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Abstract. This paper presents a parallel LU factorization algorithm
designed to take advantage of physical broadcast communication facil-
ities as well as overlapping of communication and computing. Physical
broadcast is directly available on Ethernet networks hardware, one of
the most used interconnection networks in current clusters installed for
parallel computing. Overlapped communication is a well-known strat-
egy for hiding communication latency, which is one of the most common
source of parallel performance penalization. Performance analysis and
experimentation of the proposed parallel LU factorization algorithm are
presented. Also, the performance of the proposed algorithm is compared
with that of the algorithm used in ScaLAPACK (Scalable LAPACK),
which is commonly accepted as having optimized performance.

1 Introduction

Parallel computing on low-cost clusters is now a common approach in many
scientific areas [3] [!]. Problems of linear algebra in general, and systems of
equations in particular, have usually taken advantage of such parallel computing
platforms to reduce the time needed to obtain a solution. In this context of
linear algebra, there are some libraries avilable for parallel computing, such as
ScaLAPACK [6] and PLAPACK [22]. Libraries specifically designed for linear
algebra computing are used from many years ago. LAPACK (Linear Algebra
PACKage) [?] is considered the de facto standard for the whole area of linear
algebra applications, and the BLAS (Basic Linear Algebra Subroutines) library
is well-suited for performance optimization, including parallelization [9].
Solving dense systems of equations is one of the most important tasks in
the field of linear algebra. Furthermore, this problem is used as a benchmark
for supercomputers, and the list of the 500 fastest computers is basically made
by measuring the time to solve large systems of equations [12]. From the point
of view of numerical processing, LU factorization is made following the well-
known block processing approach, which is adopted for most (if not all) of the
computing subroutines/algorithms in the field of linear algebra [16] [13]. For the
parallel approach, bidimensional block cyclic decomposition is used in most of the
approaches, included that of ScaLAPACK [10] [6]. Currently, the ScaLAPACK
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approach is considered good enough to be well established and used, and research
is being conducted for workload balance in heterogeneous and/or dynamically
changing environments [5] [7] [8]. A parallel LU factorization algorithm based
on broadcast messages is proposed taking into account that:

1) Many of the current parallel computing platforms are low-cost clusters of
computers interconnected by Ethernet [15]. On these clusters, physical broadcast
is available even when switching (with Ethernet switches) is used to allow mul-
tiple point-to-point simultaneous communications. Furthermore, the standard
Ethernet is being upgraded for better performance [20] [I] maintaining back-
ward compatibility in general, and the broadcast address in particular. From
the theoretical point of view, physical broadcasts are very interesting because
of their natural scalability. In practical terms, however, synchronizations and/or
acknoledgements are necessary and the time taken for these tasks is usually de-
pendent on the number of computers involved in broadcasts. Also, some other
interconnection networks support physical broadcasts or multicasts, in top of
which a broadcast routine can be designed [17] [1].

2) The block processing LU factorization defines a very clear pattern of data
dependence, since it is defined in terms of iterations with [2] [10]: a) single current
block processing, on a small submatrix of the matrix being factorized, and b)
trailing matrix update with the processed current block. This implies that a
current block is needed for most of the processing in all the iterations and, if the
matrix is distributed amongst two or more computers, the current block should
be broadcasted to the computers with elements to be updated.

3) The LU factorization is similar enough to other factorizations such as QR,
Cholesky, etc. to expect that the same approach could be applied at least in those
factorizations with a similar processing pattern. Taking the QR factorization
as an example, the processing pattern is almost the same as that of the LU
factorization, even when the processing on a single block and the trailing matrix
update are not the same for the two factorizations [10)].

2 Broadcast-Based Parallel LU Factorization Algorithm

Some issues should be addressed for a broadcast-based parallel LU factorization:

1) High message latency (or startup) times penalizing parallel performance.
Message latency on clusters are mainly due to a combination of the message
passing interface/library/operating system overhead plus the latency of the in-
terconnection hardware involving interface cards and, usually, switches or hubs.

2) The broadcast message routine implemented in message passing libraries
does not usually take advantage of the physical broadcast facilities provided by
interconnection networks (e.g. Ethernet). Message passing libraries such as the
freely available implementations of MPI [19] are not focused on optimizing the
broadcast message routine by using physical broadcast or multicast facilities.
Instead, message passing libraries implementations usually optimize point-to-
point routine/s and implement broadcast in terms of spanning trees [17] or just
multiple messages from the broadcast sender (the broadcast root).
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3) The parallel algorithm itself, since most (if not all) current parallel algo-
rithms are based on bidimensional data distributions and simultaneous broad-
casts on the two dimensions or broadcasts and point-to-point communications
expected to be carried out simultaneously, such as in ScaLAPACK [6]. Given
that physical broadcasts are going to be used to optimize broadcast messages,
more than one message at a given time should not be scheduled, since it would
imply performance penalization by sequential communications. It is clear that a
single computer cannot receive a physical broadcast and another frame/packet
at the same time.

Each one of the above three issues have been addressed fairly straightforward,
and decisions can be evaluated either analytically or by experimentation. The
strategy to avoid the high message latency penalization has been overlapping lo-
cal computing with communication, which is very useful on parallel computing.
This overlapping should be introduced in the algorithm, thus becoming a con-
straint/guideline for designing the algorithm. A broadcast message routine has
been designed and implemented on top of the User Datagram Protocol (UDP)
[18], whose broadcast facilities are implemented by most of the operating sys-
tems (e.g. Linux, Solaris, AIX) with physical broadcast on Ethernet networks.
The parallel algorithm is designed with one-dimensional data distribution, which
in the specicic case of LU factorization is useful also to avoid communications
for selecting the pivot/s on each iteration. More specifically, a row block cyclic
partitioning is made, with the block size (or bs, number of consecutive rows in
a block) defined for performance tuning, as in ScaLAPACK. In either case, the
block size is small enough to have many more blocks than computers, and blocks
are cyclically distributed. The row block cyclic partitioning used for LU matrix
factorization amongst computers Py, P1, and P> is shown in Fig. 1-a). A sim-
plified pseudocode of the process running on computer P; is shown in Fig. 1-b),
where nblocks = n/bs, Factorize implies LU factorization with pivoting on a
single block, send_b and recv_b are the routines to send and receive a broadcast
message respectively, and Update -on a single block or on local blocks- implies
several tasks: a) applying pivots, b) a triangular system solve, and ¢) a matrix
multiplication. In fact, numerical processing (i.e. factorization and update) is
the same as in the sequential case [2] except that every computer modifies only
local data. More details on the sequential as well as parallel LU factorization
algorithm can ba found in [21].

The idealized case in which computing and communication are overlapped
and there is no overhead due to broadcast messages (except for the communi-
cation of the first block) is shown in Fig. 2. Most of the local computing time
in each computer (shown as Proc; on Fig. 2) is mainly due the trailing matrix
update which includes a matrix multiplication.

Time Required by Floating Point Operations. Processing requirements
of the trailing matrix update depend on the iteration. Given a matrix of n x n
elements, the block size bs, and starting iterations with ¢ = 1, the matrix update
in the ¢_th iteration is made on a submatrix of (n —i*bs) x (n —1i*bs) elements.
Furthermore, the trailing matrix update is defined as
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bSI P, if (i == 0)
P Factorize and send b block 0
1 for (j = 0; j < nblocks; j++)
Pz if (block j is not local)
P recv_b factorized block j
0 if (block j+1 is local)
A:?: | Update and Factorize block j+1
| P send b factorized block j+1
0
! P1 Update local blocks /* block j+1
has been already updated */
bsI P, }

a) Row Block Cyclic Distribution. b) Parallel LU Factorization Pseudocode.

Fig. 1. Row Block Cyclic Partitioning.
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Fig. 2. Overlapped Computing and Communication.
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Thus, the number of floating point operations required for the trailing matrix
update in iteration i, FlopUpd(i), is given by

FlopUpd(i) = 2 % bs * (n — i * bs)? (1)

because the matrix multiplication tL x tU requires (n — i * bs)? * (2 % bs — 1)
floating point operations and the matrix subtraction requires (n—i*bs)? floating
point operations. Taking into account that the processing workload is evenly
distributed amongst p computers, the time required for floating point operations
on each computer in iteration ¢ is given by

_ tf x FlopUpd(i)
p

t(FlopUpd(i), p) (2)

where tf is the time required for a single floating point operation.

Time Required by Broadcast Communications. The timing model of
point-to-point communications can be taken as a starting point:

t(m) =a+ B*m (3)
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where m is the amount of data to transfer, « is the communication latency or
startup cost, and 1/ is the network communication bandwidth. Timing models
for broadcast communication usually depend on the implementation selected for
the broadcast routine in a specific implementation. In the specific case of the
research presented in this paper, the broadcast message implementation is such
that: a) data is physically broadcasted using UDP, and b) acknowledgements are
received at the broadcast root from all the receivers to provide a reliable broad-
cast message. These details are hidden to the user (pertain to the broadcast
implementation). Given that data is sent as in a point-to-point operation and
there is a very low rate of message loss, the time required for data transmission
through the network can be modeled as in the poit-to-point messages, i.e. (G*m)
in Eq (3), with m = bs * (n — ¢ % bs) on iteration i. However, ackowledgements
sent from receivers to the root attempt against scalability, because these mes-
sages cannot be received simultaneously at the broadcast root. Even when there
are multiple ways of avoiding such a performance drawback, it is still possible
to analyze the time required by broadcast messages. Summarizing, the timing
model for the broadcast operation in the i_th iteration is

t(bcast(i,p)) = ap + lpp* (p — 1) + B x bs x (n — i x bs) (4)

where a4 is the latency of the broadcast implementation independently of the
number of computers involved, Ipp is the latency per processor of the broadcast
implementation, and p — 1 is the number of receivers in a broadcast operation.
Summarizing, Eq. (4) is the timing model of the broadcast implementation made
in the context of the research related with this paper.

Time Required by the Algorithm. Taking into account the pseudocode of
Fig. 1-b) and the algorithm behavior described in Fig. 2, the time required to
complete the parallel algorithm on p processors is given by

n/bs

t(parLU,p) = Z max(t(FlopUpd(i),p), t(beast(i, p))) (5)
i=1

It is expected that the numerical computing time in the first iterations is greater
than the time required by broadcast communications. Also, given that a) the
trailing matrix is made smaller as more iterations are completed, and b) broad-
cast message latency is constant from the point of view of trailing matrix size,

t(FlopUpd(i), p) > t(bcast(i,p)); i<k
t(FlopUpd(i),p) < t(bcast(i,p)); i>k

and Eq. (5) becomes

k n/bs
t(parLU, p) Zt FlopUpd(i),p) + Z t(beast(i,p)) (6)
=1 1=k+1
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3 Comparison with ScaLAPACK:
Expected Time and Experimentation

The expected time for the Scalapack LU factorization algorithm is well known:

2*n3tf+ (3 +loga(p)/4) * n?
3xp NG

where oy, is the message latency for a point-to-point message [7] [8] [0], and
the rest of parameters/coefficients have already been explained and used.

Some different points of view prevent a direct comparison among Eq. (7) and
Eq. (6) above. The first term of Eq. (7) reflects the number of floating point op-
erations in ScaLAPACK’s timing model: 2/3 xn3. This is the traditional number
of operations for the sequential LU factorization as given in the literature [10].
The timing model given for the proposed parallel algorithm takes into account
that most of the computing time is needed for the trailing matrix update whose
number of operations is given in Eq. (1) for the i_th iteration. However, both
algorithms are directly based on the blocked LU factorization, so the number of
floating point operations should be the same and it is not necessary a deeper
comparison analysis to determine which one -Eq. (7) or Eq.(6)- is more accurate.

The ScaLAPACK timing model for communication is reflected in the sec-
ond and third terms of Eq. (7). ScaLAPACK’s communication costs are taken
into account for every block/element of the matrix. On the other hand, for the
approach proposed in this paper, Eq. (5) and Eq. (6) directly reflect that a
broadcast communication adds time to the total expected algorithm time only
when it is greater than the corresponding trailing matrix update time. Even
when the numerical computing time is greater than the broadcast time in only
a few iterations -e.g. k < 20 or k < 30 in Eq. (6)- the communication time
(in those iterations) does not add time to the total processing time. However,
the broadcast timing model of Eq. (4) is far from optimal and implies at least
that the latency grows linearly with the number of processors. On the other
hand, ScaLAPACK relies on spanning trees and, thus, the timing model implies
a logarithmic growth depending on the number of processors.

t(ScaLU,p) = B+ (6 + loga(p)) * nx apyy  (7)

Table 1. Cluster Characteristics.

Clock |Mem |Mflop/s (DGETRF)
2.4 GHz|1 GB = 2500

Some simple experimentation will clarify the comparison on a real envi-
ronment. Computers (PCs) used for experimentation have the characteristics
summarized in Table 1, and the interconnection network is 100 Mb/s Ether-
net with complete switching. Performance in Table 1 is given in Mflop/s using
DGETREF, the sequential LU matrix factorization with double precision floating
point number representation. The total number of available computers is 20,
and experiments were made with 2, 4, 8, 16, and 20 computers. Matrix sizes
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are scaled up according to the number of computers and memory available.
Local/sequential computing is made by using fully optimized ATLAS BLAS
(Automatically Tuned Linear Algebra Software BLAS) [23]. ScaLAPACK com-
munication is made as usual: BLACS (Basic Linear Algebra Communication
Subroutines) implemented on top of MPICH implementation of MPI. Every
possible bidimensional processors grid P x @) was considered for ScaLAPACK
routines, e.g. for 16 processors, the experimental grids were: 1x16, 16x1, 2x8,
8x2, and 4x4. Also, square block sizes were used for ScaLAPACK routines: 16,
32, 64, 100 and 128. The proposed algorithm does not need to define a bidimen-
sional processors grid, and the block values used for experimentation are the
same as those used for ScaLAPACK routines.

Figure 3 shows the parallel perfomance measured as efficiency for LU matrix
factorization on different number of computers from 2 to 20. The matrix order
(size) for each number of computers is shown in parenthesis on the = axis. Bars
show the best efficiency value obtained by the algorithms for each number of
computers. Light gray bars labeled as “Sca” correspond to values obtained by
ScaLAPACK’s PDGETRF. Dark gray bars labeled as “Prop” correspond to val-
ues obtained by the proposed parallel LU matrix factorization algorithm. The
proposed algorithm performance is better than that implemented in ScalLA-
PACK from the point of view of “raw” efficiency and performance degradation
from 2 to 20 computers. It is worth to mention the similarity among the ScalLA-
PACK’s results shown in Fig. 3 with those in [¢], where ScaLAPACK is used
for LU matrix decomposition and linear equation system solving. In Fig. 3 as
well as in [3] the efficiency is about 0.5 (or 50% of the total available computing
power). It is possible now to analyze the specific results regarding, for example,
the advantage of broadcast overlapping of the proposed algorithm. For 20 com-
puters, for example, the specific experimentation values are: n = 45000, bs = 64,
the total number of blocks and iterations is 704 and

t(FlopUpd(i),p) > t(becast(i,p)); i=1,...,363
t(FlopUpd(i),p) < t(bcast(i,p)); i=364,...,704

i.e. the first 363 broadcast messages do not add any time to the total elapsed
time of the parallel algorithm on 20 computers. Thus, more than 51% of the
broadcasts are completely made in background and this explains the very good
parallel performance values shown in Fig. 3.

LU matrix factorization is specially penalized in ScaLAPACK’s two dimen-
sional matrix distribution due to the partial pivoting needed for numerical sta-
bility. Partial pivoting implies a collective communication in a row or a column
of processors (for pivot selection) which implies a group communication penal-
ization in an algorithm defined mainly for point-to-point communications. Given
that the proposed parallel LU matrix factorization distributes data by column
block or row block, this penalization is not found. Finally, the proposed paral-
lel LU matrix factorization algorithm efficiency for 20 computers is about 7%
worse than the efficiency for 2 computers, while SaLAPACK efficiency for 20
computers is about 23% worse than the efficiency for 2 computers.
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Fig. 3. LU Matrix Factorization Efficiency.

4 Conclusions and Further Work

A parallel LU factorization algorithm based on broadcast messages seems to
be a good idea to optimize performance at least on clusters interconnected by
networks with broadcast/multicast facilities, such as Ethernet and InfiniBand.
Furthermore, the parallel LU matrix factorization algorithm presented in this
paper is very simple and, thus, easy to understand and implement on clusters.
A specific broadcast message routine has been implemented focusing Ethernet
networks, and this routine has been successfully used in the parallel algorithm.

The performance analysis has been presented regarding the computing time
of the proposed algorithm, which is dependent on the broadcast message im-
plementation. Very good performance values are obtained in experiments by
taking advantage of physical broadcast as well as overlapping communication
with computing in the proposed parallel algorithm. These performance values
are shown to be better than those obtained by the ScaLAPACK LU factorization
algorithm, which is currently assumed to be optimized for distributed memory
parallel computers. Furthermore, the proposed algorithm not only obtains bet-
ter performance than that implemented in ScaLAPACK but also have better
performance scalability as the number of computers is increased.

Other factorization algorithms from the field of linear algebra seem to be well
suited for parallelization beased on broadcast messages. Factorization methods
such as QR and Cholesky are among the inmediate candidates given their simi-
larity in the numerical computing pattern, even when the individual operations
are different from those in the LU factorization.

From the point of view of parallel hardware and clusters, it would be highly
beneficial to experiment on more powerful clusters. The cluster computing power
could be increased by having more computers as well as with computers with
more processing power. Also, interconnection networks with performance better
than Ethernet 100 Mb/s should be used. Immediate candidates in this sense are
Ethernet 1 and 10 Gb/s.
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