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Test engineers, their managers, as well as the project developers often have many 
different views and misconceptions about tools and methods that provide test 
automation support. This paper compares model-based testing with three other 
generations of test automation. Model-based test automation can be considered a 
fourth generation test automation. It supports defect prevention, early requirement 
defect identification, and automatic generation of tests from models, which 
eliminates manual test design and reduces cost. However, to be effective at adopting 
model-based test automation, there are specific skills that will be required to 
incorporate this type of test automation into an organization. The paper discusses 
the organizational, personnel, and development lessons learned from working with 
numerous companies and projects over the past several years. It recommends how 
to get started, how to select a project, and how to organize a project. Finally, the 
paper describes how to measure, track and estimate the project completion date 
during the first non-pilot project. 
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Automation, Test Driver Generation, Requirement-based Testing, Pilot Projects 
1. Introduction 
The increased complexity of systems as well as short product release schedules makes the task of 
testing challenging. One of the key problems is that testing typically comes late in the project 
release cycle, and traditional testing is performed manually. When bugs are detected, the cost of 
rework and additional regression testing is costly and further impacts the product release. The 
increased complexity of today’s software-intensive systems means that there are a potentially 
indefinite number of combinations of inputs and events that result in distinct system outputs, and 
many of these combinations are often not covered by manual testing. We work with companies 
that have high process maturity levels, and excellent measurement data that shows that testing is 
more 50-75% of the total cost of a product release, yet these mature processes are not addressing 
this costly issue. 

As Fewster and Graham point out, test tools may not replace human intelligence in testing, but 
without them testing complex systems at a reasonable cost will never be possible [FG99]. There 
are commercial products to support automated testing, most based on capture/playback 
mechanisms, and organizations that have tried these tools quickly realize that these approaches are 
still manually intensive and difficult to maintain. Even small changes to the application 
functionality or GUI can render a captured test session useless. But more importantly, these tools 
don't help test organizations figure out what tests to write, nor do they give any information about 
test coverage of the functionality. 

Section 2 of this paper provides a perspective on various approaches to test automation. Section 3 
describes how model-based testing is different from other forms of test automation. Section 4 
discusses why testing needs to be treated as an engineering activity. It should start early with 
requirement analysis to better understand the testability of the requirements, and the design should 
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support testability, which directly impacts viability of test automation. Through test automation, 
testing can be more systematic, provide greater coverage, and reduce manual cost and effort. 
Section 5 discusses how pilot projects help an organization get started with model-based testing. 
Section 6 briefly describes how model-based testing provides objective measures derived from 
requirement and interface information to support early project estimation and continuous tracking. 

2. Approaches to Test Automation 
Unfortunately, a significant amount of testing is still performed manually. This test creation 
process is error-prone, with testers sometimes unintentionally repeating cases while leaving others 
untested. This requires manual effort to perform the following test-related activities: 

• Test design – determination of the test cases to cover the requirements of the SUT 
• Test execution - manual entry of test cases and associated data, primarily through a 

client (sometimes GUI or web-browser) interface 
• Test coverage – manual analysis to ensure that all combinations of logic are tested, 

which requires significant human expertise (domain expertise) and time 
• Test results analysis – manual analysis to check that the actual output (outcomes) of the 

SUT are equivalent to the expected outputs (outcomes) 
This section discusses various approaches to test automation, primarily focused on test design and 
test execution, as these are the most time consuming testing activities. The test automation often 
depends on the testability of the system under test (SUT). Design for testability is discussed in 
Section 4. 

2.1. Test Scripting 

All automated test execution is based on some form of test script (aka test driver) that can run 
automatically without human interaction. Test scripts are programs that provide general 
mechanisms that support other test automation approaches, including capture/playback, hybrids 
that extend capture/playback, as well as test generation approaches. Test scripts can be developed 
using standard application languages, such as VB, C, C++, Java, Perl, specialized languages such 
as Tcl, and Python, or custom languages supported by testing tools. Test scripting usually requires 
hooks provided through testable designs, that can include an application programming interface 
(API), a component interface (e.g. COM), a protocol interface (e.g., HTTP), or a debugging or 
emulation interface. Some testing tools provide libraries or support that leverage API, component, 
and protocol interfaces. 

For functional testing, test scripts typically have a pattern, as reflected in Figure 1 that: 

• Initializes the SUT 
• Loops through a set of test cases, and for each test case 

• Initialize the target [optional] 

• Initializes the output to a value other than the expected output (if possible) 

• Sets the inputs 

• Executes the SUT 
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• Captures the output and stores off the results to be verified against the actual 
output at some later time, when a test report can be created 

Most of the following approaches are built on some type of test scripting. 

 
Figure 1. Test Script Automation 

2.2. Capture/Playback Approach 
Capture/playback tools capture sequences of manual operations in a test script that are entered by 
the test engineer. Although the underlying mechanisms of capture/replay rely on test scripts, most 
users of the tools operate these tools using the recording feature of the tool strictly from a GUI 
point-of-view, and do not work at the scripting level. The capture/playback approach still relies on 
people to manually determine and enter the test cases, similar to the manual testing approach. The 
benefit of this approach is that the captured session can be re-run at some later point in time to 
ensure that the system performs the required behavior.  

However, there are shortcomings to capture/playback. 

• When the system functionality changes, the capture playback session will need to be 
completely re-run to capture the new sequence of user interactions. The re-capturing 
process is still manual and typically takes as long to perform each additional time as it 
did the first time. 

• Capture/playback tools are supposed to recognize GUI objects, even if the GUI layout 
has changed. However, this is not always the case, because the effective use of 
capture/playback tools often depends on visibility of GUI object, and naming 
conventions, and this requires support during the GUI design and implementation 
phases.  

• The appropriate selection of the object-recording mode versus the analog recording 
mode, and synchronization of the replay is vital to playback for regression testing. 

• Web sites are increasingly complex, and manually recording a sample set of testing 
scenarios with a capture/playback tool can be very time-consuming. Due to the limited 
schedules, it is nearly impossible to record more than a few possible paths, and Web-
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site test coverage using capture/playback tools ends up being typically limited to a 
small portion of the Web-site functionality.  

• More advanced capture/playback tools often provide some level of abstraction when 
recording user actions and increased portability of test scenarios (for instance, by 
recording general browser actions instead of mouse actions on specific screen 
coordinates), but changes in the structure of a Web site may prevent previously 
recorded test scenarios from being replayed, and hence may require re-generating and 
re-recording a new set of test scenarios from scratch [BFG02]. 

• Many of the capture/playback tools provide a scripting language, and it is possible for 
engineers to edit and maintain such scripts, but this does require the test engineer to 
have programming skills. 

2.2.1 Test Abstraction and Data Driven Approach 

There are related approaches that extend capture/playback such as data-driven, action-based, 
keyword-based, object-based, and class-based. Each of these approaches still require testers to 
interpret the requirements and design the test cases to cover each requirement, and requires some 
engineer with development skill to define the test scripts that are associated with the test 
abstraction mechanisms for accessing information from a data-driven repository, such as a 
database, in addition to implementing actions and associated parameters, object, or class-based 
operations. The approaches categorized in Table 1 use an abstraction mechanism (e.g. action 
word) defined by the test writer to define test cases at a higher-level of abstraction than the 
underlying test script. 

Table 1. Categories of Test Abstraction 

Test DevelopmentAbstraction MechanismCategory

Test sequences on objects are 
developed by combing script 
functions

Scripts mapped to actions 
performed against a class of 
objects

Class-based

Test sequences on objects are 
developed by combing script 
functions

Script functions mapped to 
application objects

Object-based

Test scenarios combine 
windows and data sets

Display pages/windows 
mapped to input set and 
output

Window-based

Application experts combine 
actions for testing often with 
data sets

Actions mapped to scriptsAction Word-based 

Test DevelopmentAbstraction MechanismCategory

Test sequences on objects are 
developed by combing script 
functions

Scripts mapped to actions 
performed against a class of 
objects

Class-based

Test sequences on objects are 
developed by combing script 
functions

Script functions mapped to 
application objects

Object-based

Test scenarios combine 
windows and data sets

Display pages/windows 
mapped to input set and 
output

Window-based

Application experts combine 
actions for testing often with 
data sets

Actions mapped to scriptsAction Word-based 

 
 

For action words, there is typically an action word and a set of parameters (i.e., data values) that 
are associated with the action word. To implement the test, there is a mapping for each action 
word to an associated script that takes the various parameters that are applicable to that action 
word to carry out the test. 
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The window-based approach derives from the capture/playback tools where the widgets (e.g., 
fields, menus, etc.) are associated with parameter values that can be represented in a spreadsheet. 
Testers define scenarios of windows, and associated sets of parameter values to cover various test 
cases. 

Object-based provides the object-oriented equivalent of the action-word based, where the test 
scripts associated with the data values for testing the object are mapped to the attributes and 
methods that must be carried out to involve the objects in test case scenarios. 

Class-based approaches define one class, with the associated test scripts that can be used for one 
or more objects of that class. 

2.3. Model-Based Test Automation 
There are various approaches to model-based test generation that based on various modeling 
forms, such as state machines, functional tabular condition/action models, control system models, 
language models, and hybrids. Once the tests are generated, they can be transformed into test 
scripts that can execute the tests. They key advantage of this technique is that the test generation 
can systematically derive all combination of tests associated with the requirements represented in 
the model to automate both the test design and test execution process.  

There are papers that describe requirement modeling [HJL96; PM91; Sch90], and others with 
examples that support automated test generation [BBN01a; BBN01b; BBN01c; BBNC01, 
BBNKK01]. Asisi provides a historical perspective on test vector generation and describes some 
of the leading commercial tools [Asi02]. Pretschner and Lotzbeyer briefly discuss Extreme 
Modeling that includes model-based test generation [PL01], which is similar to uses of TAF. 
There are various approaches to model-based testing and Robinson hosts a website that provides 
useful links to authors, tools and papers [Rob00]. 

3. What Makes Model-Based Test Automation Different? 
We have applied the model-based test automation method referred to as the Test Automation 
Framework (TAF) since 1996. TAF integrates various government and commercially available 
model development and test generation tools to support defect prevention and automated testing of 
systems and software. TAF supports modeling methods that focus on representing requirements, 
like the Software Cost Reduction (SCR) method, as well as methods that focus on representing 
design information, like MathWorks’ Simulink or National Instruments’ MATRIXx, which 
supports control system modeling for automotive and aircraft systems.  

The TAF approach, as illustrated in Figure 2 reflects how modelers develop the logic associated 
with requirements for data and control processing of the SUT using models. The process involves 
three roles including requirement engineer, designer/implementer, and tester (modeler). A 
requirements engineer typically documents the requirements in text-based documents. A designer 
develops the system/software architecture, design, components, and interfaces. Although it is 
common to start the process with poorly defined requirements, inputs to the process can include 
system and software requirement specifications, user documentation, interface control documents, 
application program interface (API) documents, previous designs, and old test scripts. Testers 
(modelers) use any available information to clarify the requirements in the form of a model, which 
specifies behavioral requirements in terms of the interfaces for the SUT (or component under test). 
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Global init;
Forall tests

init target;
set inputs;
execute SUT;
get outputs;
store output;

endforall

Test Vector 
Generator

Test Driver 
Generator

TAF Model
Translator

Model

Test Environment 

Tester
(Modeler)

Requirements
Engineer

Designer/
Implementer

Design
spec

Requirements
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Test
Analysis

Test results 
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against 
expected 
results

  

Test Script is Generated
from Translated Model
and Generated Tests

Test engineer builds 
model to capture 

required behavior and 
logical variations of data 

and control

Test driver schemas 
define a pattern for 

generating test scripts

Test Driver 
Schemas

 
Figure 2. Model-Based Test Automation 

Models are translated, and T-VEC, the test generation component of TAF produces tests. T-VEC 
supports test vector generation, test driver generation, requirement test coverage analysis, and test 
results checking and reporting. Test vectors include inputs as well as the expected outputs with 
requirement-to-test traceability information. The test driver mappings and the test vectors are 
inputs to the test driver generator that produces test drivers (test scripts). The test drivers are then 
executed against the implemented system during test execution. The test execution analysis 
compares automatically the actual outputs against the expected outputs and produces a test results 
report. 

3.1. Benefits of Model-based Automated Testing 

Model-based approaches, like TAF, leverages models to support requirement defect analysis 
and to automate test design. Model checking can ensure properties, like consistency, are not 
violated. In addition model helps refine unclear and poorly defined requirements. Once the 
models are refined, tests are generated to verify the SUT. Eliminating model defects before 
coding begins, automating the design of tests, and generating the test drivers or scripts results 
in a more efficient process, significant cost savings, and higher quality code. Some other 
advantages of this approach include: 

• All models can use the same test driver schema to produce test scripts for the 
requirements captured in each model. Many test driver schemas already exists for 
languages such as C, C++, VB, Java, Perl, SQL, PLI, JCL, Ada, XML, HTML, JDBC, 
ODBC, WinRunner, DynaComm, and various Simulators 
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• When system functionality changes or evolves, the logic in the models change, and all 
related test are regenerated using the existing test driver schema  

• If the test environment changes, only the test driver schema needs modification. The 
test drivers associated for each model can be re-generated without any changes to the 
model 

These results are common among users of model-based testing approaches [RR00; KSSB01; 
BBNKK01; BBN01d; Sta00; Sta01]. The initial expectation is that model-based testing supports 
automated test generation, but the unexpected benefit achieved is better understanding of the 
requirements, improved consistency, completeness, and most importantly, early requirement 
defect identification and removal. These benefits are briefly discussed below. 

3.1.1 Comprehensive Tests 

TAF uses the model to traverse the logical paths through the program, determining the locations 
of boundaries and identifying reachability problems, where a particular thread through a model 
may not be achievable in the program itself. TAF uses test selection criteria based on domain 
testing theory [WC80] to select the test inputs that are most likely to identify faults in the program. 
Domain testing theory is based on the intuitive idea that faults in implementation are more likely 
to be found by test points chosen near appropriately defined program input and output domain 
boundaries [TVK90]. 

3.1.2 Improved Requirements 

In order to be testable, a requirement must be complete, consistent and unambiguous. While any 
potential misinterpretation of the requirement due to incompleteness is a defect, TAF focuses on 
another form of requirement defect, referred to as a contradiction or feature interaction defect. 
These arise from inconsistencies or contradictions within requirements or between them. Such 
defects can be introduced when more than one individual develops or maintains the requirements. 
Often the information necessary to diagnose requirement contradictions spans many pages of one 
or more documents. Such defects are difficult to identify manually when requirements are 
documented in informal or semi-formal manners, such as textual documents. Although rigorous 
manual inspection techniques have been developed to minimize incompleteness and 
contradictions, there are practical limits to their effectiveness. These limits relate to human 
cognition and depend on the number and experience of people involved. TAF supports 
requirement testability analysis, which allows developers to iteratively refine and clarify models 
until they are free of defects. 

3.1.3 Defect Discovery 

Defect discovery using model-based test automation is both more effective and more efficient than 
using only manual methods. One pilot study, conducted by a Consortium member company, 
comparing formal Fagan inspections with TAF requirement verification, revealed that Fagan 
inspections uncovered 33 requirements defects. In comparison, TAF uncovered all 33 of the 
Fagan inspection defects plus 56 more. Attempting to repeat the Fagan inspection did not improve 
the Fagan inspection’s return on investment. The improved defect detection of TAF prevented 
nearly two-thirds more defects from entering the rest of the lifecycle. 
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Similar results where measured by Rockwell Collins who used a requirement modeling method to 
develop the mode control logic of a Flight Guidance System (FGS) avionics system, and later 
used an early version of TAF for model-based analysis and test automation. As reflected in Figure 
3, the FGS was first specified by hand using the Consortium Requirement Engineering Method 
(CoRE). It was then inspected, and about a year later entered into a tool supporting the SCR 
method provided by the Naval Research Laboratory (NRL). Despite careful review and correction 
of 33 errors in the CoRE model, the SCRtool’s analysis capabilities revealed an additional 27 
errors. Statezni, a Rockwell engineer, later used an early TAF translator and the T-VEC toolset to 
analyze the SCR model, generate test vectors and test drivers. The test drivers were executed 
against a java implementation of the FGS requirements and revealed six errors. Offutt applied his 
tool to the FGS model and found two errors, and the latest TAF toolset, identified 25 model errors 
[BBN01d]. 

Analysis
Technique
/Tool

FGS 
Textual

Requirements
1995

CoRE
Text

Model

Inspections

33

1997

27

U
ni
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Analysis

SCR
Model V1

1998

SCR
Model V9

6

TAF 1.0/
T-VEC

Offutt
Tool

2

2001

TAF 2.0/
T-VEC

25

1999  
Figure 3. Comparison of Defect Discovery by Tools and Methods 

Following manual test generation practices, defects are not identified until late in the process, 
sometimes after release, when they are most expensive to fix. Automating test generation based on 
models, defects are found earlier in the process and faster. The rate of defect discovery increases 
early in the process, but quickly curtails. Many defects are found in the requirements phase, before 
they propagate to later development phases. Defect prevention is most effective during the 
requirements phase when it costs two orders of magnitude less than after the coding process. 

Figure 4 represents the conceptual differences between manual and automatic test generation. The 
existing process of discovering and eliminating software defects is represented by the curve 
labeled “Old” while the effects of early defect discovery aided by automation is illustrated by the 
trend curve labeled “New.” Industrial applications have demonstrated that TAF directly supports 
early defect identification and defect prevention through the use of requirement testability 
analysis. The structured process of modeling supports defect prevention by eliminating processes 
that have in the past allowed defect-types to be repeatedly introduced into products. 
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Figure 4. Member Savings 

3.2. Requirement Validation 
Requirement validation ensures captured requirements reflect the functionality desired by the 
customer and other stakeholders. Although requirement validation does not focus specifically on 
requirement testability analysis, it does support it. Requirement validation involves an engineer, 
user or customer judging the validity of each requirement. Models provide a means for 
stakeholders to precisely understand the requirements and assist in recognizing omissions. Tests 
automatically derived from the model support requirement validation through manual inspection 
or execution within simulation or host environments. 

4. Process and Organizational Impacts of Model-Based Testing 
Model-based testing is not just a better way to test, but can spawn organizational impacts that 
promote a more continuous test process, as well as system architecture impacts that improve the 
overall system design. The most effective approach that we have used to foster better design for 
testability is to use a continuous testing process, where test engineers are involved early in the 
requirement analysis to ensure that the design has interfaces for testing. 

4.1. Design for Testability 
There are many benefits derived from performing design for testability, including more improved 
test coverage, simpler tests design, enhanced fault analysis (debugging), as well as more options 
for test automation. Without it, most tests must be performed manually. The concepts of design 
for testability have been around for many years. By creating infrastructure support within the 
application, and specifically to the interfaces of the SUT, we can support three notions [WP82]: 

1. Predictability of the tests, which supports a means for conclusively assessing whether the 
GUI performed correctly or not. 

2. Controllability of the tests, which permits the test mechanism to provide inputs to the 
system and drive the execution through various scenarios and states to foster the need for 
systematic coverage of the GUI functionality 
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3. Observability of the system outputs that can lead to a decision as to whether the outputs 
are desirable (correct) or faulty. 

Design for testability provides the sum of these features to test execution, but with the support of 
these features permits more automated types of test automation to be used for test execution. As 
shown in Figure 5, it is important for the design engineers to expose some of the internals of the 
SUT, like component interfaces, to provide more controllability and observability of internal 
information that passes into and out of the system through program-based interfaces. It is best to 
have early interaction between the lead testers and the lead designers so that the program-based 
interfaces that support testability are exposed.  

System Under Test

User
Interface

Code

Logic
and
Data

Processing
Code

(non-user
Interface)

Program-based Interface

Test
Automation
Mechanism

External

 
Figure 5. Program-Based Interfaces to SUT 

Design for testability should occur at many or all of the layers of the software system architecture 
because it results in less coupling of the system components. If the component interfaces are 
coupled to other components, the components are typically not completely controllable through 
separate interfaces. This can complicate the modeling and testing process. Consider the following 
conceptual representation of the set of components and interfaces shown in Figure 6. 

To support systematic testing that can be performed in stages where each component is 
completely tested with respect to the requirements allocated to it, the interfaces to the component 
should be explicitly and completely accessible, either using global memory, or better through get-
and-set methods/procedures as reflected in Figure 6. For example, if the inputs to the B.2 
component of higher-level component B are completely available for setting the inputs to B.2, and 
the outputs from the B.2 functions can be completely observed, then the functionality within B.2 
can be completely specified and systematically tested. However, if interfaces from other 
components, such as B.1 are not accessible, then some of the functionality of the B.2 component 
is coupled with B.1, and the interfaces to B.2, must also include interfaces to B.1, or to other 
upstream components, such as component A. This interface coupling forces the modeling to be 
described in terms of functionality allocated to combinations of components. The coupling 
reduces the reuse of components, and increases the regression testing effort due to the coupled 
aspects of the system components. The problems associated with testing highly coupled systems 
can be problematic for model-based testing, but also negatively impacts any type of testing. 
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Figure 6. Conceptual Components of System 

4.2. Interface-Driven Requirement Modeling 
The recommend process identified by using TAF with companies over the last several years is 
reflected in Figure 7, which provides a more detailed perspective of the modeling process flow as 
it relates to time. This perspective extends Figure 2 with some additional details. The requirement 
engineer and design engineers work in parallel with the test engineer to define requirements in 
terms of component interfaces. This drives the design to identify the component interfaces early in 
the process to help stabilize the architecture, which providing the interface information that is 
required to support test driver generation. The term verification model is used to refer to the 
requirements of a component that are defined in terms of the interfaces. The test engineer modeler 
typically developed incrementally and uses TAF tools to perform model analysis, and correct any 
inconsistency in the requirements very early in the process.  

Once the models are correct, test drivers can be generated. A second type of test engineer, called 
the Automation Architecture, typically develops the test driver schema for the particular testing 
environment, usually from one of the existing schemas. Usually, one test automation architect can 
support 20 or more modelers. Once a test driver schema is created, it doesn’t change very much. 
The interfaces from the verification model are mapped to the APIs of the implementation using 
object mappings, and then test drivers are generated to support automated test execution. Often 
test drivers are available for the implementer to use before the implementation is completed. This 
has the side benefit of reducing the unit testing that the developer typically performs. If test 
failures are identified, each test has requirement-to-test traceability information that allows failures 
to be traced backwards to the requirement. This allows fault analysis information to determine if 
the requirements or the implementation are incorrect. 
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Figure 7. Process Summary of Roles versus Time 

5. Get Started With A Pilot Project 
Before selecting a test automation approach for your project it is useful to use a small pilot project 
to better understand the capabilities of the test automation tools, to understand how they work with 
the development tools and architecture, and to access how the tools fit into the existing process. 
We have found it useful to use two types of pilot projects in deploying model-based testing. 

5.1. Three-day Mini Pilot 
A three-day mini-pilot project uses a modeling expert to work onsite with a small team that 
includes someone that can represent the roles of the requirement engineer, the design engineer, 
and test engineer. The objectives of this mini-pilot are to quickly model some part of a product 
application, tailor an existing test driver schema to generate the test drivers, and execute the test 
drivers through some existing system. This is important to show all members of the team, 
including some management sponsor, that it is feasible to use in their product areas. During the 
remainder of the three-day pilot, the model can be evolved to show how the test driver schema can 
be reused. Mini-pilot projects are useful to: 

• Demonstrate feasibility and time-reduction implications of applying models and 
reusable test driver schemas 

• Work with developers through hands-on use 
• Use experiments to investigate applicability on different types of projects and 

applications 
• Review existing approach(es) and make recommendations for improvement and use of 

models 
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• Determine feasibility for application in other potential areas where verification is 
needed to significantly reduce cycle time 

• Determine the required skills of the participants for the follow-on pilot 
The final steps of the mini-pilot are to decide on a small part of an actual feature that can be used 
in a pilot project that is conducted by the members of the project team, with support of the model-
based expert. The last step is to provide an out-briefing to management that describes the follow-
on plan for a small, less than three month, pilot project.  

5.2. Pilot Project Candidate 
The candidate project should develop a small thread of functionality for a new feature added to 
some component of the system. The feature should not be on the critical path in terms of schedule 
release of the product. The interfaces to the components with the new feature should be well 
defined, supporting testability as described in Section 4.1. In addition, the selected feature should 
be one that is likely to have continual changes or related extensions in the future. This will 
illustrate how to leverage existing models to support new features, as well as support full 
regression testing with a fraction of the typical effort. It is usually not necessary to have more than 
one or two engineers involved in the first pilot, but requirement and design knowledgeable 
engineers should be available to provide requirement and interface information to the pilot team. 
The key results of the pilot project should a better understanding of how to tailor the existing 
software development process for adoption by a larger team. It is recommended that the 
candidates selected for the project be used as the mentors for each follow-on projects. 

6. Objective Measures 
During the pilot project, and certainly after the first non-pilot project, there are some easy 
measures that can be used to track and estimate project completion dates. Figure 8 provides a 
perspective on the key measurement information associated with TAF model-based testing. These 
measures and their use are described in terms of an information model adapted from the ISO/IEC 
15939, Software Engineering - Software Measurement Process. The key elements of the 
information model are attributes, base measures, derived measures, indicators, and information 
products. An attribute is a property or characteristic of a process or product that is the subject of 
measurement (e.g., requirement). A base measure or data primitive is a quantification of a single 
attribute. A derived measure combines two or more values of base measures using a mathematical 
function. An indicator can be a base or derived measure or a combination of such measures that 
are associated with decision criteria by means of a mathematical or heuristic model. An 
information product consists of one or more indicators with corresponding interpretations. The 
information product forms the basis for action by the decision maker. These measures can be 
combined in many different ways to form indicators that satisfy specific information needs. 

The TAF modeling approach results in four key base measures. The four key model-based 
measurement attributes associated with base measures are the requirements, modeled requirement 
threads, model variables, and object mappings. Requirement engineers are responsible for 
producing requirements, which results in the base measure number of requirements. A test 
engineer or modeler works in parallel with developers to refine requirements and build models to 
support iterative testing and development. Modeling introduces model variables, and this results in 
the base measure number of variables. After model translation and processing, the model 
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requirements are converted into requirement threads, which is a base measure related to 
requirements. Finally, to support test driver generation and test execution and results analysis, the 
base measure number of object mappings is used. Object mappings relate model variables to the 
implementation interfaces.  
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Figure 8. Process View of TAF Measurement 

The base measures are combined into derived measures to produce indicators to provide 
information such as requirement modeling rate, requirement-to-test density, project duration, and 
estimated project completion. There are graphical representations of the base and derived 
measures, as well as formulas that use historical measures to predict project duration and usage of 
real-time project data to predict the completion of an ongoing project. This measurement-related 
information should help managers and project leads in predicting schedule duration and estimating 
project completion dates. Historical measurement information can be used prior to the start of a 
new project, but it also is important to use data derived during the project. 

7. Summary 

___________________________________________________________________________ 
 

The first two generations of test automation focused on test execution, and had limited support for 
test design. The third generation test automation tools separate test scenario definition from test 
scripting-based automation, but still have limited support for test design. Model-based test 
automation, like the Test Automation Framework (TAF), can be considered a fourth generation 
test automation. It supports defect prevention, requirement defect identification, and automatic 
generation of tests from models, which eliminates manual test design and reduces cost. Model-
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based test automation supports both requirement-based and design-based models. Early 
identification of requirement defects reduces rework involved in developing and testing both 
software and systems. 

Model-based development also affects the organization. Development teams have reported 
significant cost and effort savings using approaches like TAF. Teams have found that requirement 
modeling takes no longer than traditional test planning, while reducing redundancy and building a 
reusable model library capturing the organization’s key intellectual assets. Organizations can see 
the benefits of using interface driven model-based testing that includes design for testability to 
help stabilize the interfaces of the system early, while identifying component interfaces that 
support automated test driver generation that can be constructed once and reused across related 
tests.  

Parallel development of modeling is beneficial in development and helps identify requirement 
defects early to reduce rework. Because testing activities occur in parallel to development efforts, 
testing teams get involved from the beginning and stay involved throughout the process, reducing 
the risk of schedule overruns. Defect prevention is a key benefit of the approach. It is achieved 
using model analysis to detect and correct requirements defects early in the development process. 
The verification models enable automated test generation. This eliminates the typically manual 
and error-prone test design activities and provides measurable requirement-based test coverage. 
Organizations have demonstrated that the approach can be integrated into existing processes to 
achieve significant cost and schedule savings. 

The best way to get started is to use a pilot project to assess how to use model-based testing, and 
to best understand the organizational resources required to tailor the existing development process 
for a successful deployment on an actual project. TAF has been applied to applications in various 
domains including critical applications for aerospace, medical devices, IT applications including 
databases, client-server, web-based, automotive, telecommunication, and smart cards. Pilot 
demonstration can leverage existing test driver generation schemas supporting most any language  
(e.g., C, C++, VB, Java, Ada, Perl, PL/I, SQL, XML, etc.) as well as proprietary languages, COTS 
test injection products (e.g., DynaComm®, WinRunner®) and test environments.  

Objective measurement support provides managers with tools to track and estimate project 
completion dates from the beginning of the first project with a few simple measures. Most users of 
the approach have reduced their verification/test effort by 50 percent. 
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