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ABSTRACT

The Netflix Prize put the spotlight on the use of data min-
ing and machine learning methods for predicting user pref-
erences. Many lessons came out of the competition. But
since then, Recommender Systems have evolved. This evo-
lution has been driven by the greater availability of different
kinds of user data in industry and the interest that the area
has drawn among the research community. The goal of this
paper is to give an up-to-date overview of the use of data
mining approaches for personalization and recommendation.
Using Netflix personalization as a motivating use case, I will
describe the use of different kinds of data and machine learn-
ing techniques.

After introducing the traditional approaches to recommen-
dation, I highlight some of the main lessons learned from
the Netflix Prize. I then describe the use of recommenda-
tion and personalization techniques at Netflix. Finally, I
pinpoint the most promising current research avenues and
unsolved problems that deserve attention in this domain.

1. INTRODUCTION

Recommender Systems (RS) are a prime example of the
mainstream applicability of large scale data mining. Ap-
plications such as e-commerce, search, Internet music and
video, gaming or even online dating make use of similar
techniques to mine large volumes of data to better match
their users’ needs in a personalized fashion.

There is more to a good recommender system than the data
mining technique. Issues such as the user interaction design,
outside the scope of this paper, may have a deep impact
on the effectiveness of an approach. But given an existing
application, an improvement in the algorithm can have a
value of millions of dollars, and can even be the factor that
determines the success or failure of a business. On the other
hand, given an existing method or algorithm, adding more
features coming from different data sources can also result
in a significant improvement. I will describe the use of data,
models, and other personalization techniques at Netflix in
section 3. I will also discuss whether we should focus on
more data or better models in section 4.

Another important issue is how to measure the success of
a given personalization technique. Root mean squared er-
ror (RMSE) was the offline evaluation metric of choice in
the Netflix Prize (see Section 2). But there are many other
relevant metrics that, if optimized, would lead to different
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solutions - think, for example, of ranking metrics such as
Normalized Discounted Cumulative Gain (NDCG) or other
information retrieval ones such as recall or area under the
curve (AUC). Beyond the optimization of a given offline met-
ric, what we are really pursuing is the impact of a method on
the business. Is there a way to relate the goodness of an algo-
rithm to more customer-facing metrics such as click-through
rate (CTR) or retention? I will describe our approach to in-
novation called “Consumer Data Science” in section 3.1.
But before we understand the reasons for all these effects,
and before we are ready to embrace the open research ques-
tions in the area of personalization described in Section 5,
we need to understand some of the basic techniques that
enable the different approaches. I will briefly describe them
in the following paragraphs.

1.1 Approaches to the Recommendation
problem

The most common approach to build a Recommender Sys-
tem is to use one of the many available Collaborative Fil-
tering (CF) algorithms [1]. The underlying assumption of
these methods is captured by the principle of like minded-
ness: users who are measurably similar in their historical
preferences are likely to also share similar tastes in the fu-
ture. In other words, CF algorithms assume that, in order
to recommend content of any kind to users, information can
be drawn from what they and other similar users have liked
in the past. Historically, the k-Nearest Neighbor (kNN)
algorithm was the most favored approach to CF, since it
transparently captured this assumption of like-mindedness:
it operates by finding, for each user (or item), a number
of similar users (items) whose profiles can then be used to
directly compute recommendations [55].

The main alternative to CF is the so-called content-based
approach [46], which identifies similarities between items
based on the features inherent in the items themselves. These
recommender systems require a way to extract content de-
scriptions and a similarity measure between items. Auto-
matic content description is still only available for some
kinds of content, and under some constraints. That is why
some systems need to rely on experts to manually input and
categorize the content [56]. On the other hand, content-
based approaches can deal with some of the shortcomings
of CF such as item cold-start - i.e. the initialization of new
items that the system has no previous user preference data
for.

CF and content-based methods can be combined in different
ways using hybrid approaches [15]. Hybrid RS can combine
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several different methods in a way that one method provides
support whenever the other methods are lacking. In prac-
tice, most of the advanced recommendation systems used in
the industry are based on some sort of hybridation, and are
rarely purely CF or content-based.

1.2 Data Mining methods in Recommender
Systems

No matter which of the previous approaches is used, a rec-
ommender system’s engine can be seen as a particular in-
stantiation of a traditional data mining task [4]. A data min-
ing task typically consists of 3 steps, carried out in succes-
sion: Data Preprocessing, Data Modeling, and Result Anal-
ysis. Traditional machine learning techniques such as di-
mensionality reduction, classification, or clustering, can be
applied to the recommendation problem. In the following
paragraphs, I will describe some of the models that, beyond
the classical kNN, can be used to build a recommender sys-
tem.

Although current trends seem to indicate that other matrix
factorization techniques are preferred (see Section 2.1), ear-
lier works used Principal Component Analysis (PCA)
[24] . Decision Trees may be used in a content-based ap-
proach for a RS. One possibility is to use content features to
build a decision tree that models the variables involved in
the user preferences [13]. Bayesian classifiers have been
used to derive a model for content-based RS [23]. Artifi-
cial Neural Networks (ANN) can be used in a similar
way as Bayesian Networks to construct content-based RS’s
[47]. ANN can also be used to combine (or hybridize) the
input from several recommendation modules or data sources
[20]. Support Vector Machines (SVM) have also shown
promising recent results [30].

Clustering approaches such as k-means can be used as a
pre-processing step to help in neighborhood formation [65].
Finally, association rules [3] can also be used[38].

2. THE NETFLIX PRIZE

In 2006, Netflix announced the Netflix Prize, a machine
learning and data mining competition for movie rating pre-
diction. We offered $1 million to whoever improved the ac-
curacy of our existing system called Cinematch by 10%. We
conducted this competition to find new ways to improve the
recommendations we provide to our members, which is a key
part of our business. However, we had to come up with a
proxy question that was easier to evaluate and quantify: the
root mean squared error (RMSE) of the predicted rating.

The Netflix Prize put the spotlight on Recommender Sys-
tems and the value of user data to generate personalized
recommendations. It did so by providing a crisp problem
definition that enabled thousands of teams to focus on im-
proving a metric. While this was a simplification of the
recommendation problem, there were many lessons learned.

2.1 Lessons from the Prize

A year into the competition, the Korbell team won the first
Progress Prize with an 8.43% improvement. They reported
more than 2000 hours of work in order to come up with
the final combination of 107 algorithms that gave them this
prize. And they gave us the source code. We looked at the
two underlying algorithms with the best performance in the
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ensemble: Matrix Factorization (MF) [35] ' and Restricted
Boltzmann Machines (RBM) [54]. Matrix Factorization by
itself provided a 0.8914 RMSE, while RBM alone provided a
competitive but slightly worse 0.8990 RMSE. A linear blend
of these two reduced the error to 0.88. To put these algo-
rithms to use, we had to work to overcome some limitations,
for instance that they were built to handle 100 million rat-
ings, instead of the more than 5 billion that we have, and
that they were not built to adapt as members added more
ratings. But once we overcame those challenges, we put the
two algorithms into production, where they are still used as
part of our recommendation engine.

The standard matrix factorization decomposition provides
user factor vectors U, € R’ and item-factors vector Vy €
R’. In order to predict a rating, we first estimate a baseline
buy = p~+by+by as the user and item deviation from average.
The prediction can then be obtained by adding the product
of user and item factors to the baseline as 7, = buy +UEUU.
One of the most interesting findings during the Netflix Prize
came out of a blog post. Simon Funk introduced an incre-
mental, iterative, and approximate way to compute the SVD
using gradient descent [22]. This provided a practical way
to scale matrix factorization methods to large datasets.
Another enhancement to matrix factorization methods was
Koren et. al’s SVD++ [33]. This asymmetric variation
enables adding both implicit and explicit feedback, and re-
moves the need for parameterizing the users.

The second model that proved successful in the Netflix Prize
was the Restricted Boltzmann Machine (RBM). RBM’s can
be understood as the fourth generation of Artificial Neural
Networks - the first being the Perceptron popularized in the
60s; the second being the backpropagation algorithm in the
80s; and the third being Belief Networks (BNs) from the
90s. RBMs are BNs that restrict the connectivity to make
learning easier. RBMs can be stacked to form Deep Belief
Nets (DBN). For the Netflix Prize, Salakhutditnov et al.
proposed an RBM structure with binary hidden units and
softmax visible units with 5 biases only for the movies the
user rated [54].

Many other learnings came out of the Prize. For exam-
ple, the matrix factorization methods mentioned above were
combined with the traditional neighborhood approaches [33].
Also, early in the prize, it became clear that it was impor-
tant to take into account temporal dynamics in the user
feedback [34].

Another finding of the Netflix Prize was the realization that
user explicit ratings are noisy. This was already known in
the literature. Herlocker et al.[27] coined the term “magic
barrier” to refer to the limit in accuracy in a recommender
system due to the natural variability in the ratings. This
limit was in fact relatively close to the actual Prize threshold
[6], and might have played a role in why it took so much
effort to squeeze the last fractions of RMSE.

The final Grand Prize ensemble that won the $1M two years
later was a truly impressive compilation and culmination
of years of work, blending hundreds of predictive models
to finally cross the finish line [11]. The way that the final

!The application of Matrix Factorization to the task of rat-
ing prediction closely resembles the technique known as Sin-
gular Value Decomposition used, for example, to identify la-
tent factors in Information Retrieval. Therefore, it is com-
mon to see people referring to this MF solution as SVD.
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Figure 1: Following an iterative and data-driven offline-online process for innovating in personalization

solution was accomplished by combining many independent
models also highlighted the power of using ensembles.

At Netflix, we evaluated some of the new methods included
in the final solution. The additional accuracy gains that
we measured did not seem to justify the engineering effort
needed to bring them into a production environment. Also,
our focus on improving Netflix personalization had by then
shifted from pure rating prediction to the next level. In the
next section, I will explain the different methods and com-
ponents that make up a complete personalization approach
such as the one used by Netflix.

3. NETFLIX PERSONALIZATION:
BEYOND RATING PREDICTION

Netflix has discovered through the years that there is tremen-
dous value in incorporating recommendations to personal-
ize as much of the experience as possible. This realization
pushed us to propose the Netflix Prize described in the pre-
vious section. In this section, we will go over the main com-
ponents of Netflix personalization. But first let us take a
look at how we manage innovation in this space.

3.1 Consumer Data Science

The abundance of source data, measurements and associated
experiments allow Netflix not only to improve our personal-
ization algorithms but also to operate as a data-driven orga-
nization. We have embedded this approach into our culture
since the company was founded, and we have come to call
it Consumer (Data) Science. Broadly speaking, the main
goal of our Consumer Science approach is to innovate for
members effectively. We strive for an innovation that allows
us to evaluate ideas rapidly, inexpensively, and objectively.
And once we test something, we want to understand why it
failed or succeeded. This lets us focus on the central goal of
improving our service for our members.
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So, how does this work in practice? It is a slight variation
on the traditional scientific process called A/B testing (or
bucket testing):

1. Start with a hypothesis: Algorithm/feature/design
X will increase member engagement with our service
and ultimately member retention.

2. Design a test: Develop a solution or prototype. Think
about issues such as dependent & independent vari-
ables, control, and significance.

3. Execute the test: Assign users to the different buck-
ets and let them respond to the different experiences.

4. Let data speak for itself: Analyze significant changes
on primary metrics and try to explain them through
variations in the secondary metrics.

When we execute A/B tests, we track many different met-
rics. But we ultimately trust member engagement (e.g.
viewing hours) and retention. Tests usually have thousands
of members and anywhere from 2 to 20 cells exploring vari-
ations of a base idea. We typically have scores of A/B tests
running in parallel. A/B tests let us try radical ideas or test
many approaches at the same time, but the key advantage
is that they allow our decisions to be data-driven.

An interesting follow-up question that we have faced is how
to integrate our machine learning approaches into this data-
driven A/B test culture at Netflix. We have done this with
an offline-online testing process that tries to combine the
best of both worlds (see Figure 1). The offline testing cycle
is a step where we test and optimize our algorithms prior
to performing online A/B testing. To measure model per-
formance offline we track multiple metrics: from ranking
measures such as normalized discounted cumulative gain, to
classification metrics such as precision, and recall. We also
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composition.

use the famous RMSE from the Netflix Prize or other more
exotic metrics to track different aspects like diversity. We
keep track of how well those metrics correlate to measurable
online gains in our A/B tests. However, since the mapping is
not perfect, offline performance is used only as an indication
to make informed decisions on follow up tests.

Once offline testing has validated a hypothesis, we are ready
to design and launch the A/B test that will prove the new
feature valid from a member perspective. If it does, we
will be ready to roll out in our continuous pursuit of the
better product for our members. That is in fact how we
came about to having the personalization experience I will
describe in the next section.

3.2 Everything is a Recommendation

Personalization starts on our homepage in any device. This
page consists of groups of videos arranged in horizontal rows.
Each row has a title that conveys the intended meaningful
connection between the videos in that group. Most of our
personalization is based on the way we select rows, how we
determine what items to include in them, and in what order
to place those items.

Take as a first example the Top 10 row (see Figure 2). This
row is our best guess at the ten titles you are most likely to
enjoy. Of course, when we say “you”, we really mean every-
one in your household. It is important to keep in mind that
Netflix personalization is intended to handle a household
that is likely to have different people with different tastes.
That is why when you see your Top 10, you are likely to
discover items for dad, mom, the kids, or the whole fam-
ily. Even for a single person household we want to appeal
to your range of interests and moods. To achieve this, in
many parts of our system we are not only optimizing for
accuracy, but also for diversity.

Another important element in Netflix personalization is aware-

ness. We want members to be aware of how we are adapting
to their tastes. This not only promotes trust in the system,
but encourages members to give feedback that will result in
better recommendations. A different way of promoting trust
with the personalization component is to provide explana-
tions as to why we decide to recommend a given movie or
show (see Figure 3). We are not recommending it because
it suits our business needs, but because it matches the in-
formation we have from you: your explicit taste preferences
and ratings, your viewing history, or even your friends rec-
ommendations.

On the topic of friends, we recently released our Facebook
connect feature. Knowing about your friends not only gives
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Figure 3: Adding explanation and support for recommen-
dations contributes to user satisfaction and requires specific
algorithms. Support in Netflix can include your predicted
rating, related shows you have watched, or even friends who
have interacted with the title.

us another signal to use in our personalization algorithms,
but it also allows for different rows that rely mostly on your
social circle to generate recommendations.

Some of the most recognizable personalization in our ser-
vice is the collection of “genre” rows. These range from fa-
miliar high-level categories like “Comedies” and “Dramas”
to highly tailored slices such as “Imaginative Time Travel
Movies from the 1980s”. Each row represents 3 layers of
personalization: the choice of genre itself, the subset of ti-
tles selected within that genre, and the ranking of those
titles. Rows are generated using a member’s implicit genre
preferences recent plays, ratings, and other interactions —,
or explicit feedback provided through our taste preferences
survey (see Figure 4) . As with other personalization ele-
ments, freshness and diversity is taken into account when
deciding what genres to show from the thousands possible.
Similarity is also an important source of personalization.
We think of similarity in a very broad sense; it can be be-
tween movies or between members, and can be in multi-
ple dimensions such as metadata, ratings, or viewing data.
Furthermore, these similarities can be blended and used as
features in other models. Similarity is used in multiple con-
texts, for example in response to generate rows of “adhoc
genres” based on similarity to titles that a member has in-
teracted with recently.

In most of the previous contexts, the goal of the recom-
mender systems is still to present a number of attractive
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items for a person to choose from. This is usually accom-
plished by selecting some items and sorting them in the order
of expected enjoyment (or wtility). Since the most common
way of presenting recommended items is in some form of list,
we need an appropriate ranking model that can use a wide
variety of information to come up with an optimal sorting
of the items. In the next section, we will go into some of the
details of how to design such a ranking model.

3.3 Ranking

The goal of a ranking system is to find the best possible
ordering of a set of items for a user, within a specific context,
in real-time. We optimize ranking algorithms to give the
highest scores to titles that a member is most likely to play
and enjoy.

If you are looking for a ranking function that optimizes con-
sumption, an obvious baseline is item popularity. The rea-
son is clear: on average, a member is most likely to watch
what most others are watching. However, popularity is the
opposite of personalization: it will produce the same order-
ing of items for every member. Thus, the goal becomes to
find a personalized ranking function that is better than item
popularity, so we can better satisfy members with varying
tastes.

Recall that our goal is to recommend the titles that each
member is most likely to play and enjoy. One obvious way
to approach this is to use the member’s predicted rating of
each item as an adjunct to item popularity. Using predicted
ratings on their own as a ranking function can lead to items
that are too niche or unfamiliar, and can exclude items that
the member would want to watch even though they may not
rate them highly. To compensate for this, rather than using
either popularity or predicted rating on their own, we would
like to produce rankings that balance both of these aspects.
At this point, we are ready to build a ranking prediction
model using these two features.

Let us start with a very simple scoring approach by choosing
our ranking function to be a linear combination of popularity
and predicted rating. This gives an equation of the form
score(u,v) = wip(v)+war(u,v)+b, where u=user, v=video
item, p=popularity and r=predicted rating. This equation
defines a two-dimensional space (see Figure 5).

Once we have such a function, we can pass a set of videos
through our function and sort them in descending order ac-
cording to the score. First, though, we need to determine
the weights w1 and ws in our model (the bias b is constant
and thus ends up not affecting the final ordering). We can
formulate this as a machine learning problem: select pos-
itive and negative examples from your historical data and
let a machine learning algorithm learn the weights that op-
timize our goal. This family of machine learning problems is
known as ”Learning to Rank” and is central to application
scenarios such as search engines or ad targeting. A cru-
cial difference in the case of ranked recommendations is the
importance of personalization: we do not expect a global
notion of relevance, but rather look for ways of optimizing
a personalized model.

As you might guess, the previous two-dimensional model is
a very basic baseline. Apart from popularity and rating pre-
diction, we have tried many other features at Netflix. Some
have shown no positive effect while others have improved our
ranking accuracy tremendously. Figure 6 shows the ranking
improvement we have obtained by adding different features
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Figure 6: Performance of Netflix ranking system when
adding features

and optimizing the machine learning algorithm.

Many supervised classification methods can be used for rank-
ing. In section 5.2, we will explore some of the latest ap-
proaches to the learning to rank problem.

3.4 Data

The previous discussion on the ranking algorithms highlights
the importance of both data and models in creating an op-
timal personalized experience. The availability of high vol-
umes of high quality user data allows for some approaches
that would have been unthinkable just a few years back. As
an example, here are some of the data sources we can use at
Netflix to optimize our recommendations:

e We have several billion item ratings from members.
And we receive millions of new ratings every day.

e We already mentioned the use of global item popu-
larity for ranking. There are many ways to compute
popularity such as over various time ranges or group-
ing members by region or other similarity metrics.

e Our members add millions of items to their queues
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each day. And they directly enter millions of search
terms each day.

e Each item in our catalog has rich metadata such as
actors, director, genre, parental rating, or reviews.

e Using presentation and impression data, we know
what items we have recommended and where we have
shown them, and can look at how that decision has
affected the user’s actions. We can also observe the

member’s interactions with the recommendations: scrolls,

mouse-overs, clicks, or the time spent on a given page.

e Social data has become our latest source of person-
alization features. Social data may include the social
network connections themselves as well as interactions,
or activities of connected nodes.

e We can also tap into external data such as box office
performance or critic reviews to improve our features.

e And that is not all: there are many other features such
as demographics, location, language, or tempo-
ral data that can be used in our predictive models.

3.5 Models

So, what about the models? As we described in Section
1.2, many different modeling approaches have been used
for building personalization engines. One thing we have
found at Netflix is that with the great availability of data,
both in quantity and types, a thoughtful approach is re-
quired to model selection, training, and testing. We use
all sorts of machine learning approaches: From unsuper-
vised methods such as clustering algorithms to a number
of supervised classifiers that have shown optimal results in
various contexts. This is an incomplete list of methods you
should probably know about if you are working in machine
learning for personalization: Linear regression, Logis-
tic regression, Elastic nets, Singular Value Decom-
position, Restricted Boltzmann Machines, Markov
Chains, Latent Dirichlet Allocation, Association Rules,
Matrix factorization, Gradient Boosted Decision Trees,
Random Forests, and Clustering techniques from the sim-
ple k-means to graphical approaches such as Affinity Prop-
agation.

There is no easy answer to how to choose which model will
perform best in a given problem. The simpler your feature
space is, the simpler your model can be. But it is easy to
get trapped in a situation where a new feature does not
show value because the model cannot learn it. Or, the other
way around, to conclude that a more powerful model is not
useful simply because you don’t have the feature space that
exploits its benefits.

4. DISCUSSION: MORE DATA ORBETTER
MODELS?

The previous discussion on models vs. data has recently
become a favorite - and controversial - topic. The improve-
ments enabled thanks to the availability of large volumes of
data together with a certain Big Data ”"hype” have driven
many people to conclude that it is ”all about the data”.
But in most cases, data by itself does not help in making
our predictive models better.
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Figure 7: In some cases, accuracy does not depend so much
on the model used, but on the amount of data used to train
the model. (From ”Scaling to Very Very Large Corpora
for Natural Language Disambiguation” [Banko And Brill,
2001])

Probably one of the most famous quotes defending the power
of data is that of Peter Norvig claiming that ”We don’t have
better algorithms. We just have more data.”. He is even
misquoted as saying that ” All models are wrong, and you
don’t need them anyway” (You can read Norvig’s rebuttal
and clarifications in his own webpage ?). Norvig did co-
author a paper entitled ”The Unreasonable Effectiveness of
Data” [26] in which the authors discuss the power of data
over models. The effect that the authors were referring to
had already been described years before in a now famous
paper by Banko and Brill [9] where the authors included
the plot in Figure 7. Both Norvig, and Banko and Brill are
of course right... in a context. The problem is that they are
now and again misquoted in contexts that are completely
different from the original ones.

In order to understand why, we need to clarify the differ-
ence between models with high variance or high bias. The
basic idea is that there are two possible (and almost oppo-
site) reasons why a model might not perform well. In the
first case, we might have a model that is too complicated
for the amount of data we have. This situation, known as
high variance, leads to model overfitting. We know that we
are facing a high variance issue when the training error is
much lower than the test error. High variance problems can
be addressed by reducing the number of features, and by in-
creasing the number of data points. Both Banko & Brill and
Norvig were dealing with high variance models since they
were working on language models in which roughly every
word in the vocabulary makes a feature. These are models
with many features as compared to the training examples.
Therefore, they are likely to overfit. And yes, in this case
adding more examples will help. In the opposite case, we
might have a model that is too simple to explain the data

http://norvig.com/fact-check.html
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Figure 8: Adding more data to high bias models will not
help. This plot illustrates a real case from a production
system at Netflix

we have. In that case, known as high bias, adding more data
will not help. See figure 8 illustrating the performance of a
real production system at Netflix as we add more training
examples.

So, no, more data does not always help. As we have just
seen, there can be many cases in which adding more exam-
ples to our training set will not improve the model perfor-
mance.

On the other hand, high bias models will not benefit from
more training examples, but they might very well benefit
from more features. Or will they? Well, again, it depends.
Let’s take the Netflix Prize, for example. Pretty early on,
there was a blog post commenting on the use of extra fea-
tures to solve the problem®. The post explains how a team of
students got an improvement on the prediction accuracy by
adding content features from IMDB. In retrospect, it is easy
to criticize the post for making a gross over-generalization
from a single data point. Many teams showed later that
adding content features from IMDB or the like to an opti-
mized algorithm had little to no improvement. Some of the
members of the Gravity team, one of the top contenders for
the Prize, published a detailed paper in which they showed
how those content-based features would add no improve-
ment to the highly optimized collaborative filtering matrix
factorization approach [48]. Again: More data, even in the
form of different features, does not always help.

So, is the Big Data revolution only hype? No way. Having
more data, both in terms of more examples or more fea-
tures, is a blessing. The availability of data enables more
and better insights and applications. More data indeed en-
ables better approaches. More than that: it requires better
approaches! In other words, data is important. But data
without a sound approach becomes noise.

5. RESEARCH DIRECTIONS

As I mentioned before, even though there were a lot of re-
search advances in the context of the Netflix Prize, the prize
was a simplification. In section 3, I illustrated the broader
scope of the recommendation problem by presenting Net-
flix’ comprehensive approach. In this section, I will describe
some of the latest advances in Recommender Systems by
highlighting some of the most promising research directions.

3http://anand.typepad.com/datawocky/2008,/03 /more-
data-usual.html
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Most of these directions are enabled thanks to the availabil-
ity of larger amounts of different data such as implicit user
feedback, contextual information, or social network interac-
tion data.

5.1 Beyond explicit ratings

Explicit ratings are not the only or even the best kind of
feedback we can get from our users. As already mentioned,
explicit feedback is noisy. Another issue with ratings is that
they do not represent a linear but rather an ordinal scale.
Most traditional methods wrongly interpret ratings as be-
ing linear, for example by computing averages. This issue,
however, has been addressed by some recent methods such
as OrdRec [70] deal with this issue.

In any case, in most real-world situations, implicit and bi-
nary feedback is much more readily available and requires
no extra effort on the user side. For instance, in a web page
you will have users visiting a URL, or clicking on an ad as
a positive feedback. In a music service, a user will decide
to listen to a song. Or in a movie service, like Netflix, you
will have users deciding to watch a title as an indication
that the user liked the movie. That is why, besides trying
to address some of the issues with explicit ratings, there
have been many recent approaches that focus on the use
of the more reliable and readily available implicit feedback
. Bayesian Personalized Ranking (BPR) [51], for example,
uses implicit feedback to compute a personalized ranking.
Implicit and explicit feedback can be combined in different
ways [44]. Even the SVD++ approach explained in Sec-
tion 2.1 and used during the prize can combine explicit and
implicit feedback. Another way is to use logistic ordinal
regression [45]. Matchbox, a Bayesian approach [62], also
offers a framework to integrate different kinds of feedback
such as ordinal ratings or implicit like/don’t like preferences.

5.2 Personalized Learning to Rank

The traditional pointwise approach to learning to rank de-
scribed in Section 3.3 treats ranking as a simple binary clas-
sification problem where the only input are positive and neg-
ative examples. Typical models used in this context include
Logistic Regression, Support Vector Machines, or Gradient
Boosted Decision Trees.

There is a growing research effort in finding better approaches
to ranking. The pairwise approach to ranking, for instance,
optimizes a loss function defined on pairwise preferences
from the user. The goal is to minimize the number of inver-
sions in the resulting ranking. Once we have reformulated
the problem this way, we can transform it back into the pre-
vious binary classification problem. Examples of such an
approach are RankSVM [17], RankBoost [21], or RankNet
[14].

We can also try to directly optimize the ranking of the
whole list by using a listwise approach. RankCosine [66],
for example, uses similarity between the ranking list and
the ground truth as a loss function. ListNet [16] uses KL-
divergence as loss function by defining a probability distri-
bution. RankALS [63] is a recent approach that defines an
objective function that directly includes the ranking opti-
mization and then uses Alternating Least Squares (ALS)
for optimizing.

Whatever ranking approach we use, we need to use rank-
specific information retrieval metrics to measure the perfor-
mance of the model. Some of those metrics include Mean
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Average Precision (MAP), Normalized Discounted Cumula-
tive Gain (NDCG), Mean Reciprocal Rank (MRR), or Frac-
tion of Concordant Pairs (FCP). What we would ideally like
to do is to directly optimize those same metrics. However,
it is hard to optimize machine-learned models directly on
these measures since they are not differentiable and stan-
dard methods such as gradient descent or ALS cannot be
directly applied.

In order to optimize those metrics, some methods find a
smoothed version of the objective function to run Gradient
Descent. CLiMF optimizes MRR [60], and TFMAP [59],
optimizes MAP in a similar way. AdaRank [68] uses boost-
ing to optimize NDCG. Another method to optimize NDCG
is NDCG-Boost [64], which optimizes expectation of NDCG
over all possible permutations. SVM-MAP [69] relaxes the
MAP metric by adding it to the SVM constraints. It is
even possible to directly optimize the non-diferentiable IR
metrics by using techniques such as Genetic Programming,
Simulated Annealing [32], or even Particle Swarming [18].

5.3 Context-aware recommendations

Most of the work on recommender systems has traditionally
focused on the two-dimensional user/item problem. But we
know that in practice many other dimensions might be af-
fecting the user’s preference. All of those other dimensions
(e.g. location, or time) are referred to as context. Using con-
textual variables represents having to deal with more data,
and a higher dimensionality problem. However, this might
prove effective for businesses [25].

Adomavicius and Tuzhilin [2] do a thorough review of ap-

proaches to contextual recommendations and categorize context-

aware recommender systems (CARS) into three types: con-
textual pre-filtering, where context drives data selection;
contextual post-filtering, where context is used to filter rec-
ommendations once they have been computed using a tra-
ditional approach; and contextual modeling, where context
is integrated directly into the model. An example of con-
textual pre-filtering is the so-called user micro-profile, in
which a single user is represented by a hierarchy of possibly
overlapping contextual profiles [8]. Post-filtering methods
can use traditional approaches and then apply filtering or
weighting. In their experimental evaluation, Panniello et al.
[43] found that the choice of a pre-filtering or post-filtering
strategy depends on the particular method and sometimes a
simple post-filter can outperform an elaborate pre-filtering
approach.

Although some standard approaches to recommendation could
theoretically accept more dimensions, the only models to re-
port results in this category are Oku et al.’s Context-aware
Support Vector Machines (SVM) [42]. Xiong et al. present
a Bayesian Probabilistic Tensor Factorization model to cap-
ture the temporal evolution of online shopping preferences
[67]. The authors show in their experiments that results
using this third dimension in the form of a tensor does im-
prove accuracy when compared to the non-temporal case.
Multiverse is another multidimensional tensor factorization
approach to contextual recommendations that has proved
effective in different situations [31].

Factorization Machines [50] is a novel general-purpose re-
gression model that models interactions between pairs of
variables and the target by using factors. Factorization Ma-
chines have proved to be useful in different tasks and do-
mains [52]. In particular, they can be efficiently used to
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model the interaction with contextual variables [53]. An-
other novel approach to contextual recommendations worth
mentioning is the one based on the use of Sparse Linear
Method (SLIM) [39].

5.4 Unbalanced class problems and presenta-
tion effects

In the traditional formulation of the ”Recommender Prob-
lem”, we have pairs of items and users and user feedback
values for very few of those dyads. The problem is formu-
lated as the finding of a utility function or model to estimate
the missing values. But in cases where we have implicit
feedback, the recommendation problem becomes the predic-
tion of the probability a user will interact with a given item.
There is a big shortcoming in using the standard recommen-
dation formulation in such a setting: we don’t have negative
feedback. All the data we have is either positive or missing.
And the missing data includes both items that the user ex-
plicitly chose to ignore because they were not appealing and
items that would have been perfect recommendations but
were never presented to the user [61].

A way that this unbalanced class problem has been ad-
dressed is to convert unlabeled examples into both a pos-
itive and a negative example, each with a different weight
related to the probability that a random exemplar is posi-
tive or negative [19]. Another solution is to binarize the im-
plicit feedback values: any feedback value greater than zero
means positive preference, while any value equal to zero is
converted to no preference [28]. A greater value in the im-
plicit feedback value is used to measure the ”confidence” in
the fact the user liked the item.

In many practical situations, though, we have more informa-
tion than the simple binary implicit feedback from the user.
In particular, we might be able to know whether items not
selected by the user were actually shown. This adds very
valuable information, but slightly complicates the formula-
tion of our recommendation problem. We now have three
different kinds of values for items: positive, presented but
not chosen, and not presented. This issue has been recently
addressed by the so-called Collaborative Competitive Filter-
ing (CCF) approach [71]. The goal of CCF is to model not
only the collaboration between similar users and items, but
also the competition of items for user attention.

Another important issue related to how items are presented
is the so-called position bias: An item that is presented in
the first position of a list has many more possibilities to be
chosen than one that is further down [49].

5.5 Social Recommendations

One of the factors that has contributed the most to the re-
cent availability of large streams of data is the explosion of
social networks. Recommender systems have also jumped
onto this new source of data [37]. Most of the initial ap-
proaches to social recommendation? relied on the so-called
trust-based model in which the trust (or influence) of oth-
ers is transmitted through the social network connections
[41; 7]. It is still unclear whether users prefer recommen-
dations from friends to those coming from other users. In
a recent study [12], the authors found that the selection of

4Tt is important to note that the term “social recommenda-
tion” was originally used to describe collaborative filtering
approaches [10; 58]
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users where the recommendation came from did not make
much difference, except if the recipients of the recommenda-
tion were made aware of it. In any case, it seems clear that
at the very least social trust can be used as a way to gen-
erate explanations and support that have a positive impact
on the user.

There are other uses of social information. For instance, so-
cial network data can be an efficient way to deal with user or
item cold-start. Social information can, for instance, be used
to select the most informative and relevant users or items
[36]. And speaking of selecting users, some recent meth-
ods propose using social information to select experts [57]
in a similar way as they can also be selected in collaborative
filtering settings [5].

Social-based recommendations can also be combined with
the more traditional content-based or collaborative filtering
approaches [29]. As a matter of fact, social network infor-
mation can be efficiently included in a pure collaborative
filtering setting by, for example, including it in the matrix
factorization objective function [40; 72].

6. CONCLUSION

The Netflix Prize abstracted the recommendation problem
to a proxy and simplified question of predicting ratings. But
it is clear that the Netflix Prize objective, accurate predic-
tion of a movie’s rating, is just one of the many components
of an effective recommendation system. We also need to
take into account factors such as context, popularity, inter-
est, evidence, novelty, diversity, or freshness. Supporting all
the different contexts in which we want to make recommen-
dations requires a range of algorithms and different kinds of
data.

Recommender systems need to optimize the probability a
member chooses an item and enjoys it enough to come back
to the service. In order to do so, we should employ all the
data that is available: from user ratings and interactions,
to content metadata. More data availability enables bet-
ter results. But in order to get those results, we need to
have optimized approaches, appropriate metrics and rapid
experimentation.

This availability of more and different sources of data has
opened up new research avenues. As personalization algo-
rithms keep improving, so does the experience of the users
that use these systems. But the recommendation problem is
far from solved. There are still many unexplored opportuni-
ties and lessons to be learned. Our team of researchers and
engineers at Netflix do so every day. Make sure to visit our
jobs page® if you are interested in joining us on this pursuit.
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