
GeoInformatica 3:1, 7±32 (1999)

1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Developing GIS Applications with Objects:
A Design Patterns Approach

SILVIA GORDILLO*, FEDERICO BALAGUER, CATALINA MOSTACCIO*, AND FERNANDO DAS NEVES

LIFIA- Departamento de InformaÂtica, Facultad de Ciencias Exactas,
Universidad Nacional de La PlataÐArgentina
e-mail: [gordillo,fede,catty,babel17]@sol.info.unlp.edu.ar

Received March 24, 1998; Revised November 25, 1998; Accepted November 30, 1998

Abstract

In this paper we present an object-oriented approach for designing GIS applications; it combines well known

software engineering practices with the use of design patterns as a conceptual tool to cope with recurrent

problems appearing in the GIS domain. Our approach allows the designer to decouple the conceptual de®nition of

application objects from their spatial representation. In this way, GIS applications can evolve smoothly, because

maintenance is achieved by focusing on different concerns at different times. We show that our approach is also

useful to support spatial features in conventional applications built with object-oriented technology. The structure

of this paper is as follows: We ®rst introduce design patterns, an ef®cient strategy to record design experience;

then we discuss the most common design problems a developer of GIS applications must face. The core of our

method is then presented by explaining how the use of decorators helps in extending objects to incorporate spatial

attributes and behavior. Next, we analyze some recurrent design problems in the GIS domain and present some

new patterns addressing those problems. Some further work is ®nally discussed.

Keywords: spatial data models, object-orientation, design patterns

1. Introduction

Geographic Information Systems deal with many complex aspects: data acquisition,

accuracy, representation of spatial relationships, topological features and interface design

are some of the characteristics designers must consider when developing geographic

applications.

One problem with this kind of applications is that there is no design method that

covers all these aspects. The lack of a well-grounded design approach leads to some

undesirable consequences in the ®nal products in terms of reusability, modularity,

modi®ability, etc.

Object-oriented methodologies have proved to be a good solution for the design of non-

conventional applications where the complexity of data and the underlying relationships

are critical. Using this technology, we obtain not only reusable, modular and modi®able

software, but also we can get interoperable systems, as objects encapsulate knowledge that

can be customized to different needs.

*Also ComisioÂn de Investigaciones CientiÂ®cas de la Pcia. de Buenos Aires.

Based on object-oriented technology, design patterns appear as a powerful strategy to

represent good design solutions to recurrent problems. By using objects and patterns we

de®ne a two-step design approach aimed at representing the application in terms of entities

of the real world and to provide general solutions to solve situations appearing during the

development process, like the use of different reference systems, locations de®nition, etc.

Though this architecture is restricted to handle vector data, we have already de®ned some

extensions for working with continuous information [8].

In Section 2 we introduce design patterns. In Section 3 we describe some problems

appearing in the design of GIS applications. In Section 4 we explain our design method

while in Section 5 we explain how we use the Decorator, the Reference System, the Roles

and the Appearance design patterns to obtain a geographic model. Finally, in Section 6 we

present some conclusions and future work.

2. Design patterns. An introduction

The use of object technology is a growing trend in the design of GIS applications [9], [10].

We claim, however, that object-oriented design methods and class libraries are only part of

the solution for designing GIS applications. In this domain there are many recurrent

problems involving the use of spatial information: object locations, coordinate

manipulation, computation of geographic functions, and so on.

Christopher Alexander [1] de®ned the purpose of design patterns as follows: ``Each
pattern describes a problem which occurs over and over again in our environment, and
then describes the core of a solution to that problem, in such a way that you can use this
solution a million times over, without ever doing the same thing twice''.

Design patterns are usually described by stating the problem in which the pattern may

be applied, the elements that make up the design, their relationships, responsibilities and

collaborations [6]. These elements are described in an abstract way because patterns are

like templates that can be applied in many different situations. The consequences and

tradeoffs of applying patterns are also important because they allow evaluating design

alternatives.

Design patterns are descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context.

A typical pattern has four essential elements [6]:

* The pattern name which is used to describe a design problem, its solution and

consequences in a concise way;
* The description of the problem in which the pattern could be applied;
* The solution of that problem describing the elements (classes and objects) conforming

the design, their relationships, responsibilities and collaborations;
* Finally, the consequences explaining the results of applying the pattern; consequences

are useful for the evaluation of different design alternatives and bene®ts of the adopted

solution.

8 GORDILLO ET AL.

In order to clarify the notation used along the paper we present the basic elements of the

OMT notation [14] that we have adopted to express the structure of each pattern. We also

present an example of a design pattern de®ned in [6] as a way to illustrate the purpose and

description of patterns. We use a Smalltalk-like syntax (where operations that accept

parameters ends with `:') to de®ne attributes and methods of classes.

There are two kinds of diagrams we use to denote relationships and interactions between

classes and objects:

* A class diagram depicts classes, their structure and the static relationships among

them. Figure 1 shows the notation of this kind of diagrams. Figure 2 shows different

kinds of relationships between classes presented in [6].

In ®gure 2 the reader can see three types of relationships used commonly in object-

oriented designs. The inheritance relationship, that allows a subclass to inherit the

behavior of its parent class; the aggregation relationship meaning that an object owns

another one; and the acquaintance representing that an object ``knows of'' another one

(this is the common association between two classes).

Figure 1. Class diagram notation.

Figure 2. Relationships between classes.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 9

* An object diagram depicts a particular object structure at run-time. Its notation is

shown in ®gure 3.

2.1. An example: The composite design pattern

Composite is a pattern for composing objects in such a way that both individual objects

and the composition are treated uniformly. It works by implementing an abstract class that

de®nes the common interface for both the individual objects and the containers.

Figure 4 shows the general Composite structure.

Composite de®nes the interface to manipulate its components and delegates pertinent

operations to each one of its components (see the operation behavior in ®gure 4).

Figure 3. Object diagram notation.

Figure 4. The structure of the composite design pattern.

10 GORDILLO ET AL.

Leaf represents primitive objects in the composition and de®nes their behavior.

In order to understand how this pattern can be used consider the case of a graphic

application like a drawing editor that lets users build complex diagrams out of simple

elements. Using this editor the users can group components to form larger ones. This can

be made using a technique called recursive composition. The Composite design pattern

captures the essence of recursive composition in object-oriented terms. For example,

suppose we have, as it is shown in ®gure 5, an area that is conformed by a set of blocks,

which in turn are composed by basic graphical elements, representing empty lots,

buildings and other blocks.

The structure of classes in the example is shown in ®gure 6.

Participants. Area de®nes the interface for all objects in the composition. It declares

primitive operations like draw: and operations for accessing and managing its child

components like getChild: or add:

Classes for graphical primitives such as Building and EmptyBlock represent basic

objects in the composition. Each subclass implements the necessary primitive operations:

Figure 5. Composition of empty lots and buildings.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 11

for example the draw: operation is de®ned in each subclass and it draws the corresponding

element in a given graphic context.

Block de®nes the behavior for any composite structure and stores the child components

and implements the way to handle them.

Collaborations. Clients use the interface de®ned in the Area class to interact with the

composite object. If the receiver is a basic element the corresponding primitive class

directly handles the request. If it is a composite element, then it delegates the request to its

child components.

Consequences. Clients deal uniformly with simple or composite structures by using the

abstract interface.

The addition of new kinds of elements, (composite or leaf subclasses), can be made

without important modi®cations to both, the composite structure and the design of the

application.

Because of the ¯exibility to add new elements, it becomes dif®cult to restrict the

quantity of components in the composition.

Design patterns are a useful mean for specifying and documenting an application.

Similar applications can be built by instantiating the same patterns, which can eventually

be specialized according to user needs [4]. Also, they provide a concise and powerful

vocabulary that allows designers to improve communication within the development team,

because of the higher level of abstraction of the discourse [15].

Figure 6. An instance of the composite design pattern.

12 GORDILLO ET AL.

3. Problems in the design of GIS applications

The complexity of the underlying domain and the great variety of data that characterize

GIS applications, make the design process of this kind of systems dif®cult and complex. In

this context, modeling and design activities require a deep expertise on the application

domain. Usually, no systematic design method is used to record design documents and

rationales. A cyclic problem is thus generated, since designers are more concerned in

obtaining ef®cient implementations than good designs of applications. However, when

modi®cations and/or extensions have to be made, the lack of good design documents

forces designers to do an untidy work, generally loosing the semantics of changes due to

the weakness of the model; as a result, performance is also compromised.

A typical mistake in this kind of applications appears when entities are designed in

terms of their spatial representation; the emphasis is thus focused in ``how the information

is represented'' instead of ``what information or behavior is needed''. A consequence of

this approach is that entities with different representations (for example with different

scales) are usually implemented as different objects while they are not different from a

conceptual point of view. In this context is understandable that concepts like reuse,

maintenance and evolution become dif®cult to apply [17].

There is a growing trend in using object-oriented concepts to design the abstract

structure of geographic applications [9], [10]. Although these methods build a valuable

foundation for what is needed to support the application development process, there are

some problems that designers must consider:

* Specifying application entities by mixing their physical representations (points,

polygons or lines) with their conceptual behavior, forces the designer to prematurely

assign spatial features to those entities; moreover, this practice makes it dif®cult to

work with different representations of the same object, e.g., for displaying it at

different scales.
* The semantics of the domain is usually dif®cult to express, and textual annotations

must be added to the resulting model. Most of the times, object-oriented GIS design

methods are extensions of design methods that were conceived for other kinds of

applications. Generally the semantics of those extensions are poorly speci®ed,

weakening the ability of the design notation to embrace the GIS domain.

Nevertheless, extending conventional applications with spatial features has also become

a need. In the last times, more and more designers are building GIS applications based on

open systems instead of using a particular GIS product (like ARCInfo, GENAMAP, etc.).

The rapid growing of the WWW as a host for different kinds of applications, and the

emergence of Java as a programming language well suited for developing distributed

applications, show us the need to ®nd a systematic approach for recording and reusing our

design experience. This need becomes crucial when a designer must face hybrid

applications, i.e., those dealing with conventional transaction-based systems that must be

upgraded to include spatial features that were not considered in the underlying software.

Examples of extensions of traditional applications with spatial features are shown in [13].

DEVELOPING GIS APPLICATIONS WITH OBJECTS 13

We ®nd real estate agencies, telecommunications companies, hotel chains, news

organizations, and survey entities usually struggling to add geographic information to

their products or legacy information systems. For example, real estate agencies can browse

maps ®nding alternatives that satisfy customer preferences (cost, distance to downtown,

neighborhood style, etc.). All these applications have to support geographic queries

dealing with objects within the geographic domain (downtown, neighborhood), but also

with non-spatial objects like houses, cities, etc., which could have been de®ned in the

conceptual domain.

Web applications providing access to geographic data captured from legacy systems are

another example of this kind of applications. Most of the times, developers have to write

customized code to visualize the required information.

In this paper we propose an object-oriented method to design GIS applications. The

method is divided in two main steps: during the ®rst one (conceptual modeling) we model

conceptual features of the application, delaying the spatial features to the second step

(geographic modeling). This approach makes possible not only the development of new

applications, but also the extension of existing ones with geographic features, since they

can be treated as the result of the ®rst step.

4. Modeling domain entities. The conceptual model

When designers build GIS applications, they deal with two different kinds of data types.

One represents conceptual data describing entities in terms of descriptive attributes. For

example, if they are modeling a country in the context of a geographic application, typical

descriptive attributes are the name of the country, its ®rst language, or its government

system. The other kind of data is that representing all aspects related to geographic

features, like the country boundaries. These two data types de®ne two separate databases

(in most GIS environments) at the implementation level: one of them contains spatial

information and the other one stores the conceptual characteristics (usually stored in a

relational database).

At the functional level something similar happens; designers have to face different

aspects of the same problem. Not only conventional operations like tax-payment or traf®c

statistics records have to be de®ned, but also operations involving spatial attributes, such

as areas that are in¯uenced by some phenomena, or entities holding a particular spatial

property.

The above discussion shows that geographic and conceptual features must be treated in

a different way: dealing with data captured with a remote sensing method is not the same

as dealing with string, character or numerical data. However, in a geographic application

commonly both aspects have to be covered and integrated in a consistent way.

Since the complexity of the development resides in the de®nition and use of the spatial

information, we propose a two step iterative design process as a way to make this task

easier and clearer [7]. The method leads to a strong and transparent integration between

both spatial and conceptual information.

14 GORDILLO ET AL.

During the ®rst step, Conceptual Modeling, we describe the application domain in terms

of entities in the real world. The intent is to understand the problem by providing an

abstract representation in which geographic features and implementation details are

ignored; only those class responsibilities that are space independent are de®ned here. In

this step, we use the object-oriented model to represent the application. Therefore, the

result of this step is not different from those obtained in conventional (non-GIS)

applications solved with object-oriented design techniques.

The method allows us to manipulate different abstraction levels by separating the

comprehension of the descriptive world from the geographic one. Moreover, this process

also provides a ¯exible way to extend conventional applications built with object-oriented

technology, by taking advantage of the conceptual model just de®ned and thinking in

terms of adding spatial characteristics instead of rede®ning the whole system.

5. Describing spatial features. The geographic model

In this step the goal is to de®ne the spatial features for those classes de®ned in the

conceptual model. We propose enriching the conceptual model instead of modifying it. We

®rst identify which classes in the conceptual model will contain spatial features; then, for

each one of these classes, we de®ne a new one that wraps it with the spatial behavior by

applying the Decorator design pattern.

In the following section we describe in detail the use of Decorators to design geographic

applications.

5.1. Using decorators to specify the geographic model

Decorator is a design pattern de®ned in [6]. Its intent is ``to attach additional

responsibilities to an object dynamically''. Decorators provide a ¯exible alternative to

subclassing for extending a class' functionality. The substantial difference between

decorating and subclassing is that while the former is dynamic, the latter is static; by using

decorators we can add functionality to some objects without re-de®ning the conceptual

hierarchy.

A decorator replicates the interface of the decorated object; it also de®nes additional

behavior. It forwards requests to the component and may perform additional actions before

or after forwarding [6].

In this way, we can de®ne objects and decorate them with different behaviors, for

example spatial behavior, and refer either to the original object or to any of their

decorators. In our approach, since decorators mimic the protocol of the conceptual object,

they delegate the implementation of the non-spatial protocol to that object.

We use the idea of this design pattern to construct the basic geographic model, by adding

spatial features to each object in a dynamic and transparent way. The same schema is

useful both as a conceptual tool for new designs and to leverage existing designs in order

to include geographic information.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 15

To show an example, suppose that we have a Country class in the context of an

application that models different aspects of a region. Countries contain conceptual

attributes such as name, ®rst language, government system, currency, etc. Later, when

geographic information about countries is needed, we will have to upgrade the Country
class to include spatial information, in order to perform operations like width of a country

in a particular latitude, its location, neighbor countries, etc. Figure 7 shows both

conceptual and geographic de®nitions; additional features have been de®ned in the

second one.

Countries have more than one possibility to solve the enhancement of the conceptual

class with geographic features. The most obvious (and also the less convenient) implies

building the whole application again in terms of the geographic classes. The second

possibility is to use subclassi®cation by de®ning additional features and behavior but, as

we said before, this is not the best solution in order to build a ¯exible application.

Moreover, by using this mechanism we obtain a mixed schema where conceptual and

geographic classes are strongly coupled. In ®gure 8 shows the resulting schema for this

solution.

The use of decorators helps to upgrade system functionality without modifying the

existing class schema. The solution is to de®ne a GeoCountry class, whose instances will

work as decorators of Country objects. GeoCountry de®nes the geographic behavior that

we need in the new application; for example, it includes a method to calculate the width of

a country. Since there is a relationship between the decorator (GeoCountry) and the

object, it decorates (Country); the former can delegate to the conceptual object, the

execution of the already de®ned behavior (name, ®rstLanguage, stateList, etc.). Figure 9

shows the schema of the modi®cation using decorators.

Decorators area more dynamical solution than subclassi®cation since responsibilities

can be added and removed in run-time, by attaching and detaching components into the

decorated object.

With Decorators the resulting application manipulates two kinds of objects, conceptual

and geographic ones, de®ning two separate levels. In this way, the model remains ¯exible

Figure 7. Conceptual and geographic classes.

16 GORDILLO ET AL.

because we can de®ne many decorators for a speci®c object or even decorate a decorator,

thus nesting geographic speci®cations. When we are extending existing applications, we

can do it transparently because the conceptual model does not suffer modi®cations;

therefore, the original application can still be used as it was originally conceived.

One restriction we have when using this method appears when we add or erase a

conceptual feature. In this case we have to add or delete the corresponding feature in the

decorator.

Geographic objects in our approach always know their location and have an associated

geometry. Location has been de®ned as in [11]; it contains the position of the

georeferenced object and some behavior that is used with temporal data, i.e., data that

Figure 9. The GeoCountry class adds spatial features to the Country class.

Figure 8. Adding spatial features by subclassifying.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 17

changes its position as a function of time. Location has an associated reference system,

which is explained in detail in Section 5.3. In ®gure 10 we show the structure of an

instance of the GeoCountry class, and its relationships with both the Country and its

Location.

In addition to decorators wrapping conceptual objects, purely geographic objects may

also appear; they do not represent a view of any conceptual object but are characterized by

their geographic relevance. In other words, these objects have the same spatial

characteristics a Decorator has, but they are not related to any conceptual object. Based

on the similarities between decorators that add spatial information to conceptual objects,

and pure geographic objects it is possible to de®ne an abstract class, which groups the

common behavior of those ``purely'' geographic objects, plus those wrappers of the

conceptual model. Figure 11 shows the schema that constitutes the basic building block to

de®ne the object-oriented architecture of GIS applications.

As it is shown in ®gure 11, the abstract class AbstractGeoObject de®nes the protocol to

manipulate geographic functions (a point belonging to an area, perimeter, etc), to know the

Figure 10. Relationships among Conceptual Objects, Geo-Decorators and Locations.

Figure 11. The basic schema to build geographic applications.

18 GORDILLO ET AL.

object locations and, through the Location, their shapes, given by the Geometry class and

the reference system in use.

Geometry is the name of a class hierarchy de®ning the basic spatial elements, e.g.,

point, line and polygon. In this hierarchy all spatial operations are de®ned according to the

kind of element we are manipulating. For example: one element de®ned as a point will be

able to perform behavior like: ``do you intersect this line?'' or ``are you included in this

polygon?'' and, in general, operations about adjacency, intersections, inclusion, etc.

In the following section we describe different kinds of composition relationships

describing some spatial relationships.

5.2. Using composite objects in the geographic model

Many geographic elements that appear in the real world are in essence aggregations of

other objects. Consider for example a state that is divided into districts, which are in turn

made of counties, while every county has one or more cities. According to the problem we

are modeling, we ®nd that different cases may have different restrictions about the

composition semantics: sometimes, the existence of the whole depends on the existence of

its parts; this restriction could be unsuitable in other cases. De®ning and understanding the

exact semantics of the composition is very important since it will allow us to establish

proper design and implementation constraints.

We have de®ned three part-whole relationships that usually appear in GIS applications,

®gure 12 shows graphical examples of them. These relationships de®ne restrictions about

their cardinality, their geometry, and about the lifetime of all involved objects:

* has_a: A has a B. There exists b in B, a in A such that b is part of a. This relationship

has no particular restrictions over A and B. Lifetimes of those are independent.

Geometry of A and B could be different.
* made_of: A made of B. For every a in A, there exists b in B such that b is part of a. A

and B share the same geometry.

For example, consider that A is a range of mountains and B represents a mountain. It

would not make sense that an instance in A exists without any instance in B. A is

covered by all instances of B. Different instances of B may or may not be overlapped.
* divided_into: A divided into B. For every b in B, there exists a in A such that b is part

of a. For example a country is divided into states and there are not states outside of a

country. A is covered by all instances of B. There is not overlapping between A and B,

and A and B share the same geometry.

To manage these kinds of composition relationships, we have de®ned an additional

notation to OMT primitives [14], to distinguish each kind of composite:

DEVELOPING GIS APPLICATIONS WITH OBJECTS 19

The translation of those relationships among objects, which are de®ned in the

Conceptual Model to the Geographic Model, is application-dependent; it is not sure that

the composition semantics will be preserved.

In Sections 5.3, 5.4 and 5.5, we present some design patterns that can be used to solve

recurrent problems appearing during the geographic modeling.

5.3. The reference system design pattern

A geographic object has a location referencing its geographic position in a particular

moment. Locations are critical in geographic systems since they constitute the main

characteristics in this domain; they are also one of the most dif®cult concepts to

manipulate.

There are a great number of map projection techniques to transform spatial information

extracted from the Earth's surface to a planar coordinate system [16]. The use of each one

of them, however, depends on the data type we are manipulating, on the way in which the

spatial data was acquired or even on the ®nal user pro®les.

The most common way to represent locations is the latitude/longitude system, but this is

not always the more convenient way to specify them; for example the latitude/longitude

system makes it dif®cult to calculate distances and areas.

Another usual reference system is the Universal Transverse Mercator. UTM produces a

secant projection to the Earth surface, and divides it into zones of 6 degrees of longitude

and 8 degrees of latitude providing a mechanism to locate areas in a coarse grid.

There are also many kinds of projections either based on the geometrical model of the

projection or involving patterns of distortions in the map. Azimuthal, Conic and

Cylindrical are examples of the former and Equivalents and Perspectives of the latter (see

[16] for more details).

When we are dealing with geographic objects, we have to keep the information about

the reference system being used. Moreover, when we need to combine information from

many different objects, we must be sure that the same reference system is being used in all

of them, otherwise some conversions will be needed. The same happens when the

Figure 12. Examples of has_a, made_of and divided_into relationships.

20 GORDILLO ET AL.

reference system that we use to present information to the user has to be different from the

reference system used in the input data.

The Reference System design pattern helps to de®ne the context of a location. It

provides a set of legal operations that conform to the corresponding reference system

arithmetic (including time-related operations).

Consider an application in which we want to track cars or trucks carrying goods from

one city to another one. We may have two kinds of positions: one explained in terms of

latitude/longitude when a truck is traveling by a route, and the other one in terms of streets'

names and numbers, when the truck is in a particular city. In this example we can see that

not only we may have to describe what the location means, but also the way in which that

location changes depending on the place where the truck is. From the implementation

point of view, the application must provide operations to dynamically change from one

reference system to other. From the design point of view, we need to express this design

decision clearly and unambiguously.

Without the information that the reference system provides, the set of points

representing the location of a geographic object does not make sense. Working with

several reference systems is also complex since even when it is possible to implement

algorithms to translate locations from one reference system to another one, the semantics

of these changes are not explicitly recorded during design.

Figure 13 shows the structure of the Reference System design pattern.

Please notice that we have decoupled Location from ReferenceSystem to allow to

dynamically con®guring a location object with different reference systems during the

lifetime of a geographic object. This design solution is clearly better than sub-classifying

Location according to different reference systems, since the resulting design would be

more rigid and would prevent changing the reference system dynamically.

Location implements the basic behavior to support the representation of the geographic

coordinates within a reference system. ReferenceSystem de®nes an abstract protocol that

Figure 13. Structure of the Reference System.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 21

is used to describe the context where a Location is de®ned. It also de®nes the set of legal

operations in this context. In other words each ReferenceSystem describes how measures

behave in the de®ned Location. Measure describes the units of the Location values. These

values could be measured following the approach proposed in [5].

This architecture de®nes an object (location), which encapsulates the relationship

between a measure and a reference system. Location knows the value of its position and

the used reference system. This pattern provides a great ¯exibility since multiple ways to

represent geo-referenced entities of the real world, based on different earth abstractions

can be supported. Furthermore, it makes possible to change or translate locations from one

system to another one without affecting the referenced object.

Each reference system implements a set of legal operations such as computing distances

between points, comparing elements, and calculating areas. It also speci®es translation

operations to other reference systems. Distances, areas and any other operations that

depend on the geographic object position, are expressed by collaborations between the

location of that object and the location reference system.

There is also the problem of de®ning distances. The meaning of distance depends on the

space. While the distance between two points in a three- dimensional space in spherical

coordinates is the usual distance function

�����������������������������X
k[N

�xik ÿ xjk�2
r

we may want to de®ne distance only with respect to the length of the shortest segment

that goes from the point to the sphere surface. Thus the de®nition of what is the center of

the space may vary. For computing purposes we can think of the center either as a point or

as the whole surface of the sphere.

To be able to implement different kinds of reference systems we associate an object

representing the origin to the ReferenceSystem class. In this way we can de®ne the origin

as a point or as an equation without affecting other objects.

Figure 14, shows the structure of the Reference System where the origin is de®ned.

In order to calculate the distance between two points, the ReferenceSystem
collaborates with its origin to obtain the information about its position values.

5.4. The roles design pattern

In this section we describe the Roles design pattern, which can be used in GIS applications.

We de®ne it in terms of the problem it solves, its structure and the advantages of its use.

Objects within a geographic model can handle different kinds of information,

addressing completely different concerns. In the design step, all information related to

an object is usually included in that object. Describing different unrelated themes in the

same object is an unsuitable approach, as we show in the example below.

Suppose that we are modeling a country divided into states. We could de®ne their

22 GORDILLO ET AL.

behavior as allowing to answer the country/state name, answer all states which conform

the country, return the country national language, explain its government system, answer

its independence day, list all national holidays, and so on. Figure 15 shows the basic

structure of classes Country and State.

A country could also need to record additional information about Demography such as

population, average longevity, active population, and average earn; or Sociological such as

the name of the ethnic groups, regions in which each ethnic group lives, etc. Since

different instances of Country could be analyzed from different points of view, each

instance would need to exhibit different behaviors; for example an instance of Country can

answer information about its ethnology, while another instance has information about its

demographic population. If all information is included in the same class, we end with a

monolithic class that will be dif®cult to maintain and extend.

Figure 14. Structure of the Reference System including its origin.

Figure 15. Structure of Country and State.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 23

Another inadequate solution could be de®ning subclasses of Country by trying to model

each aspect (e.g., Demographic) as a sub-class. Figure 16 shows the resulting architecture,

which does not allow the same country to be viewed from more than a point of view or

even to dynamically change the point of view.

As it is shown in ®gure 16, when a Country is instantiated (Demographic or

Sociological) it is quite dif®cult or impossible (for most of the OO languages) to change

the instance class.

Actually, demographic and sociological information constitutes different points of view

to see the same object. Moreover, under different views, the same information could be

interpreted in different ways.

A better solution is achieved when each subject is de®ned as a role; each role will be an

object, which has a close relationship with the main object. Figure 17 shows a simple

diagram of the relationships among GeoCountry and its roles as they are expressed during

the design step.

The relationship between a geographic class and each one of its roles is implemented

with a speci®c Roles subclass.

Each role acts as a wrapper over the object that plays that role, due to its polymorphic

interface. This architecture allows an object to dynamically change some of its roles and to

interact with them to perform speci®c computations.

Country roles could need to collaborate with the country states in order to compute a

geographic aspect. In the case of states with a Demographic Role, that provides

information about population in that state, a country population could then be computed by

summing up all states' populations. This means that the Demographic Role of the country

Figure 16. Resulting architecture with Country subclasses.

24 GORDILLO ET AL.

must know how to collaborate with the demographic role of each state, in order to get the

partial populations and to compute the ®nal result.

While the Demographic Role applied over a State is atomic, since it handles concrete

data, the Demographic Role of the Country is derived because it must collaborate with

others in order to calculate population. Figure 18 presents an object diagram, which shows

the relationships among a country, its states and the demographic role.

Since any role could be characterized as derived or atomic, it is necessary to abstract this

condition into a new hierarchy, which models different strategies that may be used to

obtain the desired information. We can do that by de®ning a Strategy hierarchy as it is

shown in ®gure 19.

Figure 17. Relationship between the Country and the Roles hierarchy.

Figure 18. Relationships among instances of Country, DemographicRole and State.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 25

In the example above, when a query for information about population is received by an

instance of GeoCountry, it will satisfy the request by collaborating with all its states. The

relationship among State, DemographicRole, and Country can be modeled by creating a

new object, the Strategy, which represents the strategy used to answer or calculate the

population. When an object corresponding to the demographic role of the country is

created, the speci®c Strategy that will be used for a particular calculation, have to be

associated with that role. Figure 20 shows the resulting relationships among instances of

Country, State, DemographicRole, AtomicStrategy and DerivedStrategy.

While an instance of AtomicStrategy speci®es the way in which a state answers

demographic requirements, an instance of DerivedStrategy models and implements the

interaction between a country and a state in order to elicit the data (i.e., the population). In

the end, the instance of DemographicRole is the responsible for the ®nal calculations. The

role abstraction is well known in other areas such as: security models [18], ®nancial

applications, etc.; within the GIS area, it makes possible to dynamically assign different

Figure 19. Resulting structure with ObjectWithRoles, Roles and Strategy hierarchies.

Figure 20. Relationships among instances of Country, State, DemographicRole, AtomicStrategy and

DerivedStrategy.

26 GORDILLO ET AL.

views to a geographic object. Finally, it allows GIS designers to take advantage of the `is
divided into' relationship; it is possible to build views which are based on components'

knowledge and behavior as we have shown in the country and states example.

5.5. The appearance design pattern

All geographic information systems produce graphical outputs; these outputs have to

satisfy a wide range of user requirements, which in many cases implies displaying the

same entity in different ways according to the actual context; or showing different objects

have to be in a similar fashion. For example, transportation maps of a city usually deal with

subway lines, pedestrian path, airports, etc. In this context, there are a lot of symbols,

which aid to explain different features of the city [12]. A tiny airplane could indicate a

regional airport while an image of a commercial jet represents an international airport. In

order to locate subway stations, it is common to use points with different colors or shapes.

Additionally, the intersections of subway lines are marked by combining the color and the

shape of the representing points, ®gure 21 shows some examples of different symbols

which usually appear in city maps.

Geographic information is generally used for both performing spatial analysis and

producing outputs. Symbols, colors and the desired level of abstraction for a visual

analysis are de®ned according to the needs of the users. Usually, some tradeoffs must be

made between the amount of data and the accuracy of information in order to obtain a

legible map in the output [2]. The selection of the output properties (symbols, colors, scale,

etc.) is done at the moment in which the map is shown. In fact, spatial analysis and

information outputs are very different concerns; they have to be dealt by separating the

de®nition of the geographic object from its presentation in the interface.

A ®rst attempt to design the user interface of a GIS would consider assigning the

representation responsibilities to the GeoObject; then GeoObject will have to implement

methods to manage visual properties. This solution does not address the dynamic essence

Figure 21. Different interface symbols for similar objects.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 27

of the problem. Some entities will need to handle more than one interface feature, which

perhaps will have to be shown at the same time. As it is shown in ®gure 21, the station,

which is located in the intersection of Subways A and B, is shown as the composition of

symbols of both lines.

The most effective way to relate objects with their graphical representations is the

Model/View schema, described as the Observer pattern in [6]. This solution implies

modeling the representation itself as an object. In our model this object is called

Appearance and it knows how to display the corresponding GeoObject according to the

scale and the selected shape. It also manages visual properties such as color, de®nition

level, and line thickness. For many objects, these properties will have a default value and

will not change.

Given the large number of objects than can appear in any GIS system, this pattern is

useful to separate the properties from the object displaying those properties. All objects

that have the default appearance will share the same AppProperties object. Only those

objects with a distinctive appearance will have their own properties.

In ®gure 22 the structure of the Appearance design pattern is shown.

The Appearance class speci®es the protocol to receive noti®cation of changes from the

related object. The AppProperties class de®nes the set of properties that establishes how

the Shape is displayed by the Appearance object. The ConcreteAppearance class

implements the protocol of Appearance to display ConcreteGeoObjects according to a

set of properties (modeled by AppProperties). Finally, each Shape's instance is an

arbitrary object whose protocol is known by the ConcreteAppearance object.

All geographic objects that are going to be displayed have one or more associated

Appearance objects, that are recorded by the GeoObject by calling the attach: method.

An Appearance object knows a GeoObject instance that works as its model when its

assign: method is called.

Every time the ConcreteGeoObject changes its state, it calls its update: method, which

in turn calls the notify: method of every Appearance object associated to the GeoObject.
The showOn: method of a ConcreteAppearance object is tailored to display the Shape
object as the representation of the GeoObject, taking into account the appearance

modi®ers stored in the properties object.

Figure 22. The Appearance design pattern.

28 GORDILLO ET AL.

Using the Appearance design pattern we can separate the representation from the

geometry of an object; we also reduce storage by avoiding repeated information in

different objects and allow many views of the same GeoObject to co-exist seamlessly.

AppProperties and Shape can be shared; as stated above, many objects can share a

common shape that will be displayed in the same way.

Different Appearance instances are needed for different shapes, even for the same

GeoObject. There are three kinds of relationships between a GeoObject and its

appearance. It can be a literal representation of the GeoObejct position; it can be a shape

derived from the position; or it can be an arbitrarily assigned shape. Then, an Appearance

object must know the protocol of the GeoObject and the Shape in order to display it in a

speci®c media.

6. Conclusions

In this paper we have presented a two-step method for designing GIS applications. The

goal of the process is to deal with a different concern in each step. In the Conceptual

Modeling step we concentrate our efforts on the identi®cation and abstract de®nition of

domain elements, thus allowing us a better understanding of the problem. As the de®nition

of spatial features is delayed until the geographic design step, this approach leads to more

modular and understandable designs. We have presented a basic architecture for building

the Geographic Model; it is based on the use of the Decorator design pattern to decouple

conceptual from geographic objects. As GeoObjects wrap conceptual objects it is possible

to create more than a geographic view for the same object. We discussed the Reference

System design pattern to address the problem of dealing with multiple ways of

understanding the location of an object. The Appearance design pattern allows de®ning

more than one user interface for the same geographic object. We showed that the

interaction among these three simple patterns yield an evolvable and easy to modify and

reuse object structures.

We then presented a new design pattern, Role, yielding an elegant and powerful solution

to recurrent problems in the GIS domain. We also showed how the basic architecture could

be easily combined with this micro-architecture in a more comprehensive example.

Besides, we are building an object-oriented application framework providing the basic

hierarchies and abstract collaboration models that will allow us to extend an existing

application with geographic features by systematically applying previously mentioned

design patterns. We intend to de®ne an environment in which the designer will be able to

visually compose application and geographic objects by following those design patterns.

Different reference systems have been implemented by instantiating the Reference
System pattern. In particular we have implemented Rectangular (2-D and 3-D) and

Ellipsoidal (2-D and 3-D) systems including cylindrical and conic projections, using an

object-oriented language.

Interface aspects of geographic objects (instantiations of the Appearance pattern) and

the abstract object collaborations needed to interpret locations in the model have been also

implemented.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 29

We are now working on the de®nition of topological features of geographic objects. In

this way, each object in the model knows its main spatial characteristics: the location, the

reference system in which the location has been de®ned and its topology. Topologies

de®ne geographical operations, such as distances, neighborhood, etc.

From our experience in modeling geographic applications using patterns and from the

feedback obtained from prototypical implementations, we believe that our approach is

quite promising for obtaining interoperable GIS applications, either built from scratch or

by using existing legacy applications.

References

1. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel. A Pattern

Language. Oxford University Press: New York, 1977.

2. S. Aronoff. Geographic Information Systems: A Management Perspective. WDL Publications: Ottawa,

Canada, 1989.

3. A. Dallari Bonfatti and P.D. Monari. ``Capturing more knowledge for the design of geological information

systems,'' in Proc of ACM-GIS'95, Baltimore, Maryland, USA, 1±7, 1995.

4. Coplien and Schmidt (Eds.). Pattern Languages of Program Design. Addison Wesley, 1995.

5. M. Fowler. Analysis Patterns: Reusable Object Models. Addison Wesley, 1997.

6. R. Helm Gamma, R. Johnson, and J. Vlissides. Design Patterns. Elements of reusable Object-Oriented

Software. Addison Wesley, 1995.

7. S. Gordillo, F. Balaguer, and F. Das Neves. ``Generating the architecture of GIS applications with design

patterns,'' in Proc. of the ACM-GIS'97: Advances in Geographic Information Systems, Las Vegas, USA,

November 13±14, 1997.

8. S. Gordillo and F. Balaguer. ``Re®ning an object-oriented GIS design model: Topologies and ®eld data,'' in

Proc. of the ACM-GIS'98: Advances in Geographic Information Systems, Washington, USA, November

6±7, 1998.

9. B.U. Pagel Kosters and H.W. Six. ``Object-Oriented requirements engineering for GIS applications,'' in

Proc. of the ACM 3rd ACM International Workshop on Advances in Geographic Information Systems, ACM-
GIS'95, Baltimore, Maryland, USA, 61±68, 1995.

10. M.A. Casanova Medeiros and G. Camara. ``The Domus project. Building an OODB GIS for environmental

control,'' in Proc. of IGIS'94, International Workshop on Advanced Research in GIS, Springer Verlag

LNCS, N. 884, 45±54, 1994.

11. Open GIS Consortium (OGC). 1996B, The Open GIS Guide-A Guide to Interoperable Geo- processing,

Available at http ://ogis.org/guide/guide1.htm

12. G. Plumb. ``Cartography and map design workshop book,'' Urban and Regional Information System

Association 1460 Renaissance Dr.; Suit 305 Park Ridge, IL 60068, July 1997.

13. M. Postmesil. ``Maps alive: viewing geospatial information on the WWW,'' in Proc. of the six
International World Wide Web Conference, 1997, Available at http ://www6.nttlabs.com/Hypernews/get/

PAPER130.htm.

14. M. Rumbaugh, M. Blaha, M. Premerlani, and W. Lorensen. Object-Oriented Modeling and Design. Prentice

Hall: Englewoods Cliff, New Jersey, 1991.

15. D. Schmidt. ``Using design patterns to develop reusable object-oriented communication software,'' Comm.
of the ACM, 65±74, October 1995.

16. J. Star and J. Estes. Geographic Information Systems. An Introduction. Prentice Hall, 1990.

17. N. Tryfona and T. Hadzilacos. ``Geographic applications development: models and tools for the abstract

level,'' in Proc. of ACM-GIS'95, Baltimore, Maryland, USA, 19±28, 1995.

18. J. Yoder and J. Barcalow. ``Application security,'' in Proc. of Pattern Languages of Programming, Vol. 2:

Roles and Analysis. Urbana-Champaign, Monticello, Illinois, USA, 1997.

30 GORDILLO ET AL.

Silvia GordiÂllo received an M.Sc. in Software Engineering at La Plata University in Argentina. She is a full

Professor at the same University and member of LIFIA (Laboratorio de InvestigacioÂn y FormacioÂn en InformaÂtica

Avanzada). Her areas of work include Object Oriented Databases and Geographic Information Systems. She has

presented results of research projects at many Computer Science Conferences.

Catalina Mostaccio is an associate Professor at La Plata University in Argentina. She is completing her M.Sc.

in Software Engineering at the same University. She is a member of LIFIA (Laboratorio de InvestigacioÂn y

FormacioÂn en InformaÂtica Avanzada). Her areas of work include Geographic Information Systems. She has

presented results of research projects at many Computer Science Conferences.

Federico Balaguer is member of LIFIA-University of La Plata-, since 1994. He has experience using

Geographical Information Systems for supporting cadastral and water management projects. He has consulted for

organizations in different ®elds, as ``object expert'' and gave several courses about Object Technology. His

interests include GIS evolution, frameworks and design patterns. Currently he is enrolled in the Ph.D. program in

the University of Illinois at Urbana-Champaign.

DEVELOPING GIS APPLICATIONS WITH OBJECTS 31

Fernando Das Neves got his Licenciate degree at the National University of La Plata in Argentina. He worked

there in 1996 and 1997 with Prof. Gorillo to develop an object oriented design model for GIS. He is currently in

the MS program at Virginia Polytechnic Institute and State University. His interest areas include object-oriented

design, information visualization and retrieval, and digital libraries.

32 GORDILLO ET AL.

