
Aspect-Based Adaptation for Ubiquitous Software

Arturo Zambrano1, Silvia Gordillo1,2, and Ignacio Jaureguiberry1

1 LIFIA, Universidad Nacional de La Plata
50 y 115 1er Piso

1900 La Plata, Argentina
{arturo,gordillo,jauregui}@lifia.info.unlp.edu.ar

2 CIC, Provincia de Buenos Aires

Abstract. Information should be available everytime and everywhere in the ubiq-
uitous computing world. Environment conditions such as bandwidth, server avail-
ability, physical resources, etc. are volatile and require sophisticated adaptive ca-
pabilities. Designing this kind of systems is a complex task, since a lot of con-
cerns could get mixed with the application’s core functionality. Aspect-Oriented
Programming (AOP) [1] arises as a promising tool in order to design and develop
ubiquitous applications, because of its ability to separate cross-cutting concerns.
In this paper we propose an AOP-based architecture to decouple the several con-
cerns that ubiquitous software comprises.

1 Introduction

An ubiquitous application should be highly adaptable, since it will be exposed to a
world where runtime conditions change continuously. It must be able to face resource
variability, user mobility, user’s changing needs, heterogeneous networks and so on,
by adapting itself as automatically as possible. As a consequence of the high number
of concerns that must be modeled and the manner in which they interact, this kind of
system is prone to mismatching designs.

By adaptive capability we mean the system’s ability to adapt itself to new run-time
scenarios, such capabilities which cope with specific issues (for instance: networking,
system faults, etc.) should be applied in an automatic way, so that the user is not dis-
turbed. Furthermore, adaptive capabilities should be incremental, that is, they should
evolve in runtime, catch and store information regarding the system’s context for further
use.

It is desirable for the adaptive capabilities and the system’s core functionality to
be handled orthogonally, so that they can evolve individually and promote system’s
flexibility. Besides, adaptive capabilities should be isolated from each other as much
as possible, in order to avoid conflicts among them and to promote the reuse of such
capabilities across families of systems.

An aspect-oriented design could lead us to a better separation of concerns for self-
adaptive ubiquitous applications, by isolating the different features composing them.

In this paper we present our approach to separate adaptive capabilities from the
system main functionality. Section 2 and 3 present concepts related to ubiquitous com-
puting and aspect-oriented programming. In section 4 we present our approach through

F. Crestani et al. (Eds.): Mobile and Ubiquitous Info. Access Ws 2003, LNCS 2954, pp. 215–226, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

216 Arturo Zambrano, Silvia Gordillo, and Ignacio Jaureguiberry

an example. The next section presents an analysis of advantages and disadvantages of
this approach. After that, a comparison against an OO approach is presented. Section 7
presents implementation issues. Finally, we state our conclusions.

2 Adaptation in Ubiquitous and Mobile Computing

An ubiquitous computing system consists of a (possibly heterogeneous) set of computing
devices; a set of supported tasks; and some optional infrastructure (e.g., network, GPS
location service) the devices may rely on to carry out the supported tasks. [2]

Several approaches have been proposed to construct ubiquitous software artifacts.
As expressed in [3] an architecture-based adaptation could be used to model adaptive
systems, but in this approach most layers composing the system are aware of the ex-
istence of the others. In this way, changes in one layer could affect the others. It is
desirable to use a transparent adaptation mechanism, where adapted components and
components dealing with adaptation are independent.

In [11] a reflection-based approach is presented in order to modify application’s be-
havior to adapt it to changing network conditions. It is called reflective architecture, and
it allows to perform self-modifications of existing behavior. At the same time, it allows
to separate system and mobility adaptation policies through a collaboration interface.
We propose the use of AOP as way to enhance the independence between the system
and adaptation mechanisms, and the use of the aspect-based adaptation to deal with all
the concerns regarding context-awareness.

To adapt system’s behaviours it is necessary to know the environment which sur-
rounds the system. The set of properties characterizing the environment defines its con-
text. A more formal definition of context is given in [4], where context is defined as:
”the reification of certain properties, describing the environment of the application and
some aspects of the application itself”. Context often comprises properties related to
spatial and temporal positioning, networking, device constraints, user’s needs and the
application. A detailed study of context is given in [4] and [5].

Efficient execution of mobile systems requires adaptations in harmony with current
context, for instance, as it is proposed in [12] we might choose to have context feature
that excludes content based on file-size, such a context feature should be active if the
user is using a low bandwidth connection, but it should remain quiescent if there is a
high bandwidth conneciton available.

3 Aspect-Oriented Programming

In the application development process, it is common to find a set of concerns which
are independent of any application domain and that affect many objects beyond their
classes which constitute (in object-oriented programming) the natural units to define
functionalities. They are called cross-cutting concerns.

A cross-cutting concern is a concern that is spread along most of the modules of
a system. Typical cross-cutting concerns are persistence, synchronization, error han-
dling. etc. As it is said in [6]: ”...existing software formalisms support separation of

Aspect-Based Adaptation for Ubiquitous Software 217

concerns only along a predominant dimension neglecting other dimensions... with neg-
ative effects on re-usability, locality of changes, understandability...”. These secondary
dimensions correspond to cross-cutting concerns. This idea is specially applicable to
ubiquitous software, where a lot of dimensions are present.

Aspect-Oriented Programming (AOP for short) [7] is one of many technologies
resulting from the effort to modularize cross-cutting concerns.

The intuitive notion of AOP comes from the idea of separating the several concerns
that are present in any system. For instance, imagine a system where many logging op-
erations are performed in order to track system flow control. In such a case, logging
sentences are scattered along the modules of this system (e.g. printf for a C imple-
mentation). The logging concern does not have a materialization in this system, making
its maintenance difficult (just imagine if it is necessary to change a parameter passed to
the printf function, due to a change in the form that logging must be done).

The goal of AOP is to decouple those concerns, so that the system’s modules can be
easily maintained. AOP introduces a set of concepts:

Join Point A join point is a well-defined point in the program flow (for in-
stance a method call, an access to a variable, etc)

Point-Cut A point-cut selects certain join points and values at those points.
Advice Advises define code that is executed when a point-cut is reached.

The program whose behaviour is affected by aspects is usually called base program.
A join point is a concept which allows specifying points in the execution of the base
program that will be affected by an aspect. One or more of these join points (from
one or different classes) are identified by a point cut in the aspect layer, associating
it with an advice. In this way, when one join point, defined in a point cut, is reached
in the program execution, the additional code, defined in the correspondent advice is
executed, adapting the original behaviour according to the current aspect. The aspect’s
code is composed of advises and the point-cuts where those advises must be applied.
Advises could be compared to methods (in the object-oriented paradigm) defined within
the aspects. When using aspects, the idea is to modularize cross-cutting concerns as
aspects, which contain the code to handle the concerns. Since the concern is a cross-
cutting one, it is necessary to apply the behaviour defined in the aspect in several places
of the base program. This is done by defining the join-points and point-cuts that refer
to the base program, and linking the code of the advises to the proper point-cuts.

As it will be shown in the next sections, we have used these AOP concepts to adapt
the behaviour of an ubiquitous system to different runtime environments.

4 Decomposing Ubiquitous Software Using Aspects

We propose the use of AOP to separate the core functionality concern from the context-
awareness concerns during design and implementation time, so that the corresponding
software structure can evolve independently. By using AOP, the core application can be
adapted in a transparent way, since it is not aware of context constraints. At the same
time, the abstraction from those details makes the core application easier to design and
implement. By encapsulating the adaptation mechanism and separating it from the base

218 Arturo Zambrano, Silvia Gordillo, and Ignacio Jaureguiberry

application, a more reusable context representation and adaptation mechanism can be
obtained.

4.1 Exemplary Application

To illustrate our approach we will use the following example:

We must face the design of a personal assistant application for tourism. The
aim of our application is to provide the user with relevant information about
the place where he is in, for instance, accommodation locations, restaurants,
museums, etc. Furthermore, it must report the user’s current location.
Implementations of the application must be able to run on a desktop computer,
a laptop and PDAs, using wired or wireless connections to the servers. There
might be a lot of servers which provide tourism information to the mobile
client. It is supposed that a client application can connect to a different server
according to the client’s geographic location. Since there are different resource
availability for each type of client (screen resolution, processing power, mem-
ory, etc), and there are other runtime changing issues such as bandwidth, loca-
tion, etc., the whole system should be able to adapt itself to provide information
in the proper way.

The natural architecture is a client-server one, where constraints associated with
ubiquity make it more complex. From the client application’s point of view, the designer
must be conscious of:

– User’s mobility: this affects the information that must be requested to the server
and displayed. For instance, as the user goes on his trip, the system should report
different accommodation vacancies for different cities.

– Variability of resources: the client application running on different devices is ca-
pable of using different resolutions to show graphics, variable available memory,
etc.

– Variability of available bandwidth: the information should be available on time,
therefore the client application should request information sized according to the
connection’s throughput.

We will analyze the impact of an AO design to reach a better separation of the
concerns involved.

Identifying System’s Concerns. The system’s functionality can be summarize as to
provide the user assistance during a trip, according to some quality attributes: perfor-
mance and reliability, across changing computational environments. The application
relies on several servers that provide requested information.

To cope with this general requirement, we must analyze which concerns are present.
As a preliminary list of concerns of this application, we find the following:

Aspect-Based Adaptation for Ubiquitous Software 219

1. System’s core functionality: tourism assistant.
2. Visualization Concern: it means that information should be obtained in a format

(textual, high or low resolution graphics) that can be displayed by the device.
3. Communication Concern: it means that communication should be optimized ac-

cording current networking connection.
4. Memory Consumption Concern: this concern refers to the fact that requested infor-

mation can be stored by the device.
5. Spatio-Temporal Concern: this concern affects the information requested since the

system handles spatio-temporal positioned information.

Assuming that the object-oriented paradigm was chosen to model the application
we must answer the following questions: Which of these concerns will be modeled as
aspects? Which of them as objects? How is their behaviour related?

Most activities will be handled as requests made to the nearest server, whose results
are presented to the user. It seems to be clear that the last four concerns affect the
behaviour of the system’s core (which is represented by the first concern), by modifying
the way in which information is required. For instance:

– Spatio-Temporal Concern: affects the system by modifying its requests to reflect the
current location, so that the server can return accurate information for this location.
Geographic positioning can also be used to select the proper server.

– Communication Concern: this concern must deal with available connectivity and
users’ needs. This concern must modify requests according to current network
throughput. For instance, if the user asks for a map, this concern could change the
requested resolution for the map, in order to keep the network use within certain
bounds.

– Visualization and Memory Consumption Concerns: these are similar to the previous
case; here the concerns should modify the request in order to fit current device
capabilities.

It would seem that there is a predominant dimension [6][8] where the system’s core
is located. Other dimensions correspond to those concerns that have some effect on the
predominant one. Since these concerns modify system’s behaviour for each request (see
Figure 1), and they represent different topics of system’s adaptation, we have decided
to model them as aspects, leaving the core system’s model as an object model. In fact,
the context model is an object-oriented one, and the aspects (joint points, point-cuts and
advises) are used as glue to attach the adaptive behaviour in a seamless way.

Modular Division of System’s Functionality. We will focus on the client-side which
has to provide pervasive features. As far as this example is concerned, the server-side is
composed of a net of servers providing the information that is requested by the clients.
Figure 2 depicts a simplified version of the system’s architecture (client-side), where the
class Tourism Assistant represents the base application. The base application’s
interface consists of a set of messages that obtain information from some server. The
actual request should be adapted to fit current runtime constraints and user’s needs,
so that it is affected by the aspectual layer, which takes runtime information from the

220 Arturo Zambrano, Silvia Gordillo, and Ignacio Jaureguiberry

Fig. 1. The Aspectual Layer adapts client’s requests

Context model. This is an standard object model which holds information about the
current system’s environment. In Figure 2 it is presented by a single class, but it is
indeed a more complex representation of the reality. This model should be shared by all
the aspects, so that they can see the same scenario.

The notation in Figure 2 has been taken from [9] with minor modification: the la-
bel request* indicates that the point-cut involves all the messages starting with the
request word. Each invocation to those messages is intercepted and automatically
adapted by the aspectual layer, since requests are defined as point-cuts. As it can be
seen in Figure 2, the system’s architecture is divided into three layers. The first layer
corresponds to the base application, where no assumptions are made with respect to run-
time environment constraints. The second layer is the Aspectual Layer, which contains
the adaptive behaviour, ie. base application’s behaviour is modified in a transparent way
through the point-cut mechanism. The last layer is the context-aware one, which feeds
the aspectual layer with runtime information.

We have analyzed how requests are affected by several concerns. This analysis
can be extended to the remaining system’s functionalities that should be adapted to the
runtime scenario.

In this case, aspects have been used as a means of adapting the application’s be-
haviour to the current context in runtime. They constitute a layer that provide a com-
pletely transparent instrument to obtain this adaptive behaviour. Therefore, the core
application can be easily designed and implemented. Furthermore, the base application
and the aspectual layer are integrated orthogonally, so that they can evolve indepen-
dently.

Aspect-Based Adaptation for Ubiquitous Software 221

Fig. 2. Simplified Client-Side Architecture

Actual applications developed for desktop computers, laptops, handheld and PDAs
may differ in implementation issues, but they can certainly follow this general schema.

Notice that this architecture corresponds to the client-side, where no data will be
available at startup, instead, it will be downloaded on demand. Applications following
this architecture are able to be deployed in mobile devices using current available tech-
nology, such as JVM (J2ME, SuperWaba, etc.) for mobile devices and AspectJ [10].
Since AspectJ generates pure Java code, implementations can run on any platform sup-
porting J2ME.

5 Advantages and Drawbacks

In this section we present some advantages we have found in this approach and draw-
backs that should be solved before getting a robust aspect model for ubiquitous appli-
cations. We will start by stating some advantages:

Base Application Layer

Context Awareness Layer

AspectualLayer

<<baseApplication>>

TourismAssitant

requestMap() : void

requestHospitalsLocation() : void

requestMuseumsLocation() : void

<<aspect>>

SpatioTemporalLocator

<<before>> adaptRequest() : void

<<aspect>>

NetworkingOptimizer

<<before>> adaptRequest() : void

<<aspect>>

DeviceAdapter

<<before>> adaptRequest() : void

Context

currentLocation : Location

displayProperties : Properties

netWorkProperties : Properties

update() : void

Provides transparent
adaptation for the
base application

<<pointcut>>

<<pointcut>>
<<pointcut>>

sharedContext
sharedContext

sharedContext

request*request*

request*

222 Arturo Zambrano, Silvia Gordillo, and Ignacio Jaureguiberry

– Modifications to adapt the behaviour of base programs are included in the aspectual
layer, which is invisible to them.

– Different concerns regarding ubiquity can evolve independently from one to an-
other.

– Since the context representation is stored at the client side, the resulting application
is more robust in relation to server failures.

– The separation between the core and adaptive capabilities allows us to reuse context
representation and the adaptation strategies.

Some shortcomings have been found:

– Some concerns could require contradictory adaptation strategies and this could ori-
gin conflicts among them. For instance: if there is a fast network connection but a
poor screen display, then the network concern would encourage heavy high resolu-
tion images downloads, whilst the visualization concern would require low resolu-
tion images download. There must be a mechanism to define which concerns take
precedence or govern the others.

– In some cases, concern goals should be overridden by user defined goals, this could
involve defining explicit interactions from base program toward the aspectual layer.
This is not usual in the literature on aspect-orientation. Another approach could be
treating user’s preferences as a new concern modeled through aspects.

6 A Comparison against a Pure OO Approach

At this point it is interesting to discuss why a pure object-oriented is not powerful
enough to correctly model this kind of systems.

Object oriented technology has proven to be a useful modelization technique. Hav-
ing objects encapsulating internal state and behavior is specially useful to model ab-
stractions in one dimension. But, as we stated in 3, abstractions belonging to several
dimensions can not be easily integrated in a single unique model. Eventually, cross-
cutting concerns responsibilities will be spread along main dimension abstractions.

A good object oriented design for the given application might separate context
awareness issues, but, in order to get applications behavior adapted by context aware-
ness, some kind of explicit invokation will be needed. This need for an explicit invoka-
tion (the unique invokation mechanism available in object orientation) will couple at
some point both, application and adaptation models. Finally, this binding between the
two models will result in a dependence, making necessary to have both models in order
to have a functional application. In the presented approach, the application model is
completly unbound from context awareness model, allowing us to design and imple-
ment the application, forgetting non-functional constraints (such as context-awareness
ones).

7 Implementation Issues

In this section we present some examples regarding how the proposed approach can
be implemented using current available programming tools. For the following example

Aspect-Based Adaptation for Ubiquitous Software 223

we have chosen AspectJ to provide aspects implementation. The base application can
be developed using J2ME or Superwaba (a free open source Java dialect, that runs on
palms and handhelds). XML has been chosen as the language used to express client’s
request.

For the example presented in 4.1 we will analyze the default system’s behaviour and
then how it is modified by aspects attending to specific concerns.

Let us analyze the request that asks the server for information about the location of
the device.

1. public String request(){
2. return "<REQUEST>
3. <USER ID>232</USER ID>
4. <POSITION INFO/>
5. </REQUEST>";
6. }

Fig. 3. Base application XML request

The method request() in Figure 3 generates the XML request that will be sent
to the server. In this example, it asks for information regarding the position of the mo-
bile device. The expected answer can be a textual description (street names) or a map
indicating the current device position in a user-friendly way. The choice between the
different representations depends on the display capabilities of the device. Furthermore,
in the case of a map, the picture resolution should be chosen according to the device
resolution, free memory space and network bandwidth, as we discussed in 4.1.

More specifically, an aspect working on the bandwidth concern can add extra infor-
mation indicating the current available bandwidth, so that the server can perform the
necessary adjustments on the information to be sent as response.

A simplified implementation for this aspect is shown in Figure 4.

1. public aspect BandwidthAspect {
2. String around(): call(BaseApplication.request(..)){
3. String request = proceed();
4. request+= "<BANDWIDTH CONSTRAINTS>
5. <MAX SIZE>" + context.currentBandwidth() + "</MAXSIZE>
6. </BANDWIDTH CONSTRAINTS>";
7. return request;
8. }
9. }

Fig. 4. Bandwidth aspect implementation

Notice that the bandwidth aspect defines a point-cut (Figure 4 line 2) for the method
request() in the base application, as was expressed in 4.1. When this method is
invoked, the control pass to the aspect which modifies the original XML request by

224 Arturo Zambrano, Silvia Gordillo, and Ignacio Jaureguiberry

adding parameters indicating the current bandwidth. This information is obtained from
the Context object that holds runtime information. In Figure 4 line 3 the base appli-
cation method is invoked and its result is modified in the following lines.

The outcome XML request presented in Figure 5 corresponds to several aspects
working on other concerns, such as memory consume, geographical location (through
GPS) and image resolution, performing their adaptations.

1.<REQUEST>
2. <USER ID> 3232 </USER ID>
3. <POSITION INFO> <TYPE> MAP </TYPE>
4. </POSITION INFO>
5. s<CURRENT POS>
6. <LAT>20 20’ 21"</LAT>
7. <LONG>24 21’ 0"</LONG>
8. </CURRENT POS>
9. <IMAGE CONSTRAINTS>
10. <WIDTH>320</WIDTH>
11. <HEIGTH>200</HEIGTH>
12. </IMAGE CONSTRAINTS>
13. <BANDWIDTH CONSTRAINTS>
14. <MAX SIZE> 2KB </MAX SIZE>
15. </BANDWIDTH CONSTRAINTS>
16. <MEMORY CONSTRAINTS>
17. <MAX SIZE> 6MB </MAX SIZE>
18. </MEMORY CONSTRAINTS>
19. </REQUEST>

Fig. 5. XML request after aspect’s modifications

As it can be seen, some aspects might perform opposite modifications on the re-
quest. This kind of problem could arise in those base applications actions that are
adapted by several aspects. For those cases where adaptation is done through requests
modifications, our approach is to let all the modifications to be made, and solve the
conflicts at the server side. That is to say, the server should overcome conflicting re-
quests by stating some priority order among them. Then, there should be some strategy
(at server side) that decides which modifications are the most important ones. For those
base application actions that should be adapted and where several aspects are working
on, it is possible to define a precedence order for the aspects (AspectJ supports such
feature).

8 Conclusions

In this work we have analyzed how application behaviour can be affected and adapted
by the runtime context in ubiquitous software mobile devices. Such an adaptation is
necessary to optimize the use of the scarce device resources. This optimization concern

Aspect-Based Adaptation for Ubiquitous Software 225

comes at a price: it can make application’s development more complex. We have also
addressed this problem, by providing a transparent way to modularize and decouple
these optimization issues from the main application. We propose a possible decompo-
sition of an ubiquitous system into aspects, and we analyze the consequences of the AO
design.

We think that ubiquitous applications present high complexity which can be suc-
cessfully targeted by the aspect-oriented paradigm. To conclude, we claim that aspect
orientation is a fundamental tool that should be fully exploited to modularize intrinsic
concerns in ubiquitous systems.

Acknowledgments

The authors thank Dr. Gustavo Rossi for his useful comments, and LIFIA for its support.

References

1. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, William G. Gris-
wold: Aspect Oriented Programming: Introduction. Communications of the ACM, Vol. 44.
(2001) 29–32

2. D. Salber, A.K. Dey, G.D. Abowd: Ubiquitous Computing: Defining an HCI Research
Agenda for an Emerging Interaction Paradigm: Tech. Report GIT-GVU-98-01. IFIP Working
Conference on Engineering for Human-Computer Interaction. Georgia Tech. (1998)

3. Shang-Web Cheng, David Garlan, Bradley Schmerl, Joao Sousa, Bridget Spitznagel, Peter
Steenkiste and Ningning Hu: Software Architecture-based Adaptation for Pervasive Sys-
tems. Lecture Notes in Computer Science Vol. 2299. Springer-Verlag (2002) 67–82

4. Gerti Kappell, Birgit Prll, E Kimmerstorfer, Wieland Schwinger and T.H. Hofer: Towards a
Generic Customisation Model for Ubiquitous Web Applications. 2nd International Workshop
on Web Oriented Software Technology in conjunction with the 16th European conference on
Object-Oriented Programming ECOOP. (2002)

5. Gerti Kappell, Birgit Prll, Werner Retschitzegger and Wieland Schwinger: Customisation for
Ubiquitous Web Applications. Int. Journal of Web Engineering and Technology (IJWET),
Inaugural Volume, Inderscience, Volume 1, No. 1, (2003) 79–111

6. Stephan Herrmann and Mira Mezini: PIROL: A Case Study for Multidimensional Separation
of Concerns in Software Engineering Environments, ACM OOPSLA 2000 Proceedings. Vol.
26, Issue 1. ACM Press New York (2001) 188–207

7. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier and John Irwin:Aspect-Oriented Programming. 11th Europeen Conf. Object-
Oriented Programming. Lecture Notes in Computer Science, Vol. 1241. Springer-Verlag
(1997) 220–242

8. Stephan Herrmann and Mira Mezini: On the Need for a Unified MDSOC Model: Expe-
riences from Constructing a Modular Software Engineering Environment. OOPSLA 2000
Proceedings. ACM Press New York (2000)

9. R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier and L. Martelli: A UML
Notation for Aspect-Oriented Software Design. Proceedings of the 1st international confer-
ence on Aspect-oriented software development. ACM Press New York (2002) 106–112

10. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold:, An overview
of AspectJ.Proceedings ECOOP 2001. Lecture Notes in Computer Science, Vol. 2072.
Springer-Verlag (2001) 327–353

226 Arturo Zambrano, Silvia Gordillo, and Ignacio Jaureguiberry

11. A. I. Periquet and E. Lin, ”Mobility Reflection: Exploiting Mobility-Awareness in Appli-
cations by Reflecting on Distributed Object Collaborations,” Technical Report 97-CSE-6,
Southern Methodist University, 1997.

12. Lonsdale, P., Baber, C., Sharples, M. and Arvanitis, T. (2003) A context awareness architec-
ture for facilitating mobile learning. In Proceedings of MLEARN 2003, London: LSDA.

	1 Introduction
	2 Adaptation in Ubiquitous and Mobile Computing
	3 Aspect-Oriented Programming
	4 Decomposing Ubiquitous Software Using Aspects
	4.1 Exemplary Application

	5 Advantages and Drawbacks
	6 A Comparison against a Pure OO Approach
	7 Implementation Issues
	8 Conclusions
	References

