

Mobile Application Development Approaches: A

Comparative Analysis on the Use of Storage Space

 Juan Fernández Sosa1, Pablo Thomas1, Lisandro Delía1, Germán Cáseres1,

Leonardo Corbalán1, Fernando Tesone1, Alfonso Cuitiño1, Patricia Pesado1

1 Computer Science Research Institute LIDI (III-LIDI)*

School of Computer Science, National University of La Plata,

La Plata, Buenos Aires, Argentina

*Partner Center of the Scientific Research Agency of the Province of Buenos Aires

(CICPBA)

{ jfernandez, pthomas, ldelia, gcaseres, corbalan, ftesone,

acuitino,ppesado}@lidi.info.unlp.edu.ar

Summary. The purpose of software development is meeting both functional

and non-functional requirements. In mobile device applications, non-functional

requirements are more relevant due to the restrictions inherent to these devices.

One of these restrictions is the availability of limited storage space. Therefore,

the size of a mobile application affects user preference for use. In this article,

we assess how the choice of a mobile application development approach affects

the final size of the application; we focus our analysis on text-, audio- and

video-based applications.

Keywords: Mobile devices, multi-platform mobile applications, native mobile

applications, application size.

1 Introduction

Application development for mobile devices poses a number of challenges specific to

this activity that were not present in traditional software development [1]. The

diversity of platforms, programming languages, and development tools, as well as

device heterogeneity as regards computation power, storage and battery life, are just

some of the aspects that Software Engineers have to consider.

In many cases, the success of an application for mobile devices depends on

its popularity. To maximize its presence in the market, it should be possible to run it

on different platforms [2]. Currently, the universe of operating systems for mobile

devices is led by the Android (74.24%) and iOS (20.83%) platforms [3].

In recent years, various methodologies for developing mobile applications

have been proposed and studied – the native approach and several multi-platform

development approaches (web, hybrid, interpreted and cross-compilation). The former

requires the development of specific applications for each platform, with parallel

development projects, using specific programming languages and tools for each

platform. On the other hand, multi-platform approaches allow generating applications

that can be run in more than one platform and produced within a single development

project.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

631

In addition to the choice of development approach, there are other

difficulties to be considered in relation to the limitations posed by mobile devices.

Battery life, computation power and storage space are non-functional requirements

that significantly affect the decision of the end users to install or keep a mobile

application in their smartphones.

In [4], the authors of this paper have analyzed the advantages and

disadvantages of the multi-platform development approaches mentioned above, from

the point of view of the Software Engineer. Similarly, the authors of [2] and [5] have

carried out, respectively, a comparative analysis of performance and battery

consumption for native developments and various multi-platform approaches.

Available storage space varies significantly among mobile devices. The

operating system and pre-installed applications (also known as bloatware) take up a

large portion of this space. This limits the possibilities for use [6] and, as a result,

users are usually reluctant to install new apps, or they even stop using those that

require a lot of space.

The size of the apps for mobile devices has increased with time. In Android,

it quintupled between 2012 and 2017 [7]. In iOS, the 10 most-installed applications in

the US increased their size 12 times (1,100%) between 2012 and 2017 [8]. This

increase is largely due to market maturity – as time goes by, users require new

functionalities for their apps.

For all these reasons, it is essential that developers consider a limited use of

storage space to attract more users.

In this paper, a comparative analysis of the storage space used by mobile

applications developed using the native approach and the different multi-platform

approaches described in [9] is presented.

In Section 2, the different approaches for developing mobile apps are

discussed and described; Section 3 details the experiments carried out to compare the

storage space used by applications developed with these approaches. In Section 4, the

results obtained are presented and discussed. Finally, the conclusions and future lines

of work are presented.

2. Types of Applications for Mobile Devices

 In recent years, the mobile device market, especially that of smartphones,

has seen a remarkable growth [10]. As regards operating systems, Android and iOS

are the strongest in the market. Each has its own development infrastructure. The

main challenge for mobile device application developers is being able to offer

solutions for all market platforms; in these cases, development costs are so high that

sometimes are hard to afford [11].

An appropriate solution to this problem is creating and maintaining a single

application that is compatible with all platforms. The goal of multi-platform

development is maintaining a single source code for several platforms. This results in

a significant reduction of effort and costs.

In the following sections, different approaches are presented for the

development of applications for mobile devices:

2.1 Native Applications

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

632

Native applications are developed to be run on a specific platform, considering the

type of device and the operating system and its version. The source code is compiled

to obtain executable code, similar to the process used for traditional desktop

applications. When the application is ready for distribution, it is published in the app

store specific for each platform. These stores have an audit process to check if the

application meets the requirements of the platform on which it is going to be run.

Finally, the application becomes available for download by end users.

One of the characteristics of a native application is that it allows unlimited

interaction with all the functions and features offered by the device (GPS, camera,

accelerometer, calendar, etc). Additionally, Internet access may not be a requirement

to run this type of applications. They are fast and can be run in the background, and

they issue an alert when there is an event that requires user intervention.

This development approach has a high cost, since each platform requires the

use of a specific programming language. Therefore, if the goal of a project is to

encompass several platforms, a different application must be generated for each of

them. This means that the coding, testing, maintenance and going live processes must

be carried out more than once.

2.2 Web Applications

Web applications for mobiles are designed to be executed in the web browser of the

device. They are developed using standard technologies such as HTML, CSS and

JavaScript.

One of the advantages of this approach is that no specific component needs

to be installed in the device, and no third-party approval is required before publication

and distribution. Only Internet access is required. Additionally, updates are pushed

directly to the device, since changes are applied on a server and enabled for

immediate access by the users. In summary, they are easy and quick to implement.

However, the greatest advantage of mobile web applications is that they are fully

platform-independent. There is no need to adapt to a specific operating system, only a

web browser is needed.

 On the other hand, this approach can reduce execution speed, which can

result in a somewhat less satisfactory user experience, and interfaces are more limited

than those offered by native applications. Performance can also be affected due to

connectivity issues, among others. Finally, some limitations could also be observed in

relation to access to specific features offered by the device [12].

2.3 Hybrid Applications

Hybrid applications use web technologies (HTML, JavaScript and CSS), but are not

run by a browser. Instead, they are run on a web container of the device that provides

access to device-specific features through an API.

 Hybrid applications offer great advantages, such as code reuse for the

different platforms, access to device hardware, and distribution through application

stores [13].

 Hybrid applications have two disadvantages when compared to native

applications. The first of these is that user experience suffers from not using the native

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

633

components in the interfaces. The second disadvantage is that these apps may be

slower due to the additional load associated to the web container where they are run.

 One of the most popular frameworks used in this approach is Apache

Cordova [14].

2.4 Interpreted Applications

Interpreted applications are built from a single project that is mostly translated to

native code, with the rest being interpreted at runtime. Their implementation is non-

platform dependent and uses several technologies and languages, such as Java, Ruby,

XML, and so forth.

 Unlike the web and hybrid multi-platform development approaches, with the

interpreted applications approach native interfaces are obtained, which is one of the

main advantages of this type of applications.

Some of the most popular interpreted development environments for these

applications are Appcelerator Titanium [15] and NativeScript [16].

2.5 Applications Generated by Cross-Compilation

These applications are compiled natively by creating a specific version for each target

platform. Some examples of development environments used to generate applications

by cross-compilation are Xamarin [17] and Corona [18].

Xamarin allows compiling fully native applications for iOS and Android by

sharing the same base code written in C#. Integrated with Microsoft Visual Studio, it

also allows generating applications for Windows Phone.

Xamarin allows sharing the entire business logics code, but user interfaces

must be programmed separately for each target platform.

Corona is a multi-platform framework that allows developers build both

general-purpose applications and games for the main platforms. A single base code is

used, which is then published for the different platforms. Unlike Xamarin, no

specialized rewriting or projects are required. Programming is done with Lua, which

is a simple scripting language.

3. Experiment

The different approaches for mobile development, native and multi-platform, use

different techniques to build the applications and the code, which can affect the final

size of the application.

The experiments presented here are aimed at assessing the impact that

choosing one development approach has on the final size of the applications.

3.1 Designing the Experiment

To carry out the experiment, development frameworks were selected based

on the different approaches discussed in previous sections. Tests were designed to

assess application size using the latest stable versions of these frameworks at the time

of the experiments.

The frameworks used, and their versions, are:

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

634

1. Android SDK API 25 (Java, native)

2. Apache Cordova, version 7 (multi-platform, hybrid)

3. Appcelerator Titanium, version 5 (multi-platform, interpreted)

4. NativeScript, version 3 (multi-platform, interpreted)

5. Xamarin, version 6 (multi-platform, cross-compilation)

6. Corona, version 2016 (multi-platform, cross-compilation)

When assessing the use of storage space, the various functionalities offered

should be analyzed since, depending on the framework development strategy, there is

a chance that more libraries, modules or plug-ins are added to the generated APK. An

APK, or file with .apk extension, contains an application for the Android operating

system. Its name is an abbreviation of the term Android PacKage.

To carry out the task, three applications with different functionalities were

built.

The first experiment consisted in showing the text “Hello, World!” on the

screen until the user closes the application. This trivial functionality allows

calculating how many bytes are added by each framework.

Experiments #2 and #3 were designed to play multimedia files (audio and

video, respectively), since there is a chance that other tools or libraries are added to

that end, increasing the final size of the application.

The app that plays audio uses a 1.32 MB audio file, while the app that plays

video uses an 89.2 MB video file. In both cases, the file is played automatically when

the app is started.

Thus, there are 18 test cases: 3 applications (text, audio and video) for each

of the 6 frameworks.

In all cases, when building the application special care was taken to check

that no additional files were added, since the frameworks could potentially add them.

All tests were carried out for the Android operating system compiled for

version 7.1, since Android currently represents the lion's share of the global market

[3].

The experiments are independent from the mobile device used, since the

results considered the size of the APK generated by each framework.

The source code for all developments is available for public access [19].

4 Results obtained

For all tests, the applications were generated following the standard procedure

recommended by the documentation for each framework.

Below, the results obtained for each experiment are discussed.

4.1.1 Use of Storage Space in Experiment #1

The text-based application developed using the native approach turned out to

be the smallest one. Cordova, hybrid approach, produced an APK only 18% larger

than that of the native approach.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

635

The application generated by cross-compilation with Xamarin had a size of

4.08 MB (176% larger than the native approach), and the one generated with Corona

was 6.51 MB (340% larger than the native one).

Finally, the applications created with interpreted approach frameworks were

the largest of the lot.

Table 1 shows the end sizes of the developed applications in ascending order

of storage size used by each.

Framework Development approach Size in MB

Android with Java Native 1.48

Cordova Hybrid 1.74

Xamarin Generated by cross-compilation 4.08

Corona Generated by cross-compilation 6.51

Titanium Interpreted 8.54

NativeScript Interpreted 12.49

Table 1. Application sizes; Experiment #1

4.1.2 Use of Storage Space in Experiment #2

Audio-playing applications were generated following the standard procedure

recommended by the documentation for each framework.

Table 2 displays the results obtained. The third column on the table details

the total size of each of the generated applications. The fourth column shows the

difference between total size and the size of the audio file, since this file has to be

packed together with the code for each application. This allows seeing more clearly

the size added by each framework.

For this experiment, the native approach was the best in terms of final

application size. The APK file generated with the hybrid approach is just 32% larger

than that generated with the native approach.

This difference increases with cross-compilation frameworks. The

application generated with Xamarin is 196% larger than the natively generated

application. The application produced by Corona was 388% larger than the one

created using the native approach.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

636

As in the previous experiment, the largest applications in MB are those

produced with the frameworks used for generating interpreted applications. In this

case, Titanium and NativeScript generated applications that were 564% and 1430%

larger than those produced with the native approach.

Framework Development

approach

Size in MB Size excluding audio

file

Android with

Java

Native 2.7 1.38

Cordova Hybrid 3.14 1.82

Xamarin Generated by cross-

compilation

5.4 4.08

Corona Generated by cross-

compilation

8.05 6.73

Titanium Interpreted 10.48 9.16

NativeScript Interpreted 22.43 21.11

Table 2. Application sizes; Experiment #2

4.1.3 Use of Storage Space in Experiment #3

In the case of the applications that played video, the procedures recommended by

their corresponding documentation were also followed.

Table 3 displays the results obtained. The same as in Table 2, the third

column shows the total size of each application, and the fourth column displays the

difference between total size and the size of the video file used. For result analysis,

the last column was used.

In this experiment, application sizes followed the same order as that

observed in experiments #1 and #2.

The native approach was once again the option that resulted in the smallest

APK. The second place was taken by the hybrid approach, with Cordova. It was

followed by cross-compilation frameworks, with Corona and Xamarin, respectively.

Lastly, the frameworks that resulted in the largest applications were those

based on the interpreted approach.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

637

Framework Development

approach

Size in MB Size excluding

video file

Android with

Java

Native 90.24 1.04

Cordova Hybrid 91.97 2.77

Xamarin Generated by cross-

compilation

94.21 5.01

Corona Generated by cross-

compilation

95.78 6.58

Titanium Interpreted 98.43 9.23

NativeScript Interpreted 101.67 12.47

Table 3. Application sizes; Experiment #3

4.1.4 General Result Analysis

Figure 1 displays the results for each of the 18 applications built, sorted by application

final size.

As it can be seen, the order of the results obtained is the same in all three

experiments.

The difference between the best and the worst framework is percentually

significant in experiments #1 and #2, not so much in experiment #3. This is due,

possibly, to the fact that the greatest impact of the framework on application size

occurs when packing the basic components of the app. That is, the libraries,

interpreters and other resources that the framework needs to include within the

generated application for it to work.

A native application will be run directly by the underlying operating system,

which means that it does not need to pack an interpreter or other tools within the

application.

A hybrid application developed with web tools can be designed to be run on

the web browser provided by the operating system, or it could include its own

browser within the application, which would affect application size. A similar

situation occurs with interpreted applications, which are run partly by the operating

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

638

system and partly by an interpreter. This interpreter can be either internal or provided

by the platform.

Thus, the applications created with the native and hybrid approaches ended

up being the smallest ones. The second place was taken by cross-compilation

frameworks. Finally, interpreted frameworks generated the largest applications; this is

due to the fact that both NativeScript and Titanium embed a JavaScript interpreter in

the application.

Figure 1. Summary of storage space measurements

5 Conclusions
In mobile application development, non-functional requirements are more relevant

due to the restrictions imposed by devices: battery life, connectivity, limited

development times, and significant fragmentation among the different platforms.

On the other hand, several mobile application development approaches are

available. In this article, the native, interpreted, hybrid and cross-compilation

approaches were analyzed.

A comparative study of the storage space used by applications for mobile

devices, generated using different development approaches, was presented.

Three experiments were carried out – the first one consisted in displaying a

text message on the screen, while the other two were designed to play multimedia

files (audio and video, respectively).

It should be noted that the results presented in this paper are linked to the

development framework versions used for the experiments and, therefore, could

change in the future as these frameworks evolve.

The Android SDK framework corresponding to the native approach and the

Apache Cordova framework corresponding to the hybrid approach yielded the best

results as regards storage space usage in mobile devices.

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

639

Cross-compilation frameworks came in second.

The worst results were yielded by the frameworks that used the interpreted

approach, since they generated the largest applications. This is mainly due to the fact

that this development approach translates part of the code to native code and

interprets the rest at runtime, which means that an interpreter has to be embedded

within the application package.

In short, the experiments carried out help find out which framework would

be more convenient, if size is a priority, for developing mobile applications similar to

those presented in this article.

6 Future Work
 In the future, we plan on expanding the number of frameworks tested, as

well as considering any new versions of the frameworks used here.

On the other hand, iOS application size will also be studied, since iOS is the second

most widely used operating system in the market.

References

1. Mona Erfani Joorabchi, Ali Mesbah, Philippe Kruchten. Real Challenges in

Mobile App Development, ACM / IEEE International Symposium on

Empirical Software Engineering and Measurement, Baltimore, Maryland,

US, October 2013.

2. L. Delía, N. Galdamez, L. Corbalan, P. Pesado and P. Thomas, "Approaches

to mobile application development: Comparative performance analysis,"

2017 Computing Conference, London, 2017.

3. http://gs.statcounter.com/os-market-share/mobile/worldwide [Last access:

May 2018]

4. Delia, L.; Galdamez, N.; Thomas, P.; Corbalan, L.; Pesado, P.,

Multiplatform mobile application development analysis, Research

Challenges in Information Science (RCIS), 2015 IEEE 9th International

Conference on, Athens, Greece, 2015.

5. Corbalan L.; Fernandez Sosa J.; Cuitiño A.; Delia L.; Caseres G.; Thomas

P.; Pesado P., Development Frameworks for Mobile Devices: A

Comparative Study about Energy Consumption (ICSE), MobileSoft 2018 5th

IEEE/ACM International Conference on Mobile Software Engineering and

Systems on, Gothenburg Sweden, 2018.

6. K. Vandenbroucke, D. Ferreira, J. Goncalves, V. Kostakos y K. D. Moor,

«Mobile cloud storage: a contextual experience,» Proceedings of the 16th

international conference on Human-computer interaction with mobile

devices & services (MobileHCI '14), pp. 101-110, 2014.

7. S. Tolomei, «Shrinking APKs, growing installs,» November 20, 2017.

[Online]. Available: https://medium.com/googleplaydev/shrinking-apks-

growing-installs-5d3fcba23ce2. [Last access: May 2018].

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

640

8. https://sensortower.com/blog/ios-app-size-growth [Last access: May 2018].

9. Spyros Xanthopoulos, Stelios Xinogalos, A Comparative Analysis of Cross-

platform Development Approaches for Mobile Applications, BCI' 2013,

Greece, 2013.

10. http://gs.statcounter.com/platform-market-share/desktop-mobile-

tablet/worldwide/#monthly-201403-201803 [Last access: May 2018].

11. Raj, C. R., & Tolety, S. B. (2012, December). A study on approaches to

build cross-platform mobile applications and criteria to select appropriate

approach. In India Conference (INDICON), 2012 Annual IEEE (pp. 625-

629). IEEE

12. Tracy, K. W. (2012). Mobile application development experiences on

Apple’s iOS and Android OS. Ieee Potentials, 31(4), 30-34.

13. Delia, L., Galdamez, N., Thomas, P., Corbalan, L., & Pesado, P. (2015,

May). Multi-platform mobile application development analysis. In Research

Challenges in Information Science (RCIS), 2015 IEEE 9th International

Conference on (pp. 181-186). IEEE.

14. http://cordova.apache.org [Last access: May 2018].

15. http://www.appcelerator.com [Last access: May 2018].

16. https://www.nativescript.org/ [Last access: May 2018].

17. https://xamarin.com [Last access: May 2018].

18. https://coronalabs.com/ [Last access: May 2018].

19. https://gitlab.com/iii-lidi/papers/apps-size.git

XXIV Congreso Argentino de Ciencias de la Computación Tandil - 8 al 12 de octubre de 2018

641

	Mobile Application Development Approaches

