

G. Min et al. (Eds.): ISPA 2006 Ws, LNCS 4331, pp. 65 – 73, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Load Balancing on Non-homogeneous
Clusters

Marcelo R. Naiouf1, Laura C. De Giusti2, Franco Chichizola3,
and Armando E. De Giusti4

Instituto de Investigación en Informática LIDI (III-LIDI)5
Facultad de Informática – Universidad Nacional de La Plata

La Plata - Buenos Aires - Argentina
{mnaiouf, ldgiusti, francoch, degiusti}@lidi.info.unlp.edu.ar

Abstract. This paper discusses the dynamic and static balancing of non-
homogenous cluster architectures, simultaneously analyzing the theoretical par-
allel speedup as well as the speedup experimentally obtained.

A classical application (Parallel N-Queens) with a parallel solution algo-
rithm, where processing predominates upon communication, has been chosen so
as to go deep in the load balancing aspects (dynamic or static) without distor-
tion of results caused by communication overhead.

Four interconnected clusters have been used in which the machines within
each cluster have homogeneous processors although different among clusters.
Thus, the set can be seen as a N-processor heterogeneous cluster or as a multi-
cluster scheme with 4 subsets of homogeneous processors.

At the same time, three forms of load distribution in the processors (Direct
Static, Predictive Static and Dynamic by Demand) have been studied, analyzing
in each case parallel speedup and load unbalancing regarding problem size and
the processors used.

Keywords: Parallel Processing, Load Distribution, Static and Dynamic Load
Balancing.

1 Introduction

1.1 Cluster and Multi-cluster Architectures

A cluster is a type of parallel/distributed processing architecture consisting of a set of
interconnected computers that can work as a single machine. The machines that make
up a cluster can be homogeneous or heterogeneous, this being an important factor for
the analysis of performance that can be obtained from a cluster as a parallel machine
[1][2][3].

1 Full-time Professor, School of Computer Sciences. UNLP.
2 PhD student. UNLP Scholarship. Assistant Profesor, School of Computer Sciences. UNLP.
3 PhD student. CONICET. Assistant Profesor, School of Computer Sciences. UNLP.
4 CONICET Main Researcher. Full-time Professor, School of Computer Sciences. UNLP.
5 This project is financially supported by the CIC and the YPF Foundation.

66 M.R. Naiouf et al.

A multi-cluster architecture consists in interconnecting two or more clusters to
configure a new parallel machine. The characterization of global performance pa-
rameters of a multi-cluster is complex owing to the number of intervening clusters,
the degree of heterogeneity of processors and the inter-cluster communication system.
On occasions, a combination of interconnected homogeneous clusters, configuring a
heterogeneous multi-cluster is used.

1.2 Load Balancing in Heterogeneous Architectures

For the type of known work problems (e.g. matrix multiplication) a “predictive”
static load balancing considering the calculation power of the multi-cluster processors
can be obtained; however, many real problems have a variable or dynamic workload
depending on the data [4][5][6][7]. In these cases, it is necessary to adjust data or
processes allocation dynamically while the application is being executed.

Besides, in a multi-cluster scheme in which applications are resolved with the Mas-
ter-Slave paradigm, any dynamic balancing solution used, implies a communication
overhead that will be affected by the complexity of the communication scheme
among the nodes of the different clusters.

1.3 Types of Problems with Variable Workload

There are certain types of data parallelism problems for which it is possible to per-
form a static balancing allocation of the total workload. In these cases, provided there
is a heterogeneous architecture, it will be possible to define a predictive F(Pi,Wt)
function where Pi is the calculation power of processor i and Wt the total work This
function allows to distribute data “a priori” among processors [8].

If there is a variable workload due to the data particular characteristics (e.g. data
arrangement, identification of image patterns), it is not possible to have a predictive
function that assures load balancing among processors. Thus, it will be necessary to
have a dynamic allocation policy that can be combined with a predictive initial distri-
bution of a percentage of the total data [5][9].

Any dynamic allocation policy used implies some overhead degree of communica-
tion, which will be more complex to model and predict in a heterogeneous multi-
cluster architecture.

2 Characterization of Type of Application of Interest

As analyzed in the introduction, there are different research axes on dynamic load
balancing problems in multi-cluster architectures.

An architecture model in which heterogeneity appears only in machines with dif-
ferent clusters and can be compared to a calculation power function of the machines
of each cluster has been determined.

Finally, the focus of this experimental work has been put on one type of the prob-
lems in which communication time among Tc processes is not significant, considering
Tp (Tp >> Tc) local processing time.

 Dynamic Load Balancing on Non-homogeneous Clusters 67

This restriction allows to identify the differences among the static and dynamic
load balancing schemes more clearly without overlapping an important communica-
tion overhead not relate to the distribution.

3 Load Distribution Models to be Studied and Theoretical
Speedup to Be Achieved

Three ways of data parallelism implementation will be used:

• Direct Static Distribution (DSD) where the total workload Wt will be allocated
to the architecture B processor in a homogeneous manner, so that each proces-
sor will have Wt/B, regardless the F(Pi,Wt) function. This distribution is used as
a lower bound reference.

• Predictive Static Distribution (PSD) where the total workload Wt will be allo-
cated to the architecture B processor at the moment of starting the application,
according to the prediction F(Pi,Wt) function.

• Dynamic Distribution upon Demand (DDD) where a Li percentage of the total
Wt workload will be allocated to the architecture B processor at the moment of
starting the application, according to the prediction F(Pi,Wi) function and then,
each processor will demand more work on the part of the Master, as its task is
being completed.

The Li value and the amount of additional work to be allocated to each processor
on demand are experimental research parameters that depend on the application and
the relation between Tp and Tc.

The theoretical speedup to be achieved by multi-cluster architecture will be a G(Pi)
function. The experimental measuring of the real speedup should directly correlate
with the degree of balancing achieved with the total Wt work allocation during the
execution of the application.

4 Contribution of This Work

• An expression for heterogeneous cluster calculation power is presented, consid-
ering individual processor power and heterogeneity. Also theoretical analysis of
unbalance and maximum speedup attainable is presented.

• A Master-Slave model with 4 heterogeneous clusters among them operating as a
(B=42) multi-cluster with an additional processor as Master has been studied,
checking the theoretical analysis on processors heterogeneity and maximum
speedup attainable.

• One problem case was studied, which responded to the hypothesis Tp >> Tc,
with the three load distributions proposed (DSD, PSD, DDD) to carry out the
data parallelism, specially comparing with the theoretical parallel speedup. This
speedup was achieved in view of the calculation power of the processors, and
the load unbalancing taking into account the parameters B, Wt, Pi y Li men-
tioned before.

68 M.R. Naiouf et al.

5 Application to Parallel Solution on a Heterogeneous
Multi-cluster of the N-Queens Problem

The N-queens problem consists in placing N queens on an NxN board in such a way
that they do not attacks one another [10][11][12]. A queen attacks another one if they
are in the same diagonal, row or column .

5.1 Sequential Solution

An initial solution to the N-queens problem, using an sequential algorithm, consists
in trying all possible location combinations of the queens on the board, keeping those
that are valid and disrupting the search whenever this is not achieved. Considering
that a valid combination can generate up to 8 different solutions, which are rotations
of the same combination, the number of distributions to be evaluated can be reduced.
The best sequential algorithm found for this problem is based on this fact
[13][14][15].

5.2 Parallel Solution Proposed Based on the Function of the Load Distribution
Models

For the parallel solution of this problem, the queen is placed on one or more rows, and
all the solutions for that initial arrangement are obtained. Each processor is in charge
of solving the problem for a subset of said solutions, in this way, the whole system
works with all the possible combinations of those rows.

When working with a heterogeneous architecture, the amount of work (combina-
tions) that each processor must solve vary according to the existing relation regarding
calculation power. To be able to distribute the work in a balanced way, it is conven-
ient to use “fine grain”, that is, many combinations of little work each, so as to level
up the work done by each machine, and resolve several of them. To this aim, the first
four rows are used to form each of the combinations to resolve [16].

In this way, different N4 combinations are obtained to be distributed among all the
heterogeneous processors, N being the board size. This distribution is carried out by
using those motherhoods mentioned in III.

6 Experimental Results Obtained

In this section, the tests carried out are presented together with the results obtained,
regarding the speedup metrics and the unbalancing described below.

6.1 Metrics Used

To measure the load unbalancing among the processors that intervene in a parallel ap-
plication, the relative work difference obtained is calculated with formula (1), where
Worki = machine timei [2].

 Dynamic Load Balancing on Non-homogeneous Clusters 69

.
)(

)(min)(max

..1

..1..1

iBi

iBiiBi

Workaverage

WorkWork
Unbalance

=

== −= (1)

The speedup metrics is used to analyze the algorithm performance in the parallel
architecture as indicated by formula (2).

.
meParallelTi

TimeSequential
Speedup = (2)

In the case of a heterogeneous architecture, the “Sequential Time” is given by the
time of the best sequential algorithm executed in the machine with the greatest calcu-
lation power [1][17][18].

To evaluate how good the speedup obtained is, it is compared with the theoretical
speedup of the architecture upon which work is being carried out. The speedup con-
siders the relative calculation power of each machine with respect to the power of the
most powerful machine [19]. The theoretical speedup is calculated with formula (3),
where B is the number of machines of the architecture used, y Pi is the relative calcu-
lation power of the machine i regarding the best machine power. This relation is ex-
pressed in the formula (4).

.
1∑ =

= B

i iPlSpeedupTheoretica (3)

.
)(

)(

i
mTimesequential

chinepowerfulMaTimesequential
i

P =
(4)

6.2 Experiments

The experiments were done on a multi-cluster architecture consisting of four clusters:
an 16 Pentium IV 2.4 Ghz homogeneous cluster of 1 Gb memory.

• an 10 Celeron 2 Ghz homogeneous cluster of 128 Mb memory.
• an 8 Duron 800Mhz homogeneous cluster of 256 Mb memory.
• an 8 Pentium III 700 Mhz cluster homogeneous cluster of 256 Mb memory.

Communication within each cluster is done via an Ethernet web, using a switch for
communication among clusters.

The language used for the implementations is C together with the MPI library to
handle communications among processors.[20]

Tests were carried out using 42 machines, adding one for the dynamic distribution,
acting as master, and with different board sizes. (N = 17, 18, 19, 20, 21).

In the case of dynamic distribution, it was experimented with different percentages
of initial distribution. (Li = 0, 5, 10, 15, 20, 25, 50).

6.3 Results

The data of Table 1 shows the percentage of load unbalancing produced by the algo-
rithm for the Direct Static, Predictive Static and Dynamic upon Demand distributions
with different Li values. Some of these results can be seen in figure 1.

70 M.R. Naiouf et al.

0.00

50.00

100.00

150.00

200.00

250.00

17 18 19 20 21
Size N

%
U

nb
al

an
ce

Direct Static Predictive Static Dynamic upon Demand

Fig. 1. Graph of Percentage of Load Unbalancing of Direct Static, Predictive Static and Dy-
namic upon Demand Distributions (Li=15). N=17,18,19,20,21

Table 1. Percentage of Unbalancing for each test

0% 5% 10% 15% 20% 25% 50%
17 236.09 122.37 2.81 1.65 0.13 0.14 0.12 0.12 106.09
18 148.30 115.20 20.93 12.10 0.04 0.04 1.63 27.29 150.29
19 160.66 107.62 152.91 92.72 0.04 0.05 3.91 9.92 131.61
20 162.02 128.21 0.03 0.03 0.03 0.03 0.03 24.09 131.19
21 145.60 92.91 0.03 0.03 0.03 0.03 0.03 16.48 117.34

Dynamic upon Demand
Size

Direct
Static

Predictive
Static

Table 2 presents the speedup obtained for each test mentioned before together
with the optimal speedup (or theoretical) calculated for this machine combination.
Table 3 shows the total time for each test.

Table 2. Speedup

0% 5% 10% 15% 20% 25% 50%
17 31 10.62 17.75 24.13 24.72 24.96 25.14 25.38 23.30 13.49
18 31 12.99 17.31 30.07 30.15 30.20 30.25 29.78 24.00 12.00
19 31 12.21 18.22 30.79 30.59 30.76 30.90 30.12 28.63 13.28
20 31 12.46 15.99 30.85 30.89 30.91 30.95 30.99 24.90 13.21
21 31 13.52 19.76 30.98 30.98 30.99 31.00 30.99 27.10 14.30

Size
Direct
Static

Predictive
Static

Dynamic upon Demand
Optimum

Figure 2 shows the speedup obtained with each of the distribution algorithms for
some of the tests in Table 2, together with the optimal speedup of this architecture.

 Dynamic Load Balancing on Non-homogeneous Clusters 71

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

17 18 19 20 21

Size N

Sp
ee

du
p

Direct Stat ic Predictive Stat ic Dynamic upon Demand Optimum

Fig. 2. Speedup of the Direct Static, Predictive Static and Dynamic upon Demand Distribu-
tions (Li=15) and Optimum. N=17, 18, 19, 20, 21.

Table 3. Algorithm Total Time

0% 5% 10% 15% 20% 25% 50%
17 4.70 2.81 2.07 2.02 2.00 1.99 1.97 2.14 3.70
18 27.91 20.94 12.06 12.02 12.00 11.98 12.17 15.10 30.19
19 228.16 152.95 90.50 91.09 90.57 90.18 92.51 97.33 209.76
20 1795.20 1399.46 725.15 724.19 723.68 722.92 721.90 898.45 1693.51
21 13957.76 9554.65 6094.24 6094.46 6090.92 6090.52 6090.63 6966.64 13205.15

Dynamic upon Demand
Size

Direct
Static

Predictive
Static

7 Conclusions and Work Guidelines

Analyzing the results obtained from the experimental work, we can come to the fol-
lowing conclusions:

• Experimental results are coherent with theoretical analysis of unbalance and
maximum speedup attainable.

• For the type of problems where Tp>>Tc (as the N-Queens problem that requires
a minimal communication among machines), if the work is data-dependent it’s
essential the choice of data distribution among clusters, to achieve an almost op-
timal speedup.

• Naturally, algorithms that take into account the calculation power of each ma-
chine for work distribution have a better behavior than Direct Static distribution.
This improvement is clearly expressed in the load balancing and the speedup.

• Among the algorithm that take into account the calculation power, it can be seen
that the algorithms that distribute dynamically can assign work in a more bal-
ancing way among the machines (as seen in Graph 1), without much affecting
the final time of execution (as shown by the speedup en Graph 2 and the data of
Table 3).

72 M.R. Naiouf et al.

• In dynamic distribution, the speedup obtained is quite close to the optimum ac-
cording to the parallel architecture used in this case, all of which becomes more
evident as N increases.

At present, tests are being done with clusters outside the UNLP, particularly at the
UNSur (Bahía Blanca), UNComahue (Neuquen), UA Barcelona(Spain) and the Uni-
versidad Católica del Salvador (Brasil), through a WAN network. This requires a pre-
vious evaluation of the communication costs, for considering them in the computation
power model.

References

1. Al-Jaroodi J, Mohamed N, Jiang H, Swanson D. “Modeling parallel applications perform-
ance on heterogeneous system”. IEEE Computer Society, 2003.

2. Bohn C, Lamont G. “Load balancing for heterogeneous clusters of PCs”. Future Genera-
tion Computer Systems, Elsevier Science B.V., Vol 18, 2002, pp 389-400.

3. Leopold C. "Parallel and distributed computing. A survey of models, paradigms, and ap-
proaches". Wiley Series on Parallel and Distributed Computing. Albert Zomaya Series
Editor, 2001.

4. Baiardi F, Chiti S, Mori P, Ricci L. “Integrating load balancing and locality in the paral-
lelization of irregular problems”. Future Generation Computer Systems, Elsevier Science
B.V., Vol 17, 2001, pp 969-975.

5. Naiouf M. “Procesamiento paralelo. Balance dinámico de carga en algoritmos de sorting”.
Tesis doctoral. Universidad Nacional de La Plata, 2004.

6. Watts J, Taylor S. “A practical approach to dynamic load balancing”. IEEE Transactions
on Parallel and Distributed Systems, 9(3), March 1998, pp. 235-248.

7. Dongarra J, Foster I, Fox G, Gropp W, Kennedy K, Torczon L, White A. “The Sourcebook
of Parallel Computing”. Morgan Kauffman Publishers. Elsevier Science, 2003.

8. Ross K, Yao D. “Optimal load balancing and scheduling in a distributed computer sys-
tem”. Journal of Association for Computing Machinery, 38 (3): 676-690.1991.

9. Hui C, Chanson S. “Improve strategies for dynamic load balancing”. IEEE Concurrency,
pages 58-67. 1999.

10. Dongarra J, Foster I, Fox G, Gropp W, Kennedy K, Torczon L, White A. “The Sourcebook
of Parallel Computing”. Morgan Kauffman Publishers. Elsevier Science, 2003.

11. Bruen A, Dixon R. “Then n-queens problem. Discrete mathematics”. 12:393-395, 1997.
12. De Giusti L, Novarini P, Naiouf M, De Giusti A. “Parallelization of the N-queens problem.

Load unbalance analysis”. Workshop de Procesamiento Paralelo y Distribuido (WPPD),
Congreso Argentino de Ciencias de la Computación (CACIC’03), 2003.

13. Hedetniemi S, Hedetniemi T, Reynolds R. “Combinatorial problems on chessboards: II”.
Chapter 6 in domination in graphs: advanced topic, pag 133-162, 1998.

14. Bernhardsson B. ”Explicit solution to the n-queens problems for all n”. ACM SIGART
Bulletin,2:7,1991.

15. Somers J. “The N-queens problem a study in optimization”. www.jsomers.com/
nqueen_demo /nqueens.html.

16. Takaken, “N-queens problem (number of solutions)”. http://www.ic-net.or.jp/home/
takaken/e/queen/.

17. De Giusti L., Chichizola F. “Optimización de N-queens Paralelo”. Technical report III-
LIDI. 2006.

 Dynamic Load Balancing on Non-homogeneous Clusters 73

18. Grama A, Gupta A, Karypis G, Kumar V. “Introduction to parallel computing”. Second
Edition. Pearson Addison Wesley, 2003.

19. Jordan H, Alaghband G. “Fundamentals of parallel computing”. Prentice Hall, 2002.
20. Tinetti F. “Cómputo paralelo en redes locales de computadoras”. Tesis Doctoral.

Universidad Autónoma de Barcelona, 2004.
21. Snir M., Otto S., Huss-Lederman S., Walker D., Dongarra J., “MPI: The Complete Refer-

ence”, The MIT Press, Cambridge, Massachusetts ,1996.

	Introduction
	Cluster and Multi-cluster Architectures
	Load Balancing in Heterogeneous Architectures
	Types of Problems with Variable Workload

	Characterization of Type of Application of Interest
	Load Distribution Models to be Studied and Theoretical Speedup to Be Achieved
	Contribution of This Work
	Application to Parallel Solution on a Heterogeneous Multi-cluster of the N-Queens Problem
	Sequential Solution
	Parallel Solution Proposed Based on the Function of the Load Distribution Models

	Experimental Results Obtained
	Metrics Used
	Experiments
	Results

	Conclusions and Work Guidelines
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

