
Capturing and Validating Personalization Requirements in Web Applications

Esteban Robles Luna

LIFIA, UNLP, Argentina

La Plata, Argentina

erobles@lifia.info.unlp.edu.ar

Irene Garrigós

Lucentia Research Group, DLSI,

University of Alicante, Spain

igarrigos@dlsi.ua.es

Gustavo Rossi

LIFIA, UNLP, Argentina

Also at CONICET

La Plata, Argentina

gustavo@lifia.info.unlp.edu.ar

Abstract — Personalization is a key feature to improve user

experience in Web applications and therefore many Web

engineering approaches allow the specification of some type of

personalization when modelling a website. However, these

approaches usually neglect the process of capturing and

representing personalization requirements, thus not

considering them when the application evolves; maintenance of

these requirements is then a very complex task. In this paper,

we present WebSpec, a requirement artefact used to capture

navigation, interaction and interface aspects of Web

applications. Concretely, we focus on how to specify

personalization requirements, and on how to automatically

generate the personalization model from their specification.

Furthermore, from the requirements specification we derive a

set of interaction tests to assess the personalization

functionality. We illustrate our ideas with an E-commerce

application example and describe a prototype tool which

implements the described functionality.

Keywords: Personalization, Web requirements, Requirements

Validation

I. INTRODUCTION

The World Wide Web has changed the way we

communicate and exchange information. Web applications

have become more complex and the information they

provide is continuously growing. Web engineering

approaches [2], [4], [7], [9], [12], [20] appeared to provide a

systematic way to develop complex Web applications. In this

area, personalization [11] has been proposed as a solution to

improve the user experience by analyzing his context,

characteristics and browsing history and changing different

aspects of the application according to his needs.

Due to the different needs and goals of the large and

heterogeneous audience that a Web application serves, user

expectations need to be considered from the beginning of

software projects. However as indicated in [5], most Web

engineering approaches do not seriously consider the

requirements analysis phase, and as a consequence these

requirements are barely taken into account when the

application evolves. Therefore, the resulting Web

applications usually have outdated requirements which

makes impossible to test the actual customer’s requirements,

and there are difficulties to handle fast evolution, which is

usually essential in the Web field.

Personalization is also a missing aspect in the

requirement elicitation phase; there are few approaches that

allow modelling personalization requirements (see Sect. VI

for details). Moreover, usually (personalization)

requirements are described informally, thus becoming a

problem when we dive into the implementation and

validation phases, particularly to assess if (personalization)

requirements have been correctly implemented.

To tackle these problems we use an agile approach called

WebTDD [18] which has a TDD (Test Driven Development)

style of development; however and differently from

“conventional” TDD [1], instead of relying on an extreme

coding approach, we use models to generate the application.

Using models we raise the level of abstraction as the

application is automatically derived from them [18]. Our

approach incrementally adds requirements to the existing

application, following a short development cycle. WebTDD

uses a DSL (Domain Specific Language) called WebSpec

[17] to specify these requirements.

In this paper, we focus on how to specify personalization

requirements and how to use this specification to improve

the development process by automating some time-

consuming and error-prone tasks. Summarizing, as the

contributions of this paper, we show how to:

• Specify personalization requirements using a model-

driven style.

• Automatically generate the conceptual models for

the personalization functionality of the Web

application, thus avoiding manual errors and the

mismatch between the requirements and the

implementation.

• Automatically generate tests from the requirements

specification to validate the personalization

functionality in the WebTDD cycle.

The rest of the paper is structured as follows: in Section

II we briefly present the WebTDD approach. In Section III

we show how personalization is specified in WebSpec and

how we automatically derive interaction tests from the

requirements specification. Section IV shows how the

personalization model is automatically derived from the

personalization requirements. Section V describes the

implementation of our ideas. Section VI presents some

related work and finally Section VII concludes and presents

some further work we are pursuing.

II. WEBTDD IN A NUTSHELL

WebTDD is an agile approach which follows a TDD

style of development, using models to generate the Web

978-1-4244-8797-4/10/$26.00 ©2010 IEEE 13

application. Like most agile approaches, it is based on short

development cycles; in each cycle new requirements are

added and the application is upgraded incrementally.

The cycle starts by capturing requirements with mockups

(stub HTML pages) to agree on the look and feel of the

application, and WebSpec diagrams (Step 1 of Fig. 1) to

represent navigation and interaction behaviours. WebSpec is

a DSL which allows specifying navigation, interaction and

user interface aspects in a more formal way (e.g. in

comparison with use cases [10]).

Next we automatically derive (Step 2) a set of

meaningful tests that the application must pass to satisfy the

captured requirements. As in “conventional” TDD, we run

them prior to the implementation (Step 3) in order to check

that the application does not satisfy the requirements yet.

Afterwards, the modelling activities begin (Step 4): we

create or enhance a set of models and derive a running

application (Step 5). We check whether each requirement has

been successfully implemented by running the previous tests

(Step 6). If one test fails, we have to go back, tweak the

models and derive the application again until all tests pass.

The approach continues with the next requirement until the

sprint is over. We must notice that WebTDD is independent

of the model driven Web engineering approach used for the

modeling activities as the core of the process does not

depend on the specific modelling artefacts or mechanics

[18].

Figure 1. Approach overview

A WebSpec diagram has two key elements: interactions

and navigations. An interaction (the counterpart of a Web

page in the requirements stage) represents a point where the

user can interact with the application by using its interface

objects. Interactions may have widgets such us: labels, list

boxes, buttons, radio buttons, check boxes and panels.

Labels define the content (information) shown by an

interaction. A diagram has a starting interaction which is

represented with dashed lines. Some actions (clicking a

button, adding some text in a text field, etc) might activate a

navigation from one interaction to another. These actions are

written in WebSpec’s DSL which conforms to the syntax:

var := expr | actionName(arg1,… argn).

Figure 2. A WebSpec diagram

Fig. 2 shows a WebSpec diagram where navigation in a

simplified E-commerce application is specified. The diagram

shows how the user can move from one interaction to

another thus allowing him to explore books, go back to the

home page, buy a book and so on. To express what

properties the diagram (and thus the application) must hold,

we add invariants to the interactions (invariants are not

shown in Fig. 2 for the sake of readability). For instance, the

BookDetail interaction must satisfy the invariant

BookDetail.bookName = ${bookN} which states that the

value shown in the bookName label should be equal to the

bookN variable (see in Fig. 2 the navigation from BookList

to BookDetail where the variable is updated).

After we have specified the scenario in a diagram we can

automatically derive a set of tests that the application must

satisfy. This is an important feature of WebSpec, because, as

in TDD, we use tests as software artefacts that decide

whether the requirement is satisfied by the final application.

However, instead of the typical unit tests of code-based

TDD, we rely on interaction tests which fit better with Web

applications. For this scenario, our support tool, the

WebSpec Eclipse plug-in (Sect. V), generates a set of tests

for the different paths that we can follow from the starting

interaction. We next explain how to specify and validate

personalization requirements in our approach.

III. SPECIFYING AND VALIDATING PERSONALIZATION

REQUIREMENTS

In this section we show how to specify personalization

requirements using WebSpec diagrams. Moreover, these

requirements can be validated by deriving a set of interaction

tests, allowing to check if they are satisfied by the generated

application, as explained in Sect. III. B.

978-1-4244-8797-4/10/$26.00 ©2010 IEEE 14

A. Specification of Personalization Requirements

A personalization requirement describes some

functionality that a Web application has to fulfil to

(dynamically) adapt itself, depending on the user or

environment profile [11]. In our approach we specify

personalization requirements using WebSpec allowing their

automatic validation. A WebSpec diagram specifies a

personalization scenario that must be satisfied by the final

application.

The conditions on which personalization requirements

are defined usually refer to user-related information, which is

traditionally specified in a so-called user model (UM). This

user-related information can be classified in different types:

• User-specific characteristics (independent of the

application domain) like age or country.

• Information related to the domain, for instance, from

the user browsing behaviour we can derive the

preferences or interests on different elements of the

domain.

• Information related to the user context (e.g. device,

network, actual location, etc).

In WebSpec we use a special variable named ${user} to

denote the different elements associated with the UM. Since,

during the requirement elicitation phase the UM does not

exist, we assume that the ${user} variable is a prototype [14]

on which we can add properties simply by accessing it and

assigning it a value (e.g. ${user}.age:= 32). To refer to user-

specific characteristics or user-context information, we

directly access the property of the user variable, e.g.

${user}.age. In the case of domain dependent information

we add the DD prefix, e.g. ${user}.DD.booksBought.

The personalization actions can be specified over the

content, the navigation or the presentation of the Web

application. Though personalization of the presentation is out

of the scope of this paper, we can specify this kind of

requirements by associating mockups to interactions (which

is usual in WebSpec). Concretely, the personalization actions

that can be specified in WebSpec are the following:

• Updating user information: In WebSpec we can

specify updates on attributes of the UM by adding

actions to the navigations of a diagram. The syntax

is ${user}.attribute := value where the value can be a

literal or a formula.

• Filtering contents of the site: In WebSpec the labels

of the different interactions can be filtered according

to a condition. This is specified by means of

invariants associated to the interactions of a

diagram. To indicate if a label is shown or not, we

use the “visible” property. The syntax is as follows:

label.visible <--> (Boolean expression). The

Boolean expression can also contain a loop,

depending on the condition we want to express.

• Filtering the navigation: The links to be shown can

also be selected by means of the “visible” property,

by specifying invariants over the interactions of a

diagram. The syntax is as follows: link.visible <-->

(Boolean expression).

In order to illustrate the described concepts, let’s consider

a simple E-commerce application in which our stakeholders

want to personalize the discounts offered to customers,

depending on how many books they have already bought. In

particular, we would like to offer discounts in the book detail

page when the user has already bought 2 or more books.

Following the approach (Fig. 1), we start capturing the

requirements using WebSpec diagrams. This personalization

requirement implies that the application must perform at

least two actions. First, it must record how many books the

user has already bought, and then it has to show the discount

information in the book detail page, depending on how many

books he has already bought. The first action is performed

when the user navigates from the BookDetail to the Cart

interaction (Fig. 2). The navigation has the side effect of

adding the book to the shopping cart and thus incrementing

the books that the user has already bought. We express it in

the action of the navigation as follows:

${user}.DD.booksBought:=${user}.DD.booksBought + 1

This information is domain dependent, so the prefix DD

is added to the attribute to update it as explained before. The

second action is expressed in the invariant of the BookDetail

interaction. The invariant relates the visible attribute of the

label and a condition that must hold to let it be visible:

BookDetail.discount.visible <-->
(${user}.DD.booksBought >= 2)

Concretely, the discount label is visible if the user has

already bought 2 or more books.

Figure 3. Recommendations personalization scenario

Another example of personalization is a

recommendations feature (see Fig. 3); we would like to

recommend books of those authors that the user is interested

in, using his browsing history. For example, if the user has

visited many books of Jose Luis Borges, we could guess that

he is one of his favourite authors. This requirement needs

first to decide how the users’ interest is captured. We decide

to increase the degree of interest when the user navigates to

the book details:

authorName := BookList.authorName[${index}];
interests :=
${user}.DD.interestInAuthors[${authorName}];
${interests}.degree := ${interests}.degree + 10;

978-1-4244-8797-4/10/$26.00 ©2010 IEEE 15

click(BookList.bookName[${index}])

The first action gets the author name. Then we retrieve

the information of the interest of the user in the author

(interestInAuthors) from the domain dependent information

and increase it in 10. Finally, we click on the book’s name to

move from the BookList to the BookDetail interactions.

These 4 actions store the activity of the user that can be later

used to show / hide its favourite authors.

Additionally this requirement requires hiding the link that

points to the recommendations node when we do not have

enough information about the user’s interests. So, we specify

its visibility in the Home’s invariant in this way:

Home.recommendations.visible <--> (Exists a in
${user}.DD.interestInAuthors / a.degree >= 100).

The above specification states that if there is an author

that the user is interested in (degree > 100) then we should

show the recommendations link.

B. Derivation of Interaction tests for Requirements

Validation

After a requirement has been specified by means of

WebSpec diagrams, we are able to automatically derive

meaningful interaction tests to assess whether the

requirement has been successfully implemented (see Fig 1,

step 2). An interaction test opens a Web browser and

executes a set of actions in the same way a user would do it.

Interaction tests allow making assertions on HTML elements

based on XPath expressions so we can check the values of

the different widgets.

For each diagram, we create a test suite. Each path

depicted in the diagram will be translated into a test case that

will be named as the complete path’s trail. A test case will

follow the actions specified in the path, and assertions will

be generated from the invariants of every interaction. The

actions specified on navigations will be translated into

sentences in the test, for example typing text into a text field

or clicking buttons. Reaching an interaction will require that

we check its invariant (if any), by generating assertions on

the test. As different interactions may alter the variables

bound to an invariant, it may be necessary to repeat the

updated assertions after navigating to the same interaction

more than once.

For example, the discount personalization diagram (see

Fig. 2) is derived into the following interaction test (in

Selenium [21]). Line 1 opens de application. Lines 2-11 add

2 books to the cart and assert that the discount is not present

yet. Lines 12-14 navigate to the book detail page and

validate that the discount is present (because the user has

already bought 2 books).

(01) selenium.open(
"http://localhost:8080/bookstore");

(02) selenium.click("id=bookList");
(03) selenium.click("id=book1");
(04) assertFalse(selenium.isElementPresent(

"id=discount"));
(05) selenium.click("id=buy");
(06) selenium.click("id=home");

(07) selenium.click("id=bookList");
(08) selenium.click("id=book2");
(09) assertFalse(selenium.isElementPresent(

"id=discount"));
(10) selenium.click("id=buy");
(11) selenium.click("id=home");
(12) selenium.click("id=bookList");
(13) selenium.click("id=book3");
(14) assertTrue(selenium.isElementPresent(

"id=discount"));

After the test derivation process is completed we can run

the tests to ensure that the application does not satisfy the

requirement yet (Step 3); the same tests will be run again

when the requirements have been implemented. The

personalization model (Step 4) will be automatically derived

from the WebSpec diagrams as shown in the following

section.

IV. AUTOMATIC GENERATION OF THE PERSONALIZATION

MODEL

Once the personalization requirements have been

specified and the tests have been generated, we focus on how

to automatically derive concrete software artefacts that

implement the personalization functionality from the

personalization requirements. In this way, the mismatch

between requirements and the developed application is

avoided. The generation of such software artefacts leads to

an application that satisfies the personalization requirements

expressed in the WebSpec diagrams.

In this case, the software artefacts generated from the

personalization requirements are personalization rules. We

have chosen to specify these rules using the PRML

(Personalization Rules Modelling Language) language [7].

PRML is a rule-based high level language devised to specify

personalization in an orthogonal way upon Web applications,

independently of the underlying methodology. PRML has

been successfully used in several Web methodologies and

applied to several Web systems and an engine to perform

and validate these rules has been implemented [7].

In the following subsections we present how to derive the

PRML rules from the WebSpec specifications in a formal

way. We also show an intuitive example of PRML rule

generation, and finally we explain how to build the UM from

the personalization rules.

A. Deriving PRML rules

By automatically generating the personalization model,

we provide the designer a first set of personalization rules

that he can refine or modify later. This helps avoiding many

manual errors and inconsistencies. In order to transform

WebSpec diagrams into PRML rules, we use the MOF 2.0

Query/View/Transformation language (QVT) [15] which is a

standard transformation language in the context of the MDA

(Model Driven Architecture) initiative. QVT is the means for

defining formal and automatic transformations between

models. Defining transformations by specifying QVT

relations has several advantages: (i) transformations are

formally established, easy to understand, reuse and maintain,

(ii) they do not have to be manually performed by an expert,

978-1-4244-8797-4/10/$26.00 ©2010 IEEE 16

which is a tedious and time-consuming task, and (iii)

relations can be easily integrated into an MDA approach.

The objective of QVT is to define a formal mapping of

the elements of a source metamodel (e.g. WebSpec) into a

target metamodel (e.g. PRML). The PRML metamodel can

be checked at [7] and the WebSpec metamodel is shown in

Fig.4.

The generation of a PRML rule from a WebSpec diagram

is defined by a sequence of transformations (QVT relations).

A PRML rule is derived from a set of actions specified in

WebSpec diagrams. As PRML rules are event-condition-

action rules, each of these three parts should be derived from

WebSpec specifications:

Depending on the type of WebSpec interaction

performed by the user (e.g. navigation, diagram setup

actions, etc), we can generate the different PRML events.

• PRML conditions are automatically translated from

WebSpec conditions.

• The actions of PRML rules are derived by taking

into account the different expressions specified in

each of the actions of a WebSpec diagram. For

instance, we can derive a PRML setContent action

(which updates the user information in the UM)

from an assignment expression in WebSpec. We can

derive actions which filter the attributes to be shown

or the links (e.g. selectAttribute and hideLink in

PRML) by checking the “visible” attribute of the

WebSpec WidgetReference element of the

metamodel.

Due to space limitations, we cannot show all the QVT

rules we have defined. In Fig. 4, the QVT rule for deriving

the PRML SetContent action is shown as an illustration. This

relation checks that there is a set of elements in the WebSpec

action that represents an assignment expression according to

the WebSpec metamodel (see Fig. 5). These elements are: an

assignment class together with the corresponding variable to

assign the value, and the value (e.g. an expression) to be

assigned. The relation enforces that the corresponding

PRML expression has the following elements: a setContent

class, and an expression that expresses the assignment of a

value to a UM variable.

Figure 4. SetContent QVT transformation

To intuitively illustrate the rule generation process, let us

consider the discount requirement example explained before

(Fig. 2). As aforementioned (Sect. III), this requirement is

derived into two PRML rules. The first one (i.e. acquisition

rule) acquires/updates the number of books bought by the

user in the UM. The second one (i.e. personalization rule)

shows/hides the discount attribute to the user based on the

previously acquired information (i.e. books bought).

The acquisition rule determines the moment (navigation),

condition (always) and the action (increase the value of the

variable in the UM). Then, from the navigation in the

WebSpec diagram (see Fig. 2) we derive the following

PRML rule:

Figure 5. WebSpec’s metamodel

978-1-4244-8797-4/10/$26.00 ©2010 IEEE 17

When Navigation.BookDetailBuy(NM.Book book) do
setContent(UM.User.booksBought,
UM.User.booksBought + 1)

endWhen

In a similar way, we derive the personalization rule from

the BookDetail invariant (see Sect. III). Since

personalization takes place every time the node is loaded, the

PRML event derived is LoadElement. The condition

corresponds with the right part of the WebSpec iff Boolean

expression, and the selectAttribute action matches the left

part of the iff because it references the visible property of a

label. The PRML rule derived is shown next:

When LoadElement.BookDetail(NM.Book book) do
If (UM.User.booksBought >= 2) then
 book.Attributes.selectAttribute(discount)
endIf
endWhen

In the following section we show how we incrementally

implement the UM using the derived PRML rules as a

starting point.

B. Incremental Implementation of the UM

In the previous section we showed how a set of

personalization rules in the PRML language are derived.

These rules express the Event-Condition-Actions that have to

occur to personalize the application. Since we are deriving

these rules from the requirements following a top down

process, the UM may not reflect yet the functionality

expressed on them. For instance, the first time we derive the

rules, the User class may not even exist. Additionally, when

the application has been deployed the UM may not reflect a

new attribute that has been added by a new requirement. All

these problems are detected by the PRML engine [7] when it

validates the generated rules. The validation process will fail

showing which parts of the UM do not exist yet.

Using the same philosophy of TDD, we create/enhance

the UM in an incremental way by trying to validate the

derived rules. The validation process will show which

information is not yet present in the UM. For each attribute

or class that does not exist in the UM, we create it manually

and run the validation process again until the validation

succeeds. In this way, we drive the development of the UM

using the rules that were automatically generated in the

previous step making it a straightforward process.

As an example, let us consider the first rule of the

previous subsection. Assuming that the User class already

exists, we run the PRML rule validation which fails because

the booksBought attribute does not exist in the User class. To

make the validation pass, we go to the class and add the

instance variable of type number. Then, we run the

validation again and finally the validation will succeed.

V. IMPLEMENTATION

WebSpec has been implemented as an Eclipse plugin

(Fig. 6) using EMF and GMF technologies. It supports the

specification of personalization requirements by means of

diagrams that the user can create within the environment and

using the palette on the left side of the diagram editor, the

user can create concepts like Interactions and Navigations

and complete the diagram with the personalization

specification.

The automatic derivation of interaction tests is performed

using a JUnit class writer that satisfies the syntax needed by

the Selenium framework. Also, during test derivation,

expressions are optimized for better readability. For

Figure 6. WebSpec’s Eclipse plugin

978-1-4244-8797-4/10/$26.00 ©2010 IEEE 18

example, an expression like: ${long} -> Home.username =

”John” where the long variable has the value false (-> means

the implies relationship) is automatically optimized to true

using Boolean equivalencies. We have chosen JUnit and

Selenium because they are easily integrated in Eclipse

though other web testing framework such as Watir [22] can

also be used.

The automatic derivation of PRML rules is easily

performed as PRML is also implemented as an Eclipse

plugin thus allowing to seamless integrate both approaches.

The WebSpec menu has options to allow the derivation of

PRML rules that are automatically imported in the PRML

prototype tool. PRML rules are plain text files thus the

generation of such rules is easily performed by a model to

model transformation from the WebSpec´s metamodel to the

PRML metamodel. Then we reuse the transformation

process of the PRML tool to use the model to text

transformation.

We have used the WebSpec plugin with the PRML tool

to implement a personalization version of the E-commerce

application. Several personalization requirements have been

specified and validated using the derived tests in the context

of the WebTDD approach. We have used interaction tests to

drive the development of the personalization and functional

requirements. Tests were used to check that the new

requirements have been correctly implemented and that we

have not been unintentionally broken existing functionality.

The personalization model was derived from the

specification thus avoiding the mismatch between

requirements and the implementation. However, as

previously mentioned, we have to follow a short TDD cycle

to complete the derivation as it only covers some structural

aspects of classes in PRML. We expect to improve the

derivation process in future work.

VI. RELATED WORK

In the context of Web engineering, few approaches have

focused on defining an explicit requirement analysis stage to

model the user expectations. Some approaches consider the

modelling of personalization to some extent [3], [8], [9],

[12], [20]. In general those approaches ignore how

personalization requirements are captured.

A-OOH [8] is a model-driven approach which allows the

specification of personalization requirements. It uses the i*

framework in order to specify a goal-oriented requirements

model. From this specification, the conceptual models (e.g.

domain and navigation models) are generated by means of

QVT transformations. However, A-OOH does not allow the

derivation of the personalization model as done in WebSpec.

In [13], in the context of OOHDM [20], personalized

UIDs are used to capture a personalized version of the

interactions that users have with the application. The

difference with traditional UIDs is that they may have many

initial interactions one for each different type of user.

Webspec and personalized UIDs share the same terminology

as WebSpec is based on UIDs; however, personalized UIDs

do not provide automatic transformations to software

artefacts, so there may be a mismatch between requirements

and the final application.

Adaptative OOWS [19] extends OOWS [16] to support

adaptation. It propose two artifacts to specify adaptative

requirements: an enhanced of Activity Diagrams called User

Stereotype Diagrams and their corresponding User and Data

Specifications descriptions which capture the adaptive part

of the requirements by means of intuitive and easy-to-

understand schemas. Afterwards, the requirements models

serve as a basis to derive the conceptual specifications of

users and adaptive features in the OOWS Conceptual

Modeling phase. This approach share some common features

with the work presented in this paper such as: specification

of requirements and derivation of the User model. However,

the approach does not provide automatic ways to validate

that the adaptative requirements are correctly implemented in

the application. Requirements validation is extremely

important to ensure that the behavior of the application is

preserved, e.g. when maintainability needs to be improved

by means of model refactorings.

In [6], Escalona and Koch have proposed a metamodel

based on WebRE profiles to specify web requirements. Its

main advantage is the automatic generation of conceptual

models (content and navigation models) which automatically

satisfy the requirements. Also, some tests are derived from

the profiles to validate that the functionality has been

correctly implemented. However, some requirements such as

detailed composition of the user interface and specifically

personalization requirements can not be specified thus

requirements cannot be validated and the personalization

models can not be derived using this notation.

In summary, the described approaches are, as far as the

authors are concerned, the only that allow specifying

personalization requirements, however they have the

following drawbacks:

• They do not allow the automatic derivation of the

personalization artefacts (personalization and UM).

Doing so we avoid many manual errors and we

assure that the defined model is aligned with the

previously specified requirements.

• They do not provide a way to validate

personalization requirements. Automatic validation

using tests helps not only to validate the correct

implementation of the personalization requirements,

but it also helps to detect unintended errors when the

application grows.

WebSpec supports the specification of Personalization

requirements and can be used in different development

processes to implement the personalization functionality. To

the authors’ knowledge, the work presented in this paper is

the first to provide test derivation and partial UM derivation

from a requirement artefact specifically for Personalization.

In addition to the advantages shown in this work, we can use

WebSpec in conjunction with mockups to improve the

communication between stakeholders while capturing the

personalization requirements as shown in [17].

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have presented an approach for dealing

with personalization requirements in Web applications.

Requirements are captured in WebSpec diagrams which

978-1-4244-8797-4/10/$26.00 ©2010 IEEE 19

allow us to derive a set of tests to validate requirements, and

to automatically derive the personalization rules in the

PRML language. In addition, we have shown how the UM

can be incrementally implemented by validating the

generated rules in the PRML engine. The idea has been

presented in the context of WebTDD, an agile approach for

developing Web applications, but it can be applied to any

other Web methodology.

We are currently working on the automatic derivation of

the UM which is, until now, done manually (as shown in

Sect. IV B). Furthermore, we are working on some field

experiences with the usage of mockups to help on

developing the look and feel of the personalization

functionality. Finally, we are analyzing how personalization

requirements evolve and how we handle this evolution along

the development cycle.

ACKNOWLEDGEMENTS

This work has been partially supported by the MANTRA

project (GRE09-17) from the University of Alicante, and by

the MESOLAP (TIN2010-14860) from the Spanish Ministry

of Education and Science.

REFERENCES

[1] Beck, K.: Test Driven Development: by Example, Addison-Wesley,

2003.

[2] Casteleyn, S., Garrigós, I., Troyer, O.D.: Automatic runtime

validation and correction of the navigational design of web sites. In:

APWeb. (2005) 453–463.

[3] Ceri, S., Daniel, F., Matera, M., and Facca, F. M. 2007. Model-driven

development of context-aware Web applications. ACM Trans.

Internet Technol. 7, 1 (Feb. 2007), 2.

[4] Ceri, S., Manolescu, I.: Constructing and integrating data-centric web

applications: Methods, tools, and techniques. In: VLDB. (2003) 1151.

[5] Escalona, M.J., Koch, N.: Requirements engineering for web

applications – a comparative study. J. Web Eng. 2(3) (2004) 193–212.

[6] Escalona, M.J., Koch, N. Metamodeling Requirements of Web

Systems. In Proc. International Conference on Web Information

System and Technologies (WEBIST 2006), INSTICC, 310--317,

Setúbal, Portugal. 2006.

[7] Garrigós, I.: A-OOH: Extending Web Application Design with

Dynamic Personalization. PhD thesis, University of Alicante, Spain

(2008)

[8] Garrigós, I., Mazón, J.N., Trujillo, J.: A Requirement Analysis

Approach for Using i* in Web Engineering. In: ICWE. (2009),

LNCS, 5648, 151-165.

[9] Houben, G.-J., Frasincar, F., Barna, P. and Vdovjak, R. (2004).

Engineering the presentation layer of adaptable web information

systems. In Web Engineering 4th International Conference, ICWE

2004, volume 3140 of Lecture Notes in Computer Science, pages 60-

73, Springer, ISBN 3-540-22511-0.

[10] Jacobson, I., Object-Oriented Software Engineering: A Use Case

Driven Approach, ACM Press/Addison-Wesley, 1992.

[11] Kim, K: Personalization: Definition, Status, and Challenges Ahead.

Journal of Object Technology, 1, (2002) 29-40.

[12] Koch, N.: Reference model, modeling techniques and development

process software engineering for adaptive hypermedia systems. KI

16(3) (2002) 40–41.

[13] Martin, A. Cechich, A: A Model-Driven Reengineering Approach to

Web Site Personalization. In Proceedings of the Third Latin

American Web Congress (October 31 - November 02, 2005). LA-

WEB. IEEE Computer Society, Washington, DC, 14.

[14] Noble, J., Taivalsaari, A., Moore, I. (eds.): Prototype-Based

Programming: Concepts, Languages and Applications. Springer-

Verlag. ISBN 981-4021-25-3. 1999.

[15] QVT Language: http://www.omg.org/cgi-bin/doc?ptc/2005-11-01.

[16] Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to

Automate Web Applications Development. In: Bauknecht, K.,

Madria, S.K., Pernul, G. (eds.) ECWeb 2001. LNCS, vol. 2115, pp.

16–28. Springer, Heidelberg (2001).

[17] Robles Luna E., Garrigos I., Grigera J., Winckler M. Capture and

Evolution of Web requirements using WebSpec. To be published in

the Proceedings of 10th International Conference on Web

Engineering (ICWE 2010).

[18] Robles Luna, E., Grigera, J., Rossi, G.: Bridging Test and Model-

Driven Approaches in Web Engineering, Web Engineering, Lecture

Notes in Computer Science, pp. 136-150, Springer, Heidelberg, June

2009.

[19] Rojas, G., Valderas, P., and Pelechano, V. 2006. Describing Adaptive

Navigation Requirements of Web Applications. In Proc. of the 4th

International Conference on Adaptive Hypermedia and Adaptive

Web-Based Systems (AH 2006), Dublin, Ireland. LNCS 4018. 318–

322.

[20] Schwabe, D., Rossi, G.: An object oriented approach to web-based

applications design. TAPOS 4(4) (1998) 207–225

[21] Selenium, a Web application testing system, http://seleniumhq.org/

[22] Watir, http://watir.com/

978-1-4244-8797-4/10/$26.00 ©2010 IEEE 20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

