

Decoupling Personalization Aspects in Mobile
Applications

Arturo Zambrano1, Silvia Gordillo1,2, and Luis Norberto Polasek1

LIFIA, Facultad de Informatica, Universidad Nacional de La Plata 50 y
115 1er Piso

1900 La Plata, Argentina

1 {arturo, gordillo, pola}lifia.info.unlp.edu.ar

2 CIC, Provincia de Buenos Aires

1 Introduction

Mobile computing is constantly evolving and it is evident that with the
advance of technological issues this trend will grow. Mobile software,
executing in small devices such as Personal Digital Assistants (PDAs) and
cell phones, must provide the user with a great variety of information and
services that will be even more complex in the future to come. In this
context and, as explained in [10], efective use of information and services
can only be carried out by using adequate personalization mechanisms to
present the information and services in a way that is better suited to the
user. Research on personalization issues has been quite important for Web
software, but personalization on software running in mobile devices is still
premature. In this direction we propose to address behavioral adaptation
for mobile applications by using the Aspect-Oriented Programming
paradigm, following the ideas presented in [11] to introduce adaptation and
in [6] to identify concerns. In this paper we present an architecture in
which components implementing functional applications’ requirements are
completely decoupled from those implementing personalization features in
order to obtain independent evolution of both. Separation of those
concerns is achieved by using aspects that model adaptation components,
isolating them from the base application. This paper is organized as
follows: In Section 2 the basic personalization concepts using throughout
the paper are presented and related work in this subject is discussed. In
Section 3 we describe the most important issues when realizing adaptation
in mobile software. In Section 4, the basic concepts of Aspect Oriented

R. Navarro-Prieto and J.L. Vidal (eds.), HCI Related Papers of Interacción 2004, 29-40.
© 2006 Springer. Printed in the Netherlands.

29

 Zambrano
,
A., Gordillo, S., and Polasek, L. N.

30

Software are introduced. Section 5 presents our architecture and in Section
6 we show how to map a concrete application onto the presented
architecture. Finally, some concluding remarks and further work are
discussed.

2 Personalization

According to [1] personalization is understood as the process that adapts
functionality, interface or information contents to make it more relevant to
a particular user. For an application to be personalized it must know the
user’s context, i.e. all those features that characterize the execution
environment including user information and preferences. Personalized
software should maintain models of the objectives, characteristics,
preferences and knowledge of the intended user. These models are used to
keep up-to-date information on each user (usually called user profile) to
adapt services to his preferences, in order to satisfy his needs [8]. This
adaptation will also consider usually other contextual elements and will
involve presentation or management issues. The adaptation process consist
usually in three tasks depicted in Figure 1.

Fig. 1. Adaptation process for personalization

such as his characteristics, behavior and environment. With this information,
initial models of the user preferences are built.

Information
Gathering Data Modeling Interence Adaptation

Production

Modified
Behavior

Application
Usage Mobile Application

User data acquisition. In this process we identify available user data,

Decoupling Personalization Aspects in Mobile Applications

31

presumptions on the user and/or group of users, behavior and environment
are elaborated.

behavior adaptations that are then introduced in the application.

It is interesting to note that, due to the previously mentioned

characteristics, when an application is modified in order to support
personalized behavior, code must be added in diferent modules of the
application. This makes the task of application evolution difcult and error-
prone. Among most usual actions, to adapt the information presented to the
user, we can mention:

� Filtering: It consists in removing information or services that
are not interesting to the user.

� Ordering or Priorization It is achieved by reorganizing
information according to the user preferences Suggestion It
consists in giving spontaneous suggestions to the user,
presenting information or suggesting tasks that are assumed of
his interest.

3 Adaptation for Mobile Devices

Nowadays, mobile devices such as cell phones and PDAs allow the user
to access information and services according to his geographical position
and current activity. Changes in the geographical position and the situation
where the device is used are inherent characteristics of such systems.

The information delivered through mobile devices is bound to the usage
context, the activity in which the user is involved, and user preferences. On
the other hand, the minimal resources available in mobile devices impose
constraints regarding information processing. Wireless communication is
expensive and not reliable. Storage capacity is very limited and processing
is not powerful (typically less than 200MHz). Furthermore, graphics
displays are not always available, or they are low resolution ones. In this
context adaptation is a fundamental tool needed to cope with these issues.

Furthermore, these non-functional requirements must be envisaged from
the early design phase. But they have a negative effect on the design and
implementation. The inclusion of such non-functional concerns tends to
complicate the design making application modules hard to understand.

:

User proÞle representation and secondary inference. That is,

Production or Adaptation. It generates content, presentation or

 Zambrano
,
A., Gordillo, S., and Polasek, L. N.

32

At the same time it is very diffcult to trace where those requirements are
implemented, since they are spread along several modules.

Then, the resulting designs and implementations of functional and non-
functional requirements are coupled. In the worse case, depending on the
cou-pling level, the final implementation of non-functional requirements
can be em-bedded into the functional requirements’ implementation.

4 An Overview of Aspect Oriented Programming

In the application development process, it is common to find a set of
concerns that affect many objects beyond their classes which constitute (in
object-oriented programming) the natural units to define functionality.
They are called crosscutting concerns. A crosscutting concern is one that is
spread along many of the modules of a system. Typical crosscutting
concerns are persistence, synchronization, error handling. etc. As it is said
in [3]: “...existing software formalisms support separation of concerns only
along a predominant dimension neglecting other dimensions... with
negative effects on reusability, locality of changes, understandability...”.
These secondary dimensions correspond to crosscutting concerns. In our
case, secondary dimensions are represented by context-awareness related
concerns.

Aspect-Oriented Programming (AOP for short) [5] is one of many
technologies resulting from the effort to modularize crosscutting concerns.
The goal of AOP is to decouple those concerns, so that the system’s
modules can be easily maintained, evolved and seamlessly integrated. To
do that AOP introduces a set of concepts:

� Join Point is a well-defined point in the program flow (for
instance a method call, an access to a variable, etc)

� Point-Cut selects certain join points and values at those points.
� Advice: Advises define code that is executed when a point-cut is

reached.
The program whose behavior is affected by aspects is called base

program. A join point specifies a point in the execution of the base
program that will be affected by an aspect. One or more of these join
points (from one or different classes) are identified by a pointcut in the
aspect layer, associating it with an advice. In this way, when one join
point, referred in a pointcut, is reached in the program execution, the
additional code, defined in the proper advice is executed. The aspect’s
code is composed of advises and the pointcuts where those advises must be
applied.

Decoupling Personalization Aspects in Mobile Applications

33

5 Our Approach

Considering the negative effects of embedding adaptation code into the
core application code, it is necessary to define an architecture which
enables the separation between system modules and those that realize the
adaptive personalization functionality. At same time, this separation is
useful as it allows a correct integration of the different system’s views,
ideally in a transparent manner from the core application point of view.

Such an architecture will provide a set of advantages, among them we
found:

� Extensibility: since each view of the system is independent from
one another, they can evolve independently.

� High abstraction level: since the personalization features
are isolated from the rest of the system, it allows the
designer/programmer to focus in the core application, regardless
secondary views such as personalization features.

In this work we propose the use of aspect oriented techniques in order to

properly separate the core application components from those aimed
to personalization. In order to get such a separation we have identified the
main components, their roles and relationships, and defined
the foundations of a software architecture that combines both objects and
aspects.

5.1 Architecture’s Main Components

A personalized mobile application can be divided into two dimensions
or views. The first one is where the base application belongs to, that is to
say, where the functional requirements are implemented. The second one
comprises the non-functional requirement of personalization and its
implementation. More views can be modelled as needed but, as far as this
work is concerned, two views or dimensions will be enough.

 Zambrano
,
A., Gordillo, S., and Polasek, L. N.

34

Fig. 2. Separation between the two main dimensions, base application and
personalization

Figure 2 presents a layout of these components, the mobile system is

divided into two parts. The core mobile application itself which is
operative, independently from the personalization layer, it implements the
functional requirements of the system. Modules located at this layer
provide the main system functionality.

The second layer corresponds to a metalevel, where the personalization
feature is reificated. This metalevel is the part of the system in charge of
gathering user preferences, storing them in a proper way for later retrieval,
and instrumenting the execution of the underlying mobile application,
adapting its behavior to meet those preferences.

It is important to note that, since the base mobile application is
completely functional and independent from the personalization metalevel,
there is no interaction from the application towards the personalization
level. This independence is a benefit that starts at the design phase, since it
allows the designer to concentrate in the core functionality, abstracting him
from those details related to personalization.

It is worth to note that in our approach we suggest to settle the
personalization functionality on the client side, that is, in the mobile
device. This characteristic makes this approach different from other works
on personalized services for mobile devices. Client side personalization
makes the system network failsafe, since it does not rely on the server to

User's preferences

Adaptation Engine

Event Listener
Adaptation

Introducer

Profile Model

Captured user's data
Notifications

Adaptations

Adapted
Behavior

Application's
Events

User's selections
keyworks, etc.

Profile Builder

Mobile Application

Decoupling Personalization Aspects in Mobile Applications

35

provide the personalized behavior. Due to instability of wireless
connections in mobile contexts it is common to face situations where there
is no connectivity. That’s why we argue that personalization should be
located at the client side. Since information gathering, storing and
adaptation mechanisms regarding personalization are implemented at the
client side, it is possible to cope with offline situations, and keep providing
personalized response to the user.

Back to the architecture, the personalization dimension is formed by the
following components:

� Profile Model: This component is in charge of storing user
preferences.

� Adaptation Engine: The engine is responsible for inferring the
kind of adaptation that should be done, it is done using the
information stored in the profile model.

� Profile Builder: This component is in charge of intercept certain
application execution points in order to feed the profile model
with information about the user,

� Event Listener: This component comprises a set of aspects that
detect the occurrence of certain application events. These events
can be seen as triggers of adaptive actions.

� Adaptation Introducer: Once an interesting event has been
detected, and the proper kind of adaptation identified, this
component controls the application behavior adding the planned
adaptation. This is done through aspects that can introduce
behavior in the application.

Figure 3 shows the mapping between architecture components and a

potential application design. Graphical notation is an UML variant [7],
which denotes aspectual concepts through stereotypes. Advised methods
are pointed by <<pointcut>> relationships. As it is shown in Figure 3 the
base application is intercepted in those methods related with the user
interaction by using the proper pointcuts. This interception is performed by
the ProfileBuilder component, which gathers information about the user
profile and passes it to the ProfileModel component. At the same time, the
EventListener catches those events that can trigger some kind of adaptive
behavior, and notifies the AdaptationEngine, which decides the adaptation
type to be done. These adaptations are introduced in the application by the
AdaptationIntroducer, where pointcuts are defined on those application
parts where adaptation make sense to be done. Generally, suitable joint
points are user interface events.

 Zambrano
,
A., Gordillo, S., and Polasek, L. N.

36

5.2 On the application and the personalization model

The link between the application model and the personalization one is
done transparently by an aspectual layer. Aspects located in this layer are
responsible for three key personalization activities:

Fig. 3. Object-Aspect Oriented Architecture

1. Interception of user actions in order to gather information regarding

his preferences, usual actions and so on.
2. Detection of contextual changes (through application events) that

require personalization actions.
3. Application behavioral adaptation, based on the user profile, in order

to provide a better response for the user.

The first activity is aimed to collect information regarding user

preferences and common activities. The interception is done by aspects
that extract parameters entered by the user, for instance the words used in
an web search, the preferred order in a listing, or the selected option from a

Decoupling Personalization Aspects in Mobile Applications

37

set. With this information it is possible to build the user profile. For
instance, in an application that allows the user to search information using
keywords, they can be extracted and used to build a semantic web, relating
them with other terms. Keywords can be also used to analyze frequency
and to find information patterns. Then, the derived information feeds the
user profile. This kind of activities also includes:

– Measures of time spent in deferent parts of the application: this can be
an indicator of special interest in some service or information offered by
the system. The frequency of some kind of input can be also used to detect
interest.

– Detection of common user choices. When some option is selected
among several ones, in a repetitive way, it is an indicator of interest in that
information or service. Frequency and repetition are indicators of user
preference.

The adaptation process then consist in the instrumentation of the
system in order to intercept those events that trigger internal
personalization mechanisms. Eventually, these mechanisms will produce
some behavioral changes in the application. For example, given a tourism
mobile application, which aids the user showing the list of interesting
places to visit, there will be events automatically triggered by the GPS. It
is possible to react to those events showing the user new places to visit,
basing this suggestion on the information gathered regarding his
preferences.

All this behavioral alteration is introduced by means of aspects which
can affect the normal control flow of the application. In this way the
application is oblivious regarding adaptations, since they are introduced
transparently in any application join point.

6 Example

To illustrate these ideas, we present as an example a mobile application
that will be personalized using aspects. We will show how the adaptation
is made, once the user’s profile is built.

6.1 Definition

The application is a kind of tourism guide, for a tourist in a Buenos
Aires journey, using a PDA as his assistant. This user is interested in local
folklore, food, music and traditional dances. He is familiarized whit
Argentina’s history and also is a sport fan, specially soccer.

 Zambrano
,
A., Gordillo, S., and Polasek, L. N.

38

This person has a tour of places to visit and wants to be notified when he
is close to some place that may interest him, but do not belongs to the
original tour.

The tour crosses the neighbourhood of La Boca, the Plaza de Mayo, and
the Obelisco. The tour starts in La Boca, so his PDA will show him
information about this neighbourhood.

As he walks the La Boca’s streets, he get close to the well known soccer
stadium La Bombonera, that is not registered in his tour. Nevertheless, the
system recognizes that the user is interested in soccer and notifies him that
he is close to the famous stadium.

6.2 Functionality Distribution

In this case, the tourism guide is the base application on which the
adaptation of the user’s preferences will be made. This application is fully
functional independently of the personalization capabilities.

The profile modeling has been already discussed in [4] and [2]. These
models can be adapted to fulfill the Profile Model role in Fgure 2, so that
we do not analyze this topic, and concentrate in the adaptation topic. The
Adaptation Engine decides which adaptations have to be introduced in
the application when an event occurs. The engine can use different
technics to infer the adaptation such as semantic nets, neuronal nets,
agents, etc. These topics have already been discussed in [9], that work
shows different ways to filter information considering user’s preferences.
Since filtering technics are not the objective of this paper, we only will
focus on the role that fulfills the aspects, how they relate with the base
application and the components that implements the personalization
(ProfileModel and Adaptation Engine)

The aspects that implements the Profile Builder component intercepts
execution points, as those described in Section 5.2. From the keywords
collected from searches and user chosen options, information that defines
his preferences is captured. This information that is captured automatically
without disturbing the user, is known as implicit construction. The aspect
is in charge of intercepting the methods that implements the search and the
selections, in order to inspect the values entered by the user. Since this
information capture is done using AOP provided constructions (join
points, point cuts, and advises), the base application does not need to
implement any behavior related to information capture in order to build the
profiles.

There also exists what is known as explicit profile construction, where
the user express his preferences by filling forms. This information

Decoupling Personalization Aspects in Mobile Applications

39

complements and feeds the profile with the information captured
automatically by the aspects.

Once the information is captured within the profile model, the
personalization layer is ready to make the adaptations. This adaptations
begin with the detection of some event by the Event Listener component
which is, in fact, an aspect. This aspect intercepts the application’s control
flow in order to detect the events that launch the adaptations. In the
example, an aspect can intercept the geographic position change
notification, notifying the Adaptation Engine that the user’s geographic
position has changed.

The Adaptation Engine finds that the position is close to the soccer
stadium and since the Profile Model holds information that allows to
establish that the user is a sport fan, the adaptation engine decides to
launch an adaptation of the suggestion kind.

The aspects that implements the Adaptation Introducer, intercepts,
through pointcuts, all the interface actions, so when a user generated event
occurs, the suggestion to visit the stadium is presented to the user. Closing
the adaptation process cycle.

7 Conclusions and Future Work

The application of technology that allows the advanced separation of
concerns, like Composition Filters, Subject Oriented Programming and
like this case Aspect Oriented Programming, in general produce higher
levels of modularity. The benefits of modularity, well known in computer
science, includes flexibility, maintainability, design and implementation
clarity.

In this work have presented general foundations of an architecture that
allows to isolate in a effective way the application core from such not
functional concerns related with the personalization. We have defined the
essential aspects and join points that allows to establish the connections
between the architecture components. The presented proposals have
foundation in previous experiences and are in implementation phase, we
trust that the result will give support to the exposed ideas. We have also
analyzed the impact of doing the adaptations in mobile gadgets,
considering hardware limitations present in mobile computing.

The use of aspects to adapt the behavior of mobile applications is novel,
and follows the ideas presented in [11]. Still remains the study of the

 Zambrano
,
A., Gordillo, S., and Polasek, L. N.

40

integration of the architecture presented in this work in a way that
incorporates the elements of context awareness as they were explained.

The implementation of prototype applications that materialize this ideas,
will help to make a concrete evaluation of the benefits reached by applying
aspect oriented programming in mobile systems.

References

1. J. Blom. Personalization a taxonomy. In CHI 2000 Workshop on Designing
Interactive Systems for 1-to-1 Ecommerce, 2000.

2. W. W. W. Consortium. Composite capabilities/preference profiles, 2001.
3. S. Herrmann and M. Mezini. PIROL: A case study for multidimensional

separation of concerns in software engineering environments. In OOPSLA,
pages 188–207, 2000.

4. G. Kappell, B. Prll, W. Retschitzegger, and W. Schwinger. Customisation for
ubiquitous web applications. In Int. Journal of Web Engineering and
Technology (IJWET), Inaugural Volume, Inderscience, volume 2299.
Publishers 2003, 2002.

5. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Mehmet and S. Matsuoka,
editors, 11th Europeen Conf. Object-Oriented Programming, volume 1241 of
LNCS, pages 220–242. Springer Verlag, 1997.

6. C. Mesquita, S. D. J. Barbosa, and C. J. P. de Lucena. Towards the
identification of concerns in personalization mechanisms via scenarios. In
AOSD 2002, Workshop on Early Aspects, 2002.

7. R. Pawlak, L. Duchien, G. Florin, F. Legond Aubry, L. Seinturier, and L.
Martelli. A uml notation for aspect-oriented software design. In AO modeling
with UML workshop at the AOSD 2002 conference. Proceedings, 2002.

8. L. A. R. Rui Alexandre P. P. da Cruz, Francisco J. García Peñalvo. Perfiles de
usuario: En la senda de la personalización. Technical report, Departamento de
Informática. Universidad de Salamanca, 2003.

9. S. Stewart and J. Davies. User profiling techniques: A critical review. In 19th
Annual BCSIRSG Colloquium on IR. Springer Verlag, 1997.

10. M. Wagner, W.T. Balke, R. Hirschfeld, and W. Kellerer. A roadmap to
advanced personalization of mobile services. In 10th International Conference
on Cooperative Information Systems, 2002.

11. A. Zambrano, S. Gordillo, and I. Jaureguiberry. Aspect based adaptation for
ubiquitous software. In International Workshop on Information Retrieval.
Mobile HCI, 2003.

