Applying RMA for
Scheduling Field Device
Components

Peng Liang, Gabriela Arévalo, Stéphane Ducasse,
Michele Lanza, Nathanael Schaerli, Roel Wuyts
and Oscar Nierstrasz
Software Composition Group
Post: IAM, Neubriickstrasse 10,

University of Bern,

CH-3012 Bern,

Switzerland
Fax: +41 031.631.3355
Email: {Ipeng,arevalo,ducasse,lanza,schaerli,wuyts,oscar}@iam.unibe.ch

Web: www. i am uni be. ch/ ~scg

Abstract. Pecos is a collaborative project between industrial and research partners
that seeks to enable component-based technology for a class of embedded systems
known as “field devices”. Results so far include a component model for field devices and
a composition language for specifying connections between software components. Here
we investigate the application of Rate Monotonic Analysis (RMA) to the problem of gen-
erating real-time schedules for compositions of field device components.

http://www.iam.unibe.ch/~scg

Applying RMA for Scheduling Field Device Components

1.

Introduction to PECOS

Thegoal of PECcosisto enable CBSD for embedded systems by providing an environment that
supportsthe specification, composition, configuration checking, and deployment of embedded
systems built from software components. ABB’s Instruments business unit develops a large
number of different field devices, such as temperature, pressure, and flow sensors, actuators,
and positioners. A field deviceis areactive, embedded system. Field devices make use of sen-
sorsto continuously gather data, such astemperature, pressure or rate of flow.

setl

Point | ProcessApplication |
| actualPosition
| setPoint

actualPosition

velocity |

ModBus

setFrequency

In order to validate CBSD for em-
bedded systems, the PECOS projectis
developing the hardware and soft-
ware for a demonstration field de-
vice. Part of the PECOS case study is
concerned with setting a valve a a
specific position between open and
closed. Figure 1illustratesthree con-

setFrequency

nected PECOS components that col-
laborate to set the valve position. A

control loop is used to continuously
monitor and adjust the valve.

Figure 1 FQD Control loop example

The ModBus component is responsible for interfacing to a piece of hardware called the
frequency converter, which determines the speed of the motor. The frequency to which
the motor should be set is obtained from the ProcessApplication component. ModBus
outputsthisvalue over aseria lineto the frequency converter using the ModBus protocol
(henceitsname). The ModBus component runsin itsown thread, because it blocks wait-
ing for a (slow) response from the frequency converter.

The FQD (Fast Quadrature Decoder [4]) component is responsible for capturing events
from the motor. This component abstracts from amicro-controller modul e that does FQD
in hardware. It providesthe ProcessApplication with both the vel ocity and the position
of the valve.

The component ProcessApplication obtains the desired position of the valve (set-
Point) and reads the current state of the valve from the FQD component. Thisinforma-
tion is then used to compute a frequency for the motor. Once the motor has opened the
valve sufficiently, ascertained by the next reading from the FQD, the motor must be
slowed or stopped. Thisrepeated adjustment and monitoring constituted the control |oop.

Thisexampleillustrates several key points concerning the field device domain.

Cyclic behaviour: each component is responsible for a single task, which is repeatedly
executed.

Infor mation flow through ports:. components communicate by means of shared data. The
interface of a component consists of a set of shared data ports.

Threading: some components are passive, while others have their own thread of control.

Separate scheduler: control flow is separately specified by a scheduler for the composite
component.

Peng Liang, et al. 3.

2. A Component Model for Field Devices

The Pecos field device component model [2] definesa roas
vocabulary of components, ports and connectors and Port

key
therulesgoverning their composition. vl ope
range

A component is a computational element with a [PrepertyBundid
name, a number of property bundles and ports, and a Lne

behaVI Our heduling Connector

Component

memory

type

name

A propertyisatagged value. Thetag isanidentifier, ~—
and the value istyped. Properties characterise compo-
nents. A property bundle is a named group of proper- 4(E|t Actve P'
ties. Property bundles are used to characterize aspects i Component] - [Companer
of components, such astiming or memory usage. e

Component

Figure 2 The Pecos Component Model
A port isashared variable that allows a component

to communicate with other components; connected ports represent the same shared variable. A
port specifies: aname, which hasto be unigue within the component; atype, characterizing the
datathat it holds; arange of values (defined by a minimum and maximum value) that can be
passed on this port; and adirection (“in”, “out” or “inout”) indicating whether the component
reads, writes, or reads and writes the data.

A connector specifies adata-sharing relationship between ports. It hasaname, atype, and a
list of portsit connects. Only compatible ports may be connected [2].

The behaviour of acomponent consists of aprocedure that reads and writesdataavailable at
its ports, and may produce effectsin the physical world.

A composite component contains anumber of connected subcomponents, the ports of which
form the internal ports of the composite. A composite component also has external ports,
which are the only onesthat are externaly visible. The external ports are connected to appro-
priate internal ports. The subcomponents are not visible outside the composite that contains
them.

Thefield device domain requires three kinds of components.

* Active components have their own thread of control; they are used to model ongoing or
longer-lived activities that do not complete in a short time-cycle.

* Passive components do not have their own thread of control.
» Event components are those whose behaviour istriggered by an event.

In the example of figure 1, FQD is an event component, ProcessApplication is a passive
component and ModBus is an active component. The composition will be modelled asacom-
posite component.

FQD has*out” portsactualPosition and velocity, connected to“in” portsof the samename
belonging to ProcessApplication. Thein port setPoint belonging to ProcessApplication is
shared with the composite component that encapsul ates thiscomposition. It isnot yet connect-
ed to a compatible “out” port. Finaly, the “out” port setFrequency is connected to the “in”
port of the same name belonging to ModBus.

4, Applying RMA for Scheduling Field Device Components

3. RMA for Scheduling Verification

We can model the run-time behav- ——

iour of a composition of compo- — cxcC
nents as a Petri net [2]. We would é/‘

like to verify whether such compo-

sitions meet their real-time dead-

Active/Event
sync

outer port

lines. To tackle this problem, we (i) et port exec
encode the scheduling constraints
in the property bundles of compo- Figure 3 Passive vs Active components

nents, (ii) generate a schedule from
the specified composition, and (iii) apply RMA to verify the constraints.

3.1 Timing bundles

In acomposition, each passive component is modelled as asingle exec transition that reads or
writestoitsdataports (figure 3). To verify aschedulefor acomposition of components, certain
scheduling information must be associated with each subcomponent; this includes the worst-
case execution time (wcet) of the subcomponent and the desired cycletime, deadline, priority
etc. Thisinformation isexpressed with atiming property bundle:

timngBundle (wet: w <M Iliseconds> [cycletine: ¢ <MIIiseconds>],
[deadline: d <M Iliseconds>], [priority: p <Priority>]).

Passive components are schedul ed by the active parent that enclosesthem.

In contrast to passive components, active components (figure 3) have both an exec transition
for their behaviour, and a sync transition to safely synchronize their data ports with their sur-
rounding environment [2]. For an active subcomponent, therefore, the timing bundle must sep-
arately characterize both the sync and exec parts.:

ti m ngBundl e(

sync(wecet: w<M I Iliseconds>, [cycletine: ¢ <MI|iseconds>], [deadline:
d <M Iliseconds>], [priority: p <Priority>]),

exec(wcet: w<MIliseconds>, [cycletine: ¢c <MIIliseconds>], [deadline:
d <M Iliseconds>], [priority: p <Priority>])).

The timing bundle for a composite component specifies the order in which its subcompo-
nents have to be schedul ed. Since acomponent can be active or passive, it also specifiesthe ac-
tive or passive information as discussed with the respective leaf components:

ti m ngBundl e(...active or passive information...,
order: ({conmponentnane} <String>)+).

Finally thereisalso onetiming bundlefor thefield deviceitsealf, so that overall information,
default valuesfor optional partsin the timing bundles of components and the order of the top-
level components can be set:

ti m ngBundl e(cycletine: ¢ <MIIliseconds> defaultPriority: p
<Priority>, order: ({conmponentnane} <String>)+).

Peng Liang, et al. 5.

Thetiming bundlesfor the examplewould be expressed asfollows:

Proc%pp“cation ti mngBundl e(wcet: 10).

sync(wcet:5),

exec(weet : 20, cycl etine: 500, priority:1)).

FQD ti mi ngBundl e(

sync(wcet: 10),

exec(wecet : 15, cycl etine: 30, priority:3)).

Field device timngBundl e(cycl etine: 60, defaul tpriority:2, order:
FQD, ProcessApplication, MdBus).

3.2 Rate Monotonic Analysis

Rate Monotonic Analysis (RMA) [5] consists of a number of simple, practical techniquesto
generate or verify schedulesfor aset of real-timetasks. RMA providesdifferent algorithmsde-
pending on whether thetasksare (i) periodic and independent, (ii) mixed periodic and aperiod-
ic, or (iii) interacting. For abrief discussion, seethe corresponding PEcos deliverable[1].

RMA algorithmsassign afixed priority to each task and assign higher prioritiesto taskswith
shorter periods. The basic RMA algorithms assume that tasks are both periodic and independ-
ent. For PECos, however, we must deal with tasks that are both aperiodic (event components)
and interacting (sync methods of active components).

Thedifficulty withinteractionisthat high priority tasks should beminimally delayed by low-
er priority tasks when both are contending for the same resources. Suppose that there are two
tasks (T, and T,), wherethe priority of T, islower than the priority of T,, and during their exe-
cution both T, and T, need accessto ashared resourcethat i slocked by asemaphore. Whenever
T, executes and uses the semaphore to lock the shared resource, the higher priority task T, has
towait for T, to finish using the shared resource. Hence the higher priority task isblocked by a
lower priority task. Thissituationiscalled priority inversion.

When there are different taskswith different prioritiesthat can freely lock resources, the pe-
riodswheretasksof ahigher priority are blocked by tasks of alower priority become unpredict-
able. This situation is called unbounded priority inversion. Since the blocking times become
unpredictable, no timing verifications can be done.

Toremedy thissituation RM A usesreal-time synchronization protocols (such asthepriority
ceiling protocol or the highest locker protocol), that have two important properties that allow
schedule verification:

1. freedom from mutual deadlock, and

2. bounded priority inversion, where at most one lower priority task can block a higher
priority task.

We exploit the following standard RMA results that take blocking times into account (the
theoremsthat do not do thisare known as Theorem 1 and Theorem 2). Thefirst theorem that we
present (theorem 3) makes a crude approximation that can easily be used manually to quickly
check whether aset of tasks might meet itsdeadlines. It is, however, very conservative.

6. Applying RMA for Scheduling Field Device Components

Theorem 3 A set of nperiodic tasksusing the priority ceiling protocol can be scheduled by the
Rate Monotonic algorithm, for all task phasings, if the following condition is satisfied:

C B
ht +—-—+maxd31 I L 1D<U(n)
Tl Tn Tn 1

where C; , T; and B;, are, respectively, the execution time, the period and the worst-case bl ock-

ing time of task t;, and

1/n

un) =nx(2 1)

Notethat U(1) <1 andthat U(n) quickly convergesto 0.69314...

Theorem 3isvery pessimistic sincetheworse-casetask setiscontrived and unlikely to been-
countered in practice. And when the proper real -time synchronization protocol isused (as seen
in 3.2), aless conservative formulacan be used, that isknown as Theorem 4.

Theorem 4 A set of n periodic tasks using the priority ceiling protocol will always meet its
deadlines, for al task phasings, if and only if

1T,
Oi,1<i<n,min C. +C,+B,<IT
(K, |)DRJ§1 {Tw K

j
where G, Tj, and B; are defined asin Theorem 3, and

R = ok Dilsksil=1 .| 1§
O T O

3.2.1 Using RMA on PeEcos Component Models

Mapping components to tasks is pretty straightforward. With every passive component P, we
associate a(periodic) task that has aworst-case execution time, period and deadline as defined
by P’'stiming bundle. With every active or event component A, we associate two tasks. a peri-
odictask Tg e for thesync part and an aperiodic task Teye. for theexec part. Theworst-case ex-
ecution time, period and deadline of Tgc and Teyec are given by the sync and exec part of the
timing bundle of A.

Remember that the execution thread in an active component uses its own private data store
that gets synchronized with the surrounding data store when the sync is run. This means that
thislocal datastoreisashared resource between T nc and Teyec, and that weneed to take bl ock-
ing into account. Hence we will use Theorem 4, so we have to determine the maximum block-
ing timefor each task.

To determine the blocking times, we first consider that the only shared resourcesthat arein-
volved are the private data stores between exec and sync tasks of active or event components.
There are no other shared resources that we need to take into account. The maximum time that
ashared resourceislocked isgiven by the worst-case execution time of the sync task associated
with that resource. Thisfollows from the fact that the only purpose of the sync isto move data
back and forth between the surrounding world and thelocal datastore.

Peng Liang, et al. 7.

Sincewe consider using the priority ceiling protocol, we know that atask may be blocked, at
most, for the duration of thelongest critical section protected by theresourceit uses. Hence, the
maximum blocking time for the tasks for passive components will be O (since they do not use
shared resources). The maximum blocking timefor the exec and sync tasks used for active and
event componentsisthe worst-case execution time of the sync task.

3.2.2 Example RMA analysis

Inthe example, thereisaset of periodic tasks (exec part of passive components and sync part of
active/event components) and aperiodic tasks (exec part of certain active/event components,
such as FQD) that use shared resources. Since the tasks include both periodic and aperiodic
tasks, we first have to fit the aperiodic tasks into the periodic framework. Then we can apply
Theorem 4, since shared resources are involved and the schedul er usesthe priority inheritance
protocol.

The difficult part of applying RMA on acomponent model is determining the specification
partsof theserversthat are needed to model the execution part of active and eventscomponents.
In the mapping given, we noticed that the task for the execution part of the M odBus component
isnot critical (its priority is set lower than the average priority). Hence we chose to use a spo-
radic server task with along deadline of 500 (task T5). The FQD, onthe other hand, ismorecrit-
ical, since the user requires a good response time. Therefore we use a sporadic server with a
deadline of 30 (task T1). We also order the tasks from the one with the highest priority to the
lowest priority. The resulting table is shown bel ow:

FQD(exec part) T1 |Cy=15,T,=30, B;=10
FQD(sync part) T2 | C,=10, T,=60, B,=10
ProcessApplication | T3 | C3=10, T3=60, B3=0
ModBus(sync part) | T4 | C,4=5, T4,=60, B4=5
ModBus(exec part) | TS5 | C5=20, T5=500, B5=5

We can then apply Theorem 4 to determine whether the deadline for each task in thistask set
can be met. Sincethere are 5 tasksthat interest us, we apply the theorem for values of i ranging
from 1to 5. For each value of i, we haveto find at least one possible pair of (k,I) that make the
equation true. We do not show all the possiblevalues here, but will stop when we satisfy thethe-
oremfor avaueofi.

i=1,k=1,1=1: C + B;= 20 + 10 = 30 (satisfied)

i=2,k=1,1=1: G+ G+ B, = 20 + 10 + 10 = 40 > 30

i=2,k=1,1=2: 2C;+ C, + B, = 40 + 10 + 10 = 60 (satisfied)

i=3,k=1,I=1: C,+C, + C+ By =15+ 10 + 10 + 0 = 35 > 30
i=3,k=1,1=2: 2C; + G + C3 + B3 = 30+ 10 + 10 + 0 = 50 < 60 (satisfied)
i=4,k=1,1=1: C,+ C + C + G+ B, =15+ 10 + 10 + 5 + 5 = 45 > 30
i=4,k=1,1=1: 2+ C,+ GG+ G+ B, =30+ 10 + 10 + 5 + 5 = 60 (satisfied)
i=5,k=1,1=1: ¢+ G +CG+C +C;+B; =15+ 10 + 10 + 5 + 20 + 5 = 65>30

i =5, k=2, 1 =5: 10C, + 5C, + 5C;3 + 5C; + Cg + Bs
= 150 + 50 + 50 + 25 + 20 + 5 = 300 (satisfied)

8. Applying RMA for Scheduling Field Device Components

So, sincefor every possiblevalue of i we can satisfy Theorem 4, the 5 tasks all meet their dead-
lines.

4. Open Questions and Future Work

Using the proven RMA technology in the context of CBSE for real-time systems seem to be an
interesting way to verify the schedulability of such systems. In this paper we show a mapping
that expresses componentsin our particular component model to tasks, such that we can apply
the RMA theorems. Thisapproach looks promising, but we arein the moment of refining it and
applying it on morereal-world examples.

Two pointswill decidewhether the approachisreally useful inapractical context. First of all
the mapping of active components (that have an aperiodic part to them) into periodic tasks. This
mapping is not trivial, but alarge body of existing mappings in the context of RMA exists. A
second problem liesin the very assumptions that RMA makes to apply Theorem 4: the OS or
the implementation has to support more difficult protocols (such as priority ceiling protocol).
When thisis not the case, only Theorem 3 can be used, which is more conservative and will
sometimesyields fal se negatives.

5. References

[1] Gabriela Arévalo, Stéphane Ducasse, Oscar Nierstrasz, Peng Liang, Roel Wuyts, “Verifying
timing, memory consumption and scheduling of components,” PEcos Deliverable D2.2.6-2,
WWW. pecos- project.org

[2] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel Wuyts, Andrew Black, Peter
M{ller, Christian Zeidler, Thomas Genssler, and Reinier van den Born, “ A Component Model
for Field Devices’, in Proceedings of Component Deployment 2002, Berlin, to appear.

[3] Benedikt Schulz, Thomas Genssler, Alexander Christoph, Michael Winter, “ Requirementsfor
the Composition Environment”, PEcos Deliverable D3.1, wawwv. pecos- pr oj ect . org

[4] Semiconductor Motorola Programming Note, Fast Quadrature Decode TPU Function (FQD),
TPUPNO02/D.

[5] Sha, Klein and Goodenough, J. Rate Monotonic Analysis for Real-Time Systems. Founda-
tions of Real-Time Computing: Scheduling and Resource Management. Boston, MA: Kluwer
Academic Publishers, pp. 129-155, 1991.

http://www.pecos-project.org/
http://www.pecos-project.org/

	Applying RMA for Scheduling Field Device Components
	2. A Component Model for Field Devices
	3. RMA for Scheduling Verification
	4. Open Questions and Future Work
	5. References

