

Applying RMA for
Scheduling Field Device

Components
Peng Liang, Gabriela Arévalo, Stéphane Ducasse,

Michele Lanza, Nathanael Schaerli, Roel Wuyts
and Oscar Nierstrasz

Software Composition Group
Post: IAM, Neubrückstrasse 10,

University of Bern,
CH-3012 Bern,

Switzerland
Fax: +41 031.631.3355

Email: {lpeng,arevalo,ducasse,lanza,schaerli,wuyts,oscar}@iam.unibe.ch
Web: www.iam.unibe.ch/~scg

Abstract. PECOS is a collaborative project between industrial and research partners
that seeks to enable component-based technology for a class of embedded systems
known as “field devices”. Results so far include a component model for field devices and
a composition language for specifying connections between software components. Here
we investigate the application of Rate Monotonic Analysis (RMA) to the problem of gen-
erating real-time schedules for compositions of field device components.

http://www.iam.unibe.ch/~scg

2.

Applying RMA for Scheduling Field Device Components

1. Introduction to PECOS

The goal of PECOS is to enable CBSD for embedded systems by providing an environment that
supports the specification, composition, configuration checking, and deployment of embedded
systems built from software components. ABB’s Instruments business unit develops a large
number of different field devices, such as temperature, pressure, and flow sensors, actuators,
and positioners. A field device is a reactive, embedded system. Field devices make use of sen-
sors to continuously gather data, such as temperature, pressure or rate of flow.

In order to validate CBSD for em-
bedded systems, the PECOS project is
developing the hardware and soft-
ware for a demonstration field de-
vice. Part of the PECOS case study is
concerned with setting a valve at a
specific position between open and
closed. Figure 1 illustrates three con-
nected PECOS components that col-
laborate to set the valve position. A
control loop is used to continuously
monitor and adjust the valve.

• The ModBus component is responsible for interfacing to a piece of hardware called the
frequency converter, which determines the speed of the motor. The frequency to which
the motor should be set is obtained from the ProcessApplication component. ModBus
outputs this value over a serial line to the frequency converter using the ModBus protocol
(hence its name). The ModBus component runs in its own thread, because it blocks wait-
ing for a (slow) response from the frequency converter.

• The FQD (Fast Quadrature Decoder [4]) component is responsible for capturing events
from the motor. This component abstracts from a micro-controller module that does FQD
in hardware. It provides the ProcessApplication with both the velocity and the position
of the valve.

• The component ProcessApplication obtains the desired position of the valve (set-
Point) and reads the current state of the valve from the FQD component. This informa-
tion is then used to compute a frequency for the motor. Once the motor has opened the
valve sufficiently, ascertained by the next reading from the FQD, the motor must be
slowed or stopped. This repeated adjustment and monitoring constituted the control loop.

This example illustrates several key points concerning the field device domain.

• Cyclic behaviour: each component is responsible for a single task, which is repeatedly
executed.

• Information flow through ports: components communicate by means of shared data. The
interface of a component consists of a set of shared data ports.

• Threading: some components are passive, while others have their own thread of control.
• Separate scheduler: control flow is separately specified by a scheduler for the composite

component.

FQD

ModBus

actualPosition

velocity

setFrequency

setPoint

actualPosition

velocity

setFrequency

ProcessApplicationsetPoint

Figure 1 FQD Control loop example

Peng Liang, et al.

3.

2. A Component Model for Field Devices
The PECOS field device component model [2] defines a
vocabulary of components, ports and connectors and
the rules governing their composition.

A component is a computational element with a
name, a number of property bundles and ports, and a
behaviour.

A property is a tagged value. The tag is an identifier,
and the value is typed. Properties characterise compo-
nents. A property bundle is a named group of proper-
ties. Property bundles are used to characterize aspects
of components, such as timing or memory usage.

A port is a shared variable that allows a component
to communicate with other components; connected ports represent the same shared variable. A
port specifies: a name, which has to be unique within the component; a type, characterizing the
data that it holds; a range of values (defined by a minimum and maximum value) that can be
passed on this port; and a direction (“in”, “out” or “inout”) indicating whether the component
reads, writes, or reads and writes the data.

A connector specifies a data-sharing relationship between ports. It has a name, a type, and a
list of ports it connects. Only compatible ports may be connected [2].

The behaviour of a component consists of a procedure that reads and writes data available at
its ports, and may produce effects in the physical world.

A composite component contains a number of connected subcomponents, the ports of which
form the internal ports of the composite. A composite component also has external ports,
which are the only ones that are externally visible. The external ports are connected to appro-
priate internal ports. The subcomponents are not visible outside the composite that contains
them.

The field device domain requires three kinds of components.

• Active components have their own thread of control; they are used to model ongoing or
longer-lived activities that do not complete in a short time-cycle.

• Passive components do not have their own thread of control.
• Event components are those whose behaviour is triggered by an event.

In the example of figure 1, FQD is an event component, ProcessApplication is a passive
component and ModBus is an active component. The composition will be modelled as a com-
posite component.

FQD has “out” ports actualPosition and velocity, connected to “in” ports of the same name
belonging to ProcessApplication. The in port setPoint belonging to ProcessApplication is
shared with the composite component that encapsulates this composition. It is not yet connect-
ed to a compatible “out” port. Finally, the “out” port setFrequency is connected to the “in”
port of the same name belonging to ModBus.

Figure 2 The PECOS Component Model

4.

Applying RMA for Scheduling Field Device Components

3. RMA for Scheduling Verification
We can model the run-time behav-
iour of a composition of compo-
nents as a Petri net [2]. We would
like to verify whether such compo-
sitions meet their real-time dead-
lines. To tackle this problem, we (i)
encode the scheduling constraints
in the property bundles of compo-
nents, (ii) generate a schedule from
the specified composition, and (iii) apply RMA to verify the constraints.

3.1 Timing bundles

In a composition, each passive component is modelled as a single exec transition that reads or
writes to its data ports (figure 3). To verify a schedule for a composition of components, certain
scheduling information must be associated with each subcomponent; this includes the worst-
case execution time (wcet) of the subcomponent and the desired cycletime, deadline, priority
etc. This information is expressed with a timing property bundle:

timingBundle (wcet: w <Milliseconds>, [cycletime: c <Milliseconds>],
[deadline: d <Milliseconds>], [priority: p <Priority>]).

Passive components are scheduled by the active parent that encloses them.

In contrast to passive components, active components (figure 3) have both an exec transition
for their behaviour, and a sync transition to safely synchronize their data ports with their sur-
rounding environment [2]. For an active subcomponent, therefore, the timing bundle must sep-
arately characterize both the sync and exec parts.:

timingBundle(
sync(wcet: w <Milliseconds>, [cycletime: c <Milliseconds>], [deadline:
d <Milliseconds>], [priority: p <Priority>]),
exec(wcet: w <Milliseconds>, [cycletime: c <Milliseconds>], [deadline:
d <Milliseconds>], [priority: p <Priority>])).

The timing bundle for a composite component specifies the order in which its subcompo-
nents have to be scheduled. Since a component can be active or passive, it also specifies the ac-
tive or passive information as discussed with the respective leaf components:

timingBundle(...active or passive information...,
order: ({componentname} <String>)+).

Finally there is also one timing bundle for the field device itself, so that overall information,
default values for optional parts in the timing bundles of components and the order of the top-
level components can be set:

timingBundle(cycletime: c <Milliseconds>, defaultPriority: p
<Priority>, order: ({componentname} <String>)+).

Figure 3 Passive vs Active components

Passive
exec

outer ports

Active/Event
sync

inner ports
exec

Peng Liang, et al. 5.
The timing bundles for the example would be expressed as follows:

3.2 Rate Monotonic Analysis

Rate Monotonic Analysis (RMA) [5] consists of a number of simple, practical techniques to
generate or verify schedules for a set of real-time tasks. RMA provides different algorithms de-
pending on whether the tasks are (i) periodic and independent, (ii) mixed periodic and aperiod-
ic, or (iii) interacting. For a brief discussion, see the corresponding PECOS deliverable [1].

RMA algorithms assign a fixed priority to each task and assign higher priorities to tasks with
shorter periods. The basic RMA algorithms assume that tasks are both periodic and independ-
ent. For PECOS, however, we must deal with tasks that are both aperiodic (event components)
and interacting (sync methods of active components).

The difficulty with interaction is that high priority tasks should be minimally delayed by low-
er priority tasks when both are contending for the same resources. Suppose that there are two
tasks (T1 and T2), where the priority of T1 is lower than the priority of T2, and during their exe-
cution both T1 and T2 need access to a shared resource that is locked by a semaphore. Whenever
T1 executes and uses the semaphore to lock the shared resource, the higher priority task T2 has
to wait for T1 to finish using the shared resource. Hence the higher priority task is blocked by a
lower priority task. This situation is called priority inversion.

When there are different tasks with different priorities that can freely lock resources, the pe-
riods where tasks of a higher priority are blocked by tasks of a lower priority become unpredict-
able. This situation is called unbounded priority inversion. Since the blocking times become
unpredictable, no timing verifications can be done.

To remedy this situation RMA uses real-time synchronization protocols (such as the priority
ceiling protocol or the highest locker protocol), that have two important properties that allow
schedule verification:

1. freedom from mutual deadlock, and

2. bounded priority inversion, where at most one lower priority task can block a higher
priority task.

We exploit the following standard RMA results that take blocking times into account (the
theorems that do not do this are known as Theorem 1 and Theorem 2). The first theorem that we
present (theorem 3) makes a crude approximation that can easily be used manually to quickly
check whether a set of tasks might meet its deadlines. It is, however, very conservative.

ProcessApplication timingBundle(wcet:10).

ModBus timingBundle(
sync(wcet:5),
exec(wcet:20,cycletime:500,priority:1)).

FQD timingBundle(
sync(wcet:10),
exec(wcet:15,cycletime:30,priority:3)).

Field device timingBundle(cycletime:60,defaultpriority:2, order:
FQD, ProcessApplication, ModBus).

6. Applying RMA for Scheduling Field Device Components
Theorem 3 A set of n periodic tasks using the priority ceiling protocol can be scheduled by the
Rate Monotonic algorithm, for all task phasings, if the following condition is satisfied:

where Ci , Ti and Bi, are, respectively, the execution time, the period and the worst-case block-
ing time of task ti, and

Note that and that U(n) quickly converges to 0.69314...

Theorem 3 is very pessimistic since the worse-case task set is contrived and unlikely to be en-
countered in practice. And when the proper real-time synchronization protocol is used (as seen
in 3.2), a less conservative formula can be used, that is known as Theorem 4.

Theorem 4 A set of n periodic tasks using the priority ceiling protocol will always meet its
deadlines, for all task phasings, if and only if

where Cj, Tj, and Bi are defined as in Theorem 3, and

3.2.1 Using RMA on PECOS Component Models

Mapping components to tasks is pretty straightforward. With every passive component P, we
associate a (periodic) task that has a worst-case execution time, period and deadline as defined
by P’s timing bundle. With every active or event component A, we associate two tasks: a peri-
odic task Tsync for the sync part and an aperiodic task Texec for the exec part. The worst-case ex-
ecution time, period and deadline of Tsync and Texec are given by the sync and exec part of the
timing bundle of A.

Remember that the execution thread in an active component uses its own private data store
that gets synchronized with the surrounding data store when the sync is run. This means that
this local data store is a shared resource between Tsync and Texec, and that we need to take block-
ing into account. Hence we will use Theorem 4, so we have to determine the maximum block-
ing time for each task.

To determine the blocking times, we first consider that the only shared resources that are in-
volved are the private data stores between exec and sync tasks of active or event components.
There are no other shared resources that we need to take into account. The maximum time that
a shared resource is locked is given by the worst-case execution time of the sync task associated
with that resource. This follows from the fact that the only purpose of the sync is to move data
back and forth between the surrounding world and the local data store.

C1

T 1
------ …

Cn

T n
------ max

B1

T 1
------ …

Bn 1–

T n 1–
-------------+ + 

 + + + U n()≤

U n() n 2
1 n⁄

1–()×=

U 1() 1≤

i∀ 1 i n≤ ≤ min k l,() Ri∈ C j
lT k

T j
-------- Ci Bi+ +

j 1=

i 1–

∑, , lT k≤

Ri k l,() 1 k i≤ ≤ l, 1 … T i

T k
------, ,=

 
 
 

=

Peng Liang, et al. 7.
Since we consider using the priority ceiling protocol, we know that a task may be blocked, at
most, for the duration of the longest critical section protected by the resource it uses. Hence, the
maximum blocking time for the tasks for passive components will be 0 (since they do not use
shared resources). The maximum blocking time for the exec and sync tasks used for active and
event components is the worst-case execution time of the sync task.

3.2.2 Example RMA analysis

In the example, there is a set of periodic tasks (exec part of passive components and sync part of
active/event components) and aperiodic tasks (exec part of certain active/event components,
such as FQD) that use shared resources. Since the tasks include both periodic and aperiodic
tasks, we first have to fit the aperiodic tasks into the periodic framework. Then we can apply
Theorem 4, since shared resources are involved and the scheduler uses the priority inheritance
protocol.

The difficult part of applying RMA on a component model is determining the specification
parts of the servers that are needed to model the execution part of active and events components.
In the mapping given, we noticed that the task for the execution part of the ModBus component
is not critical (its priority is set lower than the average priority). Hence we chose to use a spo-
radic server task with a long deadline of 500 (task T5). The FQD, on the other hand, is more crit-
ical, since the user requires a good response time. Therefore we use a sporadic server with a
deadline of 30 (task T1). We also order the tasks from the one with the highest priority to the
lowest priority.The resulting table is shown below:

We can then apply Theorem 4 to determine whether the deadline for each task in this task set
can be met. Since there are 5 tasks that interest us, we apply the theorem for values of i ranging
from 1 to 5. For each value of i, we have to find at least one possible pair of (k,l) that make the
equation true. We do not show all the possible values here, but will stop when we satisfy the the-
orem for a value of i.

i=1,k=1,l=1: C1 + B1= 20 + 10 = 30 (satisfied)

i=2,k=1,l=1: C1+ C2+ B2 = 20 + 10 + 10 = 40 > 30

i=2,k=1,l=2: 2C1+ C2 + B2 = 40 + 10 + 10 = 60 (satisfied)

i=3,k=1,l=1: C1 + C2 + C3 + B3 = 15 + 10 + 10 + 0 = 35 > 30

i=3,k=1,l=2: 2C1 + C2 + C3 + B3 = 30+ 10 + 10 + 0 = 50 < 60 (satisfied)

i=4,k=1,l=1: C1 + C2 + C3 + C4+ B4 = 15 + 10 + 10 + 5 + 5 = 45 > 30

i=4,k=1,l=1: 2C1 + C2 + C3 + C4+ B4 = 30 + 10 + 10 + 5 + 5 = 60 (satisfied)

i=5,k=1,l=1: C1 + C2 + C3 + C4 + C5 + B5 = 15 + 10 + 10 + 5 + 20 + 5 = 65>30

...

i=5,k=2,l=5: 10C1 + 5C2 + 5C3 + 5C4 + C5 + B5
= 150 + 50 + 50 + 25 + 20 + 5 = 300 (satisfied)

FQD(exec part) T1 C1=15, T1=30, B1=10

FQD(sync part) T2 C2=10, T2=60, B2=10

ProcessApplication T3 C3=10, T3=60, B3=0

ModBus(sync part) T4 C4=5, T4=60, B4=5

ModBus(exec part) T5 C5=20, T5=500, B5=5

8. Applying RMA for Scheduling Field Device Components
So, since for every possible value of i we can satisfy Theorem 4, the 5 tasks all meet their dead-
lines.

4. Open Questions and Future Work
Using the proven RMA technology in the context of CBSE for real-time systems seem to be an
interesting way to verify the schedulability of such systems. In this paper we show a mapping
that expresses components in our particular component model to tasks, such that we can apply
the RMA theorems. This approach looks promising, but we are in the moment of refining it and
applying it on more real-world examples.

Two points will decide whether the approach is really useful in a practical context. First of all
the mapping of active components (that have an aperiodic part to them) into periodic tasks. This
mapping is not trivial, but a large body of existing mappings in the context of RMA exists. A
second problem lies in the very assumptions that RMA makes to apply Theorem 4: the OS or
the implementation has to support more difficult protocols (such as priority ceiling protocol).
When this is not the case, only Theorem 3 can be used, which is more conservative and will
sometimes yields false negatives.

5. References
[1] Gabriela Arévalo, Stéphane Ducasse, Oscar Nierstrasz, Peng Liang, Roel Wuyts, “Verifying

timing, memory consumption and scheduling of components,” PECOS Deliverable D2.2.6-2,
www.pecos-project.org

[2] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel Wuyts, Andrew Black, Peter
Müller, Christian Zeidler, Thomas Genssler, and Reinier van den Born, “A Component Model
for Field Devices”, in Proceedings of Component Deployment 2002, Berlin, to appear.

[3] Benedikt Schulz, Thomas Genssler, Alexander Christoph, Michael Winter, “Requirements for
the Composition Environment”, PECOS Deliverable D3.1, www.pecos-project.org

[4] Semiconductor Motorola Programming Note, Fast Quadrature Decode TPU Function (FQD),
TPUPN02/D.

[5] Sha, Klein and Goodenough, J. Rate Monotonic Analysis for Real-Time Systems. Founda-
tions of Real-Time Computing: Scheduling and Resource Management. Boston, MA: Kluwer
Academic Publishers, pp. 129-155, 1991.

http://www.pecos-project.org/
http://www.pecos-project.org/

	Applying RMA for Scheduling Field Device Components
	2. A Component Model for Field Devices
	3. RMA for Scheduling Verification
	4. Open Questions and Future Work
	5. References

