

Why Model-Based Test Automation is Different and
What You Should Know to Get Started

Mark Blackburn, Robert Busser, Aaron Nauman
(Software Productivity Consortium)

Test engineers, their managers, as well as the project developers often have many
different views and misconceptions about tools and methods that provide test
automation support. This paper compares model-based testing with three other
generations of test automation. Model-based test automation can be considered a
fourth generation test automation. It supports defect prevention, early requirement
defect identification, and automatic generation of tests from models, which
eliminates manual test design and reduces cost. However, to be effective at adopting
model-based test automation, there are specific skills that will be required to
incorporate this type of test automation into an organization. The paper discusses
the organizational, personnel, and development lessons learned from working with
numerous companies and projects over the past several years. It recommends how
to get started, how to select a project, and how to organize a project. Finally, the
paper describes how to measure, track and estimate the project completion date
during the first non-pilot project.

Keywords: Test Automation Technology and Experience, Interface-driven Model-Based Test
Automation, Test Driver Generation, Requirement-based Testing, Pilot Projects
1. Introduction
The increased complexity of systems as well as short product release schedules makes the task of
testing challenging. One of the key problems is that testing typically comes late in the project
release cycle, and traditional testing is performed manually. When bugs are detected, the cost of
rework and additional regression testing is costly and further impacts the product release. The
increased complexity of today’s software-intensive systems means that there are a potentially
indefinite number of combinations of inputs and events that result in distinct system outputs, and
many of these combinations are often not covered by manual testing. We work with companies
that have high process maturity levels, and excellent measurement data that shows that testing is
more 50-75% of the total cost of a product release, yet these mature processes are not addressing
this costly issue.

As Fewster and Graham point out, test tools may not replace human intelligence in testing, but
without them testing complex systems at a reasonable cost will never be possible [FG99]. There
are commercial products to support automated testing, most based on capture/playback
mechanisms, and organizations that have tried these tools quickly realize that these approaches are
still manually intensive and difficult to maintain. Even small changes to the application
functionality or GUI can render a captured test session useless. But more importantly, these tools
don't help test organizations figure out what tests to write, nor do they give any information about
test coverage of the functionality.

Section 2 of this paper provides a perspective on various approaches to test automation. Section 3
describes how model-based testing is different from other forms of test automation. Section 4
discusses why testing needs to be treated as an engineering activity. It should start early with
requirement analysis to better understand the testability of the requirements, and the design should

Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

support testability, which directly impacts viability of test automation. Through test automation,
testing can be more systematic, provide greater coverage, and reduce manual cost and effort.
Section 5 discusses how pilot projects help an organization get started with model-based testing.
Section 6 briefly describes how model-based testing provides objective measures derived from
requirement and interface information to support early project estimation and continuous tracking.

2. Approaches to Test Automation
Unfortunately, a significant amount of testing is still performed manually. This test creation
process is error-prone, with testers sometimes unintentionally repeating cases while leaving others
untested. This requires manual effort to perform the following test-related activities:

• Test design – determination of the test cases to cover the requirements of the SUT
• Test execution - manual entry of test cases and associated data, primarily through a

client (sometimes GUI or web-browser) interface
• Test coverage – manual analysis to ensure that all combinations of logic are tested,

which requires significant human expertise (domain expertise) and time
• Test results analysis – manual analysis to check that the actual output (outcomes) of the

SUT are equivalent to the expected outputs (outcomes)
This section discusses various approaches to test automation, primarily focused on test design and
test execution, as these are the most time consuming testing activities. The test automation often
depends on the testability of the system under test (SUT). Design for testability is discussed in
Section 4.

2.1. Test Scripting

All automated test execution is based on some form of test script (aka test driver) that can run
automatically without human interaction. Test scripts are programs that provide general
mechanisms that support other test automation approaches, including capture/playback, hybrids
that extend capture/playback, as well as test generation approaches. Test scripts can be developed
using standard application languages, such as VB, C, C++, Java, Perl, specialized languages such
as Tcl, and Python, or custom languages supported by testing tools. Test scripting usually requires
hooks provided through testable designs, that can include an application programming interface
(API), a component interface (e.g. COM), a protocol interface (e.g., HTTP), or a debugging or
emulation interface. Some testing tools provide libraries or support that leverage API, component,
and protocol interfaces.

For functional testing, test scripts typically have a pattern, as reflected in Figure 1 that:

• Initializes the SUT
• Loops through a set of test cases, and for each test case

• Initialize the target [optional]

• Initializes the output to a value other than the expected output (if possible)

• Sets the inputs

• Executes the SUT

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

2

• Captures the output and stores off the results to be verified against the actual
output at some later time, when a test report can be created

Most of the following approaches are built on some type of test scripting.

Figure 1. Test Script Automation

2.2. Capture/Playback Approach
Capture/playback tools capture sequences of manual operations in a test script that are entered by
the test engineer. Although the underlying mechanisms of capture/replay rely on test scripts, most
users of the tools operate these tools using the recording feature of the tool strictly from a GUI
point-of-view, and do not work at the scripting level. The capture/playback approach still relies on
people to manually determine and enter the test cases, similar to the manual testing approach. The
benefit of this approach is that the captured session can be re-run at some later point in time to
ensure that the system performs the required behavior.

However, there are shortcomings to capture/playback.

• When the system functionality changes, the capture playback session will need to be
completely re-run to capture the new sequence of user interactions. The re-capturing
process is still manual and typically takes as long to perform each additional time as it
did the first time.

• Capture/playback tools are supposed to recognize GUI objects, even if the GUI layout
has changed. However, this is not always the case, because the effective use of
capture/playback tools often depends on visibility of GUI object, and naming
conventions, and this requires support during the GUI design and implementation
phases.

• The appropriate selection of the object-recording mode versus the analog recording
mode, and synchronization of the replay is vital to playback for regression testing.

• Web sites are increasingly complex, and manually recording a sample set of testing
scenarios with a capture/playback tool can be very time-consuming. Due to the limited
schedules, it is nearly impossible to record more than a few possible paths, and Web-

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

3

site test coverage using capture/playback tools ends up being typically limited to a
small portion of the Web-site functionality.

• More advanced capture/playback tools often provide some level of abstraction when
recording user actions and increased portability of test scenarios (for instance, by
recording general browser actions instead of mouse actions on specific screen
coordinates), but changes in the structure of a Web site may prevent previously
recorded test scenarios from being replayed, and hence may require re-generating and
re-recording a new set of test scenarios from scratch [BFG02].

• Many of the capture/playback tools provide a scripting language, and it is possible for
engineers to edit and maintain such scripts, but this does require the test engineer to
have programming skills.

2.2.1 Test Abstraction and Data Driven Approach

There are related approaches that extend capture/playback such as data-driven, action-based,
keyword-based, object-based, and class-based. Each of these approaches still require testers to
interpret the requirements and design the test cases to cover each requirement, and requires some
engineer with development skill to define the test scripts that are associated with the test
abstraction mechanisms for accessing information from a data-driven repository, such as a
database, in addition to implementing actions and associated parameters, object, or class-based
operations. The approaches categorized in Table 1 use an abstraction mechanism (e.g. action
word) defined by the test writer to define test cases at a higher-level of abstraction than the
underlying test script.

Table 1. Categories of Test Abstraction

Test DevelopmentAbstraction MechanismCategory

Test sequences on objects are
developed by combing script
functions

Scripts mapped to actions
performed against a class of
objects

Class-based

Test sequences on objects are
developed by combing script
functions

Script functions mapped to
application objects

Object-based

Test scenarios combine
windows and data sets

Display pages/windows
mapped to input set and
output

Window-based

Application experts combine
actions for testing often with
data sets

Actions mapped to scriptsAction Word-based

Test DevelopmentAbstraction MechanismCategory

Test sequences on objects are
developed by combing script
functions

Scripts mapped to actions
performed against a class of
objects

Class-based

Test sequences on objects are
developed by combing script
functions

Script functions mapped to
application objects

Object-based

Test scenarios combine
windows and data sets

Display pages/windows
mapped to input set and
output

Window-based

Application experts combine
actions for testing often with
data sets

Actions mapped to scriptsAction Word-based

For action words, there is typically an action word and a set of parameters (i.e., data values) that
are associated with the action word. To implement the test, there is a mapping for each action
word to an associated script that takes the various parameters that are applicable to that action
word to carry out the test.

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

4

The window-based approach derives from the capture/playback tools where the widgets (e.g.,
fields, menus, etc.) are associated with parameter values that can be represented in a spreadsheet.
Testers define scenarios of windows, and associated sets of parameter values to cover various test
cases.

Object-based provides the object-oriented equivalent of the action-word based, where the test
scripts associated with the data values for testing the object are mapped to the attributes and
methods that must be carried out to involve the objects in test case scenarios.

Class-based approaches define one class, with the associated test scripts that can be used for one
or more objects of that class.

2.3. Model-Based Test Automation
There are various approaches to model-based test generation that based on various modeling
forms, such as state machines, functional tabular condition/action models, control system models,
language models, and hybrids. Once the tests are generated, they can be transformed into test
scripts that can execute the tests. They key advantage of this technique is that the test generation
can systematically derive all combination of tests associated with the requirements represented in
the model to automate both the test design and test execution process.

There are papers that describe requirement modeling [HJL96; PM91; Sch90], and others with
examples that support automated test generation [BBN01a; BBN01b; BBN01c; BBNC01,
BBNKK01]. Asisi provides a historical perspective on test vector generation and describes some
of the leading commercial tools [Asi02]. Pretschner and Lotzbeyer briefly discuss Extreme
Modeling that includes model-based test generation [PL01], which is similar to uses of TAF.
There are various approaches to model-based testing and Robinson hosts a website that provides
useful links to authors, tools and papers [Rob00].

3. What Makes Model-Based Test Automation Different?
We have applied the model-based test automation method referred to as the Test Automation
Framework (TAF) since 1996. TAF integrates various government and commercially available
model development and test generation tools to support defect prevention and automated testing of
systems and software. TAF supports modeling methods that focus on representing requirements,
like the Software Cost Reduction (SCR) method, as well as methods that focus on representing
design information, like MathWorks’ Simulink or National Instruments’ MATRIXx, which
supports control system modeling for automotive and aircraft systems.

The TAF approach, as illustrated in Figure 2 reflects how modelers develop the logic associated
with requirements for data and control processing of the SUT using models. The process involves
three roles including requirement engineer, designer/implementer, and tester (modeler). A
requirements engineer typically documents the requirements in text-based documents. A designer
develops the system/software architecture, design, components, and interfaces. Although it is
common to start the process with poorly defined requirements, inputs to the process can include
system and software requirement specifications, user documentation, interface control documents,
application program interface (API) documents, previous designs, and old test scripts. Testers
(modelers) use any available information to clarify the requirements in the form of a model, which
specifies behavioral requirements in terms of the interfaces for the SUT (or component under test).

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

5

Global init;
Forall tests

init target;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

Model

Test Environment

Tester
(Modeler)

Requirements
Engineer

Designer/
Implementer

Design
spec

Requirements
specification

Test Result
Analyzer

Test
Analysis

Test results
compared

against
expected
results

Test Script is Generated
from Translated Model
and Generated Tests

Test engineer builds
model to capture

required behavior and
logical variations of data

and control

Test driver schemas
define a pattern for

generating test scripts

Test Driver
Schemas

Figure 2. Model-Based Test Automation

Models are translated, and T-VEC, the test generation component of TAF produces tests. T-VEC
supports test vector generation, test driver generation, requirement test coverage analysis, and test
results checking and reporting. Test vectors include inputs as well as the expected outputs with
requirement-to-test traceability information. The test driver mappings and the test vectors are
inputs to the test driver generator that produces test drivers (test scripts). The test drivers are then
executed against the implemented system during test execution. The test execution analysis
compares automatically the actual outputs against the expected outputs and produces a test results
report.

3.1. Benefits of Model-based Automated Testing

Model-based approaches, like TAF, leverages models to support requirement defect analysis
and to automate test design. Model checking can ensure properties, like consistency, are not
violated. In addition model helps refine unclear and poorly defined requirements. Once the
models are refined, tests are generated to verify the SUT. Eliminating model defects before
coding begins, automating the design of tests, and generating the test drivers or scripts results
in a more efficient process, significant cost savings, and higher quality code. Some other
advantages of this approach include:

• All models can use the same test driver schema to produce test scripts for the
requirements captured in each model. Many test driver schemas already exists for
languages such as C, C++, VB, Java, Perl, SQL, PLI, JCL, Ada, XML, HTML, JDBC,
ODBC, WinRunner, DynaComm, and various Simulators

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

6

• When system functionality changes or evolves, the logic in the models change, and all
related test are regenerated using the existing test driver schema

• If the test environment changes, only the test driver schema needs modification. The
test drivers associated for each model can be re-generated without any changes to the
model

These results are common among users of model-based testing approaches [RR00; KSSB01;
BBNKK01; BBN01d; Sta00; Sta01]. The initial expectation is that model-based testing supports
automated test generation, but the unexpected benefit achieved is better understanding of the
requirements, improved consistency, completeness, and most importantly, early requirement
defect identification and removal. These benefits are briefly discussed below.

3.1.1 Comprehensive Tests

TAF uses the model to traverse the logical paths through the program, determining the locations
of boundaries and identifying reachability problems, where a particular thread through a model
may not be achievable in the program itself. TAF uses test selection criteria based on domain
testing theory [WC80] to select the test inputs that are most likely to identify faults in the program.
Domain testing theory is based on the intuitive idea that faults in implementation are more likely
to be found by test points chosen near appropriately defined program input and output domain
boundaries [TVK90].

3.1.2 Improved Requirements

In order to be testable, a requirement must be complete, consistent and unambiguous. While any
potential misinterpretation of the requirement due to incompleteness is a defect, TAF focuses on
another form of requirement defect, referred to as a contradiction or feature interaction defect.
These arise from inconsistencies or contradictions within requirements or between them. Such
defects can be introduced when more than one individual develops or maintains the requirements.
Often the information necessary to diagnose requirement contradictions spans many pages of one
or more documents. Such defects are difficult to identify manually when requirements are
documented in informal or semi-formal manners, such as textual documents. Although rigorous
manual inspection techniques have been developed to minimize incompleteness and
contradictions, there are practical limits to their effectiveness. These limits relate to human
cognition and depend on the number and experience of people involved. TAF supports
requirement testability analysis, which allows developers to iteratively refine and clarify models
until they are free of defects.

3.1.3 Defect Discovery

Defect discovery using model-based test automation is both more effective and more efficient than
using only manual methods. One pilot study, conducted by a Consortium member company,
comparing formal Fagan inspections with TAF requirement verification, revealed that Fagan
inspections uncovered 33 requirements defects. In comparison, TAF uncovered all 33 of the
Fagan inspection defects plus 56 more. Attempting to repeat the Fagan inspection did not improve
the Fagan inspection’s return on investment. The improved defect detection of TAF prevented
nearly two-thirds more defects from entering the rest of the lifecycle.

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

7

Similar results where measured by Rockwell Collins who used a requirement modeling method to
develop the mode control logic of a Flight Guidance System (FGS) avionics system, and later
used an early version of TAF for model-based analysis and test automation. As reflected in Figure
3, the FGS was first specified by hand using the Consortium Requirement Engineering Method
(CoRE). It was then inspected, and about a year later entered into a tool supporting the SCR
method provided by the Naval Research Laboratory (NRL). Despite careful review and correction
of 33 errors in the CoRE model, the SCRtool’s analysis capabilities revealed an additional 27
errors. Statezni, a Rockwell engineer, later used an early TAF translator and the T-VEC toolset to
analyze the SCR model, generate test vectors and test drivers. The test drivers were executed
against a java implementation of the FGS requirements and revealed six errors. Offutt applied his
tool to the FGS model and found two errors, and the latest TAF toolset, identified 25 model errors
[BBN01d].

Analysis
Technique
/Tool

FGS
Textual

Requirements
1995

CoRE
Text

Model

Inspections

33

1997

27

U
ni

qu
e

D
ef

ec
ts

SCRtool
Analysis

SCR
Model V1

1998

SCR
Model V9

6

TAF 1.0/
T-VEC

Offutt
Tool

2

2001

TAF 2.0/
T-VEC

25

1999
Figure 3. Comparison of Defect Discovery by Tools and Methods

Following manual test generation practices, defects are not identified until late in the process,
sometimes after release, when they are most expensive to fix. Automating test generation based on
models, defects are found earlier in the process and faster. The rate of defect discovery increases
early in the process, but quickly curtails. Many defects are found in the requirements phase, before
they propagate to later development phases. Defect prevention is most effective during the
requirements phase when it costs two orders of magnitude less than after the coding process.

Figure 4 represents the conceptual differences between manual and automatic test generation. The
existing process of discovering and eliminating software defects is represented by the curve
labeled “Old” while the effects of early defect discovery aided by automation is illustrated by the
trend curve labeled “New.” Industrial applications have demonstrated that TAF directly supports
early defect identification and defect prevention through the use of requirement testability
analysis. The structured process of modeling supports defect prevention by eliminating processes
that have in the past allowed defect-types to be repeatedly introduced into products.

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

8

New

Defect
Prevention

Time

R
at

e
of

 D
is

co
ve

ry

Defects

100X Decrease in Cost of Removing Defects

Old

Requirements Design &
Build

Release
to Test

Release
to Field

Source: Safford, Software Technology Conference, 2000.

Late Defect
Discovery Results in
Significant Rework

Figure 4. Member Savings

3.2. Requirement Validation
Requirement validation ensures captured requirements reflect the functionality desired by the
customer and other stakeholders. Although requirement validation does not focus specifically on
requirement testability analysis, it does support it. Requirement validation involves an engineer,
user or customer judging the validity of each requirement. Models provide a means for
stakeholders to precisely understand the requirements and assist in recognizing omissions. Tests
automatically derived from the model support requirement validation through manual inspection
or execution within simulation or host environments.

4. Process and Organizational Impacts of Model-Based Testing
Model-based testing is not just a better way to test, but can spawn organizational impacts that
promote a more continuous test process, as well as system architecture impacts that improve the
overall system design. The most effective approach that we have used to foster better design for
testability is to use a continuous testing process, where test engineers are involved early in the
requirement analysis to ensure that the design has interfaces for testing.

4.1. Design for Testability
There are many benefits derived from performing design for testability, including more improved
test coverage, simpler tests design, enhanced fault analysis (debugging), as well as more options
for test automation. Without it, most tests must be performed manually. The concepts of design
for testability have been around for many years. By creating infrastructure support within the
application, and specifically to the interfaces of the SUT, we can support three notions [WP82]:

1. Predictability of the tests, which supports a means for conclusively assessing whether the
GUI performed correctly or not.

2. Controllability of the tests, which permits the test mechanism to provide inputs to the
system and drive the execution through various scenarios and states to foster the need for
systematic coverage of the GUI functionality

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

9

3. Observability of the system outputs that can lead to a decision as to whether the outputs
are desirable (correct) or faulty.

Design for testability provides the sum of these features to test execution, but with the support of
these features permits more automated types of test automation to be used for test execution. As
shown in Figure 5, it is important for the design engineers to expose some of the internals of the
SUT, like component interfaces, to provide more controllability and observability of internal
information that passes into and out of the system through program-based interfaces. It is best to
have early interaction between the lead testers and the lead designers so that the program-based
interfaces that support testability are exposed.

System Under Test

User
Interface

Code

Logic
and
Data

Processing
Code

(non-user
Interface)

Program-based Interface

Test
Automation
Mechanism

External

Figure 5. Program-Based Interfaces to SUT

Design for testability should occur at many or all of the layers of the software system architecture
because it results in less coupling of the system components. If the component interfaces are
coupled to other components, the components are typically not completely controllable through
separate interfaces. This can complicate the modeling and testing process. Consider the following
conceptual representation of the set of components and interfaces shown in Figure 6.

To support systematic testing that can be performed in stages where each component is
completely tested with respect to the requirements allocated to it, the interfaces to the component
should be explicitly and completely accessible, either using global memory, or better through get-
and-set methods/procedures as reflected in Figure 6. For example, if the inputs to the B.2
component of higher-level component B are completely available for setting the inputs to B.2, and
the outputs from the B.2 functions can be completely observed, then the functionality within B.2
can be completely specified and systematically tested. However, if interfaces from other
components, such as B.1 are not accessible, then some of the functionality of the B.2 component
is coupled with B.1, and the interfaces to B.2, must also include interfaces to B.1, or to other
upstream components, such as component A. This interface coupling forces the modeling to be
described in terms of functionality allocated to combinations of components. The coupling
reduces the reuse of components, and increases the regression testing effort due to the coupled
aspects of the system components. The problems associated with testing highly coupled systems
can be problematic for model-based testing, but also negatively impacts any type of testing.

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

10

B.1 B.2 B.3

Well-Defined Interfaces
Support Direct

Controllability and
Observability for

Component

Coupled Interfaces
Complicate Access to
Component and Limit

Controllability that
Requires Test Inputs

to be Provided Upstream

A B CA B C

Key

-Well-defined Interface

- Coupled Interface

Figure 6. Conceptual Components of System

4.2. Interface-Driven Requirement Modeling
The recommend process identified by using TAF with companies over the last several years is
reflected in Figure 7, which provides a more detailed perspective of the modeling process flow as
it relates to time. This perspective extends Figure 2 with some additional details. The requirement
engineer and design engineers work in parallel with the test engineer to define requirements in
terms of component interfaces. This drives the design to identify the component interfaces early in
the process to help stabilize the architecture, which providing the interface information that is
required to support test driver generation. The term verification model is used to refer to the
requirements of a component that are defined in terms of the interfaces. The test engineer modeler
typically developed incrementally and uses TAF tools to perform model analysis, and correct any
inconsistency in the requirements very early in the process.

Once the models are correct, test drivers can be generated. A second type of test engineer, called
the Automation Architecture, typically develops the test driver schema for the particular testing
environment, usually from one of the existing schemas. Usually, one test automation architect can
support 20 or more modelers. Once a test driver schema is created, it doesn’t change very much.
The interfaces from the verification model are mapped to the APIs of the implementation using
object mappings, and then test drivers are generated to support automated test execution. Often
test drivers are available for the implementer to use before the implementation is completed. This
has the side benefit of reducing the unit testing that the developer typically performs. If test
failures are identified, each test has requirement-to-test traceability information that allows failures
to be traced backwards to the requirement. This allows fault analysis information to determine if
the requirements or the implementation are incorrect.

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

11

Requirements
(come in many forms)

Verification Model
Interfaces
Data Types
Variables
Constants

Behavior
Conditions

Events
State machines

Functions

+

Test Engineer
(Modeler)

Test Driver

mapping

schema

Test Driver

mapping

schema

Test
Vectors Test Driver

Generator

• C, C++, VB, Java, Perl, SQL, PLI,
JCL, Ada, XML, HTML, JDBC, ODBC,
Web, GUI, Proprietary, WinRunner,
DynaComm, Simulators

Test Engineer
(Automation Architect)

Design/Implementer

Test Vector
Generator

System

Test
Drivers

Test
Results

Component Interfaces

Types of Existing Schema

Requirement Engineer

• SRS
• SWRS
• Function List
• Change Request
• API

Time
Figure 7. Process Summary of Roles versus Time

5. Get Started With A Pilot Project
Before selecting a test automation approach for your project it is useful to use a small pilot project
to better understand the capabilities of the test automation tools, to understand how they work with
the development tools and architecture, and to access how the tools fit into the existing process.
We have found it useful to use two types of pilot projects in deploying model-based testing.

5.1. Three-day Mini Pilot
A three-day mini-pilot project uses a modeling expert to work onsite with a small team that
includes someone that can represent the roles of the requirement engineer, the design engineer,
and test engineer. The objectives of this mini-pilot are to quickly model some part of a product
application, tailor an existing test driver schema to generate the test drivers, and execute the test
drivers through some existing system. This is important to show all members of the team,
including some management sponsor, that it is feasible to use in their product areas. During the
remainder of the three-day pilot, the model can be evolved to show how the test driver schema can
be reused. Mini-pilot projects are useful to:

• Demonstrate feasibility and time-reduction implications of applying models and
reusable test driver schemas

• Work with developers through hands-on use
• Use experiments to investigate applicability on different types of projects and

applications
• Review existing approach(es) and make recommendations for improvement and use of

models

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.
12

• Determine feasibility for application in other potential areas where verification is
needed to significantly reduce cycle time

• Determine the required skills of the participants for the follow-on pilot
The final steps of the mini-pilot are to decide on a small part of an actual feature that can be used
in a pilot project that is conducted by the members of the project team, with support of the model-
based expert. The last step is to provide an out-briefing to management that describes the follow-
on plan for a small, less than three month, pilot project.

5.2. Pilot Project Candidate
The candidate project should develop a small thread of functionality for a new feature added to
some component of the system. The feature should not be on the critical path in terms of schedule
release of the product. The interfaces to the components with the new feature should be well
defined, supporting testability as described in Section 4.1. In addition, the selected feature should
be one that is likely to have continual changes or related extensions in the future. This will
illustrate how to leverage existing models to support new features, as well as support full
regression testing with a fraction of the typical effort. It is usually not necessary to have more than
one or two engineers involved in the first pilot, but requirement and design knowledgeable
engineers should be available to provide requirement and interface information to the pilot team.
The key results of the pilot project should a better understanding of how to tailor the existing
software development process for adoption by a larger team. It is recommended that the
candidates selected for the project be used as the mentors for each follow-on projects.

6. Objective Measures
During the pilot project, and certainly after the first non-pilot project, there are some easy
measures that can be used to track and estimate project completion dates. Figure 8 provides a
perspective on the key measurement information associated with TAF model-based testing. These
measures and their use are described in terms of an information model adapted from the ISO/IEC
15939, Software Engineering - Software Measurement Process. The key elements of the
information model are attributes, base measures, derived measures, indicators, and information
products. An attribute is a property or characteristic of a process or product that is the subject of
measurement (e.g., requirement). A base measure or data primitive is a quantification of a single
attribute. A derived measure combines two or more values of base measures using a mathematical
function. An indicator can be a base or derived measure or a combination of such measures that
are associated with decision criteria by means of a mathematical or heuristic model. An
information product consists of one or more indicators with corresponding interpretations. The
information product forms the basis for action by the decision maker. These measures can be
combined in many different ways to form indicators that satisfy specific information needs.

The TAF modeling approach results in four key base measures. The four key model-based
measurement attributes associated with base measures are the requirements, modeled requirement
threads, model variables, and object mappings. Requirement engineers are responsible for
producing requirements, which results in the base measure number of requirements. A test
engineer or modeler works in parallel with developers to refine requirements and build models to
support iterative testing and development. Modeling introduces model variables, and this results in
the base measure number of variables. After model translation and processing, the model

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

13

requirements are converted into requirement threads, which is a base measure related to
requirements. Finally, to support test driver generation and test execution and results analysis, the
base measure number of object mappings is used. Object mappings relate model variables to the
implementation interfaces.

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

Model

Tester/Modeler

Requirements
Analyst

Requirements
specification

Number of
Requirements

Number of
Requirement
Threads

Number of
Variables

Number of
Object mappings

Base Measures

DCP Rate Relationships

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Current Project Week

D
C

Ps Actual DCPs

Average DCP rate

Variables per DCP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13

Variables per DCP

Object Mapping Data

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13

Current Week

Actual variables Actual object mappings Average object mapping rate

Combined Estimate to Complete

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 11 12 13

Curre nt Wee k

W
ee

ks
 to

 C
om

pl
et

e

Estimated Weeks
to Complete Req

Estimated Weeks
to Complete OM

Variables vs Object Mappings

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13

Current Week

Total variables Total object mappings

Weekly Number of DCPs

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Current Project Week

D
C

Ps

Raw Data Derived Measures Indicators
Figure 8. Process View of TAF Measurement

The base measures are combined into derived measures to produce indicators to provide
information such as requirement modeling rate, requirement-to-test density, project duration, and
estimated project completion. There are graphical representations of the base and derived
measures, as well as formulas that use historical measures to predict project duration and usage of
real-time project data to predict the completion of an ongoing project. This measurement-related
information should help managers and project leads in predicting schedule duration and estimating
project completion dates. Historical measurement information can be used prior to the start of a
new project, but it also is important to use data derived during the project.

7. Summary

The first two generations of test automation focused on test execution, and had limited support for
test design. The third generation test automation tools separate test scenario definition from test
scripting-based automation, but still have limited support for test design. Model-based test
automation, like the Test Automation Framework (TAF), can be considered a fourth generation
test automation. It supports defect prevention, requirement defect identification, and automatic
generation of tests from models, which eliminates manual test design and reduces cost. Model-

Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.
14

based test automation supports both requirement-based and design-based models. Early
identification of requirement defects reduces rework involved in developing and testing both
software and systems.

Model-based development also affects the organization. Development teams have reported
significant cost and effort savings using approaches like TAF. Teams have found that requirement
modeling takes no longer than traditional test planning, while reducing redundancy and building a
reusable model library capturing the organization’s key intellectual assets. Organizations can see
the benefits of using interface driven model-based testing that includes design for testability to
help stabilize the interfaces of the system early, while identifying component interfaces that
support automated test driver generation that can be constructed once and reused across related
tests.

Parallel development of modeling is beneficial in development and helps identify requirement
defects early to reduce rework. Because testing activities occur in parallel to development efforts,
testing teams get involved from the beginning and stay involved throughout the process, reducing
the risk of schedule overruns. Defect prevention is a key benefit of the approach. It is achieved
using model analysis to detect and correct requirements defects early in the development process.
The verification models enable automated test generation. This eliminates the typically manual
and error-prone test design activities and provides measurable requirement-based test coverage.
Organizations have demonstrated that the approach can be integrated into existing processes to
achieve significant cost and schedule savings.

The best way to get started is to use a pilot project to assess how to use model-based testing, and
to best understand the organizational resources required to tailor the existing development process
for a successful deployment on an actual project. TAF has been applied to applications in various
domains including critical applications for aerospace, medical devices, IT applications including
databases, client-server, web-based, automotive, telecommunication, and smart cards. Pilot
demonstration can leverage existing test driver generation schemas supporting most any language
(e.g., C, C++, VB, Java, Ada, Perl, PL/I, SQL, XML, etc.) as well as proprietary languages, COTS
test injection products (e.g., DynaComm®, WinRunner®) and test environments.

Objective measurement support provides managers with tools to track and estimate project
completion dates from the beginning of the first project with a few simple measures. Most users of
the approach have reduced their verification/test effort by 50 percent.

8. References
[Asi02] Aissi, S.,Test Vector Generation: Current Status and Future Trends, Software Quality Professional,

Volume 4, Issue 2, March 2002.

[BFG02] Benedikt, M., J. Freire, P. Godefroid, VeriWeb: Automatically Testing Dynamic Web Site,
http://www2002.org/CDROM/alternate/654/, Bell Laboratories, Lucent Technologies.

[BBN01a] Blackburn, M.R., R.D. Busser, A.M. Nauman, Removing Requirement Defects and Automating Test,
STAREAST, May 2001.

[BBN01b] Blackburn, M. R., R.D. Busser, A.M. Nauman, How To Develop Models For Requirement Analysis
And Test Automation, Software Technology Conference, May 2001.

[BBN01c] Blackburn, M. R., R.D. Busser, A.M. Nauman, Eliminating Requirement Defects and Automating Test,
Test Computer Software Conference, June 2001.

[BBNC01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Chandramouli, Model-based Approach to Security
Test Automation, In Proceeding of Quality Week 2001, June 2001.

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

15

[BBNKK01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Knickerbocker, R. Kasuda, Mars Polar Lander Fault
Identification Using Model-based Testing, Proceeding in IEEE/NASA 26th Software Engineering
Workshop, November 2001.

[BBN01d] Busser, R. D., M. R. Blackburn, A. M. Nauman, Automated Model Analysis and Test Generation for
Flight Guidance Mode Logic, Digital Avionics System Conference, 2001.

[FG99] Fewster, M., D. Graham, Software Test Automation: Effective Use of Test Execution Tools. Addison-
Wesley: Boston, MA., 1999.

[HJL96] Heitmeyer, C., R. Jeffords, B. Labaw, Automated Consistency Checking of Requirements
Specifications. ACM TOSEM, 5(3):231-261, 1996.

[KSSB01] Kelly, V. E.L.Safford, M. Siok, M. Blackburn, Requirements Testability and Test Automation,
Lockheed Martin Joint Symposium, June 2001.

[PL01] Pretschner, A., H. Lotzbeyer, Model Based Testing with Constraint Logic Programming: First Results
and Challenges, Proc. 2nd ICSE Intl. Workshop on Automated Program Analysis, Testing and
Verification (WAPATV'01), Toronto, May 2001.

[PM91] Parnas, D., J. Madley, Functional Decomposition for Computer Systems Engineering (Version 2), TR
CRL 237, Telecommunication Research Inst. of Ontario, McMaster University, 1991.

[Rob00] Robinson, H., http://www.model-based-testing.org/.

[RR00] Rosario, S., H. Robinson, Applying Models in Your Testing Process, Information and Software
Technology, Volume 42, Issue 12, 1 September 2000.

[Sch90] van Schouwen, A.J., The A-7 Requirements Model: Re-Examination for Real-Time System and an
Application for Monitoring Systems. TR 90-276, Queen's University, Kinston, Ontario, 1990.

[Sta00] Statezni, David. Test Automation Framework, State-based and Signal Flow Examples, Twelfth Annual
Software Technology Conference, April 30 - May 5, 2000.

[Sta01] Statezni, David. T-VEC’s Test Vector Generation System, Software Testing & Quality Engineering,
May/June 2001.

[Saf00] Safford, Ed L. Test Automation Framework, State-based and Signal Flow Examples, Twelfth Annual
Software Technology Conference, April 30 - May 5, 2000.

[TVK90] Tsai, W. T., D. Volovik, T. F. Keefe, Automated test case generation for programs specified by
relational algebra queries, IEEE Transactions on Software Engineering, 16(3):316-324, March 1990.

[WC80] White, L.J., E.I. Cohen, A Domain Strategy for Computer Program Testing. IEEE Transactions on
Software Engineering, 6(3):247-257,May, 1980.

[WP82] Williams, T. W., K. P. Parker, Design for Testability - A Survey, IEEE Trans. Comp. 31, pp. 2-15,
1982.

 Copyright © 2004, Software Productivity Consortium, NFP. All rights reserved.

16

