introduced the environments as a way to vary an
application’s settings. By default, all symfony tests are run in the test environment, so let’s
configure a different database for the test environment:

$ php symfony configure:database --name=doctrine
--class=sfDoctrineDatabase --env=test
"mysql:host=localhost;dbname=jobeet_test" root mYsEcret

The env option tells the task that the database configuration is only for the test
environment. When we used this task during day 3, we did not pass any env option, so the
configuration was applied to all environments.

If you are curious, open the config/databases.yml configuration file to see how
symfony makes it easy to change the configuration depending on the environment.

Now that we have configured the database, we can bootstrap it by using the
doctrine:insert-sql task:

$ mysqladmin -uroot -pmYsEcret create jobeet_test
$ php symfony doctrine:insert-sql --env=test

Day 8: The Unit Tests 100

----------------- Brought to you by

Listing
8-18

Listing
8-19

Configuration Principles in symfony

During day 4, we saw that settings coming from configuration files can be defined at
different levels.
These settings can also be environment dependent. This is true for most configuration files
we have used until now: databases.yml, app.yml, view.yml, and settings.yml. In all
those files, the main key is the environment, the all key indicating its settings are for all
environments:

config/databases.yml
dev:

doctrine:
class: sfDoctrineDatabase

test:
doctrine:

class: sfDoctrineDatabase
param:

dsn: 'mysql:host=localhost;dbname=jobeet_test'

all:
doctrine:

class: sfDoctrineDatabase
param:

dsn: 'mysql:host=localhost;dbname=jobeet'
username: root
password: null

Test Data
Now that we have a dedicated database for our tests, we need a way to load some test data.
During day 3, you learned to use the doctrine:data-load task, but for tests, we need to
reload the data each time we run them to put the database in a known state.
The doctrine:data-load task internally uses the Doctrine_Core::loadData() method
to load the data:

Doctrine_Core::loadData(sfConfig::get('sf_test_dir').'/fixtures');

The sfConfig object can be used to get the full path of a project sub-directory. Using it
allows for the default directory structure to be customized.

The loadData() method takes a directory or a file as its first argument. It can also take an
array of directories and/or files.
We have already created some initial data in the data/fixtures/ directory. For tests, we
will put the fixtures into the test/fixtures/ directory. These fixtures will be used for
Doctrine unit and functional tests.
For now, copy the files from data/fixtures/ to the test/fixtures/ directory.

Testing JobeetJob

Let’s create some unit tests for the JobeetJob model class.

Day 8: The Unit Tests 101

----------------- Brought to you by

Listing
8-20

Listing
8-21

Listing
8-22

Listing
8-23

Listing
8-24

Listing
8-25

Listing
8-26

As all our Doctrine unit tests will begin with the same code, create a Doctrine.php file in
the bootstrap/ test directory with the following code:

// test/bootstrap/Doctrine.php
include(dirname(__FILE__).'/unit.php');

$configuration =
ProjectConfiguration::getApplicationConfiguration(
'frontend', 'test', true);

new sfDatabaseManager($configuration);

Doctrine_Core::loadData(sfConfig::get('sf_test_dir').'/fixtures');

The script is pretty self-explanatory:

• As for the front controllers, we initialize a configuration object for the test
environment:

$configuration =
ProjectConfiguration::getApplicationConfiguration(
'frontend', 'test', true);

• We create a database manager. It initializes the Doctrine connection by loading the
databases.yml configuration file.

new sfDatabaseManager($configuration);

• We load our test data by using Doctrine_Core::loadData():

Doctrine_Core::loadData(sfConfig::get('sf_test_dir').'/fixtures');

Doctrine connects to the database only if it has some SQL statements to execute.

Now that everything is in place, we can start testing the JobeetJob class.
First, we need to create the JobeetJobTest.php file in test/unit/model:

// test/unit/model/JobeetJobTest.php
include(dirname(__FILE__).'/../../bootstrap/Doctrine.php');

$t = new lime_test(1);

Then, let’s start by adding a test for the getCompanySlug() method:

$t->comment('->getCompanySlug()');
$job = Doctrine_Core::getTable('JobeetJob')->createQuery()->fetchOne();
$t->is($job->getCompanySlug(), Jobeet::slugify($job->getCompany()),
'->getCompanySlug() return the slug for the company');

Notice that we only test the getCompanySlug() method and not if the slug is correct or not,
as we are already testing this elsewhere.
Writing tests for the save() method is slightly more complex:

$t->comment('->save()');
$job = create_job();

Day 8: The Unit Tests 102

----------------- Brought to you by

Listing
8-27

$job->save();
$expiresAt = date('Y-m-d', time() + 86400

* sfConfig::get('app_active_days'));
$t->is($job->getDateTimeObject('expires_at')->format('Y-m-d'), $expiresAt,
'->save() updates expires_at if not set');

$job = create_job(array('expires_at' => '2008-08-08'));
$job->save();
$t->is($job->getDateTimeObject('expires_at')->format('Y-m-d'),
'2008-08-08', '->save() does not update expires_at if set');

function create_job($defaults = array())
{

static $category = null;

if (is_null($category))
{

$category = Doctrine_Core::getTable('JobeetCategory')
->createQuery()
->limit(1)
->fetchOne();

}

$job = new JobeetJob();
$job->fromArray(array_merge(array(

'category_id' => $category->getId(),
'company' => 'Sensio Labs',
'position' => 'Senior Tester',
'location' => 'Paris, France',
'description' => 'Testing is fun',
'how_to_apply' => 'Send e-Mail',
'email' => 'job@example.com',
'token' => rand(1111, 9999),
'is_activated' => true,

), $defaults));

return $job;
}

Each time you add tests, don’t forget to update the number of expected tests (the plan) in
the lime_test constructor method. For the JobeetJobTest file, you need to change it
from 1 to 3.

Test other Doctrine Classes
You can now add tests for all other Doctrine classes. As you are now getting used to the
process of writing unit tests, it should be quite easy.

Unit Tests Harness
The test:unit task can also be used to launch all unit tests for a project:

$ php symfony test:unit

The task outputs whether each test file passes or fails:

Day 8: The Unit Tests 103

----------------- Brought to you by

If the test:unit task returns a “dubious status” for a file, it indicates that the script died
before end. Running the test file alone will give you the exact error message.

Final Thoughts
Even if testing an application is quite important, I know that some of you might have been
tempted to just skip this day. I’m glad you have not.
Sure, embracing symfony is about learning all the great features the framework provides, but
it’s also about its philosophy of development and the best practices it advocates. And testing
is one of them. Sooner or later, unit tests will save the day for you. They give you a solid
confidence about your code and the freedom to refactor it without fear. Unit tests are a safe
guard that will alert you if you break something. The symfony framework itself has more than
9000 tests.
Tomorrow, we will write some functional tests for the job and category modules. Until
then, take some time to write more unit tests for the Jobeet model classes.

Day 8: The Unit Tests 104

----------------- Brought to you by

Day 9

The Functional Tests

Yesterday, we saw how to unit test our Jobeet classes using the lime testing library packaged
with symfony. Today, we will write functional tests for the features we have already
implemented in the job and category modules.

Functional Tests
Functional tests are a great tool to test your application from end to end: from the request
made by a browser to the response sent by the server. They test all the layers of an
application: the routing, the model, the actions, and the templates. They are very similar to
what you probably already do manually: each time you add or modify an action, you need to
go to the browser and check that everything works as expected by clicking on links and
checking elements on the rendered page. In other words, you run a scenario corresponding to
the use case you have just implemented.
As the process is manual, it is tedious and error prone. Each time you change something in
your code, you must step through all the scenarios to ensure that you did not break
something. That’s insane. Functional tests in symfony provide a way to easily describe
scenarios. Each scenario can then be played automatically over and over again by simulating
the experience a user has in a browser. Like unit tests, they give you the confidence to code
in peace.

The functional test framework does not replace tools like “Selenium43”. Selenium runs
directly in the browser to automate testing across many platforms and browsers and as
such, it is able to test your application’s JavaScript.

The sfBrowser class
In symfony, functional tests are run through a special browser, implemented by the
sfBrowser44 class. It acts as a browser tailored for your application and directly connected
to it, without the need for a web server. It gives you access to all symfony objects before and
after each request, giving you the opportunity to introspect them and do the checks you want
programatically.
sfBrowser provides methods that simulates navigation done in a classic browser:

43. http://selenium.seleniumhq.org/
44. http://www.symfony-project.org/api/1_4/sfBrowser

Day 9: The Functional Tests 105

----------------- Brought to you by

Listing
9-1

Method Description
get() Gets a URL
post() Posts to a URL
call() Calls a URL (used for PUT and DELETE methods)
back() Goes back one page in the history
forward() Goes forward one page in the history
reload() Reloads the current page
click() Clicks on a link or a button
select() selects a radiobutton or checkbox
deselect() deselects a radiobutton or checkbox
restart() Restarts the browser

Here are some usage examples of the sfBrowser methods:

$browser = new sfBrowser();

$browser->
get('/')->
click('Design')->
get('/category/programming?page=2')->
get('/category/programming', array('page' => 2))->
post('search', array('keywords' => 'php'))

;

sfBrowser contains additional methods to configure the browser behavior:

Method Description
setHttpHeader() Sets an HTTP header
setAuth() Sets the basic authentication credentials
setCookie() Set a cookie
removeCookie() Removes a cookie
clearCookies() Clears all current cookies
followRedirect() Follows a redirect

The sfTestFunctional class
We have a browser, but we need a way to introspect the symfony objects to do the actual
testing. It can be done with lime and some sfBrowser methods like getResponse() and
getRequest() but symfony provides a better way.
The test methods are provided by another class, sfTestFunctional45 that takes a
sfBrowser instance in its constructor. The sfTestFunctional class delegates the tests to
tester objects. Several testers are bundled with symfony, and you can also create your own.
As we saw in day 8, functional tests are stored under the test/functional/ directory. For
Jobeet, tests are to be found in the test/functional/frontend/ sub-directory as each
application has its own subdirectory. This directory already contains two files:

45. http://www.symfony-project.org/api/1_4/sfTestFunctional

Day 9: The Functional Tests 106

----------------- Brought to you by

Listing
9-2

Listing
9-3

Listing
9-4

categoryActionsTest.php, and jobActionsTest.php as all tasks that generate a
module automatically create a basic functional test file:

// test/functional/frontend/categoryActionsTest.php
include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new sfTestFunctional(new sfBrowser());

$browser->
get('/category/index')->

with('request')->begin()->
isParameter('module', 'category')->
isParameter('action', 'index')->

end()->

with('response')->begin()->
isStatusCode(200)->
checkElement('body', '!/This is a temporary page/')->

end()
;

At first sight, the script above may look a bit strange to you. That’s because methods of
sfBrowser and sfTestFunctional implement a fluent interface46 by always returning
$this. It allows you to chain method calls for better readability. The above snippet is
equivalent to:

// test/functional/frontend/categoryActionsTest.php
include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new sfTestFunctional(new sfBrowser());

$browser->get('/category/index');
$browser->with('request')->begin();
$browser->isParameter('module', 'category');
$browser->isParameter('action', 'index');
$browser->end();

$browser->with('response')->begin();
$browser->isStatusCode(200);
$browser->checkElement('body', '!/This is a temporary page/');
$browser->end();

Tests are run within a tester block context. A tester block context begins with with('TESTER
NAME')->begin() and ends with end():

$browser->
with('request')->begin()->

isParameter('module', 'category')->
isParameter('action', 'index')->

end()
;

The code tests that the request parameter module equals category and action equals
index.

46. http://en.wikipedia.org/wiki/Fluent_interface

Day 9: The Functional Tests 107

----------------- Brought to you by

Listing
9-5

Listing
9-6

When you only need to call one test method on a tester, you don’t need to create a block:
with('request')->isParameter('module', 'category').

The Request Tester
The request tester provides tester methods to introspect and test the sfWebRequest object:

Method Description
isParameter() Checks a request parameter value
isFormat() Checks the format of a request
isMethod() Checks the method
hasCookie() Checks whether the request has a cookie with the

given name
isCookie() Checks the value of a cookie

The Response Tester
There is also a response tester class that provides tester methods against the
sfWebResponse object:

Method Description
checkElement() Checks if a response CSS selector match some criteria
checkForm() Checks an sfForm form object
debug() Prints the response output to ease debug
matches() Tests a response against a regexp
isHeader() Checks the value of a header
isStatusCode() Checks the response status code
isRedirected() Checks if the current response is a redirect
isValid() Checks if a response is well-formed XML (you also validate the response

again its document type be passing true as an argument)

We will describe more testers classes in the coming days (for forms, user, cache, …).

Running Functional Tests
As for unit tests, launching functional tests can be done by executing the test file directly:

$ php test/functional/frontend/categoryActionsTest.php

Or by using the test:functional task:

$ php symfony test:functional frontend categoryActions

Day 9: The Functional Tests 108

----------------- Brought to you by

Listing
9-7

Listing
9-8

Listing
9-9

Test Data
As for Doctrine unit tests, we need to load test data each time we launch a functional test. We
can reuse the code we have written previously:

include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new sfTestFunctional(new sfBrowser());
Doctrine_Core::loadData(sfConfig::get('sf_test_dir').'/fixtures');

Loading data in a functional test is a bit easier than in unit tests as the database has already
been initialized by the bootstrapping script.
As for unit tests, we won’t copy and paste this snippet of code in each test file, but we will
rather create our own functional class that inherits from sfTestFunctional:

// lib/test/JobeetTestFunctional.class.php
class JobeetTestFunctional extends sfTestFunctional
{

public function loadData()
{

Doctrine_Core::loadData(sfConfig::get('sf_test_dir').'/fixtures');

return $this;
}

}

Writing Functional Tests
Writing functional tests is like playing a scenario in a browser. We already have written all
the scenarios we need to test as part of the day 2 stories.
First, let’s test the Jobeet homepage by editing the jobActionsTest.php test file. Replace
the code with the following one:

Expired jobs are not listed
// test/functional/frontend/jobActionsTest.php
include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

Day 9: The Functional Tests 109

----------------- Brought to you by

Listing
9-10

Listing
9-11

$browser->info('1 - The homepage')->
get('/')->
with('request')->begin()->

isParameter('module', 'job')->
isParameter('action', 'index')->

end()->
with('response')->begin()->

info(' 1.1 - Expired jobs are not listed')->
checkElement('.jobs td.position:contains("expired")', false)->

end()
;

As with lime, an informational message can be inserted by calling the info() method to
make the output more readable. To verify the exclusion of expired jobs from the homepage,
we check that the CSS selector .jobs td.position:contains("expired") does not
match anywhere in the response HTML content (remember that in the fixture files, the only
expired job we have contains “expired” in the position). When the second argument of the
checkElement() method is a Boolean, the method tests the existence of nodes that match
the CSS selector.

The checkElement() method is able to interpret most valid CSS3 selectors.

Only n jobs are listed for a category
Add the following code at the end of the test file:

// test/functional/frontend/jobActionsTest.php
$max = sfConfig::get('app_max_jobs_on_homepage');

$browser->info('1 - The homepage')->
get('/')->
info(sprintf(' 1.2 - Only %s jobs are listed for a category', $max))->
with('response')->

checkElement('.category_programming tr', $max)
;

The checkElement() method can also check that a CSS selector matches ‘n’ nodes in the
document by passing an integer as its second argument.

A category has a link to the category page only if too many jobs
// test/functional/frontend/jobActionsTest.php
$browser->info('1 - The homepage')->

get('/')->
info(' 1.3 - A category has a link to the category page only if too

many jobs')->
with('response')->begin()->

checkElement('.category_design .more_jobs', false)->
checkElement('.category_programming .more_jobs')->

end()
;

Day 9: The Functional Tests 110

----------------- Brought to you by

Listing
9-12

Listing
9-13

Listing
9-14

In these tests, we check that there is no “more jobs” link for the design category
(.category_design .more_jobs does not exist), and that there is a “more jobs” link for
the programming category (.category_programming .more_jobs does exist).

Jobs are sorted by date
$q = Doctrine_Query::create()

->select('j.*')
->from('JobeetJob j')
->leftJoin('j.JobeetCategory c')
->where('c.slug = ?', 'programming')
->andWhere('j.expires_at > ?', date('Y-m-d', time()))
->orderBy('j.created_at DESC');

$job = $q->fetchOne();

$browser->info('1 - The homepage')->
get('/')->
info(' 1.4 - Jobs are sorted by date')->
with('response')->begin()->

checkElement(sprintf('.category_programming tr:first a[href*="/%d/"]',
$job->getId()))->

end()
;

To test if jobs are actually sorted by date, we need to check that the first job listed on the
homepage is the one we expect. This can be done by checking that the URL contains the
expected primary key. As the primary key can change between runs, we need to get the
Doctrine object from the database first.
Even if the test works as is, we need to refactor the code a bit, as getting the first job of the
programming category can be reused elsewhere in our tests. We won’t move the code to the
Model layer as the code is test specific. Instead, we will move the code to the
JobeetTestFunctional class we have created earlier. This class acts as a Domain Specific
functional tester class for Jobeet:

// lib/test/JobeetTestFunctional.class.php
class JobeetTestFunctional extends sfTestFunctional
{

public function getMostRecentProgrammingJob()
{

$q = Doctrine_Query::create()
->select('j.*')
->from('JobeetJob j')
->leftJoin('j.JobeetCategory c')
->where('c.slug = ?', 'programming');

$q = Doctrine_Core::getTable('JobeetJob')->addActiveJobsQuery($q);

return $q->fetchOne();
}

// ...
}

You can now replace the previous test code by the following one:

Day 9: The Functional Tests 111

----------------- Brought to you by

Listing
9-15

Listing
9-16

// test/functional/frontend/jobActionsTest.php
$browser->info('1 - The homepage')->

get('/')->
info(' 1.4 - Jobs are sorted by date')->
with('response')->begin()->

checkElement(sprintf('.category_programming tr:first a[href*="/%d/"]',
$browser->getMostRecentProgrammingJob()->getId()))->

end()
;

Each job on the homepage is clickable
$job = $browser->getMostRecentProgrammingJob();

$browser->info('2 - The job page')->
get('/')->

info(' 2.1 - Each job on the homepage is clickable and give detailed
information')->

click('Web Developer', array(), array('position' => 1))->
with('request')->begin()->

isParameter('module', 'job')->
isParameter('action', 'show')->
isParameter('company_slug', $job->getCompanySlug())->
isParameter('location_slug', $job->getLocationSlug())->
isParameter('position_slug', $job->getPositionSlug())->
isParameter('id', $job->getId())->

end()
;

To test the job link on the homepage, we simulate a click on the “Web Developer” text. As
there are many of them on the page, we have explicitly to asked the browser to click on the
first one (array('position' => 1)).
Each request parameter is then tested to ensure that the routing has done its job correctly.

Learn by the Example
In this section, we have provided all the code needed to test the job and category pages. Read
the code carefully as you may learn some new neat tricks:

// lib/test/JobeetTestFunctional.class.php
class JobeetTestFunctional extends sfTestFunctional
{

public function loadData()
{

Doctrine_Core::loadData(sfConfig::get('sf_test_dir').'/fixtures');

return $this;
}

public function getMostRecentProgrammingJob()
{

$q = Doctrine_Query::create()
->select('j.*')
->from('JobeetJob j')

Day 9: The Functional Tests 112

----------------- Brought to you by

->leftJoin('j.JobeetCategory c')
->where('c.slug = ?', 'programming');

$q = Doctrine_Core::getTable('JobeetJob')->addActiveJobsQuery($q);

return $q->fetchOne();
}

public function getExpiredJob()
{

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.expires_at < ?', date('Y-m-d', time()));

return $q->fetchOne();
}

}

// test/functional/frontend/jobActionsTest.php
include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

$browser->info('1 - The homepage')->
get('/')->
with('request')->begin()->

isParameter('module', 'job')->
isParameter('action', 'index')->

end()->
with('response')->begin()->

info(' 1.1 - Expired jobs are not listed')->
checkElement('.jobs td.position:contains("expired")', false)->

end()
;

$max = sfConfig::get('app_max_jobs_on_homepage');

$browser->info('1 - The homepage')->
info(sprintf(' 1.2 - Only %s jobs are listed for a category', $max))->
with('response')->

checkElement('.category_programming tr', $max)
;

$browser->info('1 - The homepage')->
get('/')->
info(' 1.3 - A category has a link to the category page only if too

many jobs')->
with('response')->begin()->

checkElement('.category_design .more_jobs', false)->
checkElement('.category_programming .more_jobs')->

end()
;

$browser->info('1 - The homepage')->
info(' 1.4 - Jobs are sorted by date')->
with('response')->begin()->

checkElement(sprintf('.category_programming tr:first a[href*="/%d/"]',
$browser->getMostRecentProgrammingJob()->getId()))->

Day 9: The Functional Tests 113

----------------- Brought to you by

end()
;

$job = $browser->getMostRecentProgrammingJob();

$browser->info('2 - The job page')->
get('/')->

info(' 2.1 - Each job on the homepage is clickable and give detailed
information')->

click('Web Developer', array(), array('position' => 1))->
with('request')->begin()->

isParameter('module', 'job')->
isParameter('action', 'show')->
isParameter('company_slug', $job->getCompanySlug())->
isParameter('location_slug', $job->getLocationSlug())->
isParameter('position_slug', $job->getPositionSlug())->
isParameter('id', $job->getId())->

end()->

info(' 2.2 - A non-existent job forwards the user to a 404')->
get('/job/foo-inc/milano-italy/0/painter')->
with('response')->isStatusCode(404)->

info(' 2.3 - An expired job page forwards the user to a 404')->
get(sprintf('/job/sensio-labs/paris-france/%d/web-developer',

$browser->getExpiredJob()->getId()))->
with('response')->isStatusCode(404)

;

// test/functional/frontend/categoryActionsTest.php
include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

$browser->info('1 - The category page')->
info(' 1.1 - Categories on homepage are clickable')->
get('/')->
click('Programming')->
with('request')->begin()->

isParameter('module', 'category')->
isParameter('action', 'show')->
isParameter('slug', 'programming')->

end()->

info(sprintf(' 1.2 - Categories with more than %s jobs also have a
"more" link', sfConfig::get('app_max_jobs_on_homepage')))->

get('/')->
click('27')->
with('request')->begin()->

isParameter('module', 'category')->
isParameter('action', 'show')->
isParameter('slug', 'programming')->

end()->

info(sprintf(' 1.3 - Only %s jobs are listed',
sfConfig::get('app_max_jobs_on_category')))->

Day 9: The Functional Tests 114

----------------- Brought to you by

Listing
9-17

Listing
9-18

Listing
9-19

with('response')->checkElement('.jobs tr',
sfConfig::get('app_max_jobs_on_category'))->

info(' 1.4 - The job listed is paginated')->
with('response')->begin()->

checkElement('.pagination_desc', '/32 jobs/')->
checkElement('.pagination_desc', '#page 1/2#')->

end()->

click('2')->
with('request')->begin()->

isParameter('page', 2)->
end()->
with('response')->checkElement('.pagination_desc', '#page 2/2#')

;

Debugging Functional Tests
Sometimes a functional test fails. As symfony simulates a browser without any graphical
interface, it can be hard to diagnose the problem. Thankfully, symfony provides the
~debug|Debug~() method to output the response header and content:

$browser->with('response')->debug();

The debug() method can be inserted anywhere in a response tester block and will halt the
script execution.

Functional Tests Harness
The test:functional task can also be used to launch all functional tests for an application:

$ php symfony test:functional frontend

The task outputs a single line for each test file:

Tests Harness
As you may expect, there is also a task to launch all tests for a project (unit and functional):

$ php symfony test:all

Day 9: The Functional Tests 115

----------------- Brought to you by

Listing
9-20

Listing
9-21

When you have a large suite of tests, it can be very time consuming to launch all tests every
time you make a change, especially if some tests fail. That’s because each time you fix a test,
you should run the whole test suite again to ensure that you have not break something else.
But as long as the failed tests are not fixed, there is no point in re-executing all other tests.
The test:all tasks have a --only-failed option that forces the task to only re-execute
tests that failed during the previous run:

$ php symfony test:all --only-failed

The first time you run the task, all tests are run as usual. But for subsequent test runs, only
tests that failed last time are executed. As you fix your code, some tests will pass, and will be
removed from subsequent runs. When all tests pass again, the full test suite is run… you can
then rinse and repeat.

If you want to integrate your test suite in a continuous integration process, use the --xml
option to force the test:all task to generate a JUnit compatible XML output.

$ php symfony test:all --xml=log.xml

Final Thoughts
That wraps up our tour of the symfony test tools. You have no excuse anymore to not test your
applications! With the lime framework and the functional test framework, symfony provides
powerful tools to help you write tests with little effort.
We have just scratched the surface of functional tests. From now on, each time we implement
a feature, we will also write tests to learn more features of the test framework.
Tomorrow, we will talk about yet another great feature of symfony: the form framework.

Day 9: The Functional Tests 116

----------------- Brought to you by

Listing
10-1

Day 10

The Forms

Previous day of this Jobeet tutorial got off to a flying start with the introduction of the
symfony test framework. We will continue today with the form framework.

The Form Framework
Any website has forms; from the simple contact form to the complex ones with lots of fields.
Writing forms is also one of the most complex and tedious task for a web developer: you need
to write the HTML form, implement validation rules for each field, process the values to store
them in a database, display error messages, repopulate fields in case of errors, and much
more…
Of course, instead of reinventing the wheel over and over again, symfony provides a
framework to ease form management. The form framework is made of three parts:

• validation: The validation sub-framework provides classes to validate inputs
(integer, string, email address, …)

• widgets: The widget sub-framework provides classes to output HTML fields (input,
textarea, select, …)

• forms: The form classes represent forms made of widgets and validators and
provide methods to help manage the form. Each form field has its own validator and
widget.

Forms
A symfony form is a class made of fields. Each field has a name, a validator, and a widget. A
simple ContactForm can be defined with the following class:

class ContactForm extends sfForm
{

public function configure()
{

$this->setWidgets(array(
'email' => new sfWidgetFormInputText(),
'message' => new sfWidgetFormTextarea(),

));

$this->setValidators(array(
'email' => new sfValidatorEmail(),
'message' => new sfValidatorString(array('max_length' => 255)),

Day 10: The Forms 117

----------------- Brought to you by

Listing
10-2

Listing
10-3

Listing
10-4

));
}

}

Form fields are configured in the configure() method, by using the setValidators()
and setWidgets() methods.

The form framework comes bundled with a lot of widgets47 and validators48. The API
describes them quite extensively with all the options, errors, and default error messages.

The widget and validator class names are quite explicit: the email field will be rendered as
an HTML <input> tag (sfWidgetFormInputText) and validated as an email address
(sfValidatorEmail). The message field will be rendered as a <textarea> tag
(sfWidgetFormTextarea), and must be a string of no more than 255 characters
(sfValidatorString).
By default all fields are required, as the default value for the required option is true. So,
the validation definition for email is equivalent to new
sfValidatorEmail(array('required' => true)).

You can merge a form in another one by using the mergeForm() method, or embed one by
using the embedForm() method:

$this->mergeForm(new AnotherForm());
$this->embedForm('name', new AnotherForm());

Doctrine Forms
Most of the time, a form has to be serialized to the database. As symfony already knows
everything about your database model, it can automatically generate forms based on this
information. In fact, when you launched the doctrine:build --all task during day 3,
symfony automatically called the doctrine:build --forms task:

$ php symfony doctrine:build --forms

The doctrine:build --forms task generates form classes in the lib/form/ directory.
The organization of these generated files is similar to that of lib/model/. Each model class
has a related form class (for instance JobeetJob has JobeetJobForm), which is empty by
default as it inherits from a base class:

// lib/form/doctrine/JobeetJobForm.class.php
class JobeetJobForm extends BaseJobeetJobForm
{

public function configure()
{
}

}

47. http://www.symfony-project.org/api/1_4/widget
48. http://www.symfony-project.org/api/1_4/validator

Day 10: The Forms 118

----------------- Brought to you by

Listing
10-5

Listing
10-6

Listing
10-7

Listing
10-8

By browsing the generated files under the lib/form/doctrine/base/ sub-directory, you
will see a lot of great usage examples of symfony built-in widgets and validators.

You can disable form generation on certain models by passing parameters to the symfony
Doctrine behavior:

SomeModel:
options:

symfony:
form: false
filter: false

Customizing the Job Form
The job form is a perfect example to learn form customization|Forms (Customization). Let’s
see how to customize it, step by step.
First, change the “Post a Job” link in the layout to be able to check changes directly in your
browser:

<!-- apps/frontend/templates/layout.php -->
<a href="<?php echo url_for('job_new') ?>">Post a Job

By default, a Doctrine form displays fields for all the table columns. But for the job form,
some of them must not be editable by the end user. Removing fields from a form is as simple
as unsetting them:

// lib/form/doctrine/JobeetJobForm.class.php
class JobeetJobForm extends BaseJobeetJobForm
{

public function configure()
{

unset(
$this['created_at'], $this['updated_at'],
$this['expires_at'], $this['is_activated']

);
}

}

Unsetting a field means that both the field widget and validator are removed.
Instead of unsetting the fields you don’t want to display, you can also explicitly list the fields
you want by using the useFields() method:

// lib/form/doctrine/JobeetJobForm.class.php
class JobeetJobForm extends BaseJobeetJobForm
{

public function configure()
{

$this->useFields(array('category_id', 'type', 'company', 'logo',
'url', 'position', 'location', 'description', 'how_to_apply',
'token', 'is_public', 'email'));

}
}

Day 10: The Forms 119

----------------- Brought to you by

Listing
10-9

Listing
10-10

Listing
10-11

The useFields() method does two things automatically for you: it adds the hidden fields
and the array of fields is used to change the fields order.

Explicitly listing the form fields you want to display means that when adding new fields to a
base form, they won’t automagically appear in your form (think of a model form where you
add a new column to the related table).

The form configuration must sometimes be more precise than what can be introspected from
the database schema. For example, the email column is a varchar in the schema, but we
need this column to be validated as an email. Let’s change the default sfValidatorString
to a sfValidatorEmail:

// lib/form/doctrine/JobeetJobForm.class.php
public function configure()
{

// ...

$this->validatorSchema['email'] = new sfValidatorEmail();
}

Replacing the default validator is not always the best solution, as the default validation rules
introspected from the database schema are lost (new
sfValidatorString(array('max_length' => 255))). It is almost always better to add
the new validator to the existing ones by using the special sfValidatorAnd validator:

// lib/form/doctrine/JobeetJobForm.class.php
public function configure()
{

// ...

$this->validatorSchema['email'] = new sfValidatorAnd(array(
$this->validatorSchema['email'],
new sfValidatorEmail(),

));
}

The sfValidatorAnd validator takes an array of validators that must pass for the value to
be valid. The trick here is to reference the current validator ($this-
>validatorSchema['email']), and to add the new one.

You can also use the sfValidatorOr validator to force a value to pass at least one
validator. And of course, you can mix and match sfValidatorAnd and sfValidatorOr
validators to create complex boolean based validators.

Even if the type column is also a varchar in the schema, we want its value to be restricted
to a list of choices: full time, part time, or freelance.
First, let’s define the possible values in JobeetJobTable:

// lib/model/doctrine/JobeetJobTable.class.php
class JobeetJobTable extends Doctrine_Table
{

static public $types = array(
'full-time' => 'Full time',
'part-time' => 'Part time',
'freelance' => 'Freelance',

);

Day 10: The Forms 120

----------------- Brought to you by

Listing
10-12

Listing
10-13

Listing
10-14

Listing
10-15

public function getTypes()
{

return self::$types;
}

// ...
}

Then, use sfWidgetFormChoice for the type widget:

$this->widgetSchema['type'] = new sfWidgetFormChoice(array(
'choices' => Doctrine_Core::getTable('JobeetJob')->getTypes(),
'expanded' => true,

));

sfWidgetFormChoice represents a choice widget which can be rendered by a different
widget according to some configuration options (expanded and multiple):

• Dropdown list (<select>): array('multiple' => false, 'expanded' =>
false)

• Dropdown box (<select multiple="multiple">): array('multiple' =>
true, 'expanded' => false)

• List of radio buttons: array('multiple' => false, 'expanded' => true)
• List of checkboxes: array('multiple' => true, 'expanded' => true)

If you want one of the radio button to be selected by default (full-time for instance), you
can change the default value in the database schema.

Even if you think nobody can submit a non-valid value, a hacker can easily bypass the widget
choices by using tools like curl49 or the Firefox Web Developer Toolbar50. Let’s change the
validator to restrict the possible choices:

$this->validatorSchema['type'] = new sfValidatorChoice(array(
'choices' =>

array_keys(Doctrine_Core::getTable('JobeetJob')->getTypes()),
));

As the logo column will store the filename of the logo associated with the job, we need to
change the widget to a file input tag:

$this->widgetSchema['logo'] = new sfWidgetFormInputFile(array(
'label' => 'Company logo',

));

For each field, symfony automatically generates a label (which will be used in the rendered
<label> tag). This can be changed with the label option.
You can also change labels in a batch with the setLabels() method of the widget array:

$this->widgetSchema->setLabels(array(
'category_id' => 'Category',
'is_public' => 'Public?',

49. http://curl.haxx.se/
50. http://chrispederick.com/work/web-developer/

Day 10: The Forms 121

----------------- Brought to you by

Listing
10-16

Listing
10-17

Listing
10-18

Listing
10-19

'how_to_apply' => 'How to apply?',
));

We also need to change the default validator:

$this->validatorSchema['logo'] = new sfValidatorFile(array(
'required' => false,
'path' => sfConfig::get('sf_upload_dir').'/jobs',
'mime_types' => 'web_images',

));

sfValidatorFile is quite interesting as it does a number of things:

• Validates that the uploaded file is an image in a web format (mime_types)
• Renames the file to something unique
• Stores the file in the given path
• Updates the logo column with the generated name

You need to create the logo directory (web/uploads/jobs/) and check that it is writable
by the web server.

As the validator only saves the filename in the database, change the path used in the
showSuccess template:

// apps/frontend/modules/job/templates/showSuccess.php
<img src="http://www.symfony-project.org/uploads/jobs/<?php echo
$job->getLogo() ?>" alt="<?php echo $job->getCompany() ?> logo" />

If a generateLogoFilename() method exists in the model, it will be called by the
validator and the result will override the default generated logo filename. The method
takes the sfValidatedFile object as an argument.

Just as you can override the generated label of any field, you can also define a help message.
Let’s add one for the is_public column to better explain its significance:

$this->widgetSchema->setHelp('is_public', 'Whether the job can also be
published on affiliate websites or not.');

The final JobeetJobForm class reads as follows:

// lib/form/doctrine/JobeetJobForm.class.php
class JobeetJobForm extends BaseJobeetJobForm
{

public function configure()
{

unset(
$this['created_at'], $this['updated_at'],
$this['expires_at'], $this['is_activated']

);

$this->validatorSchema['email'] = new sfValidatorAnd(array(
$this->validatorSchema['email'],
new sfValidatorEmail(),

));

$this->widgetSchema['type'] = new sfWidgetFormChoice(array(

Day 10: The Forms 122

----------------- Brought to you by

Listing
10-20

Listing
10-21

'choices' => Doctrine_Core::getTable('JobeetJob')->getTypes(),
'expanded' => true,

));
$this->validatorSchema['type'] = new sfValidatorChoice(array(

'choices' =>
array_keys(Doctrine_Core::getTable('JobeetJob')->getTypes()),

));

$this->widgetSchema['logo'] = new sfWidgetFormInputFile(array(
'label' => 'Company logo',

));

$this->widgetSchema->setLabels(array(
'category_id' => 'Category',
'is_public' => 'Public?',
'how_to_apply' => 'How to apply?',

));

$this->validatorSchema['logo'] = new sfValidatorFile(array(
'required' => false,
'path' => sfConfig::get('sf_upload_dir').'/jobs',
'mime_types' => 'web_images',

));

$this->widgetSchema->setHelp('is_public', 'Whether the job can also be
published on affiliate websites or not.');

}
}

The Form Template
Now that the form class has been customized, we need to display it. The template for the
form is the same whether you want to create a new job or edit an existing one. In fact, both
newSuccess.php and editSuccess.php templates are quite similar:

<!-- apps/frontend/modules/job/templates/newSuccess.php -->
<?php use_stylesheet('job.css') ?>

<h1>Post a Job</h1>

<?php include_partial('form', array('form' => $form)) ?>

If you have not added the job stylesheet yet, it is time to do so in both templates (<?php
use_stylesheet('job.css') ?>).

The form itself is rendered in the _form partial. Replace the content of the generated _form
partial with the following code:

<!-- apps/frontend/modules/job/templates/_form.php -->
<?php use_stylesheets_for_form($form) ?>
<?php use_javascripts_for_form($form) ?>

<?php echo form_tag_for($form, '@job') ?>
<table id="job_form">

<tfoot>
<tr>

Day 10: The Forms 123

----------------- Brought to you by

<td colspan="2">
<input type="submit" value="Preview your job" />

</td>
</tr>

</tfoot>
<tbody>

<?php echo $form ?>
</tbody>

</table>
</form>

The use_javascripts_for_form() and use_stylesheets_for_form() helpers include
JavaScript and stylesheet dependencies needed for the form widgets.

Even if the job form does not need any JavaScript or stylesheet file, it is a good habit to
keep these helper calls “just in case”. It can save your day later if you decide to change a
widget that needs some JavaScript or a specific stylesheet.

The form_tag_for() helper generates a <form> tag for the given form and route and
changes the HTTP methods to POST|POST (HTTP Method) or PUT depending on whether the
object is new or not. It also takes care of the multipart attribute if the form has any file
input tags.
Eventually, the <?php echo $form ?> renders the form widgets.

Day 10: The Forms 124

----------------- Brought to you by

Listing
10-22

Customizing the Look and Feel of a Form

By default, the <?php echo $form ?> renders the form widgets as table rows.
Most of the time, you will need to customize the layout of your forms. The form object
provides many useful methods for this customization:

Method Description
render() Renders the form (equivalent to the output of

echo $form)
renderHiddenFields() Renders the hidden fields
hasErrors() Returns true if the form has some errors
hasGlobalErrors() Returns true if the form has global errors
getGlobalErrors() Returns an array of global errors
renderGlobalErrors() Renders the global errors

The form also behaves like an array of fields. You can access the company field with
$form['company']. The returned object provides methods to render each element of the
field:

Method Description
renderRow() Renders the field row
render() Renders the field widget
renderLabel() Renders the field label
renderError() Renders the field error messages if any
renderHelp() Renders the field help message

The echo $form statement is equivalent to:

<?php foreach ($form as $widget): ?>
<?php echo $widget->renderRow() ?>

<?php endforeach ?>

The Form Action
We now have a form class and a template that renders it. Now, it’s time to actually make it
work with some actions.
The job form is managed by five methods in the job module:

• new: Displays a blank form to create a new job
• edit: Displays a form to edit an existing job
• create: Creates a new job with the user submitted values
• update: Updates an existing job with the user submitted values
• processForm: Called by create and update, it processes the form (validation,

form repopulation, and serialization to the database)

All forms have the following life-cycle:

Day 10: The Forms 125

----------------- Brought to you by

Listing
10-23

As we have created a Doctrine route collection 5 days sooner for the job module, we can
simplify the code for the form management methods:

// apps/frontend/modules/job/actions/actions.class.php
public function executeNew(sfWebRequest $request)
{

$this->form = new JobeetJobForm();
}

public function executeCreate(sfWebRequest $request)
{

$this->form = new JobeetJobForm();
$this->processForm($request, $this->form);
$this->setTemplate('new');

}

public function executeEdit(sfWebRequest $request)
{

$this->form = new JobeetJobForm($this->getRoute()->getObject());
}

public function executeUpdate(sfWebRequest $request)
{

$this->form = new JobeetJobForm($this->getRoute()->getObject());
$this->processForm($request, $this->form);
$this->setTemplate('edit');

}

public function executeDelete(sfWebRequest $request)
{

$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();

Day 10: The Forms 126

----------------- Brought to you by

Listing
10-24

$job->delete();

$this->redirect('job/index');
}

protected function processForm(sfWebRequest $request, sfForm $form)
{

$form->bind(
$request->getParameter($form->getName()),
$request->getFiles($form->getName())

);

if ($form->isValid())
{

$job = $form->save();

$this->redirect('job_show', $job);
}

}

When you browse to the /job/new page, a new form instance is created and passed to the
template (new action).
When the user submits the form (create action), the form is bound (bind() method) with
the user submitted values and the validation is triggered.
Once the form is bound, it is possible to check its validity using the isValid() method: If the
form is valid (returns true), the job is saved to the database ($form->save()), and the user
is redirected to the job preview page; if not, the newSuccess.php template is displayed
again with the user submitted values and the associated error messages.

The setTemplate() method changes the template used for a given action. If the
submitted form is not valid, the create and update methods use the same template as the
new and edit action respectively to re-display the form with error messages.

The modification of an existing job is quite similar. The only difference between the new and
the edit action is that the job object to be modified is passed as the first argument of the
form constructor. This object will be used for default widget values in the template (default
values are an object for Doctrine forms, but a plain array for simple forms).
You can also define default values for the creation form. One way is to declare the values in
the database schema. Another one is to pass a pre-modified Job object to the form
constructor.
Change the executeNew() method to define full-time as the default value for the type
column:

// apps/frontend/modules/job/actions/actions.class.php
public function executeNew(sfWebRequest $request)
{

$job = new JobeetJob();
$job->setType('full-time');

$this->form = new JobeetJobForm($job);
}

Day 10: The Forms 127

----------------- Brought to you by

Listing
10-25

Listing
10-26

Listing
10-27

When the form is bound, the default values are replaced with the user submitted ones. The
user submitted values will be used for form repopulation when the form is redisplayed in
case of validation errors.

Protecting the Job Form with a Token
Everything must work fine by now. As of now, the user must enter the token for the job. But
the job token must be generated automatically when a new job is created, as we don’t want to
rely on the user to provide a unique token.
Update the save() method of JobeetJob to add the logic that generates the token before a
new job is saved:

// lib/model/doctrine/JobeetJob.class.php
public function save(Doctrine_Connection $conn = null)
{

// ...

if (!$this->getToken())
{

$this->setToken(sha1($this->getEmail().rand(11111, 99999)));
}

return parent::save($conn);
}

You can now remove the token field from the form:

// lib/form/doctrine/JobeetJobForm.class.php
class JobeetJobForm extends BaseJobeetJobForm
{

public function configure()
{

unset(
$this['created_at'], $this['updated_at'],
$this['expires_at'], $this['is_activated'],
$this['token']

);

// ...
}

// ...
}

If you remember the user stories from day 2, a job can be edited only if the user knows the
associated token. Right now, it is pretty easy to edit or delete any job, just by guessing the
URL. That’s because the edit URL is like /job/ID/edit, where ID is the primary key of the
job.
By default, a sfDoctrineRouteCollection route generates URLs with the primary key,
but it can be changed to any unique column by passing the column option:

apps/frontend/config/~routing|Routing~.yml
job:

class: sfDoctrineRouteCollection

Day 10: The Forms 128

----------------- Brought to you by

Listing
10-28

Listing
10-29

Listing
10-30

Listing
10-31

options: { model: JobeetJob, column: token }
requirements: { token: \w+ }

Notice that we have also changed the token parameter requirement to match any string as
the symfony default requirements is \d+ for the unique key.
Now, all routes related to the jobs, except the job_show_user one, embed the token. For
instance, the route to edit a job is now of the following pattern:

http://www.jobeet.com.localhost/job/TOKEN/edit

You will also need to change the “Edit” link in the showSuccess template:

<!-- apps/frontend/modules/job/templates/showSuccess.php -->
<a href="<?php echo url_for('job_edit', $job) ?>">Edit

The Preview Page
The preview page is the same as the job page display. Thanks to the routing, if the user
comes with the right token, it will be accessible in the token request parameter.
If the user comes in with the tokenized URL, we will add an admin bar at the top. At the
beginning of the showSuccess template, add a partial to host the admin bar and remove the
edit link at the bottom:

<!-- apps/frontend/modules/job/templates/showSuccess.php -->
<?php if ($sf_request->getParameter('token') == $job->getToken()): ?>

<?php include_partial('job/admin', array('job' => $job)) ?>
<?php endif ?>

Then, create the _admin partial:

<!-- apps/frontend/modules/job/templates/_admin.php -->
<div id="job_actions">

<h3>Admin</h3>

<?php if (!$job->getIsActivated()): ?>
<?php echo link_to('Edit', 'job_edit', $job) ?>
<?php echo link_to('Publish', 'job_edit', $job) ?>

<?php endif ?>
<?php echo link_to('Delete', 'job_delete', $job, array('method' =>

'delete', 'confirm' => 'Are you sure?')) ?>
<?php if ($job->getIsActivated()): ?>

<li<?php $job->expiresSoon() and print ' class="expires_soon"' ?>>
<?php if ($job->isExpired()): ?>

Expired
<?php else: ?>

Expires in <?php echo $job->getDaysBeforeExpires()
?> days

<?php endif ?>

<?php if ($job->expiresSoon()): ?>
- Extend for another <?php echo

sfConfig::get('app_active_days') ?> days
<?php endif ?>

<?php else: ?>

Day 10: The Forms 129

----------------- Brought to you by

Listing
10-32

[Bookmark this <?php echo link_to('URL', 'job_show', $job, true)

?> to manage this job in the future.]

<?php endif ?>

</div>

There is a lot of code, but most of the code is simple to understand.
To make the template more readable, we have added a bunch of shortcut methods in the
JobeetJob class:

// lib/model/doctrine/JobeetJob.class.php
public function getTypeName()
{

$types = Doctrine_Core::getTable('JobeetJob')->getTypes();
return $this->getType() ? $types[$this->getType()] : '';

}

public function isExpired()
{

return $this->getDaysBeforeExpires() < 0;
}

public function expiresSoon()
{

return $this->getDaysBeforeExpires() < 5;
}

public function getDaysBeforeExpires()
{

return ceil(($this->getDateTimeObject('expires_at')->format('U') -
time()) / 86400);
}

The admin bar displays the different actions depending on the job status:

Day 10: The Forms 130

----------------- Brought to you by

Listing
10-33

Listing
10-34

Listing
10-35

You will be able to see the “activated” bar after the next section.

Job Activation and Publication
In the previous section, there is a link to publish the job. The link needs to be changed to
point to a new publish action. Instead of creating a new route, we can just configure the
existing job route:

apps/frontend/config/routing.yml
job:

class: sfDoctrineRouteCollection
options:

model: JobeetJob
column: token
object_actions: { publish: put }

requirements:
token: \w+

The object_actions takes an array of additional actions for the given object. We can now
change the link of the “Publish” link:

<!-- apps/frontend/modules/job/templates/_admin.php -->

<?php echo link_to('Publish', 'job_publish', $job, array('method' =>
'put')) ?>

The last step is to create the publish action:

// apps/frontend/modules/job/actions/actions.class.php
public function executePublish(sfWebRequest $request)
{

$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();
$job->publish();

$this->getUser()->setFlash('notice', sprintf('Your job is now online for
%s days.', sfConfig::get('app_active_days')));

$this->redirect('job_show_user', $job);
}

The astute reader will have noticed that the “Publish” link is submitted with the HTTP put
method. To simulate the put method, the link is automatically converted to a form when you
click on it.
And because we have enabled the CSRF protection, the link_to() helper embeds a CSRF
token in the link and the checkCSRFProtection() method of the request object checks the
validity of it on submission.
The executePublish() method uses a new publish() method that can be defined as
follows:

Day 10: The Forms 131

----------------- Brought to you by

Listing
10-36

Listing
10-37

Listing
10-38

// lib/model/doctrine/JobeetJob.class.php
public function publish()
{

$this->setIsActivated(true);
$this->save();

}

You can now test the new publish feature in your browser.
But we still have something to fix. The non-activated jobs must not be accessible, which
means that they must not show up on the Jobeet homepage, and must not be accessible by
their URL. As we have created an addActiveJobsQuery() method to restrict a
Doctrine_Query to active jobs, we can just edit it and add the new requirements at the end:

// lib/model/doctrine/JobeetJobTable.class.php
public function addActiveJobsQuery(Doctrine_Query $q = null)
{

// ...

$q->andWhere($alias . '.is_activated = ?', 1);

return $q;
}

That’s all. You can test it now in your browser. All non-activated jobs have disappeared from
the homepage; even if you know their URLs, they are not accessible anymore. They are,
however, accessible if one knows the job’s token URL. In that case, the job preview will show
up with the admin bar.
That’s one of the great advantages of the MVC pattern and the refactorization we have done
along the way. Only a single change in one method was needed to add the new requirement.

When we created the getWithJobs() method, we forgot to use the
addActiveJobsQuery() method. So, we need to edit it and add the new requirement:

class JobeetCategoryTable extends Doctrine_Table
{

public function getWithJobs()
{

// ...

$q->andWhere('j.is_activated = ?', 1);

return $q->execute();
}

Final Thoughts
Today was packed with a lot of new information, but hopefully you now have a better
understanding of symfony’s form framework.
We know that some of you noticed that we forgot something here… We have not implemented
any test for the new features. Because writing tests is an important part of developing an
application, this is the first thing we will do tomorrow.

Day 10: The Forms 132

----------------- Brought to you by

Listing
11-1

Day 11

Testing your Forms

In day 10, we created our first form with symfony. People are now able to post a new job on
Jobeet but we ran out of time before we could add some tests. That’s what we will do along
these lines. Along the way, we will also learn more about the form framework.

Using the Form Framework without symfony

The symfony framework components are quite decoupled. This means that most of them can
be used without using the whole MVC framework. That’s the case for the form framework,
which has no dependency on symfony. You can use it in any PHP application by getting the
lib/form/, lib/widgets/, and lib/validators/ directories.
Another reusable component is the routing framework. Copy the lib/routing/ directory
in your non-symfony project, and benefit from pretty URLs for free.
The components that are symfony independent form the symfony platform:

Submitting a Form
Let’s open the jobActionsTest file to add functional tests for the job creation and
validation process.
At the end of the file, add the following code to get the job creation page:

// test/functional/frontend/jobActionsTest.php
$browser->info('3 - Post a Job page')->

info(' 3.1 - Submit a Job')->

get('/job/new')->
with('request')->begin()->

isParameter('module', 'job')->

Day 11: Testing your Forms 133

----------------- Brought to you by

Listing
11-2

Listing
11-3

isParameter('action', 'new')->
end()

;

We have already used the click() method to simulate clicks on links. The same click()
method can be used to submit a form. For a form, you can pass the values to submit for each
field as a second argument of the method. Like a real browser, the browser object will merge
the default values of the form with the submitted values.
But to pass the field values, we need to know their names. If you open the source code or use
the Firefox Web Developer Toolbar “Forms > Display Form Details” feature, you will see that
the name for the company field is jobeet_job[company].

When PHP encounters an input field with a name like jobeet_job[company], it
automatically converts it to an array of name jobeet_job.

To make things look a bit more clean, let’s change the format to job[%s] by adding the
following code at the end of the configure() method of JobeetJobForm:

// lib/form/doctrine/JobeetJobForm.class.php
$this->widgetSchema->setNameFormat('job[%s]');

After this change, the company name should be job[company] in your browser. It is now
time to actually click on the “Preview your job” button and pass valid values to the form:

// test/functional/frontend/jobActionsTest.php
$browser->info('3 - Post a Job page')->

info(' 3.1 - Submit a Job')->

get('/job/new')->
with('request')->begin()->

isParameter('module', 'job')->
isParameter('action', 'new')->

end()->

click('Preview your job', array('job' => array(
'company' => 'Sensio Labs',
'url' => 'http://www.sensio.com/',
'logo' => sfConfig::get('sf_upload_dir').'/jobs/

sensio-labs.gif',
'position' => 'Developer',
'location' => 'Atlanta, USA',
'description' => 'You will work with symfony to develop websites for

our customers.',
'how_to_apply' => 'Send me an email',
'email' => 'for.a.job@example.com',
'is_public' => false,

)))->

with('request')->begin()->
isParameter('module', 'job')->
isParameter('action', 'create')->

end()
;

The browser also simulates file uploads if you pass the absolute path to the file to upload.
After submitting the form, we checked that the executed action is create.

Day 11: Testing your Forms 134

----------------- Brought to you by

Listing
11-4

Listing
11-5

Listing
11-6

Listing
11-7

Listing
11-8

The Form Tester
The form we have submitted should be valid. You can test this by using the form tester:

with('form')->begin()->
hasErrors(false)->

end()->

The form tester has several methods to test the current form status, like the errors.
If you make a mistake in the test, and the test does not pass, you can use the
with('response')->~debug|Debug~() statement we have seen during day 9. But you
will have to dig into the generated HTML to check for error messages. That’s not really
convenient. The form tester also provides a debug() method that outputs the form status and
all error messages associated with it:

with('form')->debug()

Redirection Test
As the form is valid, the job should have been created and the user redirected to the show
page:

with('response')->isRedirected()->
followRedirect()->

with('request')->begin()->
isParameter('module', 'job')->
isParameter('action', 'show')->

end()->

The isRedirected() tests if the page has been redirected and the followRedirect()
method follows the redirect.

The browser class does not follow redirects automatically as you might want to introspect
objects before the redirection.

The Doctrine Tester
Eventually, we want to test that the job has been created in the database and check that the
is_activated column is set to false as the user has not published it yet.
This can be done quite easily by using yet another tester, the Doctrine tester. As the
Doctrine tester is not registered by default, let’s add it now:

$browser->setTester('doctrine', 'sfTesterDoctrine');

The Doctrine tester provides the check() method to check that one or more objects in the
database match the criteria passed as an argument.

with('doctrine')->begin()->
check('JobeetJob', array(

'location' => 'Atlanta, USA',

Day 11: Testing your Forms 135

----------------- Brought to you by

Listing
11-9

Listing
11-10

'is_activated' => false,
'is_public' => false,

))->
end()

The criteria can be an array of values like above, or a Doctrine_Query instance for more
complex queries. You can test the existence of objects matching the criteria with a Boolean as
the third argument (the default is true), or the number of matching objects by passing an
integer.

Testing for Errors
The job form creation works as expected when we submit valid values. Let’s add a test to
check the behavior when we submit non-valid data:

$browser->
info(' 3.2 - Submit a Job with invalid values')->

get('/job/new')->
click('Preview your job', array('job' => array(

'company' => 'Sensio Labs',
'position' => 'Developer',
'location' => 'Atlanta, USA',
'email' => 'not.an.email',

)))->

with('form')->begin()->
hasErrors(3)->
isError('description', 'required')->
isError('how_to_apply', 'required')->
isError('email', 'invalid')->

end()
;

The hasErrors() method can test the number of errors if passed an integer. The
isError() method tests the error code for a given field.

In the tests we have written for the non-valid data submission, we have not re-tested the
entire form all over again. We have only added tests for specific things.

You can also test the generated HTML to check that it contains the error messages, but it is
not necessary in our case as we have not customized the form layout.
Now, we need to test the admin bar found on the job preview page. When a job has not been
activated yet, you can edit, delete, or publish the job. To test those three links, we will need to
first create a job. But that’s a lot of copy and paste. As I don’t like to waste e-trees, let’s add a
job creator method in the JobeetTestFunctional class:

// lib/test/JobeetTestFunctional.class.php
class JobeetTestFunctional extends sfTestFunctional
{

public function createJob($values = array())
{

return $this->
get('/job/new')->
click('Preview your job', array('job' => array_merge(array(

Day 11: Testing your Forms 136

----------------- Brought to you by

Listing
11-11

Listing
11-12

'company' => 'Sensio Labs',
'url' => 'http://www.sensio.com/',
'position' => 'Developer',
'location' => 'Atlanta, USA',
'description' => 'You will work with symfony to develop websites

for our customers.',
'how_to_apply' => 'Send me an email',
'email' => 'for.a.job@example.com',
'is_public' => false,

), $values)))->
followRedirect()

;
}

// ...
}

The createJob() method creates a job, follows the redirect and returns the browser to not
break the fluent interface. You can also pass an array of values that will be merged with some
default values.

Forcing the HTTP Method of a link
Testing the “Publish” link is now more simple:

$browser->info(' 3.3 - On the preview page, you can publish the job')->
createJob(array('position' => 'FOO1'))->
click('Publish', array(), array('method' => 'put', '_with_csrf' =>

true))->

with('doctrine')->begin()->
check('JobeetJob', array(

'position' => 'FOO1',
'is_activated' => true,

))->
end()

;

If you remember from day 10, the “Publish” link has been configured to be called with the
HTTP PUT method. As browsers don't understand PUT requests, the link_to() helper
converts the link to a form with some JavaScript. As the test browser does not execute
JavaScript, we need to force the method to PUT by passing it as a third option of the click()
method. Moreover, the link_to() helper also embeds a CSRF token as we have enabled
CSRF protection during the very first day; the _with_csrf option simulates this token.
Testing the “Delete” link is quite similar:

$browser->info(' 3.4 - On the preview page, you can delete the job')->
createJob(array('position' => 'FOO2'))->
click('Delete', array(), array('method' => 'delete', '_with_csrf' =>

true))->

with('doctrine')->begin()->
check('JobeetJob', array(

'position' => 'FOO2',
), false)->

Day 11: Testing your Forms 137

----------------- Brought to you by

Listing
11-13

end()
;

Tests as a SafeGuard
When a job is published, you cannot edit it anymore. Even if the “Edit” link is not displayed
anymore on the preview page, let’s add some tests for this requirement.
First, add another argument to the createJob() method to allow automatic publication of
the job, and create a getJobByPosition() method that returns a job given its position
value:

// lib/test/JobeetTestFunctional.class.php
class JobeetTestFunctional extends sfTestFunctional
{

public function createJob($values = array(), $publish = false)
{

$this->
get('/job/new')->
click('Preview your job', array('job' => array_merge(array(

'company' => 'Sensio Labs',
'url' => 'http://www.sensio.com/',
'position' => 'Developer',
'location' => 'Atlanta, USA',
'description' => 'You will work with symfony to develop websites

for our customers.',
'how_to_apply' => 'Send me an email',
'email' => 'for.a.job@example.com',
'is_public' => false,

), $values)))->
followRedirect()

;

if ($publish)
{

$this->
click('Publish', array(), array('method' => 'put', '_with_csrf' =>

true))->
followRedirect()

;
}

return $this;
}

public function getJobByPosition($position)
{

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.position = ?', $position);

return $q->fetchOne();
}

// ...
}

Day 11: Testing your Forms 138

----------------- Brought to you by

Listing
11-14

Listing
11-15

Listing
11-16

If a job is published, the edit page must return a 404 status code:

$browser->info(' 3.5 - When a job is published, it cannot be edited
anymore')->

createJob(array('position' => 'FOO3'), true)->
get(sprintf('/job/%s/edit',

$browser->getJobByPosition('FOO3')->getToken()))->

with('response')->begin()->
isStatusCode(404)->

end()
;

But if you run the tests, you won’t have the expected result as we forgot to implement this
security measure yesterday. Writing tests is also a great way to discover bugs, as you need to
think about all edge cases|Edge Cases.
Fixing the bug is quite simple as we just need to forward to a 404 page if the job is activated:

// apps/frontend/modules/job/actions/actions.class.php
public function executeEdit(sfWebRequest $request)
{

$job = $this->getRoute()->getObject();
$this->forward404If($job->getIsActivated());

$this->form = new JobeetJobForm($job);
}

The fix is trivial, but are you sure that everything else still works as expected? You can open
your browser and start testing all possible combinations to access the edit page. But there is
a simpler way: run your test suite; if you have introduced a regression, symfony will tell you
right away.

Back to the Future in a Test
When a job is expiring in less than five days, or if it is already expired, the user can extend
the job validation for another 30 days from the current date.
Testing this requirement in a browser is not easy as the expiration date is automatically set
when the job is created to 30 days in the future. So, when getting the job page, the link to
extend the job is not present. Sure, you can hack the expiration date in the database, or
tweak the template to always display the link, but that’s tedious and error prone. As you have
already guessed, writing some tests will help us one more time.
As always, we need to add a new route for the extend method first:

apps/frontend/config/routing.yml
job:

class: sfDoctrineRouteCollection
options:

model: JobeetJob
column: token
object_actions: { publish: PUT, extend: PUT }

requirements:
token: \w+

Then, update the “Extend” link code in the _admin partial:

Day 11: Testing your Forms 139

----------------- Brought to you by

Listing
11-17

Listing
11-18

Listing
11-19

Listing
11-20

<!-- apps/frontend/modules/job/templates/_admin.php -->
<?php if ($job->expiresSoon()): ?>
- <?php echo link_to('Extend', 'job_extend', $job, array('method' =>

'put')) ?> for another <?php echo sfConfig::get('app_active_days') ?> days
<?php endif ?>

Then, create the extend action:

// apps/frontend/modules/job/actions/actions.class.php
public function executeExtend(sfWebRequest $request)
{

$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();
$this->forward404Unless($job->extend());

$this->getUser()->setFlash('notice', sprintf('Your job validity has been
extended until %s.', $job->getDateTimeObject('expires_at')->format('m/d/
Y')));

$this->redirect('job_show_user', $job);
}

As expected by the action, the extend() method of JobeetJob returns true if the job has
been extended or false otherwise:

// lib/model/doctrine/JobeetJob.class.php
class JobeetJob extends BaseJobeetJob
{

public function extend()
{

if (!$this->expiresSoon())
{

return false;
}

$this->setExpiresAt(date('Y-m-d', time() + 86400 *
sfConfig::get('app_active_days')));

$this->save();

return true;
}

// ...
}

Eventually, add a test scenario:

$browser->info(' 3.6 - A job validity cannot be extended before the job
expires soon')->

createJob(array('position' => 'FOO4'), true)->
call(sprintf('/job/%s/extend',

$browser->getJobByPosition('FOO4')->getToken()), 'put', array('_with_csrf'
=> true))->

with('response')->begin()->
isStatusCode(404)->

end()

Day 11: Testing your Forms 140

----------------- Brought to you by

;

$browser->info(' 3.7 - A job validity can be extended when the job
expires soon')->

createJob(array('position' => 'FOO5'), true)
;

$job = $browser->getJobByPosition('FOO5');
$job->setExpiresAt(date('Y-m-d'));
$job->save();

$browser->
call(sprintf('/job/%s/extend', $job->getToken()), 'put',

array('_with_csrf' => true))->
with('response')->isRedirected()

;

$job->refresh();
$browser->test()->is(

$job->getDateTimeObject('expires_at')->format('y/m/d'),
date('y/m/d', time() + 86400 * sfConfig::get('app_active_days'))

);

This test scenario introduces a few new things:

• The call() method retrieves a URL with a method different from GET or POST
• After the job has been updated by the action, we need to reload the local object with

$job->refresh()
• At the end, we use the embedded lime object directly to test the new expiration

date.

Forms Security
Form Serialization Magic!
Doctrine forms are very easy to use as they automate a lot of work. For instance, serializing a
form to the database is as simple as a call to $form->save().
But how does it work? Basically, the save() method follows the following steps:

• Begin a transaction (because nested Doctrine forms are all saved in one fell swoop)
• Process the submitted values (by calling updateCOLUMNColumn() methods if they

exist)
• Call Doctrine object fromArray() method to update the column values
• Save the object to the database
• Commit the transaction

Built-in Security Features
The fromArray() method takes an array of values and updates the corresponding column
values. Does this represent a security issue? What if someone tries to submit a value for a
column for which he does not have authorization? For instance, can I force the token
column?
Let’s write a test to simulate a job submission with a token field:

Day 11: Testing your Forms 141

----------------- Brought to you by

Listing
11-21

Listing
11-22

Listing
11-23

// test/functional/frontend/jobActionsTest.php
$browser->

get('/job/new')->
click('Preview your job', array('job' => array(

'token' => 'fake_token',
)))->

with('form')->begin()->
hasErrors(7)->
hasGlobalError('extra_fields')->

end()
;

When submitting the form, you must have an extra_fields global error. That’s because by
default forms do not allow extra fields to be present in the submitted values. That’s also why
all form fields must have an associated validator.

You can also submit additional fields from the comfort of your browser using tools like the
Firefox Web Developer Toolbar.

You can bypass this security measure by setting the allow_extra_fields option to true:

class MyForm extends sfForm
{

public function configure()
{

// ...

$this->validatorSchema->setOption('allow_extra_fields', true);
}

}

The test must now pass but the token value has been filtered out of the values. So, you are
still not able to bypass the security measure. But if you really want the value, set the
filter_extra_fields option to false:

$this->validatorSchema->setOption('filter_extra_fields', false);

The tests written in this section are only for demonstration purpose. You can now remove
them from the Jobeet project as tests do not need to validate symfony features.

XSS and CSRF Protection
During day 1, you learned the generate:app task created a secured application by default.
First, it enabled the protection against XSS. It means that all variables used in templates are
escaped by default. If you try to submit a job description with some HTML tags inside, you
will notice that when symfony renders the job page, the HTML tags from the description are
not interpreted, but rendered as plain text.
Then, it enabled the CSRF protection. When a CSRF token is set, all forms embed a
_csrf_token hidden field.

Day 11: Testing your Forms 142

----------------- Brought to you by

Listing
11-24

Listing
11-25

The escaping strategy and the CSRF secret can be changed at any time by editing the
apps/frontend/config/settings.yml configuration file. As for the databases.yml
file, the settings are configurable by environment:

all:
.settings:

Form security secret (CSRF protection)
csrf_secret: Unique$ecret

Output escaping settings
escaping_strategy: true
escaping_method: ESC_SPECIALCHARS

Maintenance Tasks
Even if symfony is a web framework, it comes with a command line tool. You have already
used it to create the default directory structure of the project and the application, but also to
generate various files for the model. Adding a new task is quite easy as the tools used by the
symfony command line are packaged in a framework.
When a user creates a job, he must activate it to put it online. But if not, the database will
grow with stale jobs. Let’s create a task that remove stale jobs from the database. This task
will have to be run regularly in a cron job.

// lib/task/JobeetCleanupTask.class.php
class JobeetCleanupTask extends sfBaseTask
{

protected function configure()
{

$this->addOptions(array(
new sfCommandOption('application', null,

sfCommandOption::PARAMETER_REQUIRED, 'The application', 'frontend'),
new sfCommandOption('env', null,

sfCommandOption::PARAMETER_REQUIRED, 'The environement', 'prod'),
new sfCommandOption('days', null,

sfCommandOption::PARAMETER_REQUIRED, '', 90),
));

$this->namespace = 'jobeet';
$this->name = 'cleanup';
$this->briefDescription = 'Cleanup Jobeet database';

$this->detailedDescription = <<<EOF
The [jobeet:cleanup|INFO] task cleans up the Jobeet database:

[./symfony jobeet:cleanup --env=prod --days=90|INFO]
EOF;

}

protected function execute($arguments = array(), $options = array())
{

$databaseManager = new sfDatabaseManager($this->configuration);

$nb = Doctrine_Core::getTable('JobeetJob')->cleanup($options['days']);
$this->logSection('doctrine', sprintf('Removed %d stale jobs', $nb));

Day 11: Testing your Forms 143

----------------- Brought to you by

Listing
11-26

Listing
11-27

}
}

The task configuration is done in the configure() method. Each task must have a unique
name (namespace:name), and can have arguments and options.

Browse the built-in symfony tasks (lib/task/) for more examples of usage.

The jobeet:cleanup task defines two options: --env and --days with some sensible
defaults.
Running the task is similar to run any other symfony built-in task:

$ php symfony jobeet:cleanup --days=10 --env=dev

As always, the database cleanup code has been factored out in the JobeetJobTable class:

// lib/model/doctrine/JobeetJobTable.class.php
public function cleanup($days)
{

$q = $this->createQuery('a')
->delete()
->andWhere('a.is_activated = ?', 0)
->andWhere('a.created_at < ?', date('Y-m-d', time() - 86400 * $days));

return $q->execute();
}

The symfony tasks behave nicely with their environment as they return a value according
to the success of the task. You can force a return value by returning an integer explicitly at
the end of the task.

Final Thoughts
Testing is at the heart of the symfony philosophy and tools. Today, we have learned again how
to leverage symfony tools to make the development process easier, faster, and more
important, safer.
The symfony form framework provides much more than just widgets and validators: it gives
you a simple way to test your forms and ensure that your forms are secure by default.
Our tour of great symfony features do not end here. Tomorrow, we will create the backend
application for Jobeet. Creating a backend interface is a must for most web projects, and
Jobeet is no different. But how will we be able to develop such an interface in just one hour?
Simple, we will use the symfony admin generator framework.

Day 11: Testing your Forms 144

----------------- Brought to you by

Listing
12-1

Listing
12-2

Day 12

The Admin Generator

With the addition we made in day 11 on Jobeet, the frontend application is now fully useable
by job seekers and job posters. It’s time to talk a bit about the backend application. Today,
thanks to the admin generator functionality of symfony, we will develop a complete backend
interface for Jobeet in just one hour.

Backend Creation
The very first step is to create the backend application. If your memory serves you well, you
should remember how to do it with the generate:app task:

$ php symfony generate:app backend

The backend application is now available at http://jobeet.localhost/backend.php/
for the prod environment, and at http://jobeet.localhost/backend_dev.php/ for the
dev environment.

When you created the frontend application, the production front controller was named
index.php. As you can only have one index.php file per directory, symfony creates an
index.php file for the very first production front controller and names the others after the
application name.

If you try to reload the data fixtures with the doctrine:data-load task, it won’t work as
expected. That’s because the JobeetJob::save() method needs access to the app.yml
configuration file from the frontend application. As we have now two applications, symfony
uses the first it finds, which is now the backend one.
But as seen during day 8, the settings can be configured at different levels. By moving the
content of the apps/frontend/config/app.yml file to config/app.yml, the settings will
be shared among all applications and the problem will be fixed. Do the change now as we will
use the model classes quite extensively in the admin generator, and so we will need the
variables defined in app.yml in the backend application.

The doctrine:data-load task also takes a --application option. So, if you need some
specific settings from one application or another, this is the way to go:

$ php symfony doctrine:data-load --application=frontend

Day 12: The Admin Generator 145

----------------- Brought to you by

Listing
12-3

Listing
12-4

Listing
12-5

Listing
12-6

Backend Modules
For the frontend application, the doctrine:generate-module task has been used to
bootstrap a basic CRUD module based on a model class. For the backend, the
doctrine:generate-admin task will be used as it generates a full working backend
interface for a model class:

$ php symfony doctrine:generate-admin backend JobeetJob --module=job
$ php symfony doctrine:generate-admin backend JobeetCategory

--module=category

These two commands create a job and a category module for the JobeetJob and the
JobeetCategory model classes respectively.
The optional --module option overrides the module name generated by default by the task
(which would have been otherwise jobeet_job for the JobeetJob class).
Behind the scenes, the task has also created a custom route for each module:

apps/backend/config/routing.yml
jobeet_job:

class: sfDoctrineRouteCollection
options:

model: JobeetJob
module: job
prefix_path: job
column: id
with_wildcard_routes: true

It should come as no surprise that the route class used by the admin generator|Admin
Generator is sfDoctrineRouteCollection, as the main goal of an admin interface is the
management of the life-cycle of model objects.
The route definition also defines some options we have not seen before:

• prefix_path: Defines the prefix path for the generated route (for instance, the
edit page will be something like /job/1/edit).

• column: Defines the table column to use in the URL for links that references an
object.

• with_wildcard_routes: As the admin interface will have more than the classic
CRUD operations, this option allows to define more object and collection actions
without editing the route.

As always, it is a good idea to read the help before using a new task.

$ php symfony help doctrine:generate-admin

It will give you all the task’s arguments and options as well as some classic usage
examples.

Backend Look and Feel
Right off the bat, you can use the generated modules:

http://jobeet.localhost/backend_dev.php/job
http://jobeet.localhost/backend_dev.php/category

Day 12: The Admin Generator 146

----------------- Brought to you by

Listing
12-7

Listing
12-8

The admin modules have many more features than the simple modules we have generated in
previous days. Without writing a single line of PHP, each module provides these great
features:

• The list of objects is paginated
• The list is sortable
• The list can be filtered
• Objects can be created, edited, and deleted
• Selected objects can be deleted in a batch
• The form validation is enabled
• Flash messages give immediate feedback to the user
• … and much much more

The admin generator provides all the features you need to create a backend interface in a
simple to configure package.
If you have a look at our two generated modules, you will notice there is no activated
webdesign whereas the symfony built-in admin generator feature has a basic graphic
interface by default. For now, assets from the sfDoctrinePlugin are not located under the
web/ folder. We need to publish them under the web/ folder thanks to the
plugin:publish-assets task:

$ php symfony plugin:publish-assets

To make the user experience a bit better, we need to customize the default backend. We will
also add a simple menu to make it easy to navigate between the different modules.
Replace the default layout file content with the code below:

// apps/backend/templates/layout.php
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>Jobeet Admin Interface</title>
<link rel="shortcut icon" href="/favicon.ico" />
<?php use_stylesheet('admin.css') ?>
<?php include_javascripts() ?>
<?php include_stylesheets() ?>

</head>
<body>

<div id="container">
<div id="header">

<h1>
<a href="<?php echo url_for('homepage') ?>">

<img src="http://www.symfony-project.org/images/logo.jpg"
alt="Jobeet Job Board" />

</h1>

</div>

<div id="menu">

<?php echo link_to('Jobs', 'jobeet_job') ?>

<?php echo link_to('Categories', 'jobeet_category') ?>

Day 12: The Admin Generator 147

----------------- Brought to you by

Listing
12-9

Listing
12-10

</div>

<div id="content">
<?php echo $sf_content ?>

</div>

<div id="footer">

powered by
<img src="http://www.symfony-project.org/images/symfony.gif"

alt="symfony framework" />
</div>

</div>
</body>

</html>

This layout uses an admin.css stylesheet. This file must already be present in web/css/ as
it was installed with the other stylesheets during day 4.

Eventually, change the default symfony homepage in routing.yml:

apps/backend/config/routing.yml
homepage:

url: /
param: { module: job, action: index }

The symfony Cache
If you are curious enough, you have probably already opened the files generated by the task
under the apps/backend/modules/ directory. If not, please open them now. Surprise! The
templates directories are empty, and the actions.class.php files are quite empty as
well:

// apps/backend/modules/job/actions/actions.class.php
require_once dirname(__FILE__).'/../lib/
jobGeneratorConfiguration.class.php';
require_once dirname(__FILE__).'/../lib/jobGeneratorHelper.class.php';

Day 12: The Admin Generator 148

----------------- Brought to you by

Listing
12-11

Listing
12-12

class jobActions extends autoJobActions
{
}

How can it possibly work? If you have a closer look, you will notice that the jobActions
class extends autoJobActions. The autoJobActions class is automatically generated by
symfony if it does not exist. It is to be found in the cache/backend/dev/modules/
autoJob/ directory, which contains the “real” module:

// cache/backend/dev/modules/autoJob/actions/actions.class.php
class autoJobActions extends sfActions
{

public function preExecute()
{

$this->configuration = new jobGeneratorConfiguration();

if (!$this->getUser()->hasCredential(
$this->configuration->getCredentials($this->getActionName())

))
{

// ...

The way the admin generator works should remind you of some known behavior. In fact, it is
quite similar to what we have already learned about the model and form classes. Based on the
model schema definition, symfony generates the model and form classes. For the admin
generator, the generated module can be configured by editing the config/generator.yml
file found in the module:

apps/backend/modules/job/config/generator.yml
generator:

class: sfDoctrineGenerator
param:

model_class: JobeetJob
theme: admin
non_verbose_templates: true
with_show: false
singular: ~
plural: ~
route_prefix: jobeet_job
with_doctrine_route: true

config:
actions: ~
fields: ~
list: ~
filter: ~
form: ~
edit: ~
new: ~

Each time you update the generator.yml file, symfony regenerates the cache. As we will
see later, customizing the admin generated modules is easy, fast, and fun.

The automatic re-generation of cache files only occurs in the development environment. In
the production one, you will need to clear the cache manually with the cache:clear task.

Day 12: The Admin Generator 149

----------------- Brought to you by

Listing
12-13

Listing
12-14

—

The with_show parameter has no effect. This parameter is only meaningful when
generating “standard” modules with the doctrine:generate-module task.

Backend Configuration
An admin module can be customized by editing the config key of the generator.yml file.
The configuration is organized in seven sections:

• actions: Default configuration for the actions found on the list and on the forms
• fields: Default configuration for the fields
• list: Configuration for the list
• filter: Configuration for filters
• form: Configuration for new and edit forms
• edit: Specific configuration for the edit page
• new: Specific configuration for the new page

Let’s start the customization.

Title Configuration
The list, edit, and new section titles of category module can be customized by defining a
title option:

apps/backend/modules/category/config/generator.yml
config:

actions: ~
fields: ~
list:

title: Category Management
filter: ~
form: ~
edit:

title: Editing Category "%%name%%"
new:

title: New Category

The title for the edit section contains dynamic values: all strings enclosed between %% are
replaced by their corresponding object column values.

The configuration for the job module is quite similar:

apps/backend/modules/job/config/generator.yml
config:

Day 12: The Admin Generator 150

----------------- Brought to you by

Listing
12-15

Listing
12-16

actions: ~
fields: ~
list:

title: Job Management
filter: ~
form: ~
edit:

title: Editing Job "%%company%% is looking for a %%position%%"
new:

title: Job Creation

Fields Configuration
The different views (list, new, and edit) are composed of fields. A field can be a column of
the model class, or a virtual column as we will see later on.
The default fields configuration can be customized with the fields section:

apps/backend/modules/job/config/generator.yml
config:

fields:
is_activated: { label: Activated?, help: Whether the user has

activated the job, or not }
is_public: { label: Public?, help: Whether the job can also be

published on affiliate websites, or not }

The fields section overrides the fields configuration for all views, which means the label
for the is_activated field will be changed for the list, edit, and new views.
The admin generator configuration is based on a configuration cascade principle. For
instance, if you want to change a label for the list view only, define a fields option under
the list section:

apps/backend/modules/job/config/generator.yml
config:

list:
fields:

is_public: { label: "Public? (label for the list)" }

Any configuration that is set under the main fields section can be overridden by view-
specific configuration. The overriding rules are the following:

• new and edit inherit from form which inherits from fields
• list inherits from fields
• filter inherits from fields

For form sections (form, edit, and new), the label and help options override the ones
defined in the form classes.

Day 12: The Admin Generator 151

----------------- Brought to you by

Listing
12-17

Listing
12-18

Listing
12-19

List View Configuration
display

By default, the columns of the list view are all the columns of the model, in the order of the
schema file. The display option overrides the default by defining the ordered columns to be
displayed:

apps/backend/modules/category/config/generator.yml
config:

list:
title: Category Management
display: [=name, slug]

The = sign before the name column is a convention to convert the string to a link.

Let’s do the same for the job module to make it more readable:

apps/backend/modules/job/config/generator.yml
config:

list:
title: Job Management
display: [company, position, location, url, is_activated, email]

layout

The list can be displayed with different layouts. By default, the layout is tabular, which
means that each column value is in its own table column. But for the job module, it would be
better to use the stacked layout, which is the other built-in layout:

apps/backend/modules/job/config/generator.yml
config:

list:
title: Job Management
layout: stacked
display: [company, position, location, url, is_activated, email]
params: |

%%is_activated%% <small>%%category_id%%</small> - %%company%%
(%%email%%) is looking for a %%=position%% (%%location%%)

Day 12: The Admin Generator 152

----------------- Brought to you by

Listing
12-20

Listing
12-21

In a stacked layout, each object is represented by a single string, which is defined by the
params option.

The display option is still needed as it defines the columns that will be sortable by the
user.

“Virtual” columns
With this configuration, the %%category_id%% segment will be replaced by the category
primary key. But it would be more meaningful to display the name of the category.
Whenever you use the %% notation, the variable does not need to correspond to an actual
column in the database schema. The admin generator only need to find a related getter in the
model class.
To display the category name, we can define a getCategoryName() method in the
JobeetJob model class and replace %%category_id%% by %%category_name%%.
But the JobeetJob class already has a getJobeetCategory() method that returns the
related category object. And if you use %%jobeet_category%%, it works as the
JobeetCategory class has a magic __toString() method that converts the object to a
string.

apps/backend/modules/job/config/generator.yml
%%is_activated%% <small>%%jobeet_category%%</small> - %%company%%
(%%email%%) is looking for a %%=position%% (%%location%%)

sort

As an administrator, you will be probably more interested in seeing the latest posted jobs.
You can configure the default sort column by adding a sort option:

apps/backend/modules/job/config/generator.yml
config:

list:
sort: [expires_at, desc]

max_per_page

By default, the list is paginated and each page contains 20 items. This can be changed with
the max_per_page option:

Day 12: The Admin Generator 153

----------------- Brought to you by

Listing
12-22

Listing
12-23

Listing
12-24

apps/backend/modules/job/config/generator.yml
config:

list:
max_per_page: 10

batch_actions

On a list, an action can be run on several objects. These batch actions are not needed for the
category module, so, let’s remove them:

apps/backend/modules/category/config/generator.yml
config:

list:
batch_actions: {}

The batch_actions option defines the list of batch actions. The empty array allows the
removal of the feature.
By default, each module has a delete batch action defined by the framework, but for the job
module, let’s pretend we need a way to extend the validity of some selected jobs for another
30 days:

apps/backend/modules/job/config/generator.yml
config:

list:
batch_actions:

_delete: ~
extend: ~

All actions beginning with a _ are built-in actions provided by the framework. If you refresh
your browser and select the extend batch actions, symfony will throw an exception telling you
to create an executeBatchExtend() method:

Day 12: The Admin Generator 154

----------------- Brought to you by

Listing
12-25

Listing
12-26

// apps/backend/modules/job/actions/actions.class.php
class jobActions extends autoJobActions
{

public function executeBatchExtend(sfWebRequest $request)
{

$ids = $request->getParameter('ids');

$q = Doctrine_Query::create()
->from('JobeetJob j')
->whereIn('j.id', $ids);

foreach ($q->execute() as $job)
{

$job->extend(true);
}

$this->getUser()->setFlash('notice', 'The selected jobs have been
extended successfully.');

$this->redirect('jobeet_job');
}

}

The selected primary keys are stored in the ids request parameter. For each selected job,
the JobeetJob::extend() method is called with an extra argument to bypass the
expiration check.
Update the extend() method to take this new argument into account:

// lib/model/doctrine/JobeetJob.class.php
class JobeetJob extends BaseJobeetJob
{

public function extend($force = false)
{

if (!$force && !$this->expiresSoon())
{

return false;
}

$this->setExpiresAt(date('Y-m-d', time() + 86400 *
sfConfig::get('app_active_days')));

$this->save();

return true;
}

// ...
}

After all jobs have been extended, the user is redirected to the job module homepage.

Day 12: The Admin Generator 155

----------------- Brought to you by

Listing
12-27

Listing
12-28

Listing
12-29

object_actions

In the list, there is an additional column for actions you can run on a single object. For the
category module, let’s remove them as we have a link on the category name to edit it, and
we don’t really need to be able to delete one directly from the list:

apps/backend/modules/category/config/generator.yml
config:

list:
object_actions: {}

For the job module, let’s keep the existing actions and add a new extend action similar to
the one we have added as a batch action:

apps/backend/modules/job/config/generator.yml
config:

list:
object_actions:

extend: ~
_edit: ~
_delete: ~

As for batch actions, the _delete and _edit actions are the ones defined by the framework.
We need to define the listExtend() action to make the extend link work:

// apps/backend/modules/job/actions/actions.class.php
class jobActions extends autoJobActions
{

public function executeListExtend(sfWebRequest $request)
{

$job = $this->getRoute()->getObject();
$job->extend(true);

$this->getUser()->setFlash('notice', 'The selected jobs have been
extended successfully.');

$this->redirect('jobeet_job');
}

// ...
}

Day 12: The Admin Generator 156

----------------- Brought to you by

Listing
12-30

Listing
12-31

actions

We have already seen how to link an action to a list of objects or a single object. The actions
option defines actions that take no object at all, like the creation of a new object. Let’s
remove the default new action and add a new action that deletes all jobs that have not been
activated by the poster for more than 60 days:

apps/backend/modules/job/config/generator.yml
config:

list:
actions:

deleteNeverActivated: { label: Delete never activated jobs }

Until now, all actions we have defined had ~, which means that symfony automatically
configures the action. Each action can be customized by defining an array of parameters. The
label option overrides the default label generated by symfony.
By default, the action executed when you click on the link is the name of the action prefixed
with list.
Create the listDeleteNeverActivated action in the job module:

// apps/backend/modules/job/actions/actions.class.php
class jobActions extends autoJobActions
{

public function executeListDeleteNeverActivated(sfWebRequest $request)
{

$nb = Doctrine_Core::getTable('JobeetJob')->cleanup(60);

if ($nb)
{

$this->getUser()->setFlash('notice', sprintf('%d never activated
jobs have been deleted successfully.', $nb));

}
else
{

$this->getUser()->setFlash('notice', 'No job to delete.');
}

$this->redirect('jobeet_job');
}

Day 12: The Admin Generator 157

----------------- Brought to you by

Listing
12-32

Listing
12-33

Listing
12-34

// ...
}

We have reused the JobeetJobTable::cleanup() method defined yesterday. That’s
another great example of the reusability provided by the MVC pattern.

You can also change the action to execute by passing an action parameter:

deleteNeverActivated: { label: Delete never activated jobs, action: foo }

table_method

The number of database requests needed to display the job list page is 14, as shown by the
web debug toolbar.
If you click on that number, you will see that most requests are to retrieve the category name
for each job:

To reduce the number of queries, we can change the default method used to get the jobs by
using the table_method option:

apps/backend/modules/job/config/generator.yml
config:

list:
table_method: retrieveBackendJobList

The retrieveBackendJobList() method adds a join between the job and the category
tables and automatically creates the category object related to each job.
Now you must create the retrieveBackendJobList method in JobeetJobTable located
in lib/model/doctrine/JobeetJobTable.class.php.

// lib/model/doctrine/JobeetJobTable.class.php
class JobeetJobTable extends Doctrine_Table

Day 12: The Admin Generator 158

----------------- Brought to you by

Listing
12-35

{
public function retrieveBackendJobList(Doctrine_Query $q)
{

$rootAlias = $q->getRootAlias();

$q->leftJoin($rootAlias . '.JobeetCategory c');

return $q;
}

// ...

The retrieveBackendJobList() method adds a join between the job and the category
tables and automatically creates the category object related to each job.
The number of requests is now down to four:

Form Views Configuration
The form views configuration is done in three sections: form, edit, and new. They all have
the same configuration capabilities and the form section only exists as a fallback for the
edit and new sections.

display

As for the list, you can change the order of the displayed fields with the display option. But
as the displayed form is defined by a class, don’t try to remove a field as it could lead to
unexpected validation errors.
The display option for form views can also be used to arrange fields into groups:

apps/backend/modules/job/config/generator.yml
config:

form:
display:

Content: [category_id, type, company, logo, url, position,
location, description, how_to_apply, is_public, email]

Admin: [_generated_token, is_activated, expires_at]

The above configuration defines two groups (Content and Admin), each containing a subset
of the form fields.

Day 12: The Admin Generator 159

----------------- Brought to you by

Listing
12-36

Listing
12-37

The columns in the Admin group do not show up in the browser yet because they have
been unset in the job form definition. They will appear in a few sections when we define a
custom job form class for the admin application.

The admin generator has built-in support for many to many relationship. On the category
form, you have an input for the name, one for the slug, and a drop-down box for the related
affiliates. As it does not make sense to edit this relation on this page, let’s remove it:

// lib/form/doctrine/JobeetCategoryForm.class.php
class JobeetCategoryForm extends BaseJobeetCategoryForm
{

public function configure()
{

unset($this['created_at'], $this['updated_at'],
$this['jobeet_affiliates_list']);

}
}

“Virtual” columns
In the display options for the job form, the _generated_token field starts with an
underscore (_). This means that the rendering for this field will be handled by a custom
partial named _generated_token.php.
Create this partial with the following content:

// apps/backend/modules/job/templates/_generated_token.php
<div class="sf_admin_form_row">

<label>Token</label>
<?php echo $form->getObject()->getToken() ?>

</div>

In the partial, you have access to the current form ($form) and the related object is
accessible via the getObject() method.

You can also delegate the rendering to a component by prefixing the field name by a tilde
(~).

Day 12: The Admin Generator 160

----------------- Brought to you by

Listing
12-38

Listing
12-39

class

As the form will be used by administrators, we have displayed more information than for the
user job form. But for now, some of them do not appear on the form as they have been
removed in the JobeetJobForm class.
To have different forms for the frontend and the backend, we need to create two form classes.
Let’s create a BackendJobeetJobForm class that extends the JobeetJobForm class. As we
won’t have the same hidden fields, we also need to refactor the JobeetJobForm class a bit to
move the unset() statement in a method that will be overridden in
BackendJobeetJobForm:

// lib/form/doctrine/JobeetJobForm.class.php
class JobeetJobForm extends BaseJobeetJobForm
{

public function configure()
{

$this->removeFields();

$this->validatorSchema['email'] = new sfValidatorAnd(array(
$this->validatorSchema['email'],
new sfValidatorEmail(),

));

// ...
}

protected function removeFields()
{

unset(
$this['created_at'], $this['updated_at'],
$this['expires_at'], $this['is_activated'],
$this['token']

);
}

}

// lib/form/doctrine/BackendJobeetJobForm.class.php
class BackendJobeetJobForm extends JobeetJobForm
{

protected function removeFields()
{

unset(
$this['created_at'], $this['updated_at'],
$this['token']

);
}

}

The default form class used by the admin generator can be overridden by setting the class
option:

apps/backend/modules/job/config/generator.yml
config:

form:
class: BackendJobeetJobForm

Day 12: The Admin Generator 161

----------------- Brought to you by

Listing
12-40

As we have added a new class, don’t forget to clear the cache.

The edit form still has a small annoyance. The current uploaded logo does not show up
anywhere and you cannot remove the current one. The sfWidgetFormInputFileEditable
widget adds editing capabilities to a simple input file widget:

// lib/form/doctrine/BackendJobeetJobForm.class.php
class BackendJobeetJobForm extends JobeetJobForm
{

public function configure()
{

parent::configure();

$this->widgetSchema['logo'] = new sfWidgetFormInputFileEditable(array(
'label' => 'Company logo',
'file_src' => '/uploads/jobs/'.$this->getObject()->getLogo(),
'is_image' => true,
'edit_mode' => !$this->isNew(),
'template' => '<div>%file%
%input%
%delete%

%delete_label%</div>',
));

$this->validatorSchema['logo_delete'] = new sfValidatorPass();
}

// ...
}

The sfWidgetFormInputFileEditable widget takes several options to tweak its features
and rendering:

• file_src: The web path to the current uploaded file
• is_image: If true, the file will be rendered as an image
• edit_mode: Whether the form is in edit mode or not
• with_delete: Whether to display the delete checkbox
• template: The template to use to render the widget

Day 12: The Admin Generator 162

----------------- Brought to you by

Listing
12-41

Listing
12-42

The look of the admin generator can be tweaked very easily as the generated templates
define a lot of class and id attributes. For instance, the logo field can be customized by
using the sf_admin_form_field_logo class. Each field also has a class depending on
the field type like sf_admin_text or sf_admin_boolean.

The edit_mode option uses the sfDoctrineRecord::isNew() method.
It returns true if the model object of the form is new, and false otherwise. This is of great
help when you need to have different widgets or validators depending on the status of the
embedded object.

Filters Configuration
Configuring filters is quite the same as configuring the form views. As a matter of fact, filters
are just forms. And as for the forms, the classes have been generated by the
doctrine:build --all task. You can also re-generate them with the doctrine:build -
-filters task.
The form filter classes are located under the lib/filter/ directory and each model class
has an associated filter form class (JobeetJobFormFilter for JobeetJobForm).
Let’s remove them completely for the category module:

apps/backend/modules/category/config/generator.yml
config:

filter:
class: false

For the job module, let’s remove some of them:

apps/backend/modules/job/config/generator.yml
filter:

display: [category_id, company, position, description, is_activated,
is_public, email, expires_at]

As filters are always optional, there is no need to override the filter form class to configure
the fields to be displayed.

Day 12: The Admin Generator 163

----------------- Brought to you by

Actions Customization
When configuration is not sufficient, you can add new methods to the action class as we have
seen with the extend feature, but you can also override the generated action methods:

Method Description
executeIndex() list view action
executeFilter() Updates the filters
executeNew() new view action
executeCreate() Creates a new Job
executeEdit() edit view action
executeUpdate() Updates a Job
executeDelete() Deletes a Job
executeBatch() Executes a batch action
executeBatchDelete() Executes the _delete batch action
processForm() Processes the Job form
getFilters() Returns the current filters
setFilters() Sets the filters
getPager() Returns the list pager
getPage() Gets the pager page
setPage() Sets the pager page
buildCriteria() Builds the Criteria for the list
addSortCriteria() Adds the sort Criteria for the list

Day 12: The Admin Generator 164

----------------- Brought to you by

Method Description
getSort() Returns the current sort column
setSort() Sets the current sort column

As each generated method does only one thing, it is easy to change a behavior without having
to copy and paste too much code.

Templates Customization
We have seen how to customize the generated templates thanks to the class and id
attributes added by the admin generator in the HTML code.
As for the classes, you can also override the original templates. As templates are plain PHP
files and not PHP classes, a template can be overridden by creating a template of the same
name in the module (for instance in the apps/backend/modules/job/templates/
directory for the job admin module):

Template Description
_assets.php Renders the CSS and JS to use for templates
_filters.php Renders the filters box
_filters_field.php Renders a single filter field
_flashes.php Renders the flash messages
_form.php Displays the form
_form_actions.php Displays the form actions
_form_field.php Displays a single form field
_form_fieldset.php Displays a form fieldset
_form_footer.php Displays the form footer
_form_header.php Displays the form header
_list.php Displays the list
_list_actions.php Displays the list actions
_list_batch_actions.php Displays the list batch actions
_list_field_boolean.php Displays a single boolean field in the list
_list_footer.php Displays the list footer
_list_header.php Displays the list header
_list_td_actions.php Displays the object actions for a row
_list_td_batch_actions.php Displays the checkbox for a row
_list_td_stacked.php Displays the stacked layout for a row
_list_td_tabular.php Displays a single field for the list
_list_th_stacked.php Displays a single column name for the header
_list_th_tabular.php Displays a single column name for the header
_pagination.php Displays the list pagination
editSuccess.php Displays the edit view
indexSuccess.php Displays the list view
newSuccess.php Displays the new view

Day 12: The Admin Generator 165

----------------- Brought to you by

Listing
12-43

Final Configuration
The final configuration for the Jobeet admin is as follows:

apps/backend/modules/job/config/generator.yml
generator:

class: sfDoctrineGenerator
param:

model_class: JobeetJob
theme: admin
non_verbose_templates: true
with_show: false
singular: ~
plural: ~
route_prefix: jobeet_job
with_doctrine_route: true

config:
actions: ~
fields:

is_activated: { label: Activated?, help: Whether the user has
activated the job, or not }

is_public: { label: Public? }
list:

title: Job Management
layout: stacked
display: [company, position, location, url, is_activated,

email]
params: |

%%is_activated%% <small>%%JobeetCategory%%</small> - %%company%%
(%%email%%) is looking for a %%=position%%

(%%location%%)
max_per_page: 10
sort: [expires_at, desc]
batch_actions:

_delete: ~
extend: ~

object_actions:
extend: ~
_edit: ~
_delete: ~

actions:
deleteNeverActivated: { label: Delete never activated jobs }

table_method: retrieveBackendJobList
filter:

display: [category_id, company, position, description,
is_activated, is_public, email, expires_at]

form:
class: BackendJobeetJobForm
display:

Content: [category_id, type, company, logo, url, position,
location, description, how_to_apply, is_public, email]

Admin: [_generated_token, is_activated, expires_at]
edit:

title: Editing Job "%%company%% is looking for a %%position%%"
new:

title: Job Creation

Day 12: The Admin Generator 166

----------------- Brought to you by

apps/backend/modules/category/config/generator.yml
generator:

class: sfDoctrineGenerator
param:

model_class: JobeetCategory
theme: admin
non_verbose_templates: true
with_show: false
singular: ~
plural: ~
route_prefix: jobeet_category
with_doctrine_route: true

config:
actions: ~
fields: ~
list:

title: Category Management
display: [=name, slug]
batch_actions: {}
object_actions: {}

filter:
class: false

form:
actions:

_delete: ~
_list: ~
_save: ~

edit:
title: Editing Category "%%name%%"

new:
title: New Category

With just these two configuration files, we have developed a great backend interface for
Jobeet in a matter of minutes.

You already know that when something is configurable in a YAML file, there is also the
possibility to use plain PHP code. For the admin generator, you can edit the apps/
backend/modules/job/lib/jobGeneratorConfiguration.class.php file. It gives
you the same options as the YAML file but with a PHP interface. To learn the method
names, have a look at the generated base class in cache/backend/dev/modules/
autoJob/lib/BaseJobGeneratorConfiguration.class.php.

Final Thoughts
In just one hour, we have built a fully featured backend interface for the Jobeet project. And
all in all, we have written less than 50 lines of PHP code. Not too bad for so many features!
Tomorrow, we will see how to secure the backend application with a username and a
password. This will also be the occasion to talk about the symfony user class.

Day 12: The Admin Generator 167

----------------- Brought to you by

Listing
13-1

Day 13

The User

Yesterday was packed with a lot of information. With very few PHP lines of code, the symfony
admin generator allows the developer to create backend interfaces in a matter of minutes.
Today, we will discover how symfony manages persistent data between HTTP requests. As
you might know, the HTTP protocol is stateless, which means that each request is
independent from its preceding or proceeding ones. Modern websites need a way to persist
data between requests to enhance the user experience.
A user session can be identified using a cookie. In symfony, the developer does not need to
manipulate the session directly, but rather uses the sfUser object, which represents the
application end user.

User Flashes
We have already seen the user object in action with flashes. A flash|Flash Message is an
ephemeral message stored in the user session that will be automatically deleted after the very
next request. It is very useful when you need to display a message to the user after a redirect.
The admin generator uses flashes a lot to display feedback to the user whenever a job is
saved, deleted, or extended.

A flash is set by using the setFlash() method of sfUser:

Day 13: The User 168

----------------- Brought to you by

Listing
13-2

Listing
13-3

// apps/frontend/modules/job/actions/actions.class.php
public function executeExtend(sfWebRequest $request)
{

$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();
$this->forward404Unless($job->extend());

$this->getUser()->setFlash('notice', sprintf('Your job validity has been
extended until %s.', $job->getDateTimeObject('expires_at')->format('m/d/
Y')));

$this->redirect($this->generateUrl('job_show_user', $job));
}

The first argument is the identifier of the flash and the second one is the message to display.
You can define whatever flashes you want, but notice and error are two of the more
common ones (they are used extensively by the admin generator).
It is up to the developer to include the flash message in the templates. For Jobeet, they are
output by the layout.php:

// apps/frontend/templates/layout.php
<?php if ($sf_user->hasFlash('notice')): ?>

<div class="flash_notice"><?php echo $sf_user->getFlash('notice')
?></div>
<?php endif ?>

<?php if ($sf_user->hasFlash('error')): ?>
<div class="flash_error"><?php echo $sf_user->getFlash('error') ?></div>

<?php endif ?>

In a template, the user is accessible via the special $sf_user variable.

Some symfony objects are always accessible in the templates, without the need to explicitly
pass them from the action: $sf_request, $sf_user, and $sf_response.

User Attributes
Unfortunately, the Jobeet user stories have no requirement that includes storing something in
the user session. So let’s add a new requirement: to ease job browsing, the last three jobs
viewed by the user should be displayed in the menu with links to come back to the job page
later on.
When a user access a job page, the displayed job object needs to be added in the user history
and stored in the session:

// apps/frontend/modules/job/actions/actions.class.php
class jobActions extends sfActions
{

public function executeShow(sfWebRequest $request)
{

$this->job = $this->getRoute()->getObject();

// fetch jobs already stored in the job history
$jobs = $this->getUser()->getAttribute('job_history', array());

Day 13: The User 169

----------------- Brought to you by

Listing
13-4

Listing
13-5

// add the current job at the beginning of the array
array_unshift($jobs, $this->job->getId());

// store the new job history back into the session
$this->getUser()->setAttribute('job_history', $jobs);

}

// ...
}

We could have feasibly stored the JobeetJob objects directly into the session. This is
strongly discouraged because the session variables are serialized between requests. And
when the session is loaded, the JobeetJob objects are de-serialized and can be “stalled” if
they have been modified or deleted in the meantime.

getAttribute(), setAttribute()
Given an identifier, the sfUser::getAttribute() method fetches values from the user
session. Conversely, the setAttribute() method stores any PHP variable in the session for
a given identifier.
The getAttribute() method also takes an optional default value to return if the identifier is
not yet defined.

The default value taken by the getAttribute() method is a shortcut for:

if (!$value = $this->getAttribute('job_history'))
{

$value = array();
}

The myUser class
To better respect the separation of concerns, let’s move the code to the myUser class. The
myUser class overrides the default symfony base sfUser51 class with application specific
behaviors:

// apps/frontend/modules/job/actions/actions.class.php
class jobActions extends sfActions
{

public function executeShow(sfWebRequest $request)
{

$this->job = $this->getRoute()->getObject();

$this->getUser()->addJobToHistory($this->job);
}

// ...
}

// apps/frontend/lib/myUser.class.php
class myUser extends sfBasicSecurityUser

51. http://www.symfony-project.org/api/1_4/sfUser

Day 13: The User 170

----------------- Brought to you by

Listing
13-6

Listing
13-7

{
public function addJobToHistory(JobeetJob $job)
{

$ids = $this->getAttribute('job_history', array());

if (!in_array($job->getId(), $ids))
{

array_unshift($ids, $job->getId());

$this->setAttribute('job_history', array_slice($ids, 0, 3));
}

}
}

The code has also been changed to take into account all the requirements:

• !in_array($job->getId(), $ids): A job cannot be stored twice in the history
• array_slice($ids, 0, 3): Only the latest three jobs viewed by the user are

displayed

In the layout, add the following code before the $sf_content variable is output:

// apps/frontend/templates/layout.php
<div id="job_history">

Recent viewed jobs:

<?php foreach ($sf_user->getJobHistory() as $job): ?>

<?php echo link_to($job->getPosition().' - '.$job->getCompany(),
'job_show_user', $job) ?>

<?php endforeach ?>

</div>

<div class="content">
<?php echo $sf_content ?>

</div>

The layout uses a new getJobHistory() method to retrieve the current job history:

// apps/frontend/lib/myUser.class.php
class myUser extends sfBasicSecurityUser
{

public function getJobHistory()
{

$ids = $this->getAttribute('job_history', array());

if (!empty($ids))
{

return Doctrine_Core::getTable('JobeetJob')
->createQuery('a')
->whereIn('a.id', $ids)
->execute()

;
}

return array();

Day 13: The User 171

----------------- Brought to you by

Listing
13-8

}

// ...
}

The getJobHistory() method uses a custom Doctrine_Query object to retrieve several
JobeetJob objects in one call.

sfParameterHolder

To complete the job history API, let’s add a method to reset the history:

// apps/frontend/lib/myUser.class.php
class myUser extends sfBasicSecurityUser
{

public function resetJobHistory()
{

$this->getAttributeHolder()->remove('job_history');
}

// ...
}

User’s attributes are managed by an object of class sfParameterHolder. The
getAttribute() and setAttribute() methods are proxy methods for
getParameterHolder()->get() and getParameterHolder()->set(). As the
remove() method has no proxy method in sfUser, you need to use the parameter holder
object directly.

The sfParameterHolder52 class is also used by sfRequest to store its parameters.

Application Security
Authentication
Like many other symfony features, security is managed by a YAML file, security.yml. For
instance, you can find the default configuration for the backend application in the config/
directory:

52. http://www.symfony-project.org/api/1_4/sfParameterHolder

Day 13: The User 172

----------------- Brought to you by

Listing
13-9

Listing
13-10

Listing
13-11

apps/backend/config/security.yml
default:

is_secure: false

If you switch the is_secure entry to true, the entire backend application will require the
user to be authenticated.

In a YAML file, a Boolean can be expressed with the strings true and false.

If you have a look at the logs in the web debug toolbar, you will notice that the
executeLogin() method of the defaultActions class is called for every page you try to
access.

When an un-authenticated user tries to access a secured action, symfony forwards the
request to the login action configured in settings.yml:

all:
.actions:

login_module: default
login_action: login

It is not possible to secure the login action. This is to avoid infinite recursion.

As we saw during day 4, the same configuration file can be defined in several places. This
is also the case for security.yml. To only secure or un-secure a single action or a whole
module, create a security.yml in the config/ directory of the module:

index:
is_secure: false

Day 13: The User 173

----------------- Brought to you by

Listing
13-12

Listing
13-13

Listing
13-14

Listing
13-15

Listing
13-16

all:
is_secure: true

By default, the myUser class extends sfBasicSecurityUser53, and not sfUser.
sfBasicSecurityUser provides additional methods to manage user authentication and
authorization.
To manage user authentication, use the isAuthenticated() and setAuthenticated()
methods:

if (!$this->getUser()->isAuthenticated())
{

$this->getUser()->setAuthenticated(true);
}

Authorization
When a user is authenticated, the access to some actions can be even more restricted by
defining credentials. A user must have the required credentials to access the page:

default:
is_secure: false
credentials: admin

The credential system of symfony is quite simple and powerful. A credential can represent
anything you need to describe the application security model (like groups or permissions).

Complex Credentials

The credentials entry of security.yml supports Boolean operations to describe
complex credentials requirements.
If a user must have credential A and B, wrap the credentials with square brackets:

index:
credentials: [A, B]

If a user must have credential A or B, wrap them with two pairs of square brackets:

index:
credentials: [[A, B]]

You can even mix and match brackets to describe any kind of Boolean expression with any
number of credentials.

To manage the user credentials, sfBasicSecurityUser provides several methods:

// Add one or more credentials
$user->addCredential('foo');
$user->addCredentials('foo', 'bar');

// Check if the user has a credential
echo $user->hasCredential('foo'); => true

53. http://www.symfony-project.org/api/1_4/sfBasicSecurityUser

Day 13: The User 174

----------------- Brought to you by

Listing
13-17

// Check if the user has both credentials
echo $user->hasCredential(array('foo', 'bar')); => true

// Check if the user has one of the credentials
echo $user->hasCredential(array('foo', 'bar'), false); => true

// Remove a credential
$user->removeCredential('foo');
echo $user->hasCredential('foo'); => false

// Remove all credentials (useful in the logout process)
$user->clearCredentials();
echo $user->hasCredential('bar'); => false

For the Jobeet backend, we won’t use any credentials as we only have one profile: the
administrator.

Plugins
As we don’t like to reinvent the wheel, we won’t develop the login action from scratch.
Instead, we will install a symfony plugin.
One of the great strengths of the symfony framework is the plugin ecosystem. As we will see
in coming days, it is very easy to create a plugin. It is also quite powerful, as a plugin can
contain anything from configuration to modules and assets.
Today, we will install sfDoctrineGuardPlugin54 to secure the backend application.

$ php symfony plugin:install sfDoctrineGuardPlugin

The plugin:install task installs a plugin by name. All plugins are stored under the
plugins/ directory and each one has its own directory named after the plugin name.

PEAR must be installed for the plugin:install task to work.

When you install a plugin with the plugin:install task, symfony installs the latest stable
version of it. To install a specific version of a plugin, pass the --release option.
The plugin page55 lists all available version grouped by symfony versions.
As a plugin is self-contained into a directory, you can also download the package56 from the
symfony website and unarchive it, or alternatively make an svn:externals link to its
Subversion repository57.
The plugin:install task automatically enables the plugin(s) it installs by automatically
updating the ProjectConfiguration.class.php file. But if you install a plugin via
Subversion or by downloading its archive, you need to enable it by hand in
ProjectConfiguration.class.php:

54. http://www.symfony-project.org/plugins/sfDoctrineGuardPlugin
55. http://www.symfony-project.org/plugins/
sfDoctrineGuardPlugin?tab=plugin_all_releases
56. http://www.symfony-project.org/plugins/
sfDoctrineGuardPlugin?tab=plugin_installation
57. http://svn.symfony-project.com/plugins/sfDoctrineGuardPlugin

Day 13: The User 175

----------------- Brought to you by

http://www.symfony-project.org/plugins/

Listing
13-18

Listing
13-19

Listing
13-20

Listing
13-21

// config/ProjectConfiguration.class.php
class ProjectConfiguration extends sfProjectConfiguration
{

public function setup()
{

$this->enablePlugins(array(
'sfDoctrinePlugin',
'sfDoctrineGuardPlugin'

));
}

}

Backend Security
Each plugin has a README58 file that explains how to configure it.
Let’s see how to configure the new plugin. As the plugin provides several new model classes
to manage users, groups, and permissions, you need to rebuild your model:

$ php symfony doctrine:build --all --and-load --no-confirmation

Remember that the doctrine:build --all --and-load task removes all existing
tables before re-creating them. To avoid this, you can build the models, forms, and filters,
and then, create the new tables by executing the generated SQL statements stored in
data/sql/.

As sfDoctrineGuardPlugin adds several methods to the user class, you need to change
the base class of myUser to sfGuardSecurityUser:

// apps/backend/lib/myUser.class.php
class myUser extends sfGuardSecurityUser
{
}

sfDoctrineGuardPlugin provides a signin action in the sfGuardAuth module to
authenticate users.
Edit the settings.yml file to change the default action used for the login page:

apps/backend/config/settings.yml
all:

.settings:
enabled_modules: [default, sfGuardAuth]

...

.actions:
login_module: sfGuardAuth
login_action: signin

...

58. http://www.symfony-project.org/plugins/
sfDoctrineGuardPlugin?tab=plugin_readme

Day 13: The User 176

----------------- Brought to you by

Listing
13-22

Listing
13-23

Listing
13-24

Listing
13-25

Listing
13-26

Listing
13-27

As plugins are shared amongst all applications of a project, you need to explicitly enable the
modules you want to use by adding them in the enabled_modules setting.

The last step is to create an administrator user:

$ php symfony guard:create-user fabien SecretPass
$ php symfony guard:promote fabien

If you have installed sfDoctrineGuardPlugin from the Subversion trunk, you will have
to execute the following command to create a user and promote him at once:

$ php symfony guard:create-user fabien@example.com fabien SecretPass
Fabien Potencier

TIP The sfGuardPlugin provides tasks to manage users, groups, and permissions from
the command line. Use the list task to list all tasks belonging to the guard namespace:

$ php symfony list guard

When the user is not authenticated, we need to hide the menu bar:

// apps/backend/templates/layout.php
<?php if ($sf_user->isAuthenticated()): ?>

<div id="menu">

<?php echo link_to('Jobs', 'jobeet_job') ?>
<?php echo link_to('Categories', 'jobeet_category') ?>

</div>

<?php endif ?>

And when the user is authenticated, we need to add a logout link in the menu:

// apps/backend/templates/layout.php
<?php echo link_to('Logout', 'sf_guard_signout') ?>

To list all routes provided by sfDoctrineGuardPlugin, use the app:routes task.

To polish the Jobeet backend even more, let’s add a new module to manage the administrator
users. Thankfully, the plugin provides such a module. As for the sfGuardAuth module, you
need to enable it in settings.yml:

Day 13: The User 177

----------------- Brought to you by

Listing
13-28

Listing
13-29

// apps/backend/config/settings.yml
all:

.settings:
enabled_modules: [default, sfGuardAuth, sfGuardUser]

Add a link in the menu:

// apps/backend/templates/layout.php
<?php echo link_to('Users', 'sf_guard_user') ?>

We are done!

User Testing
Day 13 is not over as we have not yet talked about user testing. As the symfony browser
simulates cookies, it is quite easy to test user behaviors by using the built-in
sfTesterUser59 tester.
Let’s update the functional tests for the menu feature we have added until now. Add the
following code at the end of the job module functional tests:

// test/functional/frontend/jobActionsTest.php
$browser->

info('4 - User job history')->

loadData()->
restart()->

info(' 4.1 - When the user access a job, it is added to its history')->
get('/')->
click('Web Developer', array(), array('position' => 1))->
get('/')->
with('user')->begin()->

isAttribute('job_history',
array($browser->getMostRecentProgrammingJob()->getId()))->

end()->

info(' 4.2 - A job is not added twice in the history')->
click('Web Developer', array(), array('position' => 1))->
get('/')->
with('user')->begin()->

isAttribute('job_history',
array($browser->getMostRecentProgrammingJob()->getId()))->

59. http://symfony-project.org/api/1_4/sfTesterUser

Day 13: The User 178

----------------- Brought to you by

end()
;

To ease testing, we first reload the fixtures data and restart the browser to start with a clean
session.
The isAttribute() method checks a given user attribute.

The sfTesterUser tester also provides isAuthenticated() and hasCredential()
methods to test user authentication and autorizations.

Final Thoughts
The symfony user classes are a nice way to abstract the PHP session management. Coupled
with the great symfony plugin system and the sfGuardPlugin plugin, we have been able to
secure the Jobeet backend in a matter of minutes. And we have even added a clean interface
to manage our administrator users for free, thanks to the modules provided by the plugin.

Day 13: The User 179

----------------- Brought to you by

Listing
14-1

Listing
14-2

Listing
14-3

Day 14

Feeds

Yesterday, you started developing your first very own symfony application. Don’t stop now. As
you learn more on symfony, try to add new features to your application, host it somewhere,
and share it with the community.
Let’s move on to something completely different. If you are looking for a job, you will
probably want to be informed as soon as a new job is posted. Because it is not very
convenient to check the website every other hour, we will add several job feeds here to keep
our Jobeet users up-to-date.

Formats
The symfony framework has native support for formats and mime-types. This means that the
same Model and Controller can have different templates based on the requested format. The
default format is HTML but symfony supports several other formats out of the box like txt,
js, css, json, xml, rdf, or atom.
The format can be set by using the setRequestFormat() method of the request object:

$request->setRequestFormat('xml');

But most of the time, the format is embedded in the URL. In this case, symfony will set it for
you if the special sf_format variable is used in the corresponding route. For the job list, the
list URL is:

http://www.jobeet.com.localhost/frontend_dev.php/job

This URL is equivalent to:

http://www.jobeet.com.localhost/frontend_dev.php/job.html

Both URLs are equivalent because the routes generated by the
sfDoctrineRouteCollection class have the sf_format as the extension and because
html is the default format. You can check it for yourself by running the app:routes task:

Day 14: Feeds 180

----------------- Brought to you by

Listing
14-4

Feeds
Latest Jobs Feed
Supporting different formats is as easy as creating different templates. To create an Atom
feed60 for the latest jobs, create an indexSuccess.atom.php template:

<!-- apps/frontend/modules/job/templates/indexSuccess.atom.php -->
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Jobeet</title>
<subtitle>Latest Jobs</subtitle>
<link href="" rel="self"/>
<link href=""/>
<updated></updated>
<author><name>Jobeet</name></author>
<id>Unique Id</id>

<entry>
<title>Job title</title>
<link href="" />
<id>Unique id</id>
<updated></updated>
<summary>Job description</summary>
<author><name>Company</name></author>

</entry>
</feed>

60. http://en.wikipedia.org/wiki/Atom_(standard)

Day 14: Feeds 181

----------------- Brought to you by

Listing
14-5

Listing
14-6

Listing
14-7

Listing
14-8

Listing
14-9

Listing
14-10

Template Names

As html is the most common format used for web applications, it can be omitted from the
template name. Both indexSuccess.php and indexSuccess.html.php templates are
equivalent and symfony uses the first one it finds.
Why are default templates suffixed with Success? An action can return a value to indicate
which template to render. If the action returns nothing, it is equivalent to the following
code:

return sfView::SUCCESS; // == 'Success'

If you want to change the suffix, just return something else:

return sfView::ERROR; // == 'Error'

return 'Foo';

As seen yesterday, the name of the template can also be changed by using the
setTemplate() method:

$this->setTemplate('foo');

By default, symfony will change the response Content-Type according to the format, and for
all non-HTML formats, the layout is disabled. For an Atom feed, symfony changes the
Content-Type to application/atom+xml;charset=utf-8.
In the Jobeet footer, update the link to the feed:

<!-- apps/frontend/templates/layout.php -->
<li class="feed">

<a href="<?php echo url_for('job', array('sf_format' => 'atom'))
?>">Full feed

The internal URI is the same as for the job list with the sf_format added as a variable.
Add a <link> tag in the head section of the layout to allow automatic discover by the
browser of our feed:

<!-- apps/frontend/templates/layout.php -->
<link rel="alternate" type="application/atom+xml" title="Latest Jobs"

href="<?php echo url_for('job', array('sf_format' => 'atom'), true) ?>"
/>

For the link href attribute, an URL (Absolute) is used thanks to the second argument of the
url_for() helper.
Replace the Atom template header with the following code:

<!-- apps/frontend/modules/job/templates/indexSuccess.atom.php -->
<title>Jobeet</title>
<subtitle>Latest Jobs</subtitle>
<link href="<?php echo url_for('job', array('sf_format' => 'atom'), true)
?>" rel="self"/>
<link href="<?php echo url_for('@homepage', true) ?>"/>
<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ',
Doctrine_Core::getTable('JobeetJob')->getLatestPost()->getDateTimeObject('created_at')->format('U'))

Day 14: Feeds 182

----------------- Brought to you by

Listing
14-11

Listing
14-12

?></updated>
<author>

<name>Jobeet</name>
</author>
<id><?php echo sha1(url_for('job', array('sf_format' => 'atom'), true))
?></id>

Notice the usage of the U as an argument to format() to get the date as a timestamp. To get
the date of the latest post, create the getLatestPost() method:

// lib/model/doctrine/JobeetJobTable.class.php
class JobeetJobTable extends Doctrine_Table
{

public function getLatestPost()
{

$q = Doctrine_Query::create()->from('JobeetJob j');

$this->addActiveJobsQuery($q);

return $q->fetchOne();
}

// ...
}

The feed entries can be generated with the following code:

<!-- apps/frontend/modules/job/templates/indexSuccess.atom.php -->
<?php use_helper('Text') ?>
<?php foreach ($categories as $category): ?>

<?php foreach
($category->getActiveJobs(sfConfig::get('app_max_jobs_on_homepage')) as
$job): ?>

<entry>
<title>

<?php echo $job->getPosition() ?> (<?php echo $job->getLocation()
?>)

</title>
<link href="<?php echo url_for('job_show_user', $job, true) ?>" />
<id><?php echo sha1($job->getId()) ?></id>
<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ',

$job->getDateTimeObject('created_at')->format('U')) ?></updated>
<summary type="xhtml">
<div xmlns="http://www.w3.org/1999/xhtml">

<?php if ($job->getLogo()): ?>
<div>

<a href="<?php echo $job->getUrl() ?>">
<img src="http://<?php echo $sf_request->getHost().'/

uploads/jobs/'.$job->getLogo() ?>"
alt="<?php echo $job->getCompany() ?> logo" />

</div>

<?php endif ?>

<div>
<?php echo simple_format_text($job->getDescription()) ?>

</div>

Day 14: Feeds 183

----------------- Brought to you by

Listing
14-13

<h4>How to apply?</h4>

<p><?php echo $job->getHowToApply() ?></p>
</div>

</summary>
<author>

<name><?php echo $job->getCompany() ?></name>
</author>

</entry>
<?php endforeach ?>

<?php endforeach ?>

The getHost() method of the request object ($sf_request) returns the current host, which
comes in handy for creating an absolute link for the company logo.

When creating a feed, debugging is easier if you use command line tools like curl61 or
wget62, as you see the actual content of the feed.

Latest Jobs in a Category Feed
One of the goals of Jobeet is to help people find more targeted jobs. So, we need to provide a
feed for each category.
First, let’s update the category route to add support for different formats:

// apps/frontend/config/routing.yml
category:

url: /category/:slug.:sf_format
class: sfDoctrineRoute
param: { module: category, action: show, sf_format: html }
options: { model: JobeetCategory, type: object }
requirements:

sf_format: (?:html|atom)

61. http://curl.haxx.se/
62. http://www.gnu.org/software/wget/

Day 14: Feeds 184

----------------- Brought to you by

Listing
14-14

Listing
14-15

Now, the category route will understand both the html and atom formats. Update the links
to category feeds in the templates:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<div class="feed">

<a href="<?php echo url_for('category', array('sf_subject' => $category,
'sf_format' => 'atom')) ?>">Feed
</div>

<!-- apps/frontend/modules/category/templates/showSuccess.php -->
<div class="feed">

<a href="<?php echo url_for('category', array('sf_subject' => $category,
'sf_format' => 'atom')) ?>">Feed
</div>

The last step is to create the showSuccess.atom.php template. But as this feed will also list
jobs, we can refactor the code that generates the feed entries by creating a
_list.atom.php partial. As for the html format, partials are format specific:

<!-- apps/frontend/modules/job/templates/_list.atom.php -->
<?php use_helper('Text') ?>

<?php foreach ($jobs as $job): ?>
<entry>

<title><?php echo $job->getPosition() ?> (<?php echo
$job->getLocation() ?>)</title>

<link href="<?php echo url_for('job_show_user', $job, true) ?>" />
<id><?php echo sha1($job->getId()) ?></id>

<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ',
$job->getDateTimeObject('created_at')->format('U')) ?></updated>

<summary type="xhtml">
<div xmlns="http://www.w3.org/1999/xhtml">

<?php if ($job->getLogo()): ?>
<div>

<a href="<?php echo $job->getUrl() ?>">
<img src="http://<?php echo $sf_request->getHost().'/uploads/

jobs/'.$job->getLogo() ?>"
alt="<?php echo $job->getCompany() ?> logo" />

</div>

<?php endif ?>

<div>
<?php echo simple_format_text($job->getDescription()) ?>

</div>

<h4>How to apply?</h4>

<p><?php echo $job->getHowToApply() ?></p>
</div>

</summary>
<author>

<name><?php echo $job->getCompany() ?></name>
</author>

</entry>
<?php endforeach ?>

You can use the _list.atom.php partial to simplify the job feed template:

Day 14: Feeds 185

----------------- Brought to you by

Listing
14-16

Listing
14-17

Listing
14-18

<!-- apps/frontend/modules/job/templates/indexSuccess.atom.php -->
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Jobeet</title>
<subtitle>Latest Jobs</subtitle>
<link href="<?php echo url_for('job', array('sf_format' => 'atom'),

true) ?>" rel="self"/>
<link href="<?php echo url_for('@homepage', true) ?>"/>
<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ',

Doctrine_Core::getTable('JobeetJob')->getLatestPost()->getDateTimeObject('created_at')->format('U'))
?></updated>

<author>
<name>Jobeet</name>

</author>
<id><?php echo sha1(url_for('job', array('sf_format' => 'atom'), true))

?></id>

<?php foreach ($categories as $category): ?>
<?php include_partial('job/list', array('jobs' =>

$category->getActiveJobs(sfConfig::get('app_max_jobs_on_homepage')))) ?>
<?php endforeach ?>
</feed>

Eventually, create the showSuccess.atom.php template:

<!-- apps/frontend/modules/category/templates/showSuccess.atom.php -->
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Jobeet (<?php echo $category ?>)</title>
<subtitle>Latest Jobs</subtitle>
<link href="<?php echo url_for('category', array('sf_subject' =>

$category, 'sf_format' => 'atom'), true) ?>" rel="self" />
<link href="<?php echo url_for('category', array('sf_subject' =>

$category), true) ?>" />
<updated><?php echo gmstrftime('%Y-%m-%dT%H:%M:%SZ',

$category->getLatestPost()->getDateTimeObject('created_at')->format('U'))
?></updated>

<author>
<name>Jobeet</name>

</author>
<id><?php echo sha1(url_for('category', array('sf_subject' =>

$category), true)) ?></id>

<?php include_partial('job/list', array('jobs' => $pager->getResults()))
?>
</feed>

As for the main job feed, we need the date of the latest job for a category:

// lib/model/doctrine/JobeetCategory.class.php
class JobeetCategory extends BaseJobeetCategory
{

public function getLatestPost()
{

return $this->getActiveJobs(1)->getFirst();
}

Day 14: Feeds 186

----------------- Brought to you by

// ...
}

Final Thoughts
As with many symfony features, the native format support allows you to add feeds to your
websites without effort. Today, we have enhanced the job seeker experience. Tomorrow, we
will see how to provide greater exposure to the job posters by providing a Web Service.

Day 14: Feeds 187

----------------- Brought to you by

Listing
15-1

Day 15

Web Services

With the addition of feeds on Jobeet, job seekers can now be informed of new jobs in real-
time.
On the other side of the fence, when you post a job, you will want to have the greatest
exposure possible. If your job is syndicated on a lot of small websites, you will have a better
chance to find the right person. That’s the power of the long tail63. Affiliates will be able to
publish the latest posted jobs on their websites thanks to the web services we will develop
along this day.

Affiliates
As per day 2 requirements:
“Story F7: An affiliate retrieves the current active job list”

The Fixtures
Let’s create a new fixture file for the affiliates:

data/fixtures/affiliates.yml
JobeetAffiliate:

sensio_labs:
url: http://www.sensio-labs.com/
email: fabien.potencier@example.com
is_active: true
token: sensio_labs
JobeetCategories: [programming]

symfony:
url: http://www.symfony-project.org/
email: fabien.potencier@example.org
is_active: false
token: symfony
JobeetCategories: [design, programming]

Creating records for many-to-many relationships is as simple as defining an array with the
key which is the name of the relationship. The content of the array is the object names as
defined in the fixture files. You can link objects from different files, but the names must be
defined first.

63. http://en.wikipedia.org/wiki/The_Long_Tail

Day 15: Web Services 188

----------------- Brought to you by

Listing
15-2

Listing
15-3

Listing
15-4

Listing
15-5

In the fixtures file, tokens are hardcoded to simplify the testing, but when an actual user
applies for an account, the token will need to be generated:

// lib/model/doctrine/JobeetAffiliate.class.php
class JobeetAffiliate extends BaseJobeetAffiliate
{

public function save(Doctrine_Connection $conn = null)
{

if (!$this->getToken())
{

$this->setToken(sha1($this->getEmail().rand(11111, 99999)));
}

return parent::save($conn);
}

// ...
}

You can now reload the data:

$ php symfony doctrine:data-load

The Job Web Service
As always, when you create a new resource, it’s a good habit to define the URL first:

apps/frontend/config/routing.yml
api_jobs:

url: /api/:token/jobs.:sf_format
class: sfDoctrineRoute
param: { module: api, action: list }
options: { model: JobeetJob, type: list, method: getForToken }
requirements:

sf_format: (?:xml|json|yaml)

For this route, the special sf_format variable ends the URL and the valid values are xml,
json, or yaml.
The getForToken() method is called when the action retrieves the collection of objects
related to the route. As we need to check that the affiliate is activated, we need to override
the default behavior of the route:

// lib/model/doctrine/JobeetJobTable.class.php
class JobeetJobTable extends Doctrine_Table
{

public function getForToken(array $parameters)
{

$affiliate = Doctrine_Core::getTable('JobeetAffiliate')
->findOneByToken($parameters['token']);

if (!$affiliate || !$affiliate->getIsActive())
{

throw new sfError404Exception(sprintf('Affiliate with token "%s"
does not exist or is not activated.', $parameters['token']));

}

return $affiliate->getActiveJobs();
}

Day 15: Web Services 189

----------------- Brought to you by

Listing
15-6

Listing
15-7

Listing
15-8

// ...
}

If the token does not exist in the database, we throw an sfError404Exception exception.
This exception class is then automatically converted to a 404 response. This is the simplest
way to generate a 404 page from a model class.
The getForToken() method uses one new method named getActiveJobs() and returns
the list of currently active jobs:

// lib/model/doctrine/JobeetAffiliate.class.php
class JobeetAffiliate extends BaseJobeetAffiliate
{

public function getActiveJobs()
{

$q = Doctrine_Query::create()
->select('j.*')
->from('JobeetJob j')
->leftJoin('j.JobeetCategory c')
->leftJoin('c.JobeetAffiliates a')
->where('a.id = ?', $this->getId());

$q = Doctrine_Core::getTable('JobeetJob')->addActiveJobsQuery($q);

return $q->execute();
}

// ...
}

The last step is to create the api action and templates. Bootstrap the module with the
generate:module task:

$ php symfony generate:module frontend api

As we won’t use the default index action, you can remove it from the action class, and
remove the associated template indexSucess.php.

The Action
All formats share the same list action:

// apps/frontend/modules/api/actions/actions.class.php
public function executeList(sfWebRequest $request)
{

$this->jobs = array();
foreach ($this->getRoute()->getObjects() as $job)
{

$this->jobs[$this->generateUrl('job_show_user', $job, true)] =
$job->asArray($request->getHost());

}
}

Day 15: Web Services 190

----------------- Brought to you by

Listing
15-9

Listing
15-10

Listing
15-11

Instead of passing an array of JobeetJob objects to the templates, we pass an array of
strings. As we have three different templates for the same action, the logic to process the
values has been factored out in the JobeetJob::asArray() method:

// lib/model/doctrine/JobeetJob.class.php
class JobeetJob extends BaseJobeetJob
{

public function asArray($host)
{

return array(
'category' => $this->getJobeetCategory()->getName(),
'type' => $this->getType(),
'company' => $this->getCompany(),
'logo' => $this->getLogo() ? 'http://'.$host.'/uploads/jobs/

'.$this->getLogo() : null,
'url' => $this->getUrl(),
'position' => $this->getPosition(),
'location' => $this->getLocation(),
'description' => $this->getDescription(),
'how_to_apply' => $this->getHowToApply(),
'expires_at' => $this->getCreatedAt(),

);
}

// ...
}

The xml Format
Supporting the xml format is as simple as creating a template:

<!-- apps/frontend/modules/api/templates/listSuccess.xml.php -->
<?xml version="1.0" encoding="utf-8"?>
<jobs>
<?php foreach ($jobs as $url => $job): ?>

<job url="<?php echo $url ?>">
<?php foreach ($job as $key => $value): ?>

<<?php echo $key ?>><?php echo $value ?></<?php echo $key ?>>
<?php endforeach ?>

</job>
<?php endforeach ?>
</jobs>

The json Format
Support the JSON format64 is similar:

<!-- apps/frontend/modules/api/templates/listSuccess.json.php -->
[
<?php $nb = count($jobs); $i = 0; foreach ($jobs as $url => $job): ++$i ?>
{

"url": "<?php echo $url ?>",
<?php $nb1 = count($job); $j = 0; foreach ($job as $key => $value): ++$j ?>

"<?php echo $key ?>": <?php echo json_encode($value).($nb1 == $j ? '' :
',') ?>

64. http://json.org/

Day 15: Web Services 191

----------------- Brought to you by

Listing
15-12

Listing
15-13

<?php endforeach ?>
}<?php echo $nb == $i ? '' : ',' ?>

<?php endforeach ?>
]

The yaml Format
For built-in formats, symfony does some configuration in the background, like changing the
content type, or disabling the layout.
As the YAML format is not in the list of the built-in request formats, the response content type
can be changed and the layout disabled in the action:

class apiActions extends sfActions
{

public function executeList(sfWebRequest $request)
{

$this->jobs = array();
foreach ($this->getRoute()->getObjects() as $job)
{

$this->jobs[$this->generateUrl('job_show_user', $job, true)] =
$job->asArray($request->getHost());

}

switch ($request->getRequestFormat())
{

case 'yaml':
$this->setLayout(false);
$this->getResponse()->setContentType('text/yaml');
break;

}
}

}

In an action, the setLayout() method changes the default layout|Layout (Disabling) or
disables it when set to false.
The template for YAML reads as follows:

<!-- apps/frontend/modules/api/templates/listSuccess.yaml.php -->
<?php foreach ($jobs as $url => $job): ?>
-

url: <?php echo $url ?>

<?php foreach ($job as $key => $value): ?>
<?php echo $key ?>: <?php echo sfYaml::dump($value) ?>

<?php endforeach ?>
<?php endforeach ?>

If you try to call the web service with a non-valid token, you will have a 404 XML page for the
XML format, and a 404 JSON page for the JSON format. But for the YAML format, symfony
does not know what to render.
Whenever you create a format, a custom error template must be created. The template will be
used for 404 pages, and all other exceptions.

Day 15: Web Services 192

----------------- Brought to you by

Listing
15-14

Listing
15-15

Listing
15-16

As the exception should be different in the production and development environment, two
files are needed (config/error/exception.yaml.php for debugging, and config/
error/error.yaml.php for production):

// config/error/exception.yaml.php
<?php echo sfYaml::dump(array(

'error' => array(
'code' => $code,
'message' => $message,
'debug' => array(

'name' => $name,
'message' => $message,
'traces' => $traces,

),
)), 4) ?>

// config/error/error.yaml.php
<?php echo sfYaml::dump(array(

'error' => array(
'code' => $code,
'message' => $message,

))) ?>

Before trying it, you must create a layout for YAML format:

// apps/frontend/templates/layout.yaml.php
<?php echo $sf_content ?>

Overriding the 404 error and exception templates for built-in templates is as simple as
creating a file in the config/error/ directory.

Web Service Tests
To test the web service, copy the affiliate fixtures from data/fixtures/ to the test/
fixtures/ directory and replace the content of the auto-generated apiActionsTest.php
file with the following content:

// test/functional/frontend/apiActionsTest.php
include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());

Day 15: Web Services 193

----------------- Brought to you by

$browser->loadData();

$browser->
info('1 - Web service security')->

info(' 1.1 - A token is needed to access the service')->
get('/api/foo/jobs.xml')->
with('response')->isStatusCode(404)->

info(' 1.2 - An inactive account cannot access the web service')->
get('/api/symfony/jobs.xml')->
with('response')->isStatusCode(404)->

info('2 - The jobs returned are limited to the categories configured for
the affiliate')->

get('/api/sensio_labs/jobs.xml')->
with('request')->isFormat('xml')->
with('response')->begin()->

isValid()->
checkElement('job', 32)->

end()->

info('3 - The web service supports the JSON format')->
get('/api/sensio_labs/jobs.json')->
with('request')->isFormat('json')->
with('response')->matches('/"category"\: "Programming"/')->

info('4 - The web service supports the YAML format')->
get('/api/sensio_labs/jobs.yaml')->
with('response')->begin()->

isHeader('content-type', 'text/yaml; charset=utf-8')->
matches('/category\: Programming/')->

end()
;

In this test, you will notice three new methods:

• isValid(): Checks whether or not the XML response is well formed
• isFormat(): It tests the format of a request
• matches(): For non-HTML format, if checks that the response verifies the regex

passed as an argument

The isValid() method accepts a boolean as first parameter that allows to validates the
XML response against its XSD.
$browser->with(‘response’)->isValid(true);
It also accepts the path to a special XSD file against to which the response has to be
validated.
$browser->with(‘response’)->isValid(‘/path/to/schema/xsd’);

The Affiliate Application Form
Now that the web service is ready to be used, let’s create the account creation form for
affiliates. We will yet again describe the classic process of adding a new feature to an
application.

Day 15: Web Services 194

----------------- Brought to you by

Listing
15-17

Listing
15-18

Listing
15-19

Routing
You guess it. The route is the first thing we create:

apps/frontend/config/routing.yml
affiliate:

class: sfDoctrineRouteCollection
options:

model: JobeetAffiliate
actions: [new, create]
object_actions: { wait: get }

It is a classic Doctrine collection route with a new configuration option: actions. As we don’t
need all the seven default actions defined by the route, the actions option instructs the
route to only match for the new and create actions. The additional wait route will be used
to give the soon-to-be affiliate some feedback about his account.

Bootstrapping
The classic second step is to generate a module:

$ php symfony doctrine:generate-module frontend affiliate JobeetAffiliate
--non-verbose-templates

Templates
The doctrine:generate-module task generate the classic seven actions and their
corresponding templates. In the templates/ directory, remove all the files but the
_form.php and newSuccess.php ones. And for the files we keep, replace their content with
the following:

<!-- apps/frontend/modules/affiliate/templates/newSuccess.php -->
<?php use_stylesheet('job.css') ?>

<h1>Become an Affiliate</h1>

<?php include_partial('form', array('form' => $form)) ?>

<!-- apps/frontend/modules/affiliate/templates/_form.php -->
<?php include_stylesheets_for_form($form) ?>
<?php include_javascripts_for_form($form) ?>

<?php echo form_tag_for($form, 'affiliate') ?>
<table id="job_form">

<tfoot>
<tr>

<td colspan="2">
<input type="submit" value="Submit" />

</td>
</tr>

</tfoot>
<tbody>

<?php echo $form ?>
</tbody>

</table>
</form>

Day 15: Web Services 195

----------------- Brought to you by

Listing
15-20

Listing
15-21

Listing
15-22

Listing
15-23

Listing
15-24

Create the waitSuccess.php template:

<!-- apps/frontend/modules/affiliate/templates/waitSuccess.php -->
<h1>Your affiliate account has been created</h1>

<div style="padding: 20px">
Thank you!
You will receive an email with your affiliate token
as soon as your account will be activated.

</div>

Last, change the link in the footer to point to the affiliate module:

// apps/frontend/templates/layout.php
<li class="last">

<a href="<?php echo url_for('affiliate_new') ?>">Become an affiliate

Actions
Here again, as we will only use the creation form, open the actions.class.php file and
remove all methods but executeNew(), executeCreate(), and processForm().
For the processForm() action, change the redirect URL to the wait action:

// apps/frontend/modules/affiliate/actions/actions.class.php
$this->redirect($this->generateUrl('affiliate_wait', $jobeet_affiliate));

The wait action is simple as we don’t need to pass anything to the template:

// apps/frontend/modules/affiliate/actions/actions.class.php
public function executeWait(sfWebRequest $request)
{
}

The affiliate cannot choose its token, nor can he activates his account right away. Open the
JobeetAffiliateForm file to customize the form:

// lib/form/doctrine/JobeetAffiliateForm.class.php
class JobeetAffiliateForm extends BaseJobeetAffiliateForm
{

public function configure()
{

$this->useFields(array(
'url',
'email',
'jobeet_categories_list'

));
$this->widgetSchema['jobeet_categories_list']->setOption('expanded',

true);
$this->widgetSchema['jobeet_categories_list']->setLabel('Categories');

$this->validatorSchema['jobeet_categories_list']->setOption('required',
true);

$this->widgetSchema['url']->setLabel('Your website URL');
$this->widgetSchema['url']->setAttribute('size', 50);

Day 15: Web Services 196

----------------- Brought to you by

Listing
15-25

$this->widgetSchema['email']->setAttribute('size', 50);

$this->validatorSchema['email'] = new
sfValidatorEmail(array('required' => true));

}
}

The new sfForm::useFields() method allows to specify the white list of fields to keep. All
non mentionned fields will be removed from the form.
The form framework supports many-to-many relationship|Many to Many Relationships
(Forms) like any other column. By default, such a relation is rendered as a drop-down box
thanks to the sfWidgetFormPropelChoice widget. As seen during day 10, we have
changed the rendered tag by using the expanded option.
As emails and URLs tend to be quite longer than the default size of an input tag, default
HTML attributes can be set by using the setAttribute() method.

Tests
The last step is to write some functional tests for the new feature.
Replace the generated tests for the affiliate module by the following code:

// test/functional/frontend/affiliateActionsTest.php
include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

$browser->
info('1 - An affiliate can create an account')->

get('/affiliate/new')->
click('Submit', array('jobeet_affiliate' => array(

'url' => 'http://www.example.com/',
'email' => 'foo@example.com',
'jobeet_categories_list' =>

array(Doctrine_Core::getTable('JobeetCategory')->findOneBySlug('programming')->getId()),

Day 15: Web Services 197

----------------- Brought to you by

Listing
15-26

Listing
15-27

Listing
15-28

)))->
with('response')->isRedirected()->
followRedirect()->
with('response')->checkElement('#content h1', 'Your affiliate account

has been created')->

info('2 - An affiliate must at least select one category')->

get('/affiliate/new')->
click('Submit', array('jobeet_affiliate' => array(

'url' => 'http://www.example.com/',
'email' => 'foo@example.com',

)))->
with('form')->isError('jobeet_categories_list')

;

The Affiliate Backend
For the backend, an affiliate module must be created for affiliates to be activated by the
administrator:

$ php symfony doctrine:generate-admin backend JobeetAffiliate
--module=affiliate

To access the newly created module, add a link in the main menu with the number of affiliate
that need to be activated:

<!-- apps/backend/templates/layout.php -->

<a href="<?php echo url_for('jobeet_affiliate') ?>">
Affiliates - <?php echo

Doctrine_Core::getTable('JobeetAffiliate')->countToBeActivated()
?>

// lib/model/doctrine/JobeetAffiliateTable.class.php
class JobeetAffiliateTable extends Doctrine_Table
{

public function countToBeActivated()
{

$q = $this->createQuery('a')
->where('a.is_active = ?', 0);

return $q->count();
}

// ...

}

As the only action needed in the backend is to activate or deactivate accounts, change the
default generator config section to simplify the interface a bit and add a link to activate
accounts directly from the list view:

Day 15: Web Services 198

----------------- Brought to you by

Listing
15-29

Listing
15-30

apps/backend/modules/affiliate/config/generator.yml
config:

fields:
is_active: { label: Active? }

list:
title: Affiliate Management
display: [is_active, url, email, token]
sort: [is_active]
object_actions:

activate: ~
deactivate: ~

batch_actions:
activate: ~
deactivate: ~

actions: {}
filter:

display: [url, email, is_active]

To make administrators more productive, change the default filters to only show affiliates to
be activated:

// apps/backend/modules/affiliate/lib/
affiliateGeneratorConfiguration.class.php
class affiliateGeneratorConfiguration extends
BaseAffiliateGeneratorConfiguration
{

public function getFilterDefaults()
{

return array('is_active' => '0');
}

}

The only other code to write is for the activate, deactivate actions:

// apps/backend/modules/affiliate/actions/actions.class.php
class affiliateActions extends autoAffiliateActions
{

public function executeListActivate()
{

$this->getRoute()->getObject()->activate();

$this->redirect('jobeet_affiliate');
}

public function executeListDeactivate()
{

$this->getRoute()->getObject()->deactivate();

$this->redirect('jobeet_affiliate');
}

public function executeBatchActivate(sfWebRequest $request)
{

$q = Doctrine_Query::create()
->from('JobeetAffiliate a')
->whereIn('a.id', $request->getParameter('ids'));

$affiliates = $q->execute();

Day 15: Web Services 199

----------------- Brought to you by

foreach ($affiliates as $affiliate)
{

$affiliate->activate();
}

$this->redirect('jobeet_affiliate');
}

public function executeBatchDeactivate(sfWebRequest $request)
{

$q = Doctrine_Query::create()
->from('JobeetAffiliate a')
->whereIn('a.id', $request->getParameter('ids'));

$affiliates = $q->execute();

foreach ($affiliates as $affiliate)
{

$affiliate->deactivate();
}

$this->redirect('jobeet_affiliate');
}

}

// lib/model/doctrine/JobeetAffiliate.class.php
class JobeetAffiliate extends BaseJobeetAffiliate
{

public function activate()
{

$this->setIsActive(true);

return $this->save();
}

public function deactivate()
{

$this->setIsActive(false);

return $this->save();
}

// ...
}

Day 15: Web Services 200

----------------- Brought to you by

Final Thoughts
Thanks to the REST architecture of symfony, it is quite easy to implement web services for
your projects. Although, we wrote code for a read-only web service today, you have enough
symfony knowledge to implement a read-write web service.
The implementation of the affiliate account creation form in the frontend and its backend
counterpart was really easy as you are now familiar with the process of adding new features
to your project.
If you remember requirements from day 2:
“The affiliate can also limit the number of jobs to be returned, and refine his query by
specifying a category.”
The implementation of this feature is so easy that we will let you do it tonight.
Whenever an affiliate account is activated by the administrator, an email should be sent to
the affiliate to confirm his subscription and give him his token. Sending emails is the topic we
will talk about tomorrow.

Day 15: Web Services 201

----------------- Brought to you by

Listing
16-1

Day 16

The Mailer

Yesterday, we added a read-only web service to Jobeet. Affiliates can now create an account
but it needs to be activated by the administrator before it can be used. In order for the
affiliate to get its token, we still need to implement the email notification. That’s what we will
start doing in the coming lines.
The symfony framework comes bundled with one of the best PHP emailing solution: Swift
Mailer65. Of course, the library is fully integrated with symfony, with some cool features
added on top of its default features.

Symfony 1.3/1.4 uses Swift Mailer version 4.1.

Sending simple Emails
Let’s start by sending a simple email to notify the affiliate when his account has been
confirmed and to give him the affiliate token.
Replace the activate action with the following code:

// apps/backend/modules/affiliate/actions/actions.class.php
class affiliateActions extends autoAffiliateActions
{

public function executeListActivate()
{

$affiliate = $this->getRoute()->getObject();
$affiliate->activate();

// send an email to the affiliate
$message = $this->getMailer()->compose(

array('jobeet@example.com' => 'Jobeet Bot'),
$affiliate->getEmail(),
'Jobeet affiliate token',
<<<EOF

Your Jobeet affiliate account has been activated.

Your token is {$affiliate->getToken()}.

The Jobeet Bot.
EOF

65. http://www.swiftmailer.org/

Day 16: The Mailer 202

----------------- Brought to you by

Listing
16-2

);

$this->getMailer()->send($message);

$this->redirect('jobeet_affiliate');
}

// ...
}

For the code to work properly, you should change the jobeet@example.com email
address to a real one.

Email management in symfony is centered around a mailer object, which can be retrieved
from an action with the getMailer() method.
The compose() method takes four arguments and returns an email message object:

• the sender email address (from);
• the recipient email address(es) (to);
• the subject of the message;
• the body of the message.

Sending the message is then as simple as calling the send() method on the mailer instance
and passing the message as an argument. As a shortcut, you can only compose and send an
email in one go by using the composeAndSend() method.

The email message is an instance of the Swift_Message class. Refer to the Swift Mailer
official documentation66 to learn more about this object, and how to do more advanced
stuff like attaching files.

Configuration
By default, the send() method tries to use a local SMTP server to send the message to the
recipient. Of course, as many things in symfony, this is totally configurable.

Factories
During the previous days, we have already talked about symfony core objects like the user,
request, response, or the routing. These objects are automatically created, configured,
and managed by the symfony framework. They are always accessible from the sfContext
object, and like many things in the framework, they are configurable via a configuration file:
factories.yml. This file is configurable by environment.
When the sfContext initializes the core factories, it reads the factories.yml file for the
class names (class) and the parameters (param) to pass to the constructor:

response:
class: sfWebResponse
param:

send_http_headers: false

66. http://www.swiftmailer.org/docs

Day 16: The Mailer 203

----------------- Brought to you by

Listing
16-3

Listing
16-4

Listing
16-5

Listing
16-6

In the above snippet, to create the response factory, symfony instantiates a sfWebResponse
object and passes the send_http_headers option as a parameter.

The sfContext class

The sfContext object contains references to symfony core objects like the request, the
response, the user, and so on. As sfContext acts like a singleton, you can use the
sfContext::getInstance() statement to get it from anywhere and then have access to
any symfony core objects:

$mailer = sfContext::getInstance()->getMailer();

Whenever you want to use the sfContext::getInstance() in one of your class, think
twice as it introduces a strong coupling. It is quite always better to pass the object you need
as an argument.
You can even use sfContext as a registry and add your own objects using the set()
methods. It takes a name and an object as arguments and the get() method can be used
later on to retrieve an object by name:

sfContext::getInstance()->set('job', $job);
$job = sfContext::getInstance()->get('job');

Delivery Strategy
Like many other core symfony objects, the mailer is a factory. So, it is configured in the
factories.yml configuration file. The default configuration reads as follows:

mailer:
class: sfMailer
param:

logging: %SF_LOGGING_ENABLED%
charset: %SF_CHARSET%
delivery_strategy: realtime
transport:

class: Swift_SmtpTransport
param:

host: localhost
port: 25
encryption: ~
username: ~
password: ~

When creating a new application, the local factories.yml configuration file overrides the
default configuration with some sensible defaults for the env and test environments:

test:
mailer:

param:
delivery_strategy: none

dev:
mailer:

param:
delivery_strategy: none

Day 16: The Mailer 204

----------------- Brought to you by

Listing
16-7

Listing
16-8

The delivery_strategy setting tells symfony how to deliver emails. By default, symfony
comes with four different strategies:

• realtime: Messages are sent in realtime.
• single_address: Messages are sent to a single address.
• spool: Messages are stored in a queue.
• none: Messages are simply ignored.

Whatever the strategy, emails are always logged and available in the “mailer” panel in the
web debug toolbar.

Mail Transport
Mail messages are actually sent by a transport. The transport is configured in the
factories.yml configuration file, and the default configuration uses the SMTP server of the
local machine:

transport:
class: Swift_SmtpTransport
param:

host: localhost
port: 25
encryption: ~
username: ~
password: ~

Swift Mailer comes bundled with three different transport classes:

• Swift_SmtpTransport: Uses a SMTP server to send messages.
• Swift_SendmailTransport: Uses sendmail to send messages.
• Swift_MailTransport: Uses the native PHP mail() function to send messages.

The “Transport Types”67 section of the Swift Mailer official documentation describes all
you need to know about the built-in transport classes and their different parameters.

Testing Emails
Now that we have seen how to send an email with the symfony mailer, let’s write some
functional tests to ensure we did the right thing. By default, symfony registers a mailer
tester (sfMailerTester) to ease mail testing in functional tests.
First, change the mailer factory’s configuration for the test environment if your web server
does not have a local SMTP server. We have to replace the current Swift_SmtpTransport
class by Swift_MailTransport:

apps/backend/config/factories.yml
test:

...

mailer:
param:

delivery_strategy: none

67. http://swiftmailer.org/docs/transport-types

Day 16: The Mailer 205

----------------- Brought to you by

Listing
16-9

Listing
16-10

transport:
class: Swift_MailTransport

Then, add a new test/fixtures/administrators.yml file containing the following
YAML definition:

sfGuardUser:
admin:

email_address: admin@example.com
username: admin
password: admin
first_name: Fabien
last_name: Potencier
is_super_admin: true

Finally, replace the affiliate functional test file for the backend application with the
following code:

// test/functional/backend/affiliateActionsTest.php
include(dirname(__FILE__).'/../../bootstrap/functional.php');

$browser = new JobeetTestFunctional(new sfBrowser());
$browser->loadData();

$browser->
info('1 - Authentication')->
get('/affiliate')->
click('Signin', array(

'signin' => array('username' => 'admin', 'password' => 'admin'),
array('_with_csrf' => true)

))->
with('response')->isRedirected()->
followRedirect()->

info('2 - When validating an affiliate, an email must be sent with its
token')->

click('Activate', array(), array('position' => 1))->
with('mailer')->begin()->

checkHeader('Subject', '/Jobeet affiliate token/')->
checkBody('/Your token is symfony/')->

end()
;

Each sent email can be tested with the help of the checkHeader() and checkBody()
methods. The second argument of checkHeader() and the first argument of checkBody()
can be one of the following:

• a string to check an exact match;
• a regular expression to check the value against it;
• a negative regular expression (a regular expression starting with a !) to check that

the value does not match.

By default, checks are done on the first email sent. If several emails have been sent, you
can choose the one you want to test with the withMessage() method. The
withMessage() takes a recipient as its first argument. It also takes a second argument to
indicate which email you want to test if several ones have been sent to the same recipient.

Day 16: The Mailer 206

----------------- Brought to you by

Like other built-in testers, you can see the raw message by calling the debug() method.

Final Thoughts
Tomorrow, we will implement the last missing feature of the Jobeet website, the search
engine.

Day 16: The Mailer 207

----------------- Brought to you by

Day 17

Search

In day 14, we added some feeds to keep Jobeet users up-to-date with new job posts. Today
will help you to improve the user experience by implementing the latest main feature of the
Jobeet website: the search engine.

The Technology
Before we jump in head first, let’s talk a bit about the history of symfony. We advocate a lot of
best practices, like tests and refactoring, and we also try to apply them to the framework
itself. For instance, we like the famous “Don’t reinvent the wheel” motto.
As a matter of fact, the symfony framework started its life four years ago as the glue between
two existing Open-Source softwares: Mojavi and Propel. And every time we need to tackle a
new problem, we look for an existing library that does the job well before coding one ourself
from scratch.
Now, we want to add a search engine to Jobeet, and the Zend Framework provides a great
library, called Zend Lucene68, which is a port of the well-know Java Lucene project. Instead of
creating yet another search engine for Jobeet, which is quite a complex task, we will use Zend
Lucene.
On the Zend Lucene documentation page, the library is described as follows:

… a general purpose text search engine written entirely in PHP 5. Since it stores its index on
the filesystem and does not require a database server, it can add search capabilities to almost
any PHP-driven website. Zend_Search_Lucene supports the following features:

• Ranked searching - best results returned first
• Many powerful query types: phrase queries, boolean queries, wildcard queries,

proximity queries, range queries and many others
• Search by specific field (e.g., title, author, contents)

Today is not a tutorial about the Zend Lucene library, but how to integrate it into the
Jobeet website; or more generally, how to integrate third-party libraries into a symfony
project. If you want more information about this technology, please refer to the Zend
Lucene documentation69.

68. http://framework.zend.com/manual/en/zend.search.lucene.html
69. http://framework.zend.com/manual/en/zend.search.lucene.html

Day 17: Search 208

----------------- Brought to you by

Listing
17-1

Installing and Configuring the Zend Framework
The Zend Lucene library is part of the Zend Framework. We will only install the Zend
Framework into the lib/vendor/ directory, alongside the symfony framework itself.
First, download the Zend Framework70 and un-archive the files so that you have a lib/
vendor/Zend/ directory.

The following explanations have been tested with the 1.10.3 version of the Zend
Framework.

You can clean up the directory by removing everything but the following files and
directories:

• Exception.php
• Loader/
• Autoloader.php
• Search/

Then, add the following code to the ProjectConfiguration class to provide a simple way
to register the Zend autoloader:

// config/ProjectConfiguration.class.php
class ProjectConfiguration extends sfProjectConfiguration
{

static protected $zendLoaded = false;

static public function registerZend()
{

if (self::$zendLoaded)
{

return;
}

set_include_path(sfConfig::get('sf_lib_dir').'/
vendor'.PATH_SEPARATOR.get_include_path());

require_once sfConfig::get('sf_lib_dir').'/vendor/Zend/Loader/
Autoloader.php';

Zend_Loader_Autoloader::getInstance();
self::$zendLoaded = true;

}

// ...
}

Indexing
The Jobeet search engine should be able to return all jobs matching keywords entered by the
user. Before being able to search anything, an index|Index (Search Engine) has to be built for
the jobs; for Jobeet, it will be stored in the data/ directory.

70. http://framework.zend.com/download/overview

Day 17: Search 209

----------------- Brought to you by

Listing
17-2

Listing
17-3

Listing
17-4

Zend Lucene provides two methods to retrieve an index depending whether one already
exists or not. Let’s create a helper method in the JobeetJobTable class that returns an
existing index or creates a new one for us:

// lib/model/doctrine/JobeetJobTable.class.php
static public function getLuceneIndex()
{

ProjectConfiguration::registerZend();

if (file_exists($index = self::getLuceneIndexFile()))
{

return Zend_Search_Lucene::open($index);
}

return Zend_Search_Lucene::create($index);
}

static public function getLuceneIndexFile()
{

return sfConfig::get('sf_data_dir').'/
job.'.sfConfig::get('sf_environment').'.index';
}

The save() method
Each time a job is created, updated, or deleted, the index must be updated. Edit JobeetJob
to update the index whenever a job is serialized to the database:

public function save(Doctrine_Connection $conn = null)
{

// ...

$ret = parent::save($conn);

$this->updateLuceneIndex();

return $ret;
}

And create the updateLuceneIndex() method that does the actual work:

// lib/model/doctrine/JobeetJob.class.php
public function updateLuceneIndex()
{

$index = JobeetJobTable::getLuceneIndex();

// remove existing entries
foreach ($index->find('pk:'.$this->getId()) as $hit)
{

$index->delete($hit->id);
}

// don't index expired and non-activated jobs
if ($this->isExpired() || !$this->getIsActivated())
{

return;
}

Day 17: Search 210

----------------- Brought to you by

Listing
17-5

$doc = new Zend_Search_Lucene_Document();

// store job primary key to identify it in the search results
$doc->addField(Zend_Search_Lucene_Field::Keyword('pk', $this->getId()));

// index job fields
$doc->addField(Zend_Search_Lucene_Field::UnStored('position',

$this->getPosition(), 'utf-8'));
$doc->addField(Zend_Search_Lucene_Field::UnStored('company',

$this->getCompany(), 'utf-8'));
$doc->addField(Zend_Search_Lucene_Field::UnStored('location',

$this->getLocation(), 'utf-8'));
$doc->addField(Zend_Search_Lucene_Field::UnStored('description',

$this->getDescription(), 'utf-8'));

// add job to the index
$index->addDocument($doc);
$index->commit();

}

As Zend Lucene is not able to update an existing entry, it is removed first if the job already
exists in the index.
Indexing the job itself is simple: the primary key is stored for future reference when
searching jobs and the main columns (position, company, location, and description)
are indexed but not stored in the index as we will use the real objects to display the results.

Doctrine Transactions
What if there is a problem when indexing a job or if the job is not saved into the database?
Both Doctrine and Zend Lucene will throw an exception. But under some circumstances, we
might have a job saved in the database without the corresponding indexing. To prevent this
from happening, we can wrap the two updates in a transaction and rollback in case of an
error:

// lib/model/doctrine/JobeetJob.class.php
public function save(Doctrine_Connection $conn = null)
{

// ...

$conn = $conn ? $conn : $this->getTable()->getConnection();
$conn->beginTransaction();
try
{

$ret = parent::save($conn);

$this->updateLuceneIndex();

$conn->commit();

return $ret;
}
catch (Exception $e)
{

$conn->rollBack();
throw $e;

Day 17: Search 211

----------------- Brought to you by

Listing
17-6

Listing
17-7

Listing
17-8

Listing
17-9

}
}

delete()

We also need to override the delete() method to remove the entry of the deleted job from
the index:

// lib/model/doctrine/JobeetJob.class.php
public function delete(Doctrine_Connection $conn = null)
{

$index = JobeetJobTable::getLuceneIndex();

foreach ($index->find('pk:'.$this->getId()) as $hit)
{

$index->delete($hit->id);
}

return parent::delete($conn);
}

Searching
Now that we have everything in place, you can reload the fixture data to index them:

$ php symfony doctrine:data-load

For Unix-like users: as the index is modified from the command line and also from the web,
you must change the index directory permissions accordingly depending on your
configuration: check that both the command line user you use and the web server user can
write to the index directory.

You might have some warnings about the ZipArchive class if you don’t have the zip
extension compiled in your PHP. It’s a known bug of the Zend_Loader class.

Implementing the search in the frontend is a piece of cake. First, create a route:

job_search:
url: /search
param: { module: job, action: search }

And the corresponding action:

// apps/frontend/modules/job/actions/actions.class.php
class jobActions extends sfActions
{

public function executeSearch(sfWebRequest $request)
{

$this->forwardUnless($query = $request->getParameter('query'), 'job',
'index');

$this->jobs = Doctrine_Core::getTable('JobeetJob')
->getForLuceneQuery($query);

}

Day 17: Search 212

----------------- Brought to you by

Listing
17-10

Listing
17-11

Listing
17-12

// ...
}

The new forwardUnless() method forwards the user to the index action of the job
module if the query request parameter does not exist or is empty.
It’s just an alias for the following longer statement:
if (!$query = $request->getParameter(‘query’)) { $this->forward(‘job’, ‘index’); }

The template is also quite straightforward:

// apps/frontend/modules/job/templates/searchSuccess.php
<?php use_stylesheet('jobs.css') ?>

<div id="jobs">
<?php include_partial('job/list', array('jobs' => $jobs)) ?>

</div>

The search itself is delegated to the getForLuceneQuery() method:

// lib/model/doctrine/JobeetJobTable.class.php
public function getForLuceneQuery($query)
{

$hits = self::getLuceneIndex()->find($query);

$pks = array();
foreach ($hits as $hit)
{

$pks[] = $hit->pk;
}

if (empty($pks))
{

return array();
}

$q = $this->createQuery('j')
->whereIn('j.id', $pks)
->limit(20);

$q = $this->addActiveJobsQuery($q);

return $q->execute();
}

After we get all results from the Lucene index, we filter out the inactive jobs, and limit the
number of results to 20.
To make it work, update the layout:

// apps/frontend/templates/layout.php
<h2>Ask for a job</h2>
<form action="<?php echo url_for('job_search') ?>" method="get">

<input type="text" name="query" value="<?php echo
$sf_request->getParameter('query') ?>" id="search_keywords" />

<input type="submit" value="search" />
<div class="help">

Day 17: Search 213

----------------- Brought to you by

Listing
17-13

Listing
17-14

Enter some keywords (city, country, position, ...)
</div>

</form>

Zend Lucene defines a rich query language that supports operations like Booleans,
wildcards, fuzzy search, and much more. Everything is documented in the Zend Lucene
manual71

Unit Tests
What kind of unit tests do we need to create to test the search engine? We obviously won’t
test the Zend Lucene library itself, but its integration with the JobeetJob class.
Add the following tests at the end of the JobeetJobTest.php file and don’t forget to update
the number of tests at the beginning of the file to 7:

// test/unit/model/JobeetJobTest.php
$t->comment('->getForLuceneQuery()');
$job = create_job(array('position' => 'foobar', 'is_activated' => false));
$job->save();
$jobs =
Doctrine_Core::getTable('JobeetJob')->getForLuceneQuery('position:foobar');
$t->is(count($jobs), 0, '::getForLuceneQuery() does not return non
activated jobs');

$job = create_job(array('position' => 'foobar', 'is_activated' => true));
$job->save();
$jobs =
Doctrine_Core::getTable('JobeetJob')->getForLuceneQuery('position:foobar');
$t->is(count($jobs), 1, '::getForLuceneQuery() returns jobs matching the
criteria');
$t->is($jobs[0]->getId(), $job->getId(), '::getForLuceneQuery() returns
jobs matching the criteria');

$job->delete();
$jobs =
Doctrine_Core::getTable('JobeetJob')->getForLuceneQuery('position:foobar');
$t->is(count($jobs), 0, '::getForLuceneQuery() does not return deleted
jobs');

We test that a non activated job, or a deleted one does not show up in the search results; we
also check that jobs matching the given criteria do show up in the results.

Tasks
Eventually, we need to create a task to cleanup the index from stale entries (when a job
expires for example) and optimize the index from time to time. As we already have a cleanup
task, let’s update it to add those features:

// lib/task/JobeetCleanupTask.class.php
protected function execute($arguments = array(), $options = array())
{

71. http://framework.zend.com/manual/en/zend.search.lucene.query-api.html

Day 17: Search 214

----------------- Brought to you by

$databaseManager = new sfDatabaseManager($this->configuration);

// cleanup Lucene index
$index = JobeetJobTable::getLuceneIndex();

$q = Doctrine_Query::create()
->from('JobeetJob j')
->where('j.expires_at < ?', date('Y-m-d'));

$jobs = $q->execute();
foreach ($jobs as $job)
{

if ($hit = $index->find('pk:'.$job->getId()))
{

$index->delete($hit->id);
}

}

$index->optimize();

$this->logSection('lucene', 'Cleaned up and optimized the job index');

// Remove stale jobs
$nb = Doctrine_Core::getTable('JobeetJob')->cleanup($options['days']);

$this->logSection('doctrine', sprintf('Removed %d stale jobs', $nb));
}

The task removes all expired jobs from the index and then optimizes it thanks to the Zend
Lucene built-in optimize() method.

Final Thoughts
Along this day, we implemented a full search engine with many features in less than an hour.
Every time you want to add a new feature to your projects, check that it has not yet been
solved somewhere else.
First, check if something is not implemented natively in the symfony framework72. Then,
check the symfony plugins73. And don’t forget to check the Zend Framework libraries74 and
the ezComponent75 ones too.
Tomorrow we will use some unobtrusive JavaScripts to enhance the responsiveness of the
search engine by updating the results in real-time as the user types in the search box. Of
course, this will be the occasion to talk about how to use AJAX with symfony.

72. http://www.symfony-project.org/api/1_4/
73. http://www.symfony-project.org/plugins/
74. http://framework.zend.com/manual/en/
75. http://ezcomponents.org/docs

Day 17: Search 215

----------------- Brought to you by

Listing
18-1

Day 18

AJAX

Yesterday, we implemented a very powerful search engine for Jobeet, thanks to the Zend
Lucene library. In the following lines, to enhance the responsiveness of the search engine, we
will take advantage of AJAX76 to convert the search engine to a live one.
As the form should work with and without JavaScript enabled, the live search feature will be
implemented using unobtrusive JavaScript77. Using unobtrusive JavaScript also allows for a
better separation of concerns in the client code between HTML, CSS, and the JavaScript
behaviors.

Installing jQuery
Instead of reinventing the wheel and managing the many differences between browsers, we
will use a JavaScript framework, jQuery. The symfony framework itself is agnostic and can
work with any JavaScript library.
Go to the jQuery78 website, download the latest version, and put the .js file under web/js/.

Including jQuery
As we will need jQuery on all pages, update the layout to include it in the <head>. Be careful
to insert the use_javascript() function before the include_javascripts() call:

<!-- apps/frontend/templates/layout.php -->

<?php use_javascript('jquery-1.4.2.min.js') ?>
<?php include_javascripts() ?>

</head>

We could have included the jQuery file directly with a <script> tag, but using the
use_javascript() helper ensures that the same JavaScript file won’t be included twice.

For performance reasons79, you might also want to move the include_javascripts()
helper call just before the ending </body> tag.

76. http://en.wikipedia.org/wiki/AJAX
77. http://en.wikipedia.org/wiki/Unobtrusive_JavaScript
78. http://jquery.com/
79. http://developer.yahoo.com/performance/rules.html#js_bottom

Day 18: AJAX 216

----------------- Brought to you by

Listing
18-2

Listing
18-3

Listing
18-4

Adding Behaviors
Implementing a live search means that each time the user types a letter in the search box, a
call to the server needs to be triggered; the server will then return the needed information to
update some regions of the page without refreshing the whole page.
Instead of adding the behavior with an on*() HTML attributes, the main principle behind
jQuery is to add behaviors to the DOM after the page is fully loaded. This way, if you disable
JavaScript support in your browser, no behavior is registered, and the form still works as
before.
The first step is to intercept whenever a user types a key in the search box:

$('#search_keywords').keyup(function(key)
{

if (this.value.length >= 3 || this.value == '')
{

// do something
}

});

Don’t add the code for now, as we will modify it heavily. The final JavaScript code will be
added to the layout in the next section.

Every time the user types a key, jQuery executes the anonymous function defined in the
above code, but only if the user has typed more than 3 characters or if he removed everything
from the input tag.
Making an AJAX call to the server is as simple as using the load() method on the DOM
element:

$('#search_keywords').keyup(function(key)
{

if (this.value.length >= 3 || this.value == '')
{

$('#jobs').load(
$(this).parents('form').attr('action'), { query: this.value + '*' }

);
}

});

To manage the AJAX Call, the same action as the “normal” one is called. The needed changes
in the action will be done in the next section.
Last but not least, if JavaScript is enabled, we will want to remove the search button:

$('.search input[type="submit"]').hide();

User Feedback
Whenever you make an AJAX call, the page won’t be updated right away. The browser will
wait for the server response to come back before updating the page. In the meantime, you
need to provide visual feedback|Visual Feedback to the user to inform him that something is
going on.
A convention is to display a loader icon during the AJAX call. Update the layout to add the
loader image and hide it by default:

Day 18: AJAX 217

----------------- Brought to you by

Listing
18-5

Listing
18-6

Listing
18-7

<!-- apps/frontend/templates/layout.php -->
<div class="search">

<h2>Ask for a job</h2>
<form action="<?php echo url_for('job_search') ?>" method="get">

<input type="text" name="query" value="<?php echo
$sf_request->getParameter('query') ?>" id="search_keywords" />

<input type="submit" value="search" />
<img id="loader" src="http://www.symfony-project.org/images/

loader.gif" style="vertical-align: middle; display: none" />
<div class="help">

Enter some keywords (city, country, position, ...)
</div>

</form>
</div>

The default loader is optimized for the current layout of Jobeet. If you want to create your
own, you will find a lot of free online services like http://www.ajaxload.info/.

Now that you have all the pieces needed to make the HTML work, create a search.js file
that contains the JavaScript we have written so far:

// web/js/search.js
$(document).ready(function()
{

$('.search input[type="submit"]').hide();

$('#search_keywords').keyup(function(key)
{

if (this.value.length >= 3 || this.value == '')
{

$('#loader').show();
$('#jobs').load(

$(this).parents('form').attr('action'),
{ query: this.value + '*' },
function() { $('#loader').hide(); }

);
}

});
});

You also need to update the layout to include this new file:

<!-- apps/frontend/templates/layout.php -->
<?php use_javascript('search.js') ?>

Day 18: AJAX 218

----------------- Brought to you by

Listing
18-8

Listing
18-9

JavaScript as an Action

Although the JavaScript we have written for the search engine is static, sometimes, you
need to call some PHP code (to use the url_for() helper for instance).
JavaScript is just another format like HTML, and as seen some in previous days, symfony
makes format management quite easy. As the JavaScript file will contain behavior for a
page, you can even have the same URL as the page for the JavaScript file, but ending with
.js. For instance, if you want to create a file for the search engine behavior, you can
modify the job_search route as follows and create a searchSuccess.js.php template:

job_search:
url: /search.:sf_format
param: { module: job, action: search, sf_format: html }
requirements:

sf_format: (?:html|js)

AJAX in an Action
If JavaScript is enabled, jQuery will intercept all keys typed in the search box, and will call
the search action. If not, the same search action is also called when the user submits the
form by pressing the “enter” key or by clicking on the “search” button.
So, the search action now needs to determine if the call is made via AJAX or not. Whenever a
request is made with an AJAX call, the isXmlHttpRequest() method of the request object
returns true.

The isXmlHttpRequest() method works with all major JavaScript libraries like
Prototype, Mootools, or jQuery.

// apps/frontend/modules/job/actions/actions.class.php
public function executeSearch(sfWebRequest $request)
{

$this->forwardUnless($query = $request->getParameter('query'), 'job',
'index');

$this->jobs =
Doctrine_Core::getTable('JobeetJob')->getForLuceneQuery($query);

if ($request->isXmlHttpRequest())
{

return $this->renderPartial('job/list', array('jobs' => $this->jobs));
}

}

As jQuery won’t reload the page but will only replace the #jobs DOM element with the
response content, the page should not be decorated by the layout. As this is a common need,
the layout is disabled by default when an AJAX request comes in.
Moreover, instead of returning the full template, we only need to return the content of the
job/list partial. The renderPartial() method used in the action returns the partial as
the response instead of the full template.

Day 18: AJAX 219

----------------- Brought to you by

Listing
18-10

Listing
18-11

If the user removes all characters in the search box, or if the search returns no result, we
need to display a message instead of a blank page. We will use the renderText() method to
render a simple test string:

// apps/frontend/modules/job/actions/actions.class.php
public function executeSearch(sfWebRequest $request)
{

$this->forwardUnless($query = $request->getParameter('query'), 'job',
'index');

$this->jobs =
Doctrine_Core::getTable('JobeetJob')->getForLuceneQuery($query);

if ($request->isXmlHttpRequest())
{

if ('*' == $query || !$this->jobs)
{

return $this->renderText('No results.');
}

return $this->renderPartial('job/list', array('jobs' => $this->jobs));
}

}

You can also return a component in an action by using the renderComponent() method.

Testing AJAX
As the symfony browser cannot simulate JavaScript, you need to help it when testing AJAX
calls. It mainly means that you need to manually add the header that jQuery and all other
major JavaScript libraries send with the request:

// test/functional/frontend/jobActionsTest.php
$browser->setHttpHeader('X_REQUESTED_WITH', 'XMLHttpRequest');
$browser->

info('5 - Live search')->

get('/search?query=sens*')->
with('response')->begin()->

checkElement('table tr', 2)->
end()

;

The setHttpHeader() method sets an HTTP header for the very next request made with the
browser.

Final Thoughts
In day 17, we used the Zend Lucene library to implement the search engine. Today, we used
jQuery to make it more responsive. The symfony framework provides all the fundamental
tools to build MVC applications with ease, and also plays well with other components. As

Day 18: AJAX 220

----------------- Brought to you by

always, try to use the best tool for the job. Tomorrow, we will explain how to internationalize
the Jobeet website.

Day 18: AJAX 221

----------------- Brought to you by

Listing
19-1

Day 19

Internationalization and Localization

Yesterday, we finished the search engine feature by making it more fun with the addition of
some AJAX goodness. Now, we will talk about Jobeet internationalization (or i18n) and
localization (or l10n).
From Wikipedia80:

Internationalization is the process of designing a software application so that it can be
adapted to various languages and regions without engineering changes.
Localization is the process of adapting software for a specific region or language by adding
locale-specific components and translating text.

As always, the symfony framework has not reinvented the wheel and its i18n and l10n
supports is based on the ICU standard81.

User
No internationalization is possible without a user. When your website is available in several
languages or for different regions of the world, the user is responsible for choosing the one
that fits him best.

We have already talked about the symfony User class during day 13.

The User Culture
The i18n and l10n features of symfony are based on the user culture. The culture is the
combination of the language and the country of the user. For instance, the culture for a user
that speaks French is fr and the culture for a user from France is fr_FR.
You can manage the user culture by calling the setCulture() and getCulture() methods
on the User object:

// in an action
$this->getUser()->setCulture('fr_BE');
echo $this->getUser()->getCulture();

80. http://en.wikipedia.org/wiki/Internationalization
81. http://www.icu-project.org/

Day 19: Internationalization and Localization 222

----------------- Brought to you by

Listing
19-2

Listing
19-3

Listing
19-4

Listing
19-5

The language is coded in two lowercase characters, according to the ISO 639-1 standard82,
and the country is coded in two uppercase characters, according to the ISO 3166-1
standard83.

The Preferred Culture
By default, the user culture is the one configured in the settings.yml configuration file:

apps/frontend/config/settings.yml
all:

.settings:
default_culture: it_IT

As the culture is managed by the User object, it is stored in the user session. During
development, if you change the default culture, you will have to clear your session cookie
for the new setting to have any effect in your browser.

When a user starts a session on the Jobeet website, we can also determine the best culture,
based on the information provided by the Accept-Language HTTP header|HTTP Headers.
The getLanguages() method of the request object returns an array of accepted languages
for the current user, sorted by order of preference:

// in an action
$languages = $request->getLanguages();

But most of the time, your website won’t be available in the world’s 136 major languages. The
getPreferredCulture() method returns the best language by comparing the user
preferred languages and the supported languages of your website:

// in an action
$language = $request->getPreferredCulture(array('en', 'fr'));

In the previous call, the returned language will be English or French according to the user
preferred languages, or English (the first language in the array) if none match.

Culture in the URL
The Jobeet website will be available in English and French. As an URL can only represent a
single resource, the culture must be embedded in the URL. In order to do that, open the
routing.yml file, and add the special :sf_culture variable for all routes but the
api_jobs and the homepage ones. For simple routes, add /:sf_culture to the front of the
url. For collection routes, add a prefix_path option that starts with /:sf_culture.

apps/frontend/config/routing.yml
affiliate:

class: sfDoctrineRouteCollection
options:

model: JobeetAffiliate
actions: [new, create]
object_actions: { wait: get }

82. http://en.wikipedia.org/wiki/ISO_639-1
83. http://en.wikipedia.org/wiki/ISO_3166-1

Day 19: Internationalization and Localization 223

----------------- Brought to you by

Listing
19-6

prefix_path: /:sf_culture/affiliate

category:
url: /:sf_culture/category/:slug.:sf_format
class: sfDoctrineRoute
param: { module: category, action: show, sf_format: html }
options: { model: JobeetCategory, type: object }
requirements:

sf_format: (?:html|atom)

job_search:
url: /:sf_culture/search
param: { module: job, action: search }

job:
class: sfDoctrineRouteCollection
options:

model: JobeetJob
column: token
object_actions: { publish: put, extend: put }
prefix_path: /:sf_culture/job

requirements:
token: \w+

job_show_user:
url: /:sf_culture/job/:company_slug/:location_slug/:id/:position_slug
class: sfDoctrineRoute
options:

model: JobeetJob
type: object
method_for_query: retrieveActiveJob

param: { module: job, action: show }
requirements:

id: \d+
sf_method: get

When the sf_culture variable is used in a route, symfony will automatically use its value to
change the culture of the user.
As we need as many homepages as languages we support (/en/, /fr/, …), the default
homepage (/) must redirect to the appropriate localized one, according to the user culture.
But if the user has no culture yet, because he comes to Jobeet for the first time, the preferred
culture will be chosen for him.
First, add the isFirstRequest() method to myUser. It returns true only for the very first
request of a user session:

// apps/frontend/lib/myUser.class.php
public function isFirstRequest($boolean = null)
{

if (is_null($boolean))
{

return $this->getAttribute('first_request', true);
}

$this->setAttribute('first_request', $boolean);
}

Add a localized_homepage route:

Day 19: Internationalization and Localization 224

----------------- Brought to you by

Listing
19-7

Listing
19-8

Listing
19-9

apps/frontend/config/routing.yml
localized_homepage:

url: /:sf_culture/
param: { module: job, action: index }
requirements:

sf_culture: (?:fr|en)

Change the index action of the job module to implement the logic to redirect the user to the
“best” homepage on the first request of a session:

// apps/frontend/modules/job/actions/actions.class.php
public function executeIndex(sfWebRequest $request)
{

if (!$request->getParameter('sf_culture'))
{

if ($this->getUser()->isFirstRequest())
{

$culture = $request->getPreferredCulture(array('en', 'fr'));
$this->getUser()->setCulture($culture);
$this->getUser()->isFirstRequest(false);

}
else
{

$culture = $this->getUser()->getCulture();
}

$this->redirect('localized_homepage');
}

$this->categories =
Doctrine_Core::getTable('JobeetCategory')->getWithJobs();
}

If the sf_culture variable is not present in the request, it means that the user has come to
the / URL. If this is the case and the session is new, the preferred culture is used as the user
culture. Otherwise the user’s current culture is used.
The last step is to redirect the user to the localized_homepage URL. Notice that the
sf_culture variable has not been passed in the redirect call as symfony adds it
automatically for you.
Now, if you try to go to the /it/ URL, symfony will return a 404 error as we have restricted
the sf_culture variable to en, or fr. Add this requirement to all the routes that embed the
culture:

requirements:
sf_culture: (?:fr|en)

Culture Testing
It is time to test our implementation. But before adding more tests, we need to fix the existing
ones. As all URLs have changed, edit all functional test files in test/functional/
frontend/ and add /en in front of all URLs. Don’t forget to also change the URLs in the
lib/test/JobeetTestFunctional.class.php file. Launch the test suite to check that
you have correctly fixed the tests:
$ php symfony test:functional frontend

Day 19: Internationalization and Localization 225

----------------- Brought to you by

Listing
19-10

Listing
19-11

Listing
19-12

Listing
19-13

The user tester provides an isCulture() method that tests the current user’s culture. Open
the jobActionsTest file and add the following tests:

// test/functional/frontend/jobActionsTest.php
$browser->setHttpHeader('ACCEPT_LANGUAGE', 'fr_FR,fr,en;q=0.7');
$browser->

info('6 - User culture')->

restart()->

info(' 6.1 - For the first request, symfony guesses the best culture')->
get('/')->
with('response')->isRedirected()->
followRedirect()->
with('user')->isCulture('fr')->

info(' 6.2 - Available cultures are en and fr')->
get('/it/')->
with('response')->isStatusCode(404)

;

$browser->setHttpHeader('ACCEPT_LANGUAGE', 'en,fr;q=0.7');
$browser->

info(' 6.3 - The culture guessing is only for the first request')->

get('/')->
with('response')->isRedirected()->
followRedirect()->
with('user')->isCulture('fr')

;

Language Switching
For the user to change the culture, a language form must be added in the layout. The form
framework does not provide such a form out of the box but as the need is quite common for
internationalized websites, the symfony core team maintains the sfFormExtraPlugin84,
which contains validators, widgets, and forms which cannot be included with the main
symfony package as they are too specific or have external dependencies but are nonetheless
very useful.
Install the plugin with the plugin:install task:

$ php symfony plugin:install sfFormExtraPlugin

Or via Subversion with the following command:

$ svn co http://svn.symfony-project.org/plugins/sfFormExtraPlugin/
branches/1.3/ plugins/sfFormExtraPlugin

In order for plugin’s classes to be loaded, the sfFormExtraPlugin plugin must be activated
in the config/ProjectConfiguration.class.php file as shown below:

// config/ProjectConfiguration.class.php
public function setup()

84. http://www.symfony-project.org/plugins/
sfFormExtraPlugin?tab=plugin_readme

Day 19: Internationalization and Localization 226

----------------- Brought to you by

Listing
19-14

Listing
19-15

{
$this->enablePlugins(array(

'sfDoctrinePlugin',
'sfDoctrineGuardPlugin',
'sfFormExtraPlugin'

));
}

The sfFormExtraPlugin contains widgets that require external dependencies like
JavaScript libraries. You will find a widget for rich date selectors, one for a WYSIWYG
editor, and much more. Take the time to read the documentation as you will find a lot of
useful stuff.

The sfFormExtraPlugin plugin provides a sfFormLanguage form to manage the language
selection. Adding the language form can be done in the layout like this:

The code below is not meant to be implemented. It is here to show you how you might be
tempted to implement something in the wrong way. We will go on to show you how to
implement it properly using symfony.

// apps/frontend/templates/layout.php
<div id="footer">

<div class="content">
<!-- footer content -->

<?php $form = new sfFormLanguage(
$sf_user,
array('languages' => array('en', 'fr'))
)

?>
<form action="<?php echo url_for('change_language') ?>">

<?php echo $form ?><input type="submit" value="ok" />
</form>

</div>
</div>

Do you spot a problem? Right, the form object creation does not belong to the View layer. It
must be created from an action. But as the code is in the layout, the form must be created for
every action, which is far from practical.
In such cases, you should use a component. A component is like a partial but with some code
attached to it. Consider it as a lightweight action. Including a component from a template can
be done by using the include_component() helper:

// apps/frontend/templates/layout.php
<div id="footer">

<div class="content">
<!-- footer content -->

<?php include_component('language', 'language') ?>
</div>

</div>

The helper takes the module and the action as arguments. The third argument can be used to
pass parameters to the component.

Day 19: Internationalization and Localization 227

----------------- Brought to you by

Listing
19-16

Listing
19-17

Listing
19-18

Listing
19-19

Listing
19-20

Create a language module to host the component and the action that will actually change
the user language:

$ php symfony generate:module frontend language

Components are to be defined in the actions/components.class.php file.
Create this file now:

// apps/frontend/modules/language/actions/components.class.php
class languageComponents extends sfComponents
{

public function executeLanguage(sfWebRequest $request)
{

$this->form = new sfFormLanguage(
$this->getUser(),
array('languages' => array('en', 'fr'))

);
}

}

As you can see, a components class is quite similar to an actions class.
The template for a component uses the same naming convention as a partial would: an
underscore (_) followed by the component name:

// apps/frontend/modules/language/templates/_language.php
<form action="<?php echo url_for('change_language') ?>">

<?php echo $form ?><input type="submit" value="ok" />
</form>

As the plugin does not provide the action that actually changes the user culture, edit the
routing.yml file to create the change_language route:

apps/frontend/config/routing.yml
change_language:

url: /change_language
param: { module: language, action: changeLanguage }

And create the corresponding action:

// apps/frontend/modules/language/actions/actions.class.php
class languageActions extends sfActions
{

public function executeChangeLanguage(sfWebRequest $request)
{

$form = new sfFormLanguage(
$this->getUser(),
array('languages' => array('en', 'fr'))

);

$form->process($request);

return $this->redirect('localized_homepage');
}

}

The process() method of sfFormLanguage takes care of changing the user culture, based
on the user form submission.

Day 19: Internationalization and Localization 228

----------------- Brought to you by

Listing
19-21

Listing
19-22

Internationalization
Languages, Charset, and Encoding
Different languages have different character sets. The English language is the simplest one as
it only uses the ASCII characters, the French language is a bit more complex with
accentuated characters like “é”, and languages like Russian, Chinese, or Arabic are much
more complex as all their characters are outside the ASCII range. Such languages are defined
with totally different character sets.
When dealing with internationalized data, it is better to use the unicode norm. The idea
behind unicode is to establish a universal set of characters that contains all characters for all
languages. The problem with unicode is that a single character can be represented with as
many as 21 octets. Therefore, for the web, we use UTF-8, which maps Unicode code points to
variable-length sequences of octets. In UTF-8, most used languages have their characters
coded with less than 3 octets.
UTF-8 is the default encoding used by symfony, and it is defined in the settings.yml
configuration file:

apps/frontend/config/settings.yml
all:

.settings:
charset: utf-8

Also, to enable the internationalization layer of symfony, you must set the i18n setting to
true in settings.yml:

apps/frontend/config/settings.yml
all:

.settings:
i18n: true

Templates
An internationalized website means that the user interface is translated into several
languages.
In a template, all strings that are language dependent must be wrapped with the __() helper
(notice that there is two underscores).
The __() helper is part of the I18N helper group, which contains helpers that ease i18n
management in templates. As this helper group is not loaded by default, you need to either
manually add it in each template with use_helper('I18N') as we already did for the Text
helper group, or load it globally by adding it to the standard_helpers setting:

Day 19: Internationalization and Localization 229

----------------- Brought to you by

Listing
19-23

Listing
19-24

apps/frontend/config/settings.yml
all:

.settings:
standard_helpers: [Partial, Cache, I18N]

Here is how to use the __() helper for the Jobeet footer:

// apps/frontend/templates/layout.php
<div id="footer">

<div class="content">

powered by
<img src="http://www.symfony-project.org/images/symfony.gif"

alt="symfony framework" />

<?php echo __('About Jobeet') ?>

<li class="feed">

<?php echo link_to(__('Full feed'), 'job', array('sf_format' =>
'atom')) ?>

<?php echo __('Jobeet API') ?>

<li class="last">

<?php echo link_to(__('Become an affiliate'), 'affiliate_new') ?>

<?php include_component('language', 'language') ?>

</div>
</div>

The __() helper can take the string for the default language or you can also use a unique
identifier for each string. It is just a matter of taste. For Jobeet, we will use the former
strategy so templates are more readable.

When symfony renders a template, each time the __() helper is called, symfony looks for a
translation for the current user’s culture. If a translation is found, it is used, if not, the first
argument is returned as a fallback value.
All translations are stored in a catalogue. The i18n framework provides a lot of different
strategies to store the translations. We will use the “XLIFF”85 format, which is a standard and
the most flexible one. It is also the store used by the admin generator and most symfony
plugins.

Other catalogue stores are gettext, MySQL, and SQLite. As always, have a look at the
i18n API86 for more details.

85. http://en.wikipedia.org/wiki/XLIFF
86. http://www.symfony-project.org/api/1_4/i18n

Day 19: Internationalization and Localization 230

----------------- Brought to you by

Listing
19-25

Listing
19-26

Listing
19-27

i18n:extract

Instead of creating the catalogue file by hand, use the built-in i18n:extract task|I18n
Extraction Task:

$ php symfony i18n:extract frontend fr --auto-save

The i18n:extract task finds all strings that need to be translated in fr in the frontend
application and creates or updates the corresponding catalogue. The --auto-save option
saves the new strings in the catalogue. You can also use the --auto-delete option to
automatically remove strings that do not exist anymore.
In our case, it populates the file we have created:

<!-- apps/frontend/i18n/fr/messages.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xliff PUBLIC "-//XLIFF//DTD XLIFF//EN"

"http://www.oasis-open.org/committees/xliff/documents/xliff.dtd">
<xliff version="1.0">

<file source-language="EN" target-language="fr" datatype="plaintext"
original="messages" date="2008-12-14T12:11:22Z"
product-name="messages">

<header/>
<body>

<trans-unit id="1">
<source>About Jobeet</source>
<target/>

</trans-unit>
<trans-unit id="2">

<source>Feed</source>
<target/>

</trans-unit>
<trans-unit id="3">

<source>Jobeet API</source>
<target/>

</trans-unit>
<trans-unit id="4">

<source>Become an affiliate</source>
<target/>

</trans-unit>
</body>

</file>
</xliff>

Each translation is managed by a trans-unit tag which has a unique id attribute. You can
now edit this file and add translations for the French language:

<!-- apps/frontend/i18n/fr/messages.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xliff PUBLIC "-//XLIFF//DTD XLIFF//EN"

"http://www.oasis-open.org/committees/xliff/documents/xliff.dtd">
<xliff version="1.0">

<file source-language="EN" target-language="fr" datatype="plaintext"
original="messages" date="2008-12-14T12:11:22Z"
product-name="messages">

<header/>
<body>

<trans-unit id="1">

Day 19: Internationalization and Localization 231

----------------- Brought to you by

Listing
19-28

Listing
19-29

<source>About Jobeet</source>
<target>A propos de Jobeet</target>

</trans-unit>
<trans-unit id="2">

<source>Feed</source>
<target>Fil RSS</target>

</trans-unit>
<trans-unit id="3">

<source>Jobeet API</source>
<target>API Jobeet</target>

</trans-unit>
<trans-unit id="4">

<source>Become an affiliate</source>
<target>Devenir un affilié</target>

</trans-unit>
</body>

</file>
</xliff>

As XLIFF is a standard format, a lot of tools exist to ease the translation process. Open
Language Tools87 is an Open-Source Java project with an integrated XLIFF editor.

As XLIFF is a file-based format, the same precedence and merging rules that exist for other
symfony configuration files are also applicable. I18n files can exist in a project, an
application, or a module, and the most specific file overrides translations found in the more
global ones.

Translations with Arguments
The main principle behind internationalization is to translate whole sentences. But some
sentences embed dynamic values. In Jobeet, this is the case on the homepage for the
“more…” link:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<div class="more_jobs">

and <?php echo link_to($count, 'category', $category) ?> more...
</div>

The number of jobs is a variable that must be replaced by a placeholder for translation:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<div class="more_jobs">

<?php echo __('and %count% more...', array('%count%' => link_to($count,
'category', $category))) ?>
</div>

The string to be translated is now “and %count% more…”, and the %count% placeholder will
be replaced by the real number at runtime, thanks to the value given as the second argument
to the __() helper.
Add the new string manually by inserting a trans-unit tag in the messages.xml file, or
use the i18n:extract task to update the file automatically:

87. https://open-language-tools.dev.java.net/

Day 19: Internationalization and Localization 232

----------------- Brought to you by

Listing
19-30

Listing
19-31

Listing
19-32

Listing
19-33

Listing
19-34

$ php symfony i18n:extract frontend fr --auto-save

After running the task, open the XLIFF file to add the French translation:

<trans-unit id="6">
<source>and %count% more...</source>
<target>et %count% autres...</target>

</trans-unit>

The only requirement in the translated string is to use the %count% placeholder somewhere.
Some other strings are even more complex as they involve plurals|Plurals (I18n). According to
some numbers, the sentence changes, but not necessarily the same way for all languages.
Some languages have very complex grammar rules for plurals, like Polish or Russian.
On the category page, the number of jobs in the current category is displayed:

<!-- apps/frontend/modules/category/templates/showSuccess.php -->
<?php echo count($pager) ?> jobs in this category

When a sentence has different translations according to a number, the
format_number_choice() helper should be used:

<?php echo format_number_choice(
'[0]No job in this category|[1]One job in this

category|(1,+Inf]%count% jobs in this category',
array('%count%' => ''.count($pager).''),
count($pager)

)
?>

The format_number_choice() helper takes three arguments:

• The string to use depending on the number
• An array of placeholders
• The number to use to determine which text to use

The string that describes the different translations according to the number is formatted as
follow:

• Each possibility is separated by a pipe character (|)
• Each string is composed of a range followed by the translation

The range can describe any range of numbers:

• [1,2]: Accepts values between 1 and 2, inclusive
• (1,2): Accepts values between 1 and 2, excluding 1 and 2
• {1,2,3,4}: Only values defined in the set are accepted
• [-Inf,0): Accepts values greater or equal to negative infinity and strictly less than

0
• {n: n % 10 > 1 && n % 10 < 5}: Matches numbers like 2, 3, 4, 22, 23, 24

Translating the string is similar to other message strings:

<trans-unit id="7">
<source>[0]No job in this category|[1]One job in this

category|(1,+Inf]%count% jobs in this category</source>
<target>[0]Aucune annonce dans cette catégorie|[1]Une annonce dans cette

catégorie|(1,+Inf]%count% annonces dans cette catégorie</target>
</trans-unit>

Day 19: Internationalization and Localization 233

----------------- Brought to you by

Listing
19-35

Listing
19-36

Now that you know how to internationalize all kind of strings, take the time to add __() calls
for all templates of the frontend application. We won’tt internationalize the backend
application.

Forms
The form classes contain many strings that need to be translated, like labels, error messages,
and help messages. All these strings are automatically internationalized by symfony, so you
only need to provide translations in the XLIFF files.

Unfortunately, the i18n:extract task does not yet parse form classes for untranslated
strings.

Doctrine Objects
For the Jobeet website, we won’t internationalize all tables|Model Internationalization as it
does not make sense to ask the job posters to translate their job posts in all available
languages. But the category table definitely needs to be translated.
The Doctrine plugin supports i18n tables out of the box. For each table that contains localized
data, two tables need to be created: one for columns that are i18n-independent, and the other
one with columns that need to be internationalized. The two tables are linked by a one-to-
many relationship.
Update the schema.yml accordingly:

config/doctrine/schema.yml
JobeetCategory:

actAs:
Timestampable: ~
I18n:

fields: [name]
actAs:

Sluggable: { fields: [name], uniqueBy: [lang, name] }
columns:

name: { type: string(255), notnull: true }

By turning on the I18n behavior, a model named JobeetCategoryTranslation will be
automatically created and the specified fields are moved to that model.
Notice we simply turn on the I18n behavior and move the Sluggable behavior to be
attached to the JobeetCategoryTranslation model which is automatically created. The
uniqueBy option tells the Sluggable behavior which fields determine whether a slug is
unique or not. In this case each slug must be unique for each lang and name pair.
And update the fixtures for categories:

data/fixtures/categories.yml
JobeetCategory:

design:
Translation:

en:
name: Design

fr:
name: design

programming:
Translation:

en:

Day 19: Internationalization and Localization 234

----------------- Brought to you by

Listing
19-37

Listing
19-38

Listing
19-39

name: Programming
fr:

name: Programmation
manager:

Translation:
en:

name: Manager
fr:

name: Manager
administrator:

Translation:
en:

name: Administrator
fr:

name: Administrateur

We also need to override the findOneBySlug() method in JobeetCategoryTable. Since
Doctrine provides some magic finders for all columns in a model, we need to simply create
the findOneBySlug() method so that we override the default magic functionality Doctrine
provides.
We need to make a few changes so that the category is retrieved based on the english slug in
the JobeetCategoryTranslation table.

// lib/model/doctrine/JobeetCategoryTable.cass.php
public function findOneBySlug($slug)
{

$q = $this->createQuery('a')
->leftJoin('a.Translation t')
->andWhere('t.lang = ?', 'en')
->andWhere('t.slug = ?', $slug);

return $q->fetchOne();
}

Rebuild the model:

$ php symfony doctrine:build --all --and-load --no-confirmation
$ php symfony cc

As the doctrine:build --all --and-load removes all tables and data from the
database, don’t forget to re-create a user to access the Jobeet backend with the
guard:create-user task. Alternatively, you can add a fixture file to add it automatically
for you.

When using the I18n behavior, proxies are created between the JobeetCategory object
and the JobeetCategoryTranslation object so all the old functions for retrieving the
category name will still work and retrieve the value for the current culture.

$category = new JobeetCategory();
$category->setName('foo'); // sets the name for the current culture
$category->getName(); // gets the name for the current culture

$this->getUser()->setCulture('fr'); // from your actions class

$category->setName('foo'); // sets the name for French
echo $category->getName(); // gets the name for French

Day 19: Internationalization and Localization 235

----------------- Brought to you by

Listing
19-40

Listing
19-41

Listing
19-42

Listing
19-43

To reduce the number of database requests, join the JobeetCategoryTranslation in
your queries. It will retrieve the main object and the i18n one in one query.

$categories = Doctrine_Query::create()
->from('JobeetCategory c')
->leftJoin('c.Translation t WITH t.lang = ?', $culture)
->execute();

The WITH keyword above will append a condition to the automatically added ON condition
of the query. So, the ON condition of the join will end up being.

LEFT JOIN c.Translation t ON c.id = t.id AND t.lang = ?

As the category route is tied to the JobeetCategory model class and because the slug is
now part of the JobeetCategoryTranslation, the route is not able to retrieve the
Category object automatically. To help the routing system, let’s create a method that will
take care of object retrieval:
Since we already overrode the findOneBySlug() let’s refactor a little bit more so these
methods can be shared. We’ll create a new findOneBySlugAndCulture() and
doSelectForSlug() methods and change the findOneBySlug() method to simply use the
findOneBySlugAndCulture() method.

// lib/model/doctrine/JobeetCategoryTable.class.php
public function doSelectForSlug($parameters)
{

return $this->findOneBySlugAndCulture($parameters['slug'],
$parameters['sf_culture']);
}

public function findOneBySlugAndCulture($slug, $culture = 'en')
{

$q = $this->createQuery('a')
->leftJoin('a.Translation t')
->andWhere('t.lang = ?', $culture)
->andWhere('t.slug = ?', $slug);

return $q->fetchOne();
}

public function findOneBySlug($slug)
{

return $this->findOneBySlugAndCulture($slug, 'en');
}

Then, use the method option to tell the category route to use the doSelectForSlug()
method to retrieve the object:

apps/frontend/config/routing.yml
category:

url: /:sf_culture/category/:slug.:sf_format
class: sfDoctrineRoute
param: { module: category, action: show, sf_format: html }
options: { model: JobeetCategory, type: object, method: doSelectForSlug }
requirements:

sf_format: (?:html|atom)

We need to reload the fixtures to regenerate the proper slugs for the categories:

Day 19: Internationalization and Localization 236

----------------- Brought to you by

Listing
19-44

Listing
19-45

Listing
19-46

$ php symfony doctrine:data-load

Now the category route is internationalized and the URL for a category embeds the
translated category slug:

/frontend_dev.php/fr/category/programmation
/frontend_dev.php/en/category/programming

Admin Generator
For the backend, we want the French and the English translations to be edited in the same
form:

Embedding an i18n form can be done by using the embedI18N() method:

// lib/form/JobeetCategoryForm.class.php
class JobeetCategoryForm extends BaseJobeetCategoryForm
{

public function configure()
{

unset(
$this['jobeet_affiliates_list'],
$this['created_at'], $this['updated_at']

);

$this->embedI18n(array('en', 'fr'));
$this->widgetSchema->setLabel('en', 'English');
$this->widgetSchema->setLabel('fr', 'French');

}
}

The admin generator interface supports internationalization out of the box. It comes with
translations for more than 20 languages, and it is quite easy to add a new one, or to
customize an existing one. Copy the file for the language you want to customize from symfony
(admin translations are to be found in lib/vendor/symfony/lib/plugins/
sfDoctrinePlugin/i18n/) in the application i18n directory. As the file in your application
will be merged with the symfony one, only keep the modified strings in the application file.
You will notice that the admin generator translation files are named like sf_admin.fr.xml,
instead of fr/messages.xml. As a matter of fact, messages is the name of the default

Day 19: Internationalization and Localization 237

----------------- Brought to you by

Listing
19-47

Listing
19-48

Listing
19-49

Listing
19-50

catalogue used by symfony, and can be changed to allow a better separation between
different parts of your application. Using a catalogue other than the default one requires that
you specify it when using the __() helper:

<?php echo __('About Jobeet', array(), 'jobeet') ?>

In the above __() call, symfony will look for the “About Jobeet” string in the jobeet
catalogue.

Tests
Fixing tests is an integral part of the internationalization migration. First, update the test
fixtures for categories by copying the fixtures we have define above in test/fixtures/
categories.yml.
Don’t forget to update methods in the lib/test/JobeetTestFunctional.class.php file
in order to care of our modifications concerning the JobeetCategory’s internationalization.

public function getMostRecentProgrammingJob()
{

$q = Doctrine_Query::create()
->select('j.*')
->from('JobeetJob j')
->leftJoin('j.JobeetCategory c')
->leftJoin('c.Translation t')
->where('t.slug = ?', 'programming');

$q = Doctrine_Core::getTable('JobeetJob')->addActiveJobsQuery($q);

return $q->fetchOne();
}

Rebuild the model for the test environment:

$ php symfony doctrine:build --all --and-load --no-confirmation --env=test

You can now launch all tests to check that they are running fine:

$ php symfony test:all

When we have developed the backend interface for Jobeet, we have not written functional
tests. But whenever you create a module with the symfony command line, symfony also
generate test stubs. These stubs are safe to remove.

Localization
Templates
Supporting different cultures also means supporting different way to format dates and
numbers. In a template, several helpers are at your disposal to help take all these differences
into account, based on the current user culture:
In the Date88 helper group:

88. http://www.symfony-project.org/api/1_4/DateHelper

Day 19: Internationalization and Localization 238

----------------- Brought to you by

Helper Description
format_date() Formats a date
format_datetime() Formats a date with a time (hours, minutes, seconds)
time_ago_in_words() Displays the elapsed time between a date and now in

words
distance_of_time_in_words() Displays the elapsed time between two dates in words
format_daterange() Formats a range of dates

In the Number89 helper group:

Helper Description
format_number() Formats a number
format_currency() Formats a currency

In the I18N90 helper group:

Helper Description
format_country() Displays the name of a country
format_language() Displays the name of a language

Forms (I18n)
The form framework provides several widgets and validators for localized data:

• sfWidgetFormI18nDate91

• sfWidgetFormI18nDateTime92

• sfWidgetFormI18nTime93

• sfWidgetFormI18nChoiceCountry94

• sfWidgetFormI18nChoiceCurrency95

• sfWidgetFormI18nChoiceLanguage96

• sfWidgetFormI18nChoiceTimezone97

• sfValidatorI18nChoiceCountry98

• sfValidatorI18nChoiceLanguage99

• sfValidatorI18nChoiceTimezone100

89. http://www.symfony-project.org/api/1_4/NumberHelper
90. http://www.symfony-project.org/api/1_4/I18NHelper
91. http://www.symfony-project.org/api/1_4/sfWidgetFormI18nDate
92. http://www.symfony-project.org/api/1_4/sfWidgetFormI18nDateTime
93. http://www.symfony-project.org/api/1_4/sfWidgetFormI18nTime
94. http://www.symfony-project.org/api/1_4/sfWidgetFormI18nChoiceCountry
95. http://www.symfony-project.org/api/1_4/
sfWidgetFormI18nChoiceCurrency
96. http://www.symfony-project.org/api/1_4/
sfWidgetFormI18nChoiceLanguage
97. http://www.symfony-project.org/api/1_4/
sfWidgetFormI18nChoiceTimezone
98. http://www.symfony-project.org/api/1_4/sfValidatorI18nChoiceCountry
99. http://www.symfony-project.org/api/1_4/sfValidatorI18nChoiceLanguage
100. http://www.symfony-project.org/api/1_4/sfValidatorI18nChoiceTimezone

Day 19: Internationalization and Localization 239

----------------- Brought to you by

Final Thoughts
Internationalization and localization are first-class citizens in symfony. Providing a localized
website to your users is very easy as symfony provides all the basic tools and even gives you
command line tasks to make it fast.
Be prepared for a very special day as we will be moving a lot of files around and exploring a
different approach to organizing a symfony project.

Day 19: Internationalization and Localization 240

----------------- Brought to you by

Day 20

The Plugins

Yesterday, you learned how to internationalize and localize your symfony applications. Once
again, thanks to the ICU standard and a lot of helpers, symfony makes this really easy. Until
the end of these lines, we will talk about plugins: what they are, what you can bundle in a
plugin, and what they can be used for.

Plugins
A symfony Plugin
A symfony plugin offers a way to package and distribute a subset of your project files. Like a
project, a plugin can contain classes, helpers, configuration, tasks, modules, schemas, and
even web assets.

Private Plugins
The first usage of plugins is to ease sharing code between your applications, or even between
different projects. Recall that symfony applications only share the model. Plugins provide a
way to share more components between applications.
If you need to reuse the same schema for different projects, or the same modules, move them
to a plugin. As a plugin is just a directory, you can move it around quite easily by creating a
SVN repository and using svn:externals, or by just copying the files from one project to
another.
We call these “private plugins” because their usage is restricted to a single developer or a
company. They are not publicly available.

You can even create a package out of your private plugins, create your own symfony plugin
channel, and install them via the plugin:install task.

Public Plugins
Public plugins are available for the community to download and install. During this tutorial,
we have used a couple of public plugins: sfDoctrineGuardPlugin and
sfFormExtraPlugin.
They are exactly the same as private plugins. The only difference is that anybody can install
them for their projects. You will learn later on how to publish and host a public plugin on the
symfony website.

Day 20: The Plugins 241

----------------- Brought to you by

Listing
20-1

Listing
20-2

Listing
20-3

A Different Way to Organize Code
There is one more way to think about plugins and how to use them. Forget about re-usability
and sharing. Plugins can be used as a different way to organize your code. Instead of
organizing the files by layers: all models in the lib/model/ directory, templates in the
templates/ directory, …; the files are put together by feature: all job files together (the
model, modules, and templates), all CMS files together, and so on.

Plugin File Structure
A plugin is just a directory structure with files organized in a pre-defined structure, according
to the nature of the files. Here, we will move most of the code we have written for Jobeet in a
sfJobeetPlugin. The basic layout we will use is as follows:

sfJobeetPlugin/
config/

sfJobeetPluginConfiguration.class.php // Plugin initialization
routing.yml // Routing
doctrine/

schema.yml // Database schema
lib/

Jobeet.class.php // Classes
helper/ // Helpers
filter/ // Filter classes
form/ // Form classes
model/ // Model classes
task/ // Tasks

modules/
job/ // Modules

actions/
config/
templates/

web/ // Assets like JS, CSS, and
images

The Jobeet Plugin
Bootstrapping a plugin is as simple as creating a new directory under plugins/. For Jobeet,
let’s create a sfJobeetPlugin directory:

$ mkdir plugins/sfJobeetPlugin

Then, activate the sfJobeetPlugin in config/ProjectConfiguration.class.php file.

public function setup()
{

$this->enablePlugins(array(
'sfDoctrinePlugin',
'sfDoctrineGuardPlugin',
'sfFormExtraPlugin',
'sfJobeetPlugin'

));
}

Day 20: The Plugins 242

----------------- Brought to you by

Listing
20-4

Listing
20-5

Listing
20-6

Listing
20-7

Listing
20-8

All plugins must end with the Plugin suffix. It is also a good habit to prefix them with sf,
although it is not mandatory.

The Model
First, move the config/doctrine/schema.yml file to plugins/sfJobeetPlugin/
config/:

$ mkdir plugins/sfJobeetPlugin/config/
$ mkdir plugins/sfJobeetPlugin/config/doctrine
$ mv config/doctrine/schema.yml plugins/sfJobeetPlugin/config/doctrine/
schema.yml

All commands are for Unix like environments. If you use Windows, you can drag and drop
files in the Explorer. And if you use Subversion, or any other tool to manage your code, use
the built-in tools they provide (like svn mv to move files).

Move model, form, and filter files to plugins/sfJobeetPlugin/lib/:

$ mkdir plugins/sfJobeetPlugin/lib/
$ mv lib/model/ plugins/sfJobeetPlugin/lib/
$ mv lib/form/ plugins/sfJobeetPlugin/lib/
$ mv lib/filter/ plugins/sfJobeetPlugin/lib/

$ rm -rf plugins/sfJobeetPlugin/lib/model/doctrine/sfDoctrineGuardPlugin
$ rm -rf plugins/sfJobeetPlugin/lib/form/doctrine/sfDoctrineGuardPlugin
$ rm -rf plugins/sfJobeetPlugin/lib/filter/doctrine/sfDoctrineGuardPlugin

Remove the plugins/sfJobeetPlugin/lib/form/BaseForm.class.php file.

$ rm plugins/sfJobeetPlugin/lib/form/BaseForm.class.php

After you move the models, forms and filters the classes must be renamed, made abstract and
prefixed with the word Plugin.

Only prefix the auto-generated classes with Plugin and not all classes. For example do not
prefix any classes you wrote by hand. Only the auto-generated ones require the prefix.

Here is an example where we move the JobeetAffiliate and JobeetAffiliateTable
classes.

$ mv plugins/sfJobeetPlugin/lib/model/doctrine/JobeetAffiliate.class.php
plugins/sfJobeetPlugin/lib/model/doctrine/PluginJobeetAffiliate.class.php

And the code should be updated:

abstract class PluginJobeetAffiliate extends BaseJobeetAffiliate
{

public function save(Doctrine_Connection $conn = null)
{

if (!$this->getToken())
{

$this->setToken(sha1($object->getEmail().rand(11111, 99999)));

Day 20: The Plugins 243

----------------- Brought to you by

Listing
20-9

Listing
20-10

Listing
20-11

Listing
20-12

}

parent::save($conn);
}

// ...
}

Now lets move the JobeetAffiliateTable class:

$ mv plugins/sfJobeetPlugin/lib/model/doctrine/
JobeetAffiliateTable.class.php plugins/sfJobeetPlugin/lib/model/doctrine/
PluginJobeetAffiliateTable.class.php

The class definition should now look like the following:

abstract class PluginJobeetAffiliateTable extends Doctrine_Table
{

// ...
}

Now do the same thing for the forms and filter classes. Rename them to include a prefix with
the word Plugin.
Make sure to remove the base directory in plugins/sfJobeetPlugin/lib/*/doctrine/
for form, filter, and model directories:

$ rm -rf plugins/sfJobeetPlugin/lib/form/doctrine/base
$ rm -rf plugins/sfJobeetPlugin/lib/filter/doctrine/base
$ rm -rf plugins/sfJobeetPlugin/lib/model/doctrine/base

Once you have moved, renamed and removed some forms, filters and model classes run the
tasks to build the re-build all the classes:

$ php symfony doctrine:build --all-classes

Now you will notice some new directories created to hold the models created from the
schema included with the sfJobeetPlugin at lib/model/doctrine/sfJobeetPlugin/.
This directory contains the top level models and the base classes generated from the schema.
For example the model JobeetJob now has this class structure:

• JobeetJob (extends PluginJobeetJob) in lib/model/doctrine/
sfJobeetPlugin/JobeetJob.class.php: Top level class where all project model
functionality can be placed. This is where you can add and override functionality
that comes with the plugin models.

• PluginJobeetJob (extends BaseJobeetJob) in plugins/sfJobeetPlugin/
lib/model/doctrine/PluginJobeetJob.class.php: This class contains all the
plugin specific functionality. You can override functionality in this class and the base
by modifying the JobeetJob class.

• BaseJobeetJob (extends sfDoctrineRecord) in lib/model/doctrine/
sfJobeetPlugin/base/BaseJobeetJob.class.php: Base class that is
generated from the yaml schema file each time you run doctrine:build --
model.

• JobeetJobTable (extends PluginJobeetJobTable) in lib/model/doctrine/
sfJobeetPlugin/JobeetJobTable.class.php: Same as the JobeetJob class

Day 20: The Plugins 244

----------------- Brought to you by

Listing
20-13

Listing
20-14

Listing
20-15

Listing
20-16

Listing
20-17

except this is the instance of Doctrine_Table that will be returned when you call
Doctrine_Core::getTable('JobeetJob').

• PluginJobeetJobTable (extends Doctrine_Table) in lib/model/doctrine/
sfJobeetPlugin/JobeetJobTable.class.php: This class contains all the
plugin specific functionality for the instance of Doctrine_Table that will be
returned when you call Doctrine_Core::getTable('JobeetJob').

With this generated structure you have the ability to customize the models of a plugin by
editing the top level JobeetJob class. You can customize the schema and add columns, add
relationships by overriding the setTableDefinition() and setUp() methods.

When you move the form classes, be sure to change the configure() method to a
setup() method and call parent::setup(). Below is an example.

abstract class PluginJobeetAffiliateForm extends BaseJobeetAffiliateForm
{

public function setup()
{

parent::setup();
}

// ...
}

We need to make sure our plugin doesn’t have the base classes for all Doctrine forms. These
files are global for a project and will be re-generated with the doctrine:build --forms
and doctrine:build --filters.
Remove the files from the plugin:

$ rm plugins/sfJobeetPlugin/lib/form/doctrine/BaseFormDoctrine.class.php
$ rm plugins/sfJobeetPlugin/lib/filter/doctrine/
BaseFormFilterDoctrine.class.php

You can also move the Jobeet.class.php file to the plugin:

$ mv lib/Jobeet.class.php plugins/sfJobeetPlugin/lib/

As we have moved files around, clear the cache:

$ php symfony cc

If you use a PHP accelerator like APC and things get weird at this point, restart Apache.

Now that all the model files have been moved to the plugin, run the tests to check that
everything still works fine:

$ php symfony test:all

The Controllers and the Views
The next logical step is to move the modules to the plugin. To avoid module name collisions, it
is always a good habit to prefix plugin module names with the plugin name:

Day 20: The Plugins 245

----------------- Brought to you by

Listing
20-18

Listing
20-19

$ mkdir plugins/sfJobeetPlugin/modules/
$ mv apps/frontend/modules/affiliate plugins/sfJobeetPlugin/modules/
sfJobeetAffiliate
$ mv apps/frontend/modules/api plugins/sfJobeetPlugin/modules/sfJobeetApi
$ mv apps/frontend/modules/category plugins/sfJobeetPlugin/modules/
sfJobeetCategory
$ mv apps/frontend/modules/job plugins/sfJobeetPlugin/modules/sfJobeetJob
$ mv apps/frontend/modules/language plugins/sfJobeetPlugin/modules/
sfJobeetLanguage

For each module, you also need to change the class name in all actions.class.php and
components.class.php files (for instance, the affiliateActions class needs to be
renamed to sfJobeetAffiliateActions).
The include_partial() and include_component() calls must also be changed in the
following templates:

• sfJobeetAffiliate/templates/_form.php (change affiliate to
sfJobeetAffiliate)

• sfJobeetCategory/templates/showSuccess.atom.php
• sfJobeetCategory/templates/showSuccess.php
• sfJobeetJob/templates/indexSuccess.atom.php
• sfJobeetJob/templates/indexSuccess.php
• sfJobeetJob/templates/searchSuccess.php
• sfJobeetJob/templates/showSuccess.php
• apps/frontend/templates/layout.php

Update the search and delete actions:

// plugins/sfJobeetPlugin/modules/sfJobeetJob/actions/actions.class.php
class sfJobeetJobActions extends sfActions
{

public function executeSearch(sfWebRequest $request)
{

$this->forwardUnless($query = $request->getParameter('query'),
'sfJobeetJob', 'index');

$this->jobs = Doctrine_Core::getTable('JobeetJob')
->getForLuceneQuery($query);

if ($request->isXmlHttpRequest())
{

if ('*' == $query || !$this->jobs)
{

return $this->renderText('No results.');
}

return $this->renderPartial('sfJobeetJob/list',
array('jobs' => $this->jobs));

}
}

public function executeDelete(sfWebRequest $request)
{

$request->checkCSRFProtection();

$jobeet_job = $this->getRoute()->getObject();
$jobeet_job->delete();

Day 20: The Plugins 246

----------------- Brought to you by

Listing
20-20

$this->redirect('sfJobeetJob/index');
}

// ...
}

Now, modify the routing.yml file to take these changes into account:

apps/frontend/config/routing.yml
affiliate:

class: sfDoctrineRouteCollection
options:

model: JobeetAffiliate
actions: [new, create]
object_actions: { wait: GET }
prefix_path: /:sf_culture/affiliate
module: sfJobeetAffiliate

requirements:
sf_culture: (?:fr|en)

api_jobs:
url: /api/:token/jobs.:sf_format
class: sfDoctrineRoute
param: { module: sfJobeetApi, action: list }
options: { model: JobeetJob, type: list, method: getForToken }
requirements:

sf_format: (?:xml|json|yaml)

category:
url: /:sf_culture/category/:slug.:sf_format
class: sfDoctrineRoute
param: { module: sfJobeetCategory, action: show, sf_format: html }
options: { model: JobeetCategory, type: object, method: doSelectForSlug }
requirements:

sf_format: (?:html|atom)
sf_culture: (?:fr|en)

job_search:
url: /:sf_culture/search
param: { module: sfJobeetJob, action: search }
requirements:

sf_culture: (?:fr|en)

job:
class: sfDoctrineRouteCollection
options:

model: JobeetJob
column: token
object_actions: { publish: PUT, extend: PUT }
prefix_path: /:sf_culture/job
module: sfJobeetJob

requirements:
token: \w+
sf_culture: (?:fr|en)

job_show_user:
url: /:sf_culture/job/:company_slug/:location_slug/:id/:position_slug

Day 20: The Plugins 247

----------------- Brought to you by

Listing
20-21

Listing
20-22

Listing
20-23

class: sfDoctrineRoute
options:

model: JobeetJob
type: object
method_for_query: retrieveActiveJob

param: { module: sfJobeetJob, action: show }
requirements:

id: \d+
sf_method: GET
sf_culture: (?:fr|en)

change_language:
url: /change_language
param: { module: sfJobeetLanguage, action: changeLanguage }

localized_homepage:
url: /:sf_culture/
param: { module: sfJobeetJob, action: index }
requirements:

sf_culture: (?:fr|en)

homepage:
url: /
param: { module: sfJobeetJob, action: index }

If you try to browse the Jobeet website now, you will have exceptions telling you that the
modules are not enabled. As plugins are shared amongst all applications in a project, you
need to specifically enable the module you need for a given application in its settings.yml
configuration file:

apps/frontend/config/settings.yml
all:

.settings:
enabled_modules:

- default
- sfJobeetAffiliate
- sfJobeetApi
- sfJobeetCategory
- sfJobeetJob
- sfJobeetLanguage

The last step of the migration is to fix the functional tests where we test for the module name.

The Tasks
Tasks can be moved to the plugin quite easily:

$ mv lib/task plugins/sfJobeetPlugin/lib/

The i18n Files
A plugin can also contain XLIFF files:

$ mv apps/frontend/i18n plugins/sfJobeetPlugin/

Day 20: The Plugins 248

----------------- Brought to you by

Listing
20-24

Listing
20-25

Listing
20-26

The Routing
A plugin can also contain routing rules:

$ mv apps/frontend/config/routing.yml plugins/sfJobeetPlugin/config/

The Assets
Even if it is a bit counter-intuitive, a plugin can also contain web assets like images,
stylesheets, and JavaScripts. As we don’t want to distribute the Jobeet plugin, it does not
really make sense, but it is possible by creating a plugins/sfJobeetPlugin/web/
directory.
A plugin’s assets must be accessible in the project’s web/ directory to be viewable from a
browser. The plugin:publish-assets addresses this by creating symlinks under Unix
system and by copying the files on the Windows platform:

$ php symfony plugin:publish-assets

The User
Moving the myUser class methods that deal with job history is a bit more involved. We could
create a JobeetUser class and make myUser inherit from it. But there is a better way,
especially if several plugins want to add new methods to the class.
Core symfony objects notify events during their life-cycle that you can listen to. In our case,
we need to listen to the user.method_not_found event, which occurs when an undefined
method is called on the sfUser object.
When symfony is initialized, all plugins are also initialized if they have a plugin configuration
class:

// plugins/sfJobeetPlugin/config/sfJobeetPluginConfiguration.class.php
class sfJobeetPluginConfiguration extends sfPluginConfiguration
{

public function initialize()
{

$this->dispatcher->connect('user.method_not_found',
array('JobeetUser', 'methodNotFound'));

}
}

Event notifications are managed by sfEventDispatcher101, the event dispatcher object.
Registering a listener is as simple as calling the connect() method. The connect() method
connects an event name to a PHP callable.

A PHP callable102 is a PHP variable that can be used by the call_user_func() function
and returns true when passed to the is_callable() function. A string represents a
function, and an array can represent an object method or a class method.

With the above code in place, myUser object will call the static methodNotFound() method
of the JobeetUser class whenever it is unable to find a method. It is then up to the
methodNotFound() method to process the missing method or not.
Remove all methods from the myUser class and create the JobeetUser class:

101. http://www.symfony-project.org/api/1_4/sfEventDispatcher
102. http://www.php.net/manual/en/function.is-callable.php

Day 20: The Plugins 249

----------------- Brought to you by

Listing
20-27

// apps/frontend/lib/myUser.class.php
class myUser extends sfBasicSecurityUser
{
}

// plugins/sfJobeetPlugin/lib/JobeetUser.class.php
class JobeetUser
{

static public function methodNotFound(sfEvent $event)
{

if (method_exists('JobeetUser', $event['method']))
{

$event->setReturnValue(call_user_func_array(
array('JobeetUser', $event['method']),
array_merge(array($event->getSubject()), $event['arguments'])

));

return true;
}

}

static public function isFirstRequest(sfUser $user, $boolean = null)
{

if (is_null($boolean))
{

return $user->getAttribute('first_request', true);
}
else
{

$user->setAttribute('first_request', $boolean);
}

}

static public function addJobToHistory(sfUser $user, JobeetJob $job)
{

$ids = $user->getAttribute('job_history', array());

if (!in_array($job->getId(), $ids))
{

array_unshift($ids, $job->getId());
$user->setAttribute('job_history', array_slice($ids, 0, 3));

}
}

static public function getJobHistory(sfUser $user)
{

$ids = $user->getAttribute('job_history', array());

if (!empty($ids))
{

return Doctrine_Core::getTable('JobeetJob')
->createQuery('a')
->whereIn('a.id', $ids)
->execute();

}

return array();
}

Day 20: The Plugins 250

----------------- Brought to you by

static public function resetJobHistory(sfUser $user)
{

$user->getAttributeHolder()->remove('job_history');
}

}

When the dispatcher calls the methodNotFound() method, it passes a sfEvent103 object.
If the method exists in the JobeetUser class, it is called and its returned value is
subsequently returned to the notifier. If not, symfony will try the next registered listener or
throw an Exception.
The getSubject() method returns the notifier of the event, which in this case is the current
myUser object.

The Default Structure vs. the Plugin Architecture
Using the plugin architecture allows you to organize your code in a different way:

Using Plugins
When you start implementing a new feature, or if you try to solve a classic web problem, odds
are that someone has already solved the same problem and perhaps packaged the solution as
a symfony plugin. To you look for a public symfony plugin, go to the plugin section104 of the
symfony website.
As a plugin is self-contained in a directory, there are several way to install it:

• Using the plugin:install task (it only works if the plugin developer has created
a plugin package and uploaded it on the symfony website)

• Downloading the package and manually un-archive it under the plugins/ directory
(it also need that the developer has uploaded a package)

• Creating a svn:externals in plugins/ for the plugin (it only works if the plugin
developer host its plugin on Subversion)

103. http://www.symfony-project.org/api/1_4/sfEvent
104. http://www.symfony-project.org/plugins/

Day 20: The Plugins 251

----------------- Brought to you by

Listing
20-28

The last two ways are easy but lack some flexibility. The first way allows you to install the
latest version according to the project symfony version, easily upgrade to the latest stable
release, and to easily manage dependencies between plugins.

Contributing a Plugin
Packaging a Plugin
To create a plugin package, you need to add some mandatory files to the plugin directory
structure. First, create a README file at the root of the plugin directory and explain how to
install the plugin, what it provides, and what not. The README file must be formatted with the
Markdown format105. This file will be used on the symfony website as the main piece of
documentation. You can test the conversion of your README file to HTML by using the
symfony plugin dingus106.

Plugin Development Tasks

If you find yourself frequently creating private and/or public plugins, consider taking
advantage of some of the tasks in the sfTaskExtraPlugin107. This plugin, maintained by the
core team, includes a number of tasks that help you streamline the plugin lifecycle:

• generate:plugin
• plugin:package

You also need to create a LICENSE file. Choosing a license is not an easy task, but the
symfony plugin section only lists plugins that are released under a license similar to the
symfony one (MIT, BSD, LGPL, and PHP). The content of the LICENSE file will be displayed
under the license tab of your plugin’s public page.
The last step is to create a package.xml file at the root of the plugin directory. This
package.xml file follows the PEAR package syntax108.

The best way to learn the package.xml syntax is certainly to copy the one used by an
existing plugin109.

The package.xml file is composed of several parts as you can see in this template example:

<!-- plugins/sfJobeetPlugin/package.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<package packagerversion="1.4.1" version="2.0"

xmlns="http://pear.php.net/dtd/package-2.0"
xmlns:tasks="http://pear.php.net/dtd/tasks-1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pear.php.net/dtd/tasks-1.0
http://pear.php.net/dtd/tasks-1.0.xsd http://pear.php.net/dtd/

package-2.0
http://pear.php.net/dtd/package-2.0.xsd">

105. http://daringfireball.net/projects/markdown/syntax
106. http://www.symfony-project.org/plugins/markdown_dingus
107. http://www.symfony-project.com/plugins/sfTaskExtraPlugin
108. http://pear.php.net/manual/en/guide-developers.php
109. http://svn.symfony-project.com/plugins/sfGuardPlugin/branches/1.2/
package.xml

Day 20: The Plugins 252

----------------- Brought to you by

Listing
20-29

<name>sfJobeetPlugin</name>
<channel>plugins.symfony-project.org</channel>
<summary>A job board plugin.</summary>
<description>A job board plugin.</description>
<lead>

<name>Fabien POTENCIER</name>
<user>fabpot</user>
<email>fabien.potencier@symfony-project.com</email>
<active>yes</active>

</lead>
<date>2008-12-20</date>
<version>

<release>1.0.0</release>
<api>1.0.0</api>

</version>
<stability>

<release>stable</release>
<api>stable</api>

</stability>
<license uri="http://www.symfony-project.com/license">

MIT license
</license>
<notes />

<contents>
<!-- CONTENT -->

</contents>

<dependencies>
<!-- DEPENDENCIES -->

</dependencies>

<phprelease>
</phprelease>

<changelog>
<!-- CHANGELOG -->

</changelog>
</package>

The <contents> tag contains the files that need to be put into the package:

<contents>
<dir name="/">

<file role="data" name="README" />
<file role="data" name="LICENSE" />

<dir name="config">
<file role="data" name="config.php" />
<file role="data" name="schema.yml" />

</dir>

<!-- ... -->
</dir>

</contents>

The <dependencies> tag references all dependencies the plugin might have: PHP, symfony,
and also other plugins. This information is used by the plugin:install task to install the

Day 20: The Plugins 253

----------------- Brought to you by

Listing
20-30

Listing
20-31

Listing
20-32

best plugin version for the project environment and to also install required plugin
dependencies if any.

<dependencies>
<required>

<php>
<min>5.0.0</min>

</php>
<pearinstaller>

<min>1.4.1</min>
</pearinstaller>
<package>

<name>symfony</name>
<channel>pear.symfony-project.com</channel>
<min>1.3.0</min>
<max>1.5.0</max>
<exclude>1.5.0</exclude>

</package>
</required>

</dependencies>

You should always declare a dependency on symfony, as we have done here. Declaring a
minimum and a maximum version allows the plugin:install to know what symfony
version is mandatory as symfony versions can have slightly different APIs.
Declaring a dependency with another plugin is also possible:

<package>
<name>sfFooPlugin</name>
<channel>plugins.symfony-project.org</channel>
<min>1.0.0</min>
<max>1.2.0</max>
<exclude>1.2.0</exclude>

</package>

The <changelog> tag is optional but gives useful information about what changed between
releases. This information is available under the “Changelog” tab and also in the plugin
feed110.

<changelog>
<release>

<version>
<release>1.0.0</release>
<api>1.0.0</api>

</version>
<stability>

<release>stable</release>
<api>stable</api>

</stability>
<license uri="http://www.symfony-project.com/license">

MIT license
</license>
<date>2008-12-20</date>
<license>MIT</license>
<notes>

* fabien: First release of the plugin

110. http://www.symfony-project.org/plugins/recently.rss

Day 20: The Plugins 254

----------------- Brought to you by

</notes>
</release>

</changelog>

Hosting a Plugin on the symfony Website
If you develop a useful plugin and you want to share it with the symfony community, create a
symfony account111 if you don’t have one already and then, create a new plugin112.
You will automatically become the administrator for the plugin and you will see an “admin”
tab in the interface. In this tab, you will find everything you need to manage your plugin and
upload your packages.

The plugin FAQ113 contains a lot of useful information for plugin developers.

Final Thoughts
Creating plugins, and sharing them with the community is one of the best ways to contribute
back to the symfony project. It is so easy, that the symfony plugin repository is full of useful,
fun, but also ridiculous plugins.

111. http://www.symfony-project.org/user/new
112. http://www.symfony-project.org/plugins/new
113. http://www.symfony-project.org/plugins/FAQ

Day 20: The Plugins 255

----------------- Brought to you by

Listing
21-1

Listing
21-2

Day 21

The Cache

Today, we will talk about caching. The symfony framework has many built-in cache strategies.
For instance, the YAML configuration files are first converted to PHP and then cached on the
filesystem. We have also seen that the modules generated by the admin generator are cached
for better performance.
But here, we will talk about another cache: the HTML cache. To improve your website
performance, you can cache whole HTML pages or just parts of them.

Creating a new Environment
By default, the template cache feature of symfony is enabled in the settings.yml
configuration file for the prod environment, but not for the test and dev ones:

prod:
.settings:

cache: true

dev:
.settings:

cache: false

test:
.settings:

cache: false

As we need to test the cache feature before going to production, we can activate the cache for
the dev environment or create a new environment. Recall that an environment is defined by
its name (a string), an associated front controller, and optionally a set of specific
configuration values.
To play with the cache system on Jobeet, we will create a cache environment, similar to the
prod environment, but with the log and debug information available in the dev environment.
Create the front controller associated with the new cache environment by copying the dev
front controller web/frontend_dev.php to web/frontend_cache.php:

// web/frontend_cache.php
if (!in_array(@$_SERVER['REMOTE_ADDR'], array('127.0.0.1', '::1')))
{

die('You are not allowed to access this file. Check
'.basename(__FILE__).' for more information.');
}

Day 21: The Cache 256

----------------- Brought to you by

Listing
21-3

Listing
21-4

Listing
21-5

Listing
21-6

require_once(dirname(__FILE__).'/../config/
ProjectConfiguration.class.php');

$configuration =
ProjectConfiguration::getApplicationConfiguration('frontend', 'cache',
true);
sfContext::createInstance($configuration)->dispatch();

That’s all there is to it. The new cache environment is now useable. The only difference is the
second argument of the getApplicationConfiguration() method which is the
environment name, cache.
You can test the cache environment in your browser by calling its front controller:

http://www.jobeet.com.localhost/frontend_cache.php/

The front controller script begins with a code that ensures that the front controller is only
called from a local IP address. This security measure is to protect the front controller from
being called on the production servers. We will talk about this in more details tomorrow.

For now, the cache environment inherits from the default configuration. Edit the
settings.yml configuration file to add the cache environment specific configuration:

apps/frontend/config/settings.yml
cache:

.settings:
error_reporting: <?php echo (E_ALL | E_STRICT)."\n" ?>
web_debug: true
cache: true
etag: false

In these settings, the symfony template cache feature has been activated with the cache
setting and the web debug toolbar has been enabled with the web_debug setting.
As the default configuration caches all settings in the cache, you need to clear it before being
able to see the changes in your browser:

$ php symfony cc

Now, if you refresh your browser, the web debug toolbar should be present in the top right
corner of the page, as it is the case for the dev environment.

Cache Configuration
The symfony template cache can be configured with the cache.yml configuration file. The
default configuration for the application is to be found in apps/frontend/config/
cache.yml:

default:
enabled: false
with_layout: false
lifetime: 86400

By default, as all pages can contain dynamic information, the cache is globally disabled
(enabled: false). We don’t need to change this setting, because we will enable the cache
on a page by page basis.

Day 21: The Cache 257

----------------- Brought to you by

Listing
21-7

The lifetime setting defines the server side life time of the cache in seconds (86400
seconds equals one day).

You can also work the other way around: enable the cache globally and then, disable it on
specific pages that cannot be cached. It depends on which represents the less work for
your application.

Page Cache
As the Jobeet homepage will probably be the most visited page of the website, instead of
requesting data from the database each time a user accesses it, it can be cached.
Create a cache.yml file for the sfJobeetJob module:

plugins/sfJobeetPlugin/modules/sfJobeetJob/config/cache.yml
index:

enabled: true
with_layout: true

The cache.yml configuration file has the same properties than any other symfony
configuration files like view.yml. It means for instance that you can enable the cache for
all actions of a module by using the special all key.

If you refresh your browser, you will see that symfony has decorated the page with a box
indicating that the content has been cached:

The box gives some precious information about the cache key for debugging, like the lifetime
of the cache, and the age of it.
If you refresh the page again, the color of the box changed from green to yellow, indicating
that the page has been retrieved from the cache:

Day 21: The Cache 258

----------------- Brought to you by

Listing
21-8

Also notice that no database request has been made in the second case, as shown in the web
debug toolbar.

Even if the language can be changed on a per-user basis, the cache still works as the
language is embedded in the URL.

When a page is cacheable, and if the cache does not exist yet, symfony stores the response
object in the cache at the end of the request. For all other future requests, symfony will send
the cached response without calling the controller:

This has a great impact on performance as you can measure for yourself by using tools like
JMeter114.

An incoming request with GET parameters or submitted with the POST, PUT, or DELETE
method will never be cached by symfony, regardless of the configuration.

The job creation page can also be cached:

plugins/sfJobeetPlugin/modules/sfJobeetJob/config/cache.yml
new:

enabled: true

index:
enabled: true

all:
with_layout: true

As the two pages can be cached with the layout, we have created an all section that defines
the default configuration for the all sfJobeetJob module actions.

114. http://jakarta.apache.org/jmeter/

Day 21: The Cache 259

----------------- Brought to you by

Listing
21-9

Listing
21-10

Listing
21-11

Listing
21-12

Clearing the Cache
If you want to clear the page cache, you can use the cache:clear task:

$ php symfony cc

The cache:clear task clears all the symfony caches stored under the main cache/
directory. It also takes options to selectively clear some parts of the cache. To only clear the
template cache for the cache environment, use the --type and --env options:

$ php symfony cc --type=template --env=cache

Instead of clearing the cache each time you make a change, you can also disable the cache by
adding any query string to the URL, or by using the “Ignore cache” button from the web
debug toolbar:

Action Cache
Sometimes, you cannot cache the whole page in the cache, but the action template itself can
be cached. Put another way, you can cache everything but the layout.
For the Jobeet application, we cannot cache the whole page because of the “history job” bar.
Change the configuration for the job module cache accordingly:

plugins/sfJobeetPlugin/modules/sfJobeetJob/config/cache.yml
new:

enabled: true

index:
enabled: true

all:
with_layout: false

By changing the with_layout setting to false, you have disabled layout caching.
Clear the cache:

$ php symfony cc

Refresh your browser to see the difference:

Day 21: The Cache 260

----------------- Brought to you by

Even if the flow of the request is quite similar in the simplified diagram, caching without the
layout is much more resource intensive.

Partial and Component Cache
For highly dynamic websites, it is sometimes even impossible to cache the whole action
template. For those cases, you need a way to configure the cache at the finer-grained level.
Thankfully, partials and components can also be cached.

Day 21: The Cache 261

----------------- Brought to you by

Listing
21-13

Let’s cache the language component by creating a cache.yml file for the
sfJobeetLanguage module:

plugins/sfJobeetPlugin/modules/sfJobeetLanguage/config/cache.yml
_language:

enabled: true

Configuring the cache for a partial or a component is as simple as adding an entry with its
name. The with_layout option is not taken into account for this type of cache as it does not
make any sense:

Day 21: The Cache 262

----------------- Brought to you by

Listing
21-14

Listing
21-15

Contextual or not?

The same component or partial can be used in many different templates. The job
_list.php partial for instance is used in the sfJobeetJob and sfJobeetCategory
modules. As the rendering is always the same, the partial does not depend on the context in
which it is used and the cache is the same for all templates (the cache is still obviously
different for a different set of parameters).
But sometimes, a partial or a component output is different, based on the action in which it
is included (think of a blog sidebar for instance, which is slightly different for the homepage
and the blog post page). In such cases the partial or component is contextual, and the cache
must be configured accordingly by setting the contextual option to true:

_sidebar:
enabled: true
contextual: true

Forms in Cache
Storing the job creation page in the cache is problematic as it contains a form. To better
understand the problem, go to the “Post a Job” page in your browser to seed the cache. Then,
clear your session cookie, and try to submit a job. You must see an error message alerting you
of a “CSRF attack”:

Why? As we have configured a CSRF secret when we created the frontend application,
symfony embeds a CSRF token in all forms. To protect you against CSRF attacks, this token is
unique for a given user and for a given form.
The first time the page is displayed, the generated HTML form is stored in the cache with the
current user token. If another user comes afterwards, the page from the cache will be
displayed with the first user CSRF token. When submitting the form, the tokens do not match,
and an error is thrown.
How can we fix the problem as it seems legitimate to store the form in the cache? The job
creation form does not depend on the user, and it does not change anything for the current
user. In such a case, no CSRF protection is needed, and we can remove the CSRF token
altogether:

// plugins/sfJobeetPlugin/lib/form/doctrine/PluginJobeetJobForm.class.php
abstract PluginJobeetJobForm extends BaseJobeetJobForm

Day 21: The Cache 263

----------------- Brought to you by

Listing
21-16

Listing
21-17

{
public function configure()
{

$this->disableLocalCSRFProtection();
}

}

After doing this change, clear the cache and re-try the same scenario as above to prove it
works as expected now.
The same configuration must be applied to the language form as it is contained in the layout
and will be stored in the cache. As the default sfLanguageForm is used, instead of creating a
new class, just to remove the CSRF token, let’s do it from the action and component of the
sfJobeetLanguage module:

// plugins/sfJobeetPlugin/modules/sfJobeetLanguage/actions/
components.class.php
class sfJobeetLanguageComponents extends sfComponents
{

public function executeLanguage(sfWebRequest $request)
{

$this->form = new sfFormLanguage($this->getUser(), array('languages'
=> array('en', 'fr')));

$this->form->disableLocalCSRFProtection();
}

}

// plugins/sfJobeetPlugin/modules/sfJobeetLanguage/actions/
actions.class.php
class sfJobeetLanguageActions extends sfActions
{

public function executeChangeLanguage(sfWebRequest $request)
{

$form = new sfFormLanguage($this->getUser(), array('languages' =>
array('en', 'fr')));

$form->disableLocalCSRFProtection();

// ...
}

}

The disableLocalCSRFProtection() method disables the CSRF token for this form.

Removing the Cache
Each time a user posts and activates a job, the homepage must be refreshed to list the new
job.
As we don’t need the job to appear in real-time on the homepage, the best strategy is to lower
the cache life time to something acceptable:

plugins/sfJobeetPlugin/modules/sfJobeetJob/config/cache.yml
index:

enabled: true
lifetime: 600

Day 21: The Cache 264

----------------- Brought to you by

Listing
21-18

Listing
21-19

Listing
21-20

Instead of the default configuration of one day, the cache for the homepage will be
automatically removed every ten minutes.
But if you want to update the homepage as soon as a user activates a new job, edit the
executePublish() method of the sfJobeetJob module to add manual cache cleaning:

// plugins/sfJobeetPlugin/modules/sfJobeetJob/actions/actions.class.php
public function executePublish(sfWebRequest $request)
{

$request->checkCSRFProtection();

$job = $this->getRoute()->getObject();
$job->publish();

if ($cache = $this->getContext()->getViewCacheManager())
{

$cache->remove('sfJobeetJob/index?sf_culture=*');
$cache->remove('sfJobeetCategory/

show?id='.$job->getJobeetCategory()->getId());
}

$this->getUser()->setFlash('notice', sprintf('Your job is now online for
%s days.', sfConfig::get('app_active_days')));

$this->redirect($this->generateUrl('job_show_user', $job));
}

The cache is managed by the sfViewCacheManager class. The remove() method removes
the cache associated with an internal URI. To remove cache for all possible parameters of a
variable, use the * as the value. The sf_culture=* we have used in the code above means
that symfony will remove the cache for the English and the French homepage.
As the cache manager is null when the cache is disabled, we have wrapped the cache
removing in an if block.

Testing the Cache
Before starting, we need to change the configuration for the test environment to enable the
cache layer:

apps/frontend/config/settings.yml
test:

.settings:
error_reporting: <?php echo ((E_ALL | E_STRICT) ^ E_NOTICE)."\n" ?>
cache: true
web_debug: false
etag: false

Let’s test the job creation page:

// test/functional/frontend/jobActionsTest.php
$browser->

info(' 7 - Job creation page')->

get('/fr/')->
with('view_cache')->isCached(true, false)->

Day 21: The Cache 265

----------------- Brought to you by

createJob(array('category_id' =>
Doctrine_Core::getTable('JobeetCategory')->findOneBySlug('programming')->getId()),
true)->

get('/fr/')->
with('view_cache')->isCached(true, false)->
with('response')->checkElement('.category_programming .more_jobs', '/23/

')
;

The view_cache tester is used to test the cache. The isCached() method takes two
booleans:

• Whether the page must be in cache or not
• Whether the cache is with layout or not

Even with all the tools provided by the functional test framework, it is sometimes easier to
diagnose problems within the browser. It is quite easy to accomplish. Just create a front
controller for the test environment. The logs stored in log/frontend_test.log can
also be very helpful.

Final Thoughts
Like many other symfony features, the symfony cache sub-framework is very flexible and
allows the developer to configure the cache at a very fine-grained level.
Tomorrow, we will talk about the last step of an application life-cycle: the deployment to the
production servers.

Day 21: The Cache 266

----------------- Brought to you by

Listing
22-1

Listing
22-2

Day 22

The Deployment

With the configuration of the cache system in the 21st day, the Jobeet website is ready to be
deployed on the production servers.
During twenty-two days, we have developed Jobeet on a development machine, and for most
of you, it probably means your local machine; except if you develop on the production server
directly, which is of course a very bad idea. Now, it is time to move the website to a
production server.
Now, we will see what needs to be done before going to production, what kind of deploying
strategies you can use, and also the tools you need for a successful deployment.

Preparing the Production Server
Before deploying the project to production, we need to be sure the production server is
configured correctly. You can re-read day 1, where we explained how to configure the web
server.
In this section, we assume that you have already installed the web server, the database
server, and PHP 5.2.4 or later.

If you don’t have an SSH access to the web server, skip the part where you need to have
access to the command line.

Server Configuration
First, you need to check that PHP is installed with all the needed extensions and is correctly
configured. As for day 1, we will use the check_configuration.php script provided with
symfony. As we won’t install symfony on the production server, download the file directly
from the symfony website:

http://trac.symfony-project.org/browser/branches/1.4/data/bin/
check_configuration.php?format=raw

Copy the file to the web root directory and run it from your browser and from the command
line:

$ php check_configuration.php

Fix any fatal error the script finds and repeat the process until everything works fine in both
environments.

Day 22: The Deployment 267

----------------- Brought to you by

Listing
22-3

Listing
22-4

PHP Accelerator
For the production server, you probably want the best performance possible. Installing a PHP
accelerator115 will give you the best improvement for your money.

From Wikipedia: A PHP accelerator works by caching the compiled bytecode of PHP scripts
to avoid the overhead of parsing and compiling source code on each request.

APC116 is one of the most popular one, and it is quite simple to install:

$ pecl install APC

Depending on your Operating System, you will also be able to install it with the OS native
package manager.

Take some time to learn how to configure APC117.

The symfony Libraries
Embedding symfony
One of the great strengths of symfony is that a project is self-contained. All the files needed
for the project to work are under the main root project directory. And you can move around
the project in another directory without changing anything in the project itself as symfony
only uses relative paths. It means that the directory on the production server does not have to
be the same as the one on your development machine.
The only absolute path that can possibly be found is in the config/
ProjectConfiguration.class.php file; but we took care of it during day 1. Check that it
actually contains a relative path to the symfony core autoloader:

// config/ProjectConfiguration.class.php
require_once dirname(__FILE__).'/../lib/vendor/symfony/lib/autoload/
sfCoreAutoload.class.php';

Upgrading symfony
Even if everything is self-contained in a single directory, upgrading symfony to a newer
release is nonetheless insanely easy.
You will want to upgrade symfony to the latest minor release from time to time, as we
constantly fix bugs and possibly security issues. The good news is that all symfony versions
are maintained for at least a year and during the maintenance period, we never ever add new
features, even the smallest one. So, it is always fast, safe, and secure to upgrade from one
minor release to another.
Upgrading symfony is as simple as changing the content of the lib/vendor/symfony/
directory. If you have installed symfony with the archive, remove the current files and replace
them with the newest ones.

115. http://en.wikipedia.org/wiki/PHP_accelerator
116. http://www.php.net/apc
117. http://www.php.net/manual/en/apc.configuration.php

Day 22: The Deployment 268

----------------- Brought to you by

Listing
22-5

Listing
22-6

Listing
22-7

Listing
22-8

Listing
22-9

If you use Subversion for your project, you can also link your project to the latest symfony 1.4
tag:

$ svn propedit svn:externals lib/vendor/
symfony http://svn.symfony-project.com/tags/RELEASE_1_4_3/

Upgrading symfony is then as simple as changing the tag to the latest symfony version.
You can also use the 1.4 branch to have fixes in real-time:

$ svn propedit svn:externals lib/vendor/
symfony http://svn.symfony-project.com/branches/1.4/

Now, each time you do an svn up, you will have the latest symfony 1.4 version.
When upgrading to a new version, you are advised to always clear the cache, especially in the
production environment:

$ php symfony cc

If you also have an FTP access to the production server, you can simulate a symfony cc
by simply removing all the files and directories under the cache/ directory.

You can even test a new symfony version without replacing the existing one. If you just want
to test a new release, and want to be able to rollback easily, install symfony in another
directory (lib/vendor/symfony_test for instance), change the path in the
ProjectConfiguration class, clear the cache, and you are done. Rollbacking is as simple
as removing the directory, and change back the path in ProjectConfiguration.

Tweaking the Configuration
Database Configuration
Most of the time, the production database has different credentials than the local one. Thanks
to the symfony environments, it is quite simple to have a different configuration for the
production database:

$ php symfony configure:database
"mysql:host=localhost;dbname=prod_dbname" prod_user prod_pass

You can also edit the databases.yml configuration file directly.

Assets
As Jobeet uses plugins that embed assets, symfony created relative symbolic links in the web/
directory. The plugin:publish-assets task regenerates or creates them if you install
plugins without the plugin:install task:

$ php symfony plugin:publish-assets

Customizing Error Pages
Before going to production, it is better to customize default symfony pages|Default symfony
Pages, like the “Page Not Found” page, or the default exception page.

Day 22: The Deployment 269

----------------- Brought to you by

Listing
22-10

Listing
22-11

Listing
22-12

Listing
22-13

We have already configured the error page for the YAML format during day 15, by creating an
error.yaml.php and an exception.yaml.php files in the config/error/ directory. The
error.yaml.php file is used by symfony in the prod environment, whereas
exception.yaml.php is used in the dev environment.
So, to customize the default exception page for the HTML format, create two files: config/
error/error.html.php and config/error/exception.html.php.
The 404 page (page not found) can be customized by changing the error_404_module and
error_404_action settings:

apps/frontend/config/settings.yml
all:

.actions:
error_404_module: default
error_404_action: error404

Customizing the Directory Structure
To better structure and standardize your code, symfony has a default directory structure with
pre-defined names. But sometimes, you don’t have the choice but to change the structure
because of some external constraints.
Configuring the directory names can be done in the config/
ProjectConfiguration.class.php class.

The Web Root Directory
On some web hosts, you cannot change the web root directory name. Let’s say that on your
web host, it is named public_html/ instead of web/:

// config/ProjectConfiguration.class.php
class ProjectConfiguration extends sfProjectConfiguration
{

public function setup()
{

$this->setWebDir($this->getRootDir().'/public_html');
}

}

The setWebDir() method takes the absolute path of the web root directory. If you also move
this directory elsewhere, don’t forget to edit the controller scripts to check that paths to the
config/ProjectConfiguration.class.php file are still valid:

require_once(dirname(__FILE__).'/../config/
ProjectConfiguration.class.php');

The Cache and Log Directory
The symfony framework only writes in two directories: cache/ and log/. For security
reasons, some web hosts do not set write permissions|Write Permissions in the main
directory. If this is the case, you can move these directories elsewhere on the filesystem:

// config/ProjectConfiguration.class.php
class ProjectConfiguration extends sfProjectConfiguration
{

public function setup()

Day 22: The Deployment 270

----------------- Brought to you by

Listing
22-14

Listing
22-15

Listing
22-16

{
$this->setCacheDir('/tmp/symfony_cache');
$this->setLogDir('/tmp/symfony_logs');

}
}

As for the setWebDir() method, setCacheDir() and setLogDir() take an absolute path
to the cache/ and log/ directories respectively.

Customizing symfony core Objects (aka factories)
During day 16, we talked a bit about the symfony factories. Being able to customize the
factories means that you can use a custom class for symfony core objects instead of the
default one. You can also change the default behavior of these classes by changing the
parameters send to them.
Let’s take a look at some classic customizations you may want to do.

Cookie Name
To handle the user session, symfony uses a cookie. This cookie has a default name of
symfony, which can be changed in factories.yml. Under the all key, add the following
configuration to change the cookie name to jobeet:

apps/frontend/config/factories.yml
storage:

class: sfSessionStorage
param:

session_name: jobeet

Session Storage
The default session storage class is sfSessionStorage. It uses the filesystem to store the
session information. If you have several web servers, you would want to store the sessions in
a central place, like a database table:

apps/frontend/config/factories.yml
storage:

class: sfPDOSessionStorage
param:

session_name: jobeet
db_table: session
database: doctrine
db_id_col: id
db_data_col: data
db_time_col: time

Session Timeout
By default, the user session timeout if 1800 seconds. This can be changed by editing the
user entry:

apps/frontend/config/factories.yml
user:

class: myUser

Day 22: The Deployment 271

----------------- Brought to you by

Listing
22-17

Listing
22-18

param:
timeout: 1800

Logging
By default, there is no logging in the prod environment because the logger class name is
sfNoLogger:

apps/frontend/config/factories.yml
prod:

logger:
class: sfNoLogger
param:

level: err
loggers: ~

You can for instance enable logging on the filesystem by changing the logger class name to
sfFileLogger:

apps/frontend/config/factories.yml
logger:

class: sfFileLogger
param:

level: err
loggers: ~
file: %SF_LOG_DIR%/%SF_APP%_%SF_ENVIRONMENT%.log

In the factories.yml configuration file, %XXX% strings are replaced with their
corresponding value from the sfConfig object. So, %SF_APP% in a configuration file is
equivalent to sfConfig::get('sf_app') in PHP code. This notation can also be used in
the app.yml configuration file. It is very useful when you need to reference a path in a
configuration file without hardcoding the path (SF_ROOT_DIR, SF_WEB_DIR, …).

Deploying
What to deploy?
When deploying the Jobeet website to the production server, we need to be careful not to
deploy unneeded files or override files uploaded by our users, like the company logos.
In a symfony project, there are three directories to exclude from the transfer: cache/, log/,
and web/uploads/. Everything else can be transfered as is.
For security reasons, you also don’t want to transfer the “non-production” front controllers,
like the frontend_dev.php, backend_dev.php and frontend_cache.php scripts.

Deploying Strategies
In this section, we will assume that you have full control over the production server(s). If you
can only access the server with a FTP account, the only deployment solution possible is to
transfer all files every time you deploy.
The simplest way to deploy your website is to use the built-in project:deploy task. It uses
SSH and rsync to connect and transfer the files from one computer to another one.

Day 22: The Deployment 272

----------------- Brought to you by

Listing
22-19

Listing
22-20

Listing
22-21

Listing
22-22

Listing
22-23

Servers for the project:deploy task can be configured in the config/properties.ini
configuration file:

config/properties.ini
[production]

host=www.jobeet.org
port=22
user=jobeet
dir=/var/www/jobeet/

To deploy to the newly configured production server, use the project:deploy task:

$ php symfony project:deploy production

Before running the project:deploy task for the first time, you need to connect to the
server manually to add the key in the known hosts file.

If the command does not work as expected, you can pass the -t option to see the real-time
output of the rsync command.

If you run this command, symfony will only simulate the transfer. To actually deploy the
website, add the --go option:

$ php symfony project:deploy production --go

Even if you can provide the SSH password in the properties.ini file, it is better to
configure your server with a SSH key to allow password-less connections.

By default, symfony won’t transfer the directories we have talked about in the previous
section, nor it will transfer the dev front controller script. That’s because the
project:deploy task exclude files and directories are configured in the config/
rsync_exclude.txt file:

config/rsync_exclude.txt
.svn
/web/uploads/*
/cache/*
/log/*
/web/*_dev.php

For Jobeet, we need to add the frontend_cache.php file:

config/rsync_exclude.txt
.svn
/web/uploads/*
/cache/*
/log/*
/web/*_dev.php
/web/frontend_cache.php

You can also create a config/rsync_include.txt file to force some files or directories
to be transfered.

Day 22: The Deployment 273

----------------- Brought to you by

Listing
22-24

Listing
22-25

Even if the project:deploy task is very flexible, you might want to customize it even
further. As deploying can be very different based on your server configuration and topology,
don’t hesitate to extend the default task.
Each time you deploy a website to production, don’t forget to at least clear the configuration
cache on the production server:

$ php symfony cc --type=config

If you have changed some routes, you will also need to clear the routing cache:

$ php symfony cc --type=routing

Clearing the cache selectively allows to keep some parts of the cache, such as the template
cache.

Final Thoughts
The deployment of a project is the very last step of the symfony development life-cycle. It
does not mean that you are done. This is quite the contrary. A website is something that has a
life by itself. You will probably have to fix bugs and you will also want to add new features
over time. But thanks to the symfony structure and the tools at your disposal, upgrading your
website is simple, fast, and safe.
Tomorrow, will be the last day of the Jobeet tutorial. It will be time to take a step back and
have a look at what you learned during the twenty-three days of Jobeet.

Day 22: The Deployment 274

----------------- Brought to you by

Day 23

Another Look at symfony

Today is the last stop of our trip to the wonderful world of symfony. During these twenty-
three last days, you learned symfony by example: from the design patterns used by the
framework, to the powerful built-in features. You are not a symfony master yet, but you have
all the needed knowledge to start building your symfony applications with confidence.
As we wrap up the Jobeet tutorial, let’s have another look at the framework. Forget Jobeet for
an hour, and recall all the features you learned during this whole book.

What is symfony?
The symfony framework is a set of cohesive but decoupled sub-frameworks (page 133), that
forms a full-stack MVC framework (page 43) (Model, View, Controller).
Before coding head first, take some time to read the symfony history and philosophy (page 12).
Then, check the framework prerequisites (page 13) and use the check_configuration.php
script (page 14) to validate your configuration.
Eventually, install symfony (page 14). After some time you will also want to upgrade (page 268)
to the latest version of the framework.
The framework also provides tools to ease deployment (page 272).

The Model
The Model part of symfony can be done with the help of the Doctrine ORM118. Based on the
database description (page 33), it generates classes for objects (page 36), forms (page 118), and
filters (page 163). Doctrine also generates the SQL (page 36) statements used to create the
tables in the database.
The database configuration can be done with a task (page 36) or by editing a configuration file
(page 36). Beside its configuration, it is also possible to inject initial data, thanks to fixture
files (page 38). You can even make these files dynamic (page 79).
Doctrine objects can also be easily internationalized (page 234).

The View
By default, the View layer of the MVC architecture uses plain PHP files as templates.

118. http://www.doctrine-project.org/

Day 23: Another Look at symfony 275

----------------- Brought to you by

Templates can use helpers (page 47) for recurrent tasks like creating an URL (page 67) or a
link (page 67).
A template can be decorated by a layout (page 44) to abstract the header and footer of pages.
To make views even more reusable, you can define slots (page 54), partials (page 87), and
components (page 226).
To speed up things, you can use the cache sub-framework (page 257) to cache a whole page
(page 258), just the action (page 260), or even just partials or components (page 261). You can
also remove the cache (page 264) manually.

The Controller
The Controller part is managed by front controllers (page 22) and actions (page 40).
Tasks can be used to create simple modules (page 85), CRUD modules (page 40), or even to
generate fullly working admin modules (page 146) for model classes.
Admin modules allows you to built a fully functional application without coding anything.
To abstract the technical implementation of a website, symfony uses a routing (page 61) sub-
framework that generates pretty URLs (page 60). To make implementing web services even
easier, symfony supports formats (page 180) out of the box. You can also create your own
formats (page 192).
An action can be forwarded (page 57) to another one, or redirected (page 67).

Configuration
The symfony framework makes it easy to have different configuration settings for different
environments. An environment (page 22) is a set of settings that allows different behaviors on
the development or production servers. You can also create new environments (page 256).
The symfony configuration files can be defined at different levels (page 49) and most of them
are environment aware (page 101):

• app.yml (page 74)
• cache.yml (page 257)
• databases.yml (page 36)
• factories.yml (page 203)
• generator.yml (page 148)
• routing.yml (page 61)
• schema.yml (page 33)
• security.yml (page 172)
• settings.yml (page 141)
• view.yml (page 47)

The configuration files mostly use the YAML format (page 35).
Instead of using the default directory structure and organize your application files by layers,
you can also organize them by feature, and bundle them in a plugin (page 242). Speaking of
the default directory structure, you can also customize it (page 270) according to your needs.

Debugging
From logging (page 72) to the web debug toolbar (page 72), and meaningful exceptions (page
22), symfony provides a lot of useful tools to help the developer debug problems faster.

Day 23: Another Look at symfony 276

----------------- Brought to you by

Main symfony Objects
The symfony framework provides quite a few core objects that abstract recurrent needs in
web projects: the request (page 57), the response (page 58), the user (page 170), the logging
(page 272), the routing (page 61), the mailer (page 202), and the view cache manager (page 204).
These core objects are managed by the sfContext object (page 204), and they are configured
via the factories (page 203).
The user manages user authentication (page 172), authorization (page 174), flashes (page 168),
and attributes (page 169) to be serialized in the session.

Security
The symfony framework has built-in protections against XSS (page 17) and CSRF (page 17).
These settings can be configured from the command line (page 17), or by editing a
configuration file (page 142).
The form framework also provides built-in security features (page 141).

Forms
As managing forms is one of the most tedious task for a web developer, symfony provides a
form sub-framework (page 117). The form framework comes bundled with a lot of widgets119

and validators120. One of the strength of the form sub-framework is that templates are very
easily customizables (page 125).
If you use Doctrine, the form framework also makes it easy to generate forms and filters (page
118) based on your models.

Internationalization and Localization
Internationalization (page 229) and localization (page 238) are supported by symfony, thanks to
the ICU standard. The user culture (page 222) determines the language and the country of the
user. It can be defined by the user itself, or embedded in the URL (page 223).

Tests
The lime library, used for unit tests, provides a lot of testing methods (page 93). The Doctrine
objects can also be tested (page 100) from a dedicated database (page 100) and with dedicated
fixtures (page 101).
Unit tests can be run one at a time (page 94) or all together (page 103).
Functional tests are written with the sfFunctionalTest (page 106) class, which uses a
browser simulator (page 105) and allows symfony core objects introspection through Testers
(page 106). Testers exist for the request object (page 108), the response object (page 108), the
user object (page 178), the current form object (page 135), the cache layer (page 265) and the
Doctrine objects (page 135).
You can also use debugging tools for the response (page 115) and forms (page 135).

119. http://www.symfony-project.org/api/1_4/widget
120. http://www.symfony-project.org/api/1_4/validator

Day 23: Another Look at symfony 277

----------------- Brought to you by

As for the unit tests, functional tests can be run one by one (page 108) or all together (page
115).
You can also run all tests together (page 115).

Plugins
The symfony framework only provides the foundation for your web applications and relies on
plugins (page 251) to add more features. In this tutorial, we have talked about
sfGuardPlugin (page 175), sfFormExtraPlugin (page 226), and sfTaskExtraPlugin
(page 252).
A plugin must be activated (page 0) after installation.
Plugins are the best way to contribute back (page 252) to the symfony project.

Tasks
The symfony CLI provides a lot of tasks, and the most useful have been discussed in this
tutorial:

• app:routes (page 69)
• cache:clear (page 260)
• configure:database (page 36)
• generate:project (page 17)
• generate:app (page 17)
• generate:module (page 85)
• help (page 36)
• i18n:extract (page 231)
• list (page 176)
• plugin:install (page 175)
• plugin:publish-assets (page 249)
• project:deploy (page 272)
• doctrine:build --all (page 36)
• doctrine:build --all -and-load (page 85)
• doctrine:build --all (page 36)
• doctrine:build --all -and-load (page 85)
• doctrine:build --forms (page 118)
• doctrine:build-model (page 36)
• doctrine:build-sql (page 36)
• doctrine:data-load (page 38)
• doctrine:generate-admin (page 146)
• doctrine:generate-module (page 40)
• doctrine:insert-sql (page 36)
• test:all (page 115)
• test:coverage (page 96)
• test:functional (page 108)
• test:unit (page 94)

You can also create your own tasks (page 143).

Day 23: Another Look at symfony 278

----------------- Brought to you by

See you soon
Learning by Practicing
The symfony framework, as does any piece of software, has a learning curve. In the learning
process, the first step is to learn from practical examples with a book like this one. The
second step is to practice. Nothing will ever replace practicing.
That’s what you can start doing today. Think about the simplest web project that still provides
some value: a todo list manager, a simple blog, a time or currency converter, whatever…
Choose one and start implementing it with the knowledge you have today. Use the task help
messages to learn the different options, browse the code generated by symfony, use a text
editor that has PHP auto-completion support like Eclipse121, and refer to the reference
guide122 to browse all the configuration provided by the framework.
Enjoy all the free material you have at your disposal to learn more about symfony.

The community
Before you leave, I would like to talk about one last thing about symfony. The framework has
a lot of great features and a lot of free documentation. But, one of the most valuable asset an
Open-Source can have is its community. And symfony has one of the most amazing and active
community around. If you start using symfony for your projects, consider joining the symfony
community:

• Subscribe to the user mailing-list123

• Subscribe to the official blog feed124

• Subscribe to the symfony planet feed125

• Come and chat on the #symfony IRC126 channel on freenode

121. http://www.eclipse.org/
122. http://www.symfony-project.org/reference/1_4/
123. http://groups.google.com/group/symfony-users
124. http://feeds.feedburner.com/symfony/blog
125. http://feeds.feedburner.com/symfony/planet
126. irc://irc.freenode.net/symfony

Day 23: Another Look at symfony 279

----------------- Brought to you by

Appendices

Appendices 280

----------------- Brought to you by

Appendix A

License

Attribution-Share Alike 3.0 Unported License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions
a. “Adaptation” means a work based upon the Work, or upon the Work and other
pre-existing works, such as a translation, adaptation, derivative work, arrangement of
music or other alterations of a literary or artistic work, or phonogram or performance
and includes cinematographic adaptations or any other form in which the Work may
be recast, transformed, or adapted including in any form recognizably derived from
the original, except that a work that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image (“synching”) will be considered an Adaptation
for the purpose of this License.
b. “Collection” means a collection of literary or artistic works, such as
encyclopedias and anthologies, or performances, phonograms or broadcasts, or other
works or subject matter other than works listed in Section 1(f) below, which, by
reason of the selection and arrangement of their contents, constitute intellectual
creations, in which the Work is included in its entirety in unmodified form along with
one or more other contributions, each constituting separate and independent works
in themselves, which together are assembled into a collective whole. A work that
constitutes a Collection will not be considered an Adaptation (as defined below) for
the purposes of this License.
c. “Creative Commons Compatible License” means a license that is listed at
http://creativecommons.org/compatiblelicenses that has been approved by Creative
Commons as being essentially equivalent to this License, including, at a minimum,
because that license: (i) contains terms that have the same purpose, meaning and
effect as the License Elements of this License; and, (ii) explicitly permits the
relicensing of adaptations of works made available under that license under this

Appendix A: License 281

----------------- Brought to you by

License or a Creative Commons jurisdiction license with the same License Elements
as this License.
d. “Distribute” means to make available to the public the original and copies of the
Work or Adaptation, as appropriate, through sale or other transfer of ownership.
e. “License Elements” means the following high-level license attributes as selected
by Licensor and indicated in the title of this License: Attribution, ShareAlike.
f. “Licensor” means the individual, individuals, entity or entities that offer(s) the
Work under the terms of this License.
g. “Original Author” means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a performance the actors,
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play
in, interpret or otherwise perform literary or artistic works or expressions of folklore;
(ii) in the case of a phonogram the producer being the person or legal entity who first
fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts,
the organization that transmits the broadcast.
h. “Work” means the literary and/or artistic work offered under the terms of this
License including without limitation any production in the literary, scientific and
artistic domain, whatever may be the mode or form of its expression including digital
form, such as a book, pamphlet and other writing; a lecture, address, sermon or other
work of the same nature; a dramatic or dramatico-musical work; a choreographic
work or entertainment in dumb show; a musical composition with or without words; a
cinematographic work to which are assimilated works expressed by a process
analogous to cinematography; a work of drawing, painting, architecture, sculpture,
engraving or lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied art; an
illustration, map, plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.
i. “You” means an individual or entity exercising rights under this License who has
not previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.
j. “Publicly Perform” means to perform public recitations of the Work and to
communicate to the public those public recitations, by any means or process,
including by wire or wireless means or public digital performances; to make available
to the public Works in such a way that members of the public may access these
Works from a place and at a place individually chosen by them; to perform the Work
to the public by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to broadcast and
rebroadcast the Work by any means including signs, sounds or images.
k. “Reproduce” means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram in
digital form or other electronic medium.

2. Fair Dealing Rights
Nothing in this License is intended to reduce, limit, or restrict any uses free from
copyright or rights arising from limitations or exceptions that are provided for in
connection with the copyright protection under copyright law or other applicable
laws.

Appendix A: License 282

----------------- Brought to you by

3. License Grant
Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Work as stated below:
a. to Reproduce the Work, to incorporate the Work into one or more Collections, and
to Reproduce the Work as incorporated in the Collections;
b. to create and Reproduce Adaptations provided that any such Adaptation, including
any translation in any medium, takes reasonable steps to clearly label, demarcate or
otherwise identify that changes were made to the original Work. For example, a
translation could be marked “The original work was translated from English to
Spanish,” or a modification could indicate “The original work has been modified.”;
c. to Distribute and Publicly Perform the Work including as incorporated in
Collections; and,
d. to Distribute and Publicly Perform Adaptations.
e. For the avoidance of doubt:
i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme
cannot be waived, the Licensor reserves the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License;
ii. Waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme can
be waived, the Licensor waives the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License; and,
iii. Voluntary License Schemes. The Licensor waives the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License.
The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as
are technically necessary to exercise the rights in other media and formats. Subject
to Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions
The license granted in Section 3 above is expressly made subject to and limited by
the following restrictions:
a. You may Distribute or Publicly Perform the Work only under the terms of this
License. You must include a copy of, or the Uniform Resource Identifier (URI) for,
this License with every copy of the Work You Distribute or Publicly Perform. You may
not offer or impose any terms on the Work that restrict the terms of this License or
the ability of the recipient of the Work to exercise the rights granted to that recipient
under the terms of the License. You may not sublicense the Work. You must keep
intact all notices that refer to this License and to the disclaimer of warranties with
every copy of the Work You Distribute or Publicly Perform. When You Distribute or
Publicly Perform the Work, You may not impose any effective technological measures
on the Work that restrict the ability of a recipient of the Work from You to exercise
the rights granted to that recipient under the terms of the License. This Section 4(a)
applies to the Work as incorporated in a Collection, but this does not require the
Collection apart from the Work itself to be made subject to the terms of this License.
If You create a Collection, upon notice from any Licensor You must, to the extent
practicable, remove from the Collection any credit as required by Section 4(c), as
requested. If You create an Adaptation, upon notice from any Licensor You must, to

Appendix A: License 283

----------------- Brought to you by

the extent practicable, remove from the Adaptation any credit as required by Section
4(c), as requested.
b. You may Distribute or Publicly Perform an Adaptation only under the terms of: (i)
this License; (ii) a later version of this License with the same License Elements as
this License; (iii) a Creative Commons jurisdiction license (either this or a later
license version) that contains the same License Elements as this License (e.g.,
Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible License. If you
license the Adaptation under one of the licenses mentioned in (iv), you must comply
with the terms of that license. If you license the Adaptation under the terms of any of
the licenses mentioned in (i), (ii) or (iii) (the “Applicable License”), you must comply
with the terms of the Applicable License generally and the following provisions: (I)
You must include a copy of, or the URI for, the Applicable License with every copy of
each Adaptation You Distribute or Publicly Perform; (II) You may not offer or impose
any terms on the Adaptation that restrict the terms of the Applicable License or the
ability of the recipient of the Adaptation to exercise the rights granted to that
recipient under the terms of the Applicable License; (III) You must keep intact all
notices that refer to the Applicable License and to the disclaimer of warranties with
every copy of the Work as included in the Adaptation You Distribute or Publicly
Perform; (IV) when You Distribute or Publicly Perform the Adaptation, You may not
impose any effective technological measures on the Adaptation that restrict the
ability of a recipient of the Adaptation from You to exercise the rights granted to that
recipient under the terms of the Applicable License. This Section 4(b) applies to the
Adaptation as incorporated in a Collection, but this does not require the Collection
apart from the Adaptation itself to be made subject to the terms of the Applicable
License.
c. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections,
You must, unless a request has been made pursuant to Section 4(a), keep intact all
copyright notices for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if
supplied, and/or if the Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity, journal) for attribution
(“Attribution Parties”) in Licensor’s copyright notice, terms of service or by other
reasonable means, the name of such party or parties; (ii) the title of the Work if
supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not refer to the
copyright notice or licensing information for the Work; and (iv) , consistent with
Ssection 3(b), in the case of an Adaptation, a credit identifying the use of the Work in
the Adaptation (e.g., “French translation of the Work by Original Author,” or
“Screenplay based on original Work by Original Author”). The credit required by this
Section 4(c) may be implemented in any reasonable manner; provided, however, that
in the case of a Adaptation or Collection, at a minimum such credit will appear, if a
credit for all contributing authors of the Adaptation or Collection appears, then as
part of these credits and in a manner at least as prominent as the credits for the
other contributing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the Original
Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the
Work, without the separate, express prior written permission of the Original Author,
Licensor and/or Attribution Parties.
d. Except as otherwise agreed in writing by the Licensor or as may be otherwise
permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the
Work either by itself or as part of any Adaptations or Collections, You must not
distort, mutilate, modify or take other derogatory action in relation to the Work

Appendix A: License 284

----------------- Brought to you by

which would be prejudicial to the Original Author’s honor or reputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right
granted in Section 3(b) of this License (the right to make Adaptations) would be
deemed to be a distortion, mutilation, modification or other derogatory action
prejudicial to the Original Author’s honor and reputation, the Licensor will waive or
not assert, as appropriate, this Section, to the fullest extent permitted by the
applicable national law, to enable You to reasonably exercise Your right under
Section 3(b) of this License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES
OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability
EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING
OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination
a. This License and the rights granted hereunder will terminate automatically upon
any breach by You of the terms of this License. Individuals or entities who have
received Adaptations or Collections from You under this License, however, will not
have their licenses terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.
b. Subject to the above terms and conditions, the license granted here is perpetual
(for the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to
stop distributing the Work at any time; provided, however that any such election will
not serve to withdraw this License (or any other license that has been, or is required
to be, granted under the terms of this License), and this License will continue in full
force and effect unless terminated as stated above.

8. Miscellaneous
a. Each time You Distribute or Publicly Perform the Work or a Collection, the
Licensor offers to the recipient a license to the Work on the same terms and
conditions as the license granted to You under this License.
b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the
license granted to You under this License.
c. If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provision
shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

Appendix A: License 285

----------------- Brought to you by

d. No term or provision of this License shall be deemed waived and no breach
consented to unless such waiver or consent shall be in writing and signed by the
party to be charged with such waiver or consent.
e. This License constitutes the entire agreement between the parties with respect to
the Work licensed here. There are no understandings, agreements or representations
with respect to the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from You. This License
may not be modified without the mutual written agreement of the Licensor and You.
f. The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of
Literary and Artistic Works (as amended on September 28, 1979), the Rome
Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and
Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on
July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction
in which the License terms are sought to be enforced according to the corresponding
provisions of the implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are deemed to
be included in the License; this License is not intended to restrict the license of any
rights under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever in
connection with the Work. Creative Commons will not be liable to You or any party on any
legal theory for any damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this license. Notwithstanding
the foregoing two (2) sentences, if Creative Commons has expressly identified itself as the
Licensor hereunder, it shall have all rights and obligations of Licensor.
Except for the limited purpose of indicating to the public that the Work is licensed under the
CCPL, Creative Commons does not authorize the use by either party of the trademark
“Creative Commons” or any related trademark or logo of Creative Commons without the
prior written consent of Creative Commons. Any permitted use will be in compliance with
Creative Commons’ then-current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to time. For the avoidance of
doubt, this trademark restriction does not form part of the License.
Creative Commons may be contacted at http://creativecommons.org/.

Appendix A: License 286

----------------- Brought to you by

Appendix A: License 289

Appendix A: License 291

	Practical symfony
	symfony 1.3 & 1.4 | Doctrine

	Table of Contents
	About the Author
	About Sensio Labs
	Which symfony Version?
	Starting up the Project
	Introduction
	This Book is different
	What for Today?
	Prerequisites
	Third-Party Software
	Command Line Interface
	PHP Configuration

	Symfony Installation
	Initializing the Project Directory
	Choosing the Symfony Version
	Choosing the Symfony Installation Location
	Installing Symfony
	Installing from an Archive
	Installing from Subversion (recommended)
	Installation Verification

	Project Setup
	Project Creation
	Application Creation
	Directory Structure Rights

	Web Server Configuration: The ugly Way
	Web Server Configuration: The secure Way
	Web Server Configuration
	Test the New Configuration

	The Environments
	Subversion
	Final Thoughts

	The Project
	The Project Pitch
	The Project User Stories
	Story F1: On the homepage, the user sees the latest active jobs
	Story F2: A user can ask for all the jobs in a given category
	Story F3: A user refines the list with some keywords
	Story F4: A user clicks on a job to see more detailed information
	Story F5: A user posts a job
	Story F6: A user applies to become an affiliate
	Story F7: An affiliate retrieves the current active job list
	Story B1: An admin configures the website
	Story B2: An admin manages the jobs
	Story B3: An admin manages the affiliates

	Final Thoughts

	The Data Model
	The Relational Model
	The Schema
	The Database
	The ORM
	The Initial Data
	See it in Action in the Browser
	Final Thoughts

	The Controller and the View
	The MVC Architecture
	The Layout
	The Stylesheets, Images, and JavaScripts
	The Job Homepage
	The Action
	The Template

	The Job Page Template
	Slots
	The Job Page Action
	The Request and the Response
	The Request
	The Response

	Final Thoughts

	The Routing
	URLs
	Routing Configuration
	Route Customizations
	Requirements
	Route Class
	Object Route Class
	Routing in Actions and Templates
	Collection Route Class
	Route Debugging
	Default Routes
	Final Thoughts

	More with the Model
	The Doctrine Query Object
	Debugging Doctrine generated SQL
	Object Serialization
	More with Fixtures
	Custom Configuration
	Refactoring
	Categories on the Homepage
	Limit the Results
	Dynamic Fixtures
	Secure the Job Page
	Link to the Category Page
	Final Thoughts

	Playing with the Category Page
	The Category Route
	The Category Link
	Job Category Module Creation
	Update the Database
	Partials
	List Pagination
	Final Thoughts

	The Unit Tests
	Tests in symfony
	Unit Tests
	The lime Testing Framework
	Running Unit Tests
	Testing slugify
	Adding Tests for new Features
	Adding Tests because of a Bug
	Doctrine Unit Tests
	Database Configuration
	Test Data
	Testing JobeetJob
	Test other Doctrine Classes

	Unit Tests Harness
	Final Thoughts

	The Functional Tests
	Functional Tests
	The sfBrowser class
	The sfTestFunctional class
	The Request Tester
	The Response Tester

	Running Functional Tests
	Test Data
	Writing Functional Tests
	Expired jobs are not listed
	Only n jobs are listed for a category
	A category has a link to the category page only if too many jobs
	Jobs are sorted by date
	Each job on the homepage is clickable

	Learn by the Example
	Debugging Functional Tests
	Functional Tests Harness
	Tests Harness
	Final Thoughts

	The Forms
	The Form Framework
	Forms
	Doctrine Forms
	Customizing the Job Form
	The Form Template
	The Form Action
	Protecting the Job Form with a Token

	The Preview Page
	Job Activation and Publication
	Final Thoughts

	Testing your Forms
	Submitting a Form
	The Form Tester
	Redirection Test
	The Doctrine Tester
	Testing for Errors
	Forcing the HTTP Method of a link
	Tests as a SafeGuard
	Back to the Future in a Test
	Forms Security
	Form Serialization Magic!
	Built-in Security Features
	XSS and CSRF Protection

	Maintenance Tasks
	Final Thoughts

	The Admin Generator
	Backend Creation
	Backend Modules
	Backend Look and Feel
	The symfony Cache
	Backend Configuration
	Title Configuration
	Fields Configuration
	List View Configuration
	display
	layout
	“Virtual” columns
	sort
	max_per_page
	batch_actions
	object_actions
	actions
	table_method

	Form Views Configuration
	display
	“Virtual” columns
	class

	Filters Configuration
	Actions Customization
	Templates Customization
	Final Configuration
	Final Thoughts

	The User
	User Flashes
	User Attributes
	getAttribute(), setAttribute()
	The myUser class
	sfParameterHolder

	Application Security
	Authentication
	Authorization

	Plugins
	Backend Security
	User Testing
	Final Thoughts

	Feeds
	Formats
	Feeds
	Latest Jobs Feed
	Latest Jobs in a Category Feed

	Final Thoughts

	Web Services
	Affiliates
	The Fixtures
	The Job Web Service
	The Action
	The xml Format
	The json Format
	The yaml Format

	Web Service Tests
	The Affiliate Application Form
	Routing
	Bootstrapping
	Templates
	Actions
	Tests

	The Affiliate Backend
	Final Thoughts

	The Mailer
	Sending simple Emails
	Configuration
	Factories
	Delivery Strategy
	Mail Transport

	Testing Emails
	Final Thoughts

	Search
	The Technology
	Installing and Configuring the Zend Framework
	Indexing
	The save() method
	Doctrine Transactions
	delete()

	Searching
	Unit Tests
	Tasks
	Final Thoughts

	AJAX
	Installing jQuery
	Including jQuery
	Adding Behaviors
	User Feedback
	AJAX in an Action
	Testing AJAX
	Final Thoughts

	Internationalization and Localization
	User
	The User Culture
	The Preferred Culture

	Culture in the URL
	Culture Testing
	Language Switching
	Internationalization
	Languages, Charset, and Encoding
	Templates
	i18n:extract
	Translations with Arguments
	Forms
	Doctrine Objects
	Admin Generator
	Tests

	Localization
	Templates
	Forms (I18n)

	Final Thoughts

	The Plugins
	Plugins
	A symfony Plugin
	Private Plugins
	Public Plugins
	A Different Way to Organize Code

	Plugin File Structure
	The Jobeet Plugin
	The Model
	The Controllers and the Views
	The Tasks
	The i18n Files
	The Routing
	The Assets
	The User
	The Default Structure vs. the Plugin Architecture

	Using Plugins
	Contributing a Plugin
	Packaging a Plugin
	Hosting a Plugin on the symfony Website

	Final Thoughts

	The Cache
	Creating a new Environment
	Cache Configuration
	Page Cache
	Clearing the Cache
	Action Cache
	Partial and Component Cache
	Forms in Cache
	Removing the Cache
	Testing the Cache
	Final Thoughts

	The Deployment
	Preparing the Production Server
	Server Configuration
	PHP Accelerator

	The symfony Libraries
	Embedding symfony
	Upgrading symfony

	Tweaking the Configuration
	Database Configuration
	Assets
	Customizing Error Pages

	Customizing the Directory Structure
	The Web Root Directory
	The Cache and Log Directory

	Customizing symfony core Objects (aka factories)
	Cookie Name
	Session Storage
	Session Timeout
	Logging

	Deploying
	What to deploy?
	Deploying Strategies

	Final Thoughts

	Another Look at symfony
	What is symfony?
	The Model
	The View
	The Controller
	Configuration
	Debugging
	Main symfony Objects
	Security
	Forms
	Internationalization and Localization
	Tests
	Plugins
	Tasks
	See you soon
	Learning by Practicing
	The community

	Appendices
	License
	Attribution-Share Alike 3.0 Unported License

