
10 Model-Based Web Application Development

Gustavo Rossi, Daniel Schwabe

Abstract: In this chapter we present our experience with the Object-
Oriented Hypermedia Design Method (OOHDM), a model-based approach
for developing Web applications. We first describe the main activities in
OOHDM and then we illustrate the application of the method with a sim-
ple example, a CD store.

Keywords: OOHDM, Web development, conceptual model, navigation
model, hypermedia development.

10.1 The OOHDM approach – An Overview

The Object-Oriented Hypermedia Design Method (OOHDM) is a model-
based approach to the development of Web applications. OOHDM uses
different abstraction and composition mechanisms in an object oriented
framework to, on one hand, allow a concise description of complex infor-
mation items, and on the other hand, allow the specification of complex
navigation patterns and interface transformations. OOHDM provides a
clear roadmap that allows answering the following key questions, gener-
ally asked when building Web applications:

• What constitutes an “information unit” with respect to navigation?
• How does one establish what are the meaningful links between infor-

mation units?
• How does one organise the navigation space, i.e., establish the possible

sequences of information units the user may navigate through?
• How will navigation operations be distinguished from interface opera-

tions and from “data processing” (i.e., application operations)?

In OOHDM, a hypermedia application is built in a five-step process
supporting an incremental or prototype process model. Each step focuses
on a particular design concern, and an object-oriented model is built. Clas-
sification, aggregation and generalisation/specialisation are used through-
out the process to enhance abstraction power and reuse opportunities.
Table 10.1 summarises the steps, products, mechanisms and design con-
cerns in OOHDM.

304 Gustavo Rossi, Daniel Schwabe

Table 10.1. Activities and formalisms in OOHDM

Activities Products Formalisms Mechanisms Design Concerns

Requirements
gathering

Use cases,
Annotations

Scenarios; user
interaction dia-
grams; design
patterns

Scenario and
use case Analy-
sis, Interviews,
UID mapping to
conceptual
model

Capture the stake-
holder require-
ments for the ap-
plication.

Conceptual
design

Classes, sub-
systems, rela-
tionships,
attribute per-
spectives

Object-oriented
modelling con-
structs; design
patterns

Classification,
aggregation,
generalisation
and specialisa-
tion

Model the seman-
tics of the applica-
tion domain

Navigational
design

Nodes, links,
access struc-
tures, naviga-
tional con-
texts,
navigational
transforma-
tions

Object-oriented
views; object-
oriented State
charts; context
classes; design
patterns; user-
centred scenar-
ios

Classification,
aggregation,
generalisation
and specialisa-
tion.

Takes into account
user profile and
task. emphasis on
cognitive aspects.
build the naviga-
tional structure of
the application

Abstract inter-
face design

Abstract inter-
face objects,
responses to
external
events, inter-
face transfor-
mations

Abstract inter-
face widgets;
concrete wid-
gets; ontologies;
design patterns

Mapping be-
tween naviga-
tion and percep-
tible objects

Model perceptible
objects, imple-
menting chosen
metaphors. De-
scribe interface for
navigational ob-
jects. Define lay-
out of interface
objects

Implementa-
tion

Running ap-
plication

Those supported
by the target
environment

Those provided
by the target
environment

Performance,
completeness

We next summarise the different OOHDM activities; detailed syntax
and semantics can be found in [3,6]. Further information about OOHDM
can be found online at the OOHDM Wiki (http://www.ooohdm.inf.puc-
rio.br:8668).

10.1.1 Requirements Gathering

The first step during requirements gathering is to gather stakeholders’ re-
quirements. To achieve this, it is necessary to first identify the actors (stake-
holders) and the tasks they must perform. Next, scenarios are collected (or

Model-Based Web Application Development 305

drafted), for each task and type of actor. The scenarios are then used to form
use cases, which are represented using User Interaction Diagrams (UIDs).
These diagrams provide a concise graphical representation of the interaction
between the user and the system during the execution of a task. UIDs are
validated with the actors, and redesigned if necessary. In sequence, a set of
guidelines are applied to the UIDs to extract a conceptual model. Details
about UIDs can be found in [9].

10.1.2 Conceptual Design

During the conceptual design, an application domain’s conceptual model is
built using object-oriented modelling principles, augmented with primi-
tives, such as attribute perspectives (multiple valued attributes, similar to
HDM perspectives). Conceptual classes may be built using aggregation
and generalisation/specialisation hierarchies. There is no concern for the
types of users and tasks, only for the application domain semantics. A con-
ceptual schema is built out of sub-systems, classes and relationships.
OOHDM uses UML (with slight extensions) for expressing the conceptual
design.

10.1.3 Navigational Design

In OOHDM, an application is seen as a navigational view over the concep-
tual model. This reflects a major innovation of OOHDM, which recognises
that the objects (items) the user navigates are not the conceptual objects,
but objects that are “built” from one or more conceptual objects.

For each user profile we can define a different navigational structure,
which will reflect objects and relationships in the conceptual schema ac-
cording to the tasks a user must perform. The navigational class structure
of a Web application is defined by a schema containing navigational
classes. In OOHDM, there is a set of pre-defined types of navigational
classes: nodes, links, anchors and access structures. The semantics of
nodes, links and anchors are as usual in hypermedia applications. Nodes in
OOHDM represent logical “windows” (or views) on conceptual classes,
defined during conceptual design. Links are the hypermedia realisation of
conceptual relationships, as well as task-related links. Access structures,
such as indexes, represent possible ways to start a navigation.

Different applications (in the same domain) may contain different linking
topologies according to a user’s profile. For example, in an academic Web
application we may have a view to be used by students and researchers, and
another view for use by administrators. In the second view, a professor's

306 Gustavo Rossi, Daniel Schwabe

node may contain salary information, which would not be visible in the
student’s view.

The main difference between our approach and others’, in relation to ob-
ject viewing mechanisms, is that while others consider Web pages mainly
as user interfaces built by “observing” conceptual objects, we favour the
explicit representation of navigational objects (nodes and links) during
design.

The navigational structure of a Web application is described in terms of
navigational contexts, which are generated from navigation classes, such
as nodes, links, indices and guided tours. Navigational contexts are sets of
related nodes that possess similar navigation alternatives (options), and
that are meaningful for a certain step in a task pursued by a user. For ex-
ample, we can model the set of courses in a semester, the paintings of a
painter, the products in a shopping cart, etc.

10.1.4 Abstract Interface Design

The abstract interface design defines perceptible objects (e.g. a picture, a
city map) in terms of interface classes. Interface classes are aggregations
of primitive classes (e.g. text fields, buttons) and, recursively, of other
interface classes. Interface objects are mapped to navigational objects in
order to have a perceptible appearance. An interface behaviour is defined
by specifying how to handle external and user-generated events, and how
the communication between interface and navigational objects is to take
place.

10.1.5 Implementation

Implementation maps interface and navigation objects to implementation
objects, and may involve elaborated architectures (e.g. client–server), in
which applications are clients to a shared database server containing con-
ceptual objects. A number of CD-ROM-based applications, as well as Web
applications, have been developed using OOHDM, and employing numer-
ous technologies, such as Java (J2EE), .NET (aspx), Windows (asp), Lua
(CGILua), ColdFusion and Ruby (RubyOnRails).

An open source environment for OOHDM, based on a variation of Ruby
on Rails, is available at:

http://server2.tecweb.inf.puc-rio.br:8000/projects/hyperde/trac.cgi/wiki.

Model-Based Web Application Development 307

10.2 Building an Online CD Store with OOHDM

We next illustrate our method using as a case study the design of a simple
CD store. To keep it simple, we focus mainly on the process of finding
products in the store catalogue, with less emphasis on the check-out proc-
ess (see [5]). This example is somewhat archetypical, as different Web
applications can be modelled using similar ideas to those we show next.
We emphasise the process of mapping requirements into conceptual and
navigational structures, and ignore user interface and implementation is-
sues (see [1,2,8] for discussions about interfaces and implementation).

In OOHDM we build a different navigational model for each user pro-
file. In this application we have at least two orthogonal profiles: the client
(who is looking for CDs to buy) and the administrator (who maintains the
CD store); we will illustrate the application focusing on the client profile.

10.2.1 Requirements Gathering

The first step is to identify the actors in the application; in the example, our
only actor is the client who buys CDs in the online store. Next, for each
actor, we have to identify the tasks that will evolve into potential use sce-
narios, and later into use cases. The most important tasks identified are the
following:

• To buy a CD given its title
• To buy a CD given the name of a song
• To buy a CD given the name of the performer
• To find information about a performer
• To find CDs given a musical genre
• To find best-selling CDs
• To find CDs on offer

Scenario Construction

The next activity consists of describing usage scenarios. Scenarios repre-
sent the set of tasks a user has to perform to complete a task. Scenarios in
OOHDM are specified textually, from the point of view of the end users.
In this instance, the role of an end user (client) can also be performed ei-
ther by different members of the design team, or by the CD store employ-
ees. For the sake of conciseness, we describe two of the eighteen scenarios
we elicit from three different users.

308 Gustavo Rossi, Daniel Schwabe

Scenario 1: To buy a specific CD.
“I enter the CD title. For each CD matching that title I obtain the CD’s
cover, availability and price. It is possible to obtain detailed information,
such as track names, duration, details of performing artists, and to listen to
CD tracks. It is also possible to obtain additional data on artists. After
reading the information I decide to buy the CD or to quit”

Scenario 2: To buy a CD given its title.
“I enter the CD title and I obtain the list of matching titles. I choose one
and add it to the shopping cart. Whenever the CD information is shown, I
should see information on its availability”

Use Case Specification

Next, we define use cases, based on the set of scenarios and tasks previ-
ously defined; we use the following heuristics:

1. Identify those scenarios related to the task at hand. We will use the two
previous scenarios.

2. For each scenario, identify information items that are exchanged be-
tween the user and the application during their interaction.

3. For each scenario, identify data items that are inter-related. In general,
they appear together in a use case text.

4. For each scenario, identify data items organised as sets. In general,
they appear as sets in a use case text.

5. The sequences of actions presented in scenarios should also be present
in a use case.

6. For each scenario, the operations on data items should be included in a
use case.

Once the data involved in the interaction, the sequence of actions and
the operations have been defined, we next specify a use case. A use case is
constructed from the sequence of actions, enriched with data items and
operations. Use cases can also be complemented with information from
other use cases, or from the designer.

The resulting use case for the previous scenario is the following:

Use Case: To buy a CD from its title

1. A user enters the CD title (or part of it).
2. The application returns a list of matching CDs. If only one CD

matches, see step 4. For each CD, its title, artist, price, cover and avail-
ability are shown.

Model-Based Web Application Development 309

3. If the user wants to buy one or more CDs from the list, (s)he adds them
to the shopping cart. The sale is dealt with using another use case –
Use Case: Buy. Further CD information is available by selecting it.

4. If a single CD is selected, the application provides further information:
title, cover, availability, price, track names and durations, performers,
description, year, genre and country of origin. If the user wants to buy
this CD, (s)he can either add it to the shopping cart, or leave and buy it
later (Use Case: Buy). The user can listen to a track segment if willing
to.

5. Further information about any artists who participated in the CD can
be obtained by selecting the artist’s name. Once selected, the applica-
tion returns the artist’s name, date of birth, a photograph and a short
biography.

The specification of the remaining use cases follows a similar process.
Thus, only those use cases that are clearly different from the one described
above will be described next.

Use Case: Verify Shopping Cart

1. The shopping cart displays information on all the CDs selected by a
user. For each CD the following information is provided: title, quan-
tity, artist’s name and price. Total price and the estimated delivery date
are also shown.

2. The quantity relative to each CD can be edited, if necessary, by select-
ing the CD.

Use Case: Buy CD

1. To buy CD(s) a user must provide a name and, optionally, a password.
2. If a user does not have a password, the following information must

then be provided: name, address, telephone, e-mail address and birth
date.

3. Once the necessary information is given, a user is able to further sup-
ply the necessary payment data: payment options (cash or deferred),
payment type (cheque or credit card), delivery options (surface or air)
and optionally delivery address.1 The operation is completed only after
being confirmed by the user.

4. After the operation is confirmed, the user receives an order number.

1 The delivery address only needs to be provided if it differs from the user’s
contact address.

310 Gustavo Rossi, Daniel Schwabe

Specifying User Interaction Diagrams

For each previously defined use case, a User Interaction Diagram (UID)
must be specified. The specification of UIDs from use cases can be done
following the guidelines described below. As an example, we detail below
the process of building the UID for the use case: To buy a CD given its
title.

1. Initially the use case is analysed to identify the information exchange
between the user and the application. Information provided by the user
and information returned by the application are tagged. Next, the same
information is identified and made evident in the use case.

2. Items that are exchanged during the interaction are shown as the UID’s
states. Information provided by the user and by the system are always
in separate states. Information produced from computations and infor-
mation used as input to the computations should be in separate states.
The ordering of states depends on the dependencies between the data
provided by the user, and those returned by the application. In
Fig. 10.1, we show the first draft of a UID where parts of the use case
are transcribed.

<1>

The user enters all or
part of the CD name

The system returns a list of CDs
matching the input string. Shown for
each CD its name, price, cover,
availability and the names of the
artist(s) that participate in the CD.

<2>

The system returns detailed information
about the CD: name, cover, availability,
price, name and duration of each track,
names of artists, description, year of
release, genre and country of origin

The system returns the name, the date
of birth, a picture and a bio of the artist.

<3> <4>

Fig. 10.1. Defining a UID

The exchange data items, once identified, must be clearly indicated in
the UID. Data entered by the user (e.g. a CD title) is specified using a rec-
tangle: if it is mandatory, the border is a full line; if it is optional, the bor-
der is a dashed line (see Fig. 10.2). An ellipsis (…) in front of a label indi-
cates a list (e.g. …CD indicates a list of CDs). The notation Artist(name,
date of birth, bio, photo) is called a structure.

Model-Based Web Application Development 311

Fig. 10.2. Refining interaction states

Transitions between interaction states must be indicated using arrows.
Multiple paths, as indicated in the use cases, might arise (see Fig. 10.3).
Labels between brackets indicate conditions (e.g. [2..N] indicates more
than one result); a label indicating cardinality represents a choice (in the
example, “1” indicates that only one may be chosen).

Fig. 10.3. Transitions between interaction states

Finally, operations executed by the user are represented using a line
with a bullet connected to the specific information item to which it is ap-
plied, as shown in Fig. 10.4. The name of the operation appears in paren-
theses.

CD title
…CD (name, price, cover, avail-

ability ... Artist (name))

CD (name, description, year of release
price, availability, cover, genre, country of
origin, …Song(name) duration, excerpt),
 ...Artist (name))

Artist/name, date of
birth, bio, photo)

CD title

CD (name, description, year of release,
price, availability, cover, genre, country of

origin , … Song (name, duration, excerpt),
...Artist (name))

1

1

Artist (name, date of birth, bio,

photo)

…CD (name, price, cover

availability,
 ...Artist (name))

[2..N] [1]

312 Gustavo Rossi, Daniel Schwabe

Fig. 10.4. Complete specification of the UID for use case To buy CD given its title

Figure 10.5 and Fig. 10.6 present UIDs corresponding to the use cases
To verify Shopping Cart and to buy CD, respectively. Once we finish the
specification of UIDs for all use cases, we can then design the applica-
tion’s conceptual model.

(Confirm)

Shipping address

Order Number

Payment_form [credit card, bank transfer]

shipping [air, surface]

Payment_type [cash,
installments]

name

password

[valid password]
[New Client]

name telephone

Date of
Birth e-mail

address

Fig. 10.5. UID for use case To buy CD

CD title

CD (name, description, year of release, price,
availability, cover, genre, country of origin ,
…Song (name, duration, excerpt), ...Artist

(name))

1

1

Artist (n ame, dat e of birth , bio,
photo)

…CD (name, price,

cover, availability,
 ...Artist (name))

1..N (include in

shopping cart)

1 (listen)

1..N (include in

shopping cart)

[2..N] [1]

Model-Based Web Application Development 313

1 (change quantity)

… CD (title, quantity, ...Artist (name), price)

Total price Delivery Deadline

Fig. 10.6. UID for use case To verify Shopping Cart

10.2.2 Conceptual Modelling

To define classes, their attributes, operations and relationships is not an
easy task. However, the information gathered from use cases and UIDs can
help identify core information classes that can be later refined. Next, we
describe a set of guidelines to derive classes from UIDs, exemplified using
the UID in Fig. 10.4 (To buy CD).

1. Class definition. For each data structure in the UID we define a class.
In the example, classes are: CD, Artist, Song.

2. Attribute definition. For each information item appearing in the UID,
either provided by the user or returned by the application, an attribute
is defined according to the following validations:

a. If, given an instance of class X, it is possible to obtain the value for
attribute A, then A can be an attribute of X (provided X is the only
class fulfilling this condition).

b. If, given classes X and Y, it is possible to obtain the value of attrib-
ute A, then A will be an attribute of an association between X and
Y.

c. If the attribute corresponding to a data item does not depend on any
existing class, or combination of classes, we need to create a new
one.

The following attributes were identified from the information returned
by the application, as shown in the UID in Fig. 10.4:

• CD: title, description, year, price, cover, availability, genre, coun-
try of origin.

• Artist: name, birth date, description, photograph
• Song: name
• CD-Song: track, duration.

314 Gustavo Rossi, Daniel Schwabe

3. Definition of associations. For each UID, for attributes contained
within a structure that does not correspond to their class, include the
association if there is a relationship between its class and the class rep-
resenting the structure.

4. Definition of associations. For each UID, for each structure s1, con-
taining another structure s2, create an association between the classes
corresponding to structures s1 and s2.

5. Definition of associations. For each transition of interaction states in
each UID, if there are different classes representing the source interac-
tion state and the target interaction state, define an association between
corresponding classes.

The following associations were identified by applying 3, 4 and 5 to the
UID in Fig. 10.4:

• CD-Artist
• CD-Song

6. Operations definition. For each option attached to a state transition in
each UID, verify if there is an operation that must be created for any of
the classes that correspond to the interaction states.

The following operations were identified from this last guideline:

• CD: includeInShoppingCart
• CD-Music: listenTrack

In Fig. 10.7 we show an initial conceptual model derived from the UID:
To buy CD from title.

Fig. 10.7. Initial conceptual model

After analysing the complete set of UIDs and performing the required
adjustments we obtain the conceptual model shown in Fig. 10.8.

CD
title
description
release_year
price
availability
cover
country of origin
genre

includeShoppingCart ()

Song

name1..* 1..*

Artist
name
date of birth
bio
photo

duration
excerpt

listenExcerpt ()

Model-Based Web Application Development 315

CD
title: String
description: Text
year of release: String
price: Real
availability: String
cover: Image
origin: [domestic,
 international]
label: String
isCompilation: Boolean
isHighlight: Boolean
onPromotion: Boolean
discount: Real
/qtySold:Integer

1..* *

1..*

Artist

bio: [Text+, photo:Image]
deceased?: Date
givenName: String

Client

password: String
telephone: String
address: Address

Person

name: String
e-mail: String
date of birth: Date
nationality: String
born_in: String

composer

composes *

participates in

makes

1..*

1

1..*

Genre

name: string

has

1..*

1..*

Track
number: Integer
duration: Integer
excerpt: Audio

listenExcerpt ()

Order Item

itemNumber: Integer
quantity: Integer
/itemValue: Real

IincludeItemOrder(CD, Order)
changeQty(CD, Order, qty)
calculateItemValue(qty, price);

*Order

number: Integer
ordeDate: Date
PmtType: [credit card, bank
transfer]
PmtType: [cash, installments]
shipping:[air, maritime,
 surface]
shippingAddress: Address
/shippingCharges: Real
/totalAmount: Real
expectDeliveryDate: Date
deliveryDate: Date

newOrder()
updateOrder ()
calculateTotalAmount ()

* 1..*

Song

name: String
lyrics: Text

interprets

*

1..*

Fig. 10.8. Conceptual model for the CD store

Note that this conceptual model might need further improvements as the
application evolves, since these classes are simply the ones we derive from
the requirement’s gathering activity. However, this evolution belongs more
to the general field of object-oriented design and is not important in the
context of this chapter.

10.2.3 Navigation Design

During the navigation design activity we generate two schemas: the navi-
gational contexts and the navigational class schemas. The former indicate
possible navigation sequences to help users complete their tasks; the latter
specify the navigation objects being processed. Designers create both
schemas from different sources. UIDs and scenarios are important to ob-
tain a sound navigational model. The conceptual model that has also been

316 Gustavo Rossi, Daniel Schwabe

obtained from requirements is also an important source of information.
Finally, designers use previous experience, e.g. using navigation patterns,
as described in [4,7]. Next we detail the creation of navigational contexts.

Derivation of Navigational Contexts

For each task we define a partial navigational context representing a possible
navigational structure to support the task. We detail the creation of the navi-
gational contexts corresponding to the use case: To buy CD given its title.

First, each structure that has been represented in the UID (and the corre-
sponding class in the conceptual model) is analysed to determine the type
of primitive that it will give rise to (e.g. an access structure, a navigational
context or a list). The following guidelines can be used to obtain a naviga-
tional context:

1. When the task associated with the UID requires that the user examines
a set of elements to select one, we map the set of structures into an ac-
cess structure. An access structure is a set of elements, each of which
contains a link. In Fig. 10.9, we show the partial diagram for access
structures CDs and Artists.

CDs Artists

Fig. 10.9. Access structures

2. When the task does not require such examination, but requires the ele-
ments to be accessed simultaneously, map the set into a list, e.g. the list
of songs in a CD (see Fig. 10.10).

CD ?

 title, description, year of release, price,
 cover, availability, genre, country of origin,
songs: list of <s: Song, t:Track, s.name,

 t.duration, t.excerpt where Track(t, c, s)>

Fig. 10.10. List for CD

3. After mapping the different sets of structures we analyse singular
structures in the UID using the following guideline. When the task re-
quires that an element’s information be accessed by the user, we map
the structure into a navigational context. In Fig. 10.11 we show the
partial context diagram from this example.

Model-Based Web Application Development 317

CD
Alphabetical

Order

Artist

by CD

CD Alphabetical Order

 title, description, year of release, price,
 cover, availability, genre, country of origin,
songs: list of <s: Song, t:Track, s.name,

 t.duration, t.excerpt where Track(t, c, s)>
 artists: Idx Artists by CD (self)

 includeShoppingCart ()
 listenExcerpt()

Artist by CD

 name, date of birth, bio, photo

Fig. 10.11. Partial context for UID: Buy CD given its title

In the example, both “CD Alphabetical Order” and “Artist by CD” are
contexts, which correspond to sets of elements. The elements that consti-
tute each set are described in the grey boxes.

In Fig. 10.12 and Fig. 10.13 we show other partial contexts obtained
from previously mentioned UIDs. Other UIDs, such as “CD by Genre”,
“CD on Promotion”, would have similar definitions.

Fig. 10.12. Partial context for UID: To buy CD given an artist’s name

CD

by Artist
Artists

CD by Artist

 title, description, yearof release, price,
 cover, availability, genre, country of origin,
songs: list of <s: Song,t:Track, s.name,

 t.duration, t.excerpt whereTrack(t, c, s)>
 artists: list of <a: Artist, a.name where ainterprets t: Track

and Track (t,c: CD,s:Song)>
includeShoppingCart()
listenExcerpt()

CD by Artist

318 Gustavo Rossi, Daniel Schwabe

Fig. 10.13. Partial context for UID: To buy CD given a song’s name

Fig. 10.14 and Fig. 10.15 show other kinds of contexts and their element
definitions.

After obtaining the context diagram for each individual task, we inte-
grate the partial context schemas to obtain the application’s complete
navigational context schema, shown in Fig. 10.16. In the integration proc-
ess, contexts that are the same are unified, and navigation choices between
contexts in different tasks are also examined.

 Ctx ?

 total_amount, expected delivery date,
 cds: list of <c:CD, i:Item, o:Order, c.title, c.price,qi.quantity,
 list of <a:Artist, a.name where a interprets t:Track
 and Track (t,c:CD, s:Song)>
 where Item (i,c, o)>

 changeQty ()

Fig. 10.14. Verify shopping cart

Order Order Update

 client name, e-mail, date of birth, telephone,
 address, form of payment[cash, installments],
 type of payment[credit card, bank transfer],
transport [air, surface], shipping address

Update

Fig. 10.15. To buy CD

CD by Song

title, description, year of release, pr ice,
 cover, availability, genre, country of origin,

songs: list of <s: Song, t:Track, s.name,
 t.duration, t. excerpt where Track(t , c, s)>
 artists: list of <a: Artist, a.n ame where a interpret s t: Track
 and Track (t,c: CD, s:Song)>

includeShoppingCart ()
 listenExcerpt()

CD

by Song
Songs CD by Song

Model-Based Web Application Development 319

Songs

Alphabetical

CD

Main Menu

by Artist

by Order

by GenreGenres

by Query

 on Promotion

CDs by Query
<name, description

and/or label>

by Song

 Bestsellers

CDs

 Alphabetical

Artist

by CD

Artists

Order

Update

Creation

 Compilation by Genre

Fig. 10.16. Navigation context schema

We can see that from the main menu, the user can access different ac-
cess structures (for CDs, Musical Genres, Songs, CDs by Query, and Art-
ists). Each one of them provides access to sets of nodes that support the
achievement of the different tasks identified at the outset.

Specification of the Navigational Class Schema

During the specification of the navigational class schema the designer de-
rives the navigational schema using both the conceptual model and the
navigational contexts schema. Navigational classes, such as nodes, repre-
sent views over conceptual classes: a navigational class can present infor-
mation from one or more conceptual classes. All classes from the naviga-
tional contexts schema are node classes. Meanwhile links are derived from
navigation relationships between classes in the navigational contexts
schema. Note that not all navigation in this schema represents a link. The
rule for selecting the target context is analysed (especially when it involves

320 Gustavo Rossi, Daniel Schwabe

navigation between contexts of the same class). If the elements of the tar-
get context are related to an object of the same original class, and if this
object is the parameter, then the navigation represents a link.

For example, in the navigational context schema of Fig. 10.16, we have
navigational classes CD, Order and Artist. We have the following naviga-
tions among classes: from CD to Artist by CD, from Order to CD by Order
and from CD to Order in Creation/Update. The selection rule for Artist by
CD (Parameter: c:CD-Elements: a: Artist where a participates in c) indi-
cates that the context is integrated by artists related to a particular CD,
which is its parameter; therefore there is a link from CD to Artist. Simi-
larly, selection rules for the other contexts indicate which navigations cor-
respond to links. In Fig. 10.17 we present the resulting navigational class
schema.

0..*participa1..*

Artist

name: string
description: text
photo: image *
deceased: Date
cds: Idx CDs by Artist (self)

CD
 {from c: CD}

title: string
description: text
year: string
price: real
availability: string
cover: image
origin: [national, international]
label: string
onPromotion: boolean
/qtySold: integer
artists: list of <a: Artist, a.name where a interprets t:Track
 and Track (t, c, s: Song) >
genres: list of <g: Genre, g.name where c has g>
ind_artists: Idx Artists by CD (self)

listenExcerpt (c, t:Track)

1 0..*

includes

Order
 {from o: Order}

name: cl:Client, cl.name where cl makes p
e-mail: cl:Client, cl.e-mail where cl makes p
telephone: cl:Client, cl.telephone where cl makes p
address: cl:Cliente, cl.address where cl makes p;
pmt_form: [ccard, bank transfer]
pmt_type: [cash, installments]
shipping:[air, surface]
number: integer
shipping_address: string
/total_price: real
expectedDeliveryDate: Date
cds: Idx CDs by Order (self) is_a

1

0..*

Item

cd_name: c:CD, p:order, c.name where OrderItem (c, p)
order_number: c: CD, p: order, p.number where Item (c, p)
quantity: integer

includeItemOrder (c:CD, p:Order)
changeQty (c:CD, p:Order, quantity:Integer)

Simple CDs
{from c: CD}

songs: list of <s: Song, t: Track,
 s.name, t. duration, t.excerpt
 where Track (t, c, s)>

Compilation CD
 {from c: CD}

songs: list of < s: Song, t: Track,
 s.name, t. duration, t.excerpt,
 list of <a: Artist, a.name
 where a interprets t>
 where Track (t, c, s)>

Fig. 10.17. Navigational schema

Model-Based Web Application Development 321

10.2.4 Abstract Interface Design

The abstract interface design focuses on making navigation objects and
application functionality perceptible to the user, which must be done at the
application interface level. At the most abstract level, the interface func-
tionality can be regarded as supporting information exchange between the
application and the user, including activation of functionalities. In fact,
from this standpoint, navigation is just another (albeit distinguished) appli-
cation functionality.

Since the tasks being supported drive this information exchange, it is
reasonable to expect that this exchange in itself will be less sensitive to
runtime environment aspects, such as particular standards and devices
being used. The design of this interface aspect can be carried out by inter-
action designers or software engineers.

For the actual running application, it is necessary to define the concrete
look and feel of the application, including layout, font, colour and graphi-
cal appearance, which is typically carried out by graphics designers. This
part of the design is almost totally dependent on the particular hardware
and software runtime environment.

Such separation allows shielding a significant part of the interaction de-
sign from inevitable technological platform evolution, as well as from the
need to support users in a multitude of hardware and software runtime
environments.

The entire interface is specified by several ontologies, currently de-
scribed using RDFS (RDFS W3C) and OWL (OWL W3C) as a formalism.

Abstract Widget Ontology

The type of functionality offered by interface elements is called the ab-
stract interface. It is specified using the Abstract Widget Ontology, which
establishes the interface vocabulary, as shown in Fig. 10.18. This ontology
can be thought of as a set of classes whose instances will comprise a given
interface.

322 Gustavo Rossi, Daniel Schwabe

AbstractInterfaceElement

SimpleActivator ElementExhibitor VariableCapturer

IndefiniteVariable PredefinedVariable

ContinuousGroup DiscreteGroup MultipleChoices SingleChoices

CompositeInterfaceElement

Fig. 10.18. Abstract Widget Ontology

An abstract interface widget can be any of the following:

• SimpleActivator, which is capable of reacting to external events, such
as mouse clicks.

• ElementExhibitor, which is able to exhibit a type of content, such as
text or images.

• VariableCapturer, which is able to receive (capture) the value of one
or more variables. This includes input text fields, selection widgets
such as pull-down menus and checkboxes, etc. It generalises two dis-
tinct (sub) concepts.

• IndefiniteVariable, which allows entering previously unknown values,
such as text strings typed by the user.

• PredefinedVariable, which abstracts widgets that allow the selection of
a subset from a set of pre-defined values; often this selection must be a
singleton. Specialisations of this concept are ContinuousGroup, Dis-
creetGroup, MultipleChoices and SingleChoice. The first allows se-
lecting a single value from an infinite range of values; the second is
analogous, but for a finite set; the remainder are self-evident.

• CompositeInterfaceElement, which is a composition of any of the
above.

It can be seen that this ontology captures the essential roles that inter-
face elements play with respect to the interaction – they exhibit informa-
tion, react to external events, or accept information. As customary, com-
posite elements allow building more complex interfaces out of simpler
building blocks.

The software designer, who understands the application logic and the
types of information exchange that must be supported, should carry out the
abstract interface design. The software designer does not need to take us-
ability issues or the “look and feel” into account, as they will be dealt with
during the concrete interface design, normally carried out by a graphics (or
“experience”) designer.

Model-Based Web Application Development 323

Once the abstract interface has been defined, each element must be
mapped onto both a navigation element, which will provide its contents,
and a concrete interface widget, which will actually implement the element
in a given runtime environment. Fig. 10.19 provides an example of an
interface for a page describing an artist, and Fig. 10.20 shows an abstract
representation of this interface.

Concrete widgets correspond to widgets usually available in most run-
time environments, such as labels, text boxes, combo boxes, pulldown
menus, radio buttons, etc.

Fig. 10.19. An example of a concrete interface

Home

Main Menu

CDs
Artists
Songs

Search
 CDs
 Descriptions
 Songs

Artists A to Z

Beatles
Great Britain
1960-1970
The Beatles were one of the most influential
music groups of the rock era . Initially they
affected the post -war baby boom generation
of
Britain and the U.S. during the 1960s , and later the rest of the

world. Certainly they were the most successful group, with global

sales exceeding 1.1 billion records . …

CDs:
• Sergeant Pepper’s
• Abbey Road
• Revolver
• ...

 Previous | Next

324 Gustavo Rossi, Daniel Schwabe

Fig. 10.20. Abstract Widget Ontology instance for the example in Fig. 10.19

Model-Based Web Application Development 325

Mappings

The Abstract Interface Ontology contains, for each abstract interface wid-
get, the mapping both to navigation elements, which are application spe-
cific, and to a concrete interface element.

There is additional information in the ontology that restricts each ab-
stract interface widget to compatible concrete interface widgets. For ex-
ample, a “SimpleActivator” abstract interface widget can only be mapped
into the “Link” or “Button” concrete interface widgets.

Actual abstract interface widget instances are mapped onto specific
navigation elements (in the navigation ontology) and onto concrete inter-
face widgets (in the Concrete Interface Widget Ontology). Fig. 10.21
shows the specification of the “Previous Artist” abstract interface widget
(class “SimpleActivator”), shown in Fig. 10.20, which is mapped onto a
“Link” concrete interface element.

...
<awo:SimpleActivator rdf:ID="ArtistAlphaPrevious">

<awo:mapsTo rdf:resource= “http://www.inf.puc-rio.br/~sabrina/ontology/CW/cwo#Link" />
<awo:fromElement>ctxArtistAlpha</awo:fromElement>
<awo:fromAttribute>_Prev</fromAttribute>
<awo:AbstractInterface>ArtistAlpha</AbstractInterface>

</awo:SimpleActivator>

Fig. 10.21. Mapping between abstract interface widget and navigation element

Fig. 10.22 shows an example illustrating how an application’s function-
ality is integrated, by providing the OWL specification of the “Search”
abstract interface element. It is composed of two abstract widgets, “Ele-
mentExhibitor” (lines 9–12), and “CompositeInterfaceElement” (lines 14–
46). The first shows the “Search” string, using a “Label” concrete widget.
The second aggregates the four elements used to specify the field in which
the search may be performed, namely, three “MultipleChoices” – Search-
Professors (lines 25–29), SearchStudents (31–35) and SearchPapers (37–
41) and one “IndefiniteVariable” – “SearchField” (lines 43–46).

The CompositeInterfaceElement element, in this case, has the proper-
ties: fromIndex, isRepeated, mapsTo, abstractInterface and hasInter-
faceElement. The fromIndex property in line 2 indicates which naviga-
tional index this element belongs to. This property is mandatory if no
previous element of type compositeInterfaceElement has been declared.
The association with the “idxSearch” navigation element in line 2 enables
the generation of the link to the actual code that will run the search. Even
though this example shows an association with a navigation element, it
could just as well be associated with a call to application functionality such
as “buy”.

326 Gustavo Rossi, Daniel Schwabe

...
1 <awo:CompositeInterfaceElement rdf:ID="Search">
2 <awo:fromIndex>idxSearch</awo:fromIndex>
3 <awo:mapsTo rdf:resource="&cwo;Composition"/>
4 <awo:isRepeated>false</awo:isRepeated>
5 <awo:hasInterfaceElement rdf:resource="#TitleSearch"/>
6 <awo:hasInterfaceElement rdf:resource="#SearchElements"/>
7 </awo:CompositeInterfaceElement>
8
9 <awo:ElementExihibitor rdf:ID="TitleSearch">
10 <awo:visualizationText>Search</awo:visualizationText>
11 <awo:mapsTo rdf:resource="&cwo;Label"/>
12 </awo:ElementExihibitor>
13
14 <awo:CompositeInterfaceElement rdf:ID="SearchElements">
15 <awo:fromIndex>idxSearch</awo:fromIndex>
16 <awo:abstractInterface>SearchResult</awo:abstractInterface>
17 <awo:mapsTo rdf:resource="&cwo;Form"/>
18 <awo:isRepeated>false</awo:isRepeated>
19 <awo:hasInterfaceElement rdf:resource="#SearchCDs"/>
20 <awo:hasInterfaceElement rdf:resource="#SearchDescriptions"/>
21 <awo:hasInterfaceElement rdf:resource="#SearchSongs"/>
22 <awo:hasInterfaceElement rdf:resource="#SearchField"/>
23 </awo:CompositeInterfaceElement>
24
25 <awo:MultipleChoices rdf:ID="SearchCDs">
26 <awo:fromElement>SearchCDs</awo:fromElement>
27 <awo:fromAttribute>name</awo:fromAttribute>
28 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
29 </awo:MultipleChoices>
30
31 <awo:MultipleChoices rdf:ID="SearchDescriptions">
32 <awo:fromElement>SearchCDs</awo:fromElement>
33 <awo:fromAttribute>description</awo:fromAttribute>
34 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
35 </awo:MultipleChoices>
36
37 <awo:MultipleChoices rdf:ID="SearchSongs">
38 <awo:fromElement>SearchSongs</awo:fromElement>
39 <awo:fromAttribute>name</awo:fromAttribute>
40 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
41 </awo:MultipleChoices>
42
43 <awo:IndefiniteVariable rdf:ID="SearchField">
44 <awo:mapsTo rdf:resource="&cwo;TextBox"/>
4546 </awo:IndefiniteVariable>

...

Fig. 10.22. Example of the OWL specification of the “Search” part of Fig. 10.19

The isRepeated property indicates if the components of this element are
repetitions of a single type (false in this case). The mapsTo property indi-
cates which concrete element corresponds to this abstract interface ele-
ment. The abstractInterface property specifies the abstract interface that
will be activated when this element is triggered. The hasInterfaceElement
indicates which elements belong to this element.

The ElementExhibitor element has the visualizationText and mapsTo
properties. The former represents the concrete object to be exhibited, in
this case the string “Search”.

Model-Based Web Application Development 327

The MultipleChoices element has the fromElement, fromAttribute and
mapsTo properties. The fromElement and fromAttribute properties indicate
the corresponding element and navigational attribute in the navigational
ontology, respectively. The IndefiniteVariable element has the mapsTo
property.

10.3 From Design to Implementation

Mapping design documents into implementation artefacts is usually time-
consuming and, in spite of the importance of software engineering ap-
proaches be generally accepted, implementers tend to overlook the advan-
tages of good modelling practices. The relationship between design models
and implementation components is lost, making the traceability of design
decisions, which is a fundamental aspect for supporting evolution, a
nightmare. We claim that this problem is not only caused by the relative
youth of Web implementation tools but mainly due to:

• Lack of understanding that navigation (hypertext) design is a defining
characteristic of Web applications.

• The fact that languages and tools are targeted more to support fine-
grained programming than architectural design.

• The inability of methodologists to provide non-proprietary solutions to
the aforementioned “mapping” dilemma.

For example, we can use the Model View Controller (MVC) architec-
ture to map design constructs onto implementation components. The MVC
architecture has been extensively used for decoupling the user interface
from application data, and from its functionality. Different programming
environments provide large class libraries that allow the programmer to
reuse standard widgets and interaction styles by plugging corresponding
classes into her/his “model”.

The model contains application data and behaviours, and also provides
an interface for the view and the controller. For each user interface, a view
object is defined, containing information about presentation formats, and is
kept synchronised with the model’s state. Finally, the controller processes
the user input and translates it into requests for specific application’s func-
tionality. This separation reflects well the fact that Web applications may
have different views, in the sense that it can be accessed through different
clients (e.g. browsers, WAP clients, Web service clients), with application
data separated from its presentation. The existence of a separate module
(the controller) to handle user interaction, or, more generally, interaction

328 Gustavo Rossi, Daniel Schwabe

with other systems or users, provides better decoupling between applica-
tion behaviour and the way in which this behaviour is triggered.

However, while the MVC provides a set of structuring principles for
building modular interactive applications, it does not completely fulfil the
requirements of Web applications to provide rich hypermedia structures, as
it is based on a purely transactional view of software. In addition, it does
not take into account the navigation aspects that, as we have previously
argued, should be appropriately supported.

The view component includes structure and presentation of data, while
contents are kept in the model. Specifically, a simple use of the MVC is
for nodes and their interfaces to be handled by the same software compo-
nent (typically a JSP object).

In addition, the MVC does not take into account that navigation should
always occur within a context and that context-related information should
be provided to the user. For example, if we want the same node to have a
slightly different structure, depending on the context in which it is ac-
cessed (e.g. CD in a thematic set or in the shopping cart), we have to use
the context as a parameter for the JSP page, and write conditional state-
ments to insert context-sensitive information as appropriate. The JSP be-
comes overloaded, difficult to manage and evolution becomes practically
unmanageable. The same problem occurs if we use different JSPs for dif-
ferent contexts, thus duplicating code.

An alternative approach is to use a single JSP that generates the infor-
mation common to all contexts (basic node), and one JSP for each node in
context, which dynamically inserts that common JSP, adding the context-
sensitive information. This is still unsatisfactory, since in this case, the
basic node layout becomes fixed and we have lost flexibility.

To overcome these limitations we have developed a software architec-
ture, OOHDM-Java2, which extends the idea of the MVC by clearly sepa-
rating nodes from their interfaces, thus introducing navigation objects; it
also recognises the fact that navigation may be context-dependent. Details
on the architecture are presented in [1].

In Fig. 10.23 the higher-level components of the OOHDM-Java2 archi-
tecture are presented, in addition to the most important interactions be-
tween components, while handling a request.

The main components of OOHDM-Java2 are summarised in Table 10.2.

Model-Based Web Application Development 329

Model

Controller

Extended View

JSP (layout)

Navigational Node
(contents, model

view)

Http Request
Translator

Executor Business
Objects

1) Http
Request

2) Business
Event

3) Application
Funcionality
Invocation

View
Selector 4) Queries on

Model State

5) Selected
View

6) Http
Response

Client

Navigational Node
(contents, model

view)

Fig. 10.23. Main components of OOHDM-Java2

Fig. 10.24 outlines the implementation architecture for the interface [2].
Starting with the navigation and abstract interface designs, the correspond-
ing ontology instances are used as input into a JSP generator, which instan-
tiates the interface as a JSP file using TagLibs. The interpreter uses the
Jena library to manipulate the ontology information.

The actual TagLib code used is determined by the concrete widget defi-
nition that has been mapped onto the corresponding abstract widget. The
abstract interface determines the nesting structure of elements in the result-
ing page. It is expected that the designer will group together functionally-
related elements.

It is possible to use different instances of the TagLib implementation by
changing its declaration. Thus, for each possible concrete widget, a differ-
ent implementation of the TagLib code will generate the desired HTML
(or any other language) version for that widget.

330 Gustavo Rossi, Daniel Schwabe

Table 10.2. Main components of OOHDM-Java2

Component Description

HTTP Request
Translator (Con-
troller)

Every http request is redirected to this component. It trans-
lates the user request into an action to be executed by the
model. This component extracts the information (parame-
ters) of the request and instantiates a business event, which
is an object that encapsulates all data needed to execute the
event.

Executor (Con-
troller)

This component has the responsibility of executing a busi-
ness event, invoking model behaviours following some pre-
defined logic.

Business Object
(Model)

This component encapsulates data and functionality spe-
cific to the application. All business rules are defined in
these objects and triggered from the executor to execute a
business event.

View Selector
(Controller)

After the execution of a business event, this component
gets the state of certain business objects and selects the
response view (interface).

Navigational
Node (Extended
View)

This component represents the product of the navigational
logic of the application; it encapsulates attributes that have
been obtained from some business objects and other navi-
gational sub-components such as indexes, anchors, etc.
This component has the contents to be shown by the re-
sponse interface (JSP).

JSP (Extended
View)

This component generates the look-and-feel that the client
component receives as a response to its request. To achieve
this, it instantiates the corresponding navigational node
component and adds the layout to the node’s contents.
Notice that the JSP component does not interact directly
with model objects. In this way we can have different lay-
outs for the same navigational node.

The actual values of navigation elements manipulated in the page are
stored in Java Beans, which correspond to the navigation nodes described
earlier. The element property, generated in the JSP file, contains calls to
the bean that the Tag Library uses to generate the HTML code seen.

Our current implementation of the TagLib code simply wraps each ele-
ment that has the “DIV” CSS tag with its own ID, and its CSS class is de-
fined according to its abstract widget type. In this way, we can attach CSS
style sheets to the generated HTML to produce the final page rendering.

Model-Based Web Application Development 331

Abstract
Widget

Ontology

OOHDM model
(perceptible

The designer
generates the
abstract interface
ontology instance
according to SHDM

Generate
JSP code

and TagLibs

The TagLib code generates
the actual HTML code
corresponding to the
concrete widget

Using the abstract widget
ontology instance, JSP code is
generated, using especially
defined TagLibs, one for each
Abstract Interface widget

+Navigation
Objects

Mapping rule
interpreter

Concrete
Interface
Instance

Fig. 10.24. Outline of the implementation architecture

Given the expressive power of CSS, the concrete page definition format
allows a large degree of flexibility for the graphic designer, both in terms
of layout itself and in terms of formatting aspects. Nevertheless, if a more
elaborate page layout is desired, it is possible to edit the generated JSP
manually, altering the relative order of generated elements. For a more
automated approach, it might be necessary to apply XSLT transformations
to the JSP.

10.4 Discussion and Lessons Learned

One of the main advantages of using a model-based approach for Web
applications’ design is the construction of a set of technology-independent
models that can evolve together with application requirements, and that are
largely neutral with respect to other types of changes in the application
(e.g. runtime settings change).

While working with the OOHDM approach we have found that stake-
holders feel comfortable with our notation for requirements acquisition
(UID diagrams). In addition, we have used this notation several times to
discuss requirements and requirements evolution.

332 Gustavo Rossi, Daniel Schwabe

The transition from requirements to design can be managed in a seam-
less way (perhaps simpler than the transition to implementation). Regard-
ing the implementation, we have found that the instability of frameworks
for Web applications deployment usually hinders the use of model-based
approaches, as developers tend to devote much time to implementation and
to neglect design aspects. In this sense, we have tried to keep our notation
simple to make it easy to use.

10.5 Concluding Remarks

This chapter presented the OOHDM approach for building Web applica-
tions. We have shown with a simple but archetypical example how to deal
with the different activities in the OOHDM life cycle. We have also pre-
sented several guidelines that allow a designer to systematically map re-
quirements to conceptual and navigational structures. Finally, implementa-
tion alternatives have also been discussed.

Web engineering is no longer in its infancy; many mature methods al-
ready exist and developers can base their endeavours on solid model-based
approaches like OOHDM and others in this book. The underlying princi-
ples behind OOHDM, essentially the clear separation of concerns (e.g.
conceptual from navigational and navigational from interfaces), allow not
only “just in time” development but also seamless evolution and mainte-
nance of complex Web applications.

Acknowledgements

The authors wish to thank the invaluable help of Adriana Pereira de
Medeiros in preparing the example used in this chapter. Gustavo Rossi has
been partially funded by Secyt's project PICT No 13623, and Daniel
Schwabe has been partially supported by a grant from CNPq - Brazil.

References

1 Jacyntho MD, Schwabe D, Rossi G (2002) A software Architecture for Struc-
turing Complex Web Applications. Web Engineering, 1(1)

2 Moura SS, Schwabe D (2004) Interface Development for Hypermedia Appli-
cations in the Semantic Web. In: Proceedings of LA Web 2004, Ribeirão Pre-
to, Brazil, IEEE CS Press, pp 106–113, Los Alamitos, CA

Model-Based Web Application Development 333

3 Rossi G, Schwabe D (1999) Web application models are more than concep-
tual models. In: Proceedings of the World Wild Web and Conceptual Model-
ing'99 Workshop, LNCS 1727, Springer, Paris, pp 239–252

4 Rossi G, Schwabe D, Lyardet F (1999) Integrating Patterns into the Hyper-
media Development Process. New Review of Hypermedia and Multimedia,
December

5 Schmid H, Rossi G (2004) Modeling and Designing Processes in E-commerce
Applications. IEEE Internet Computing, January/February: 19–27

6 Schwabe D, Rossi G (1998) An Object Oriented Approach to Web-Based
Application Design. Theory and Practice of Object Systems, 4(4):207–225

7 Schwabe D, Rossi G, Lyardet F (1999) Improving Web Information Systems
with navigational patterns. Computer Networks and Applications, May

8 Schwabe D, Szundy G, de Moura SS, Lima F (2004) Design and Implementa-
tion of Semantic Web Applications. In: Proceedings of the Workshop on Ap-
plication Design, Development and Implementation Issues in the Semantic
Web (WWW 2004), CEUR Workshop Proceedings, http://ceur-ws.org/Vol-
105/, May

9 Vilain P, Schwabe D, Souza CS (2000) A Diagrammatic Tool for Represent-
ing User Interaction in UML. In: Proceedings UML’2000, LNCS 1939,
Springer Berlin, pp 133–147

Authors’ Biography

Gustavo Rossi is full Professor at Facultad de Informática of La Plata National
University, Argentina, and heads LIFIA, a computer science research lab. His
research interests include Web design patterns and frameworks. He coauthored the
Object-Oriented Hypermedia Design Method (OOHDM) and is currently working
on separation of design concerns in context-aware Web applications. He has a
PhD in Computer Science from Catholic University of Rio de Janeiro (PUC-Rio),
Brazil. He is an ACM member and IEEE member.

Daniel Schwabe is an Associate Professor in the Department of Informatics at
Catholic University in Rio de Janeiro (PUC), Brazil. He has been working on
hypermedia design methods for the last 15 years. He is one of the authors of
HDM, the first authoring method for hypermedia, and of OOHDM, one of the
mature methods in use by academia and industry for Web applications design. He
earned a PhD in Computer Science in 1981 at the University of California, Los
Angeles.

