
MASPEGHI 2004

Mechanisms for Specialization, Generalization
and Inheritance�

Ph. Lahire1, G. Arévalo2, H. Astudillo3, A.P. Black4, E. Ernst5,
M. Huchard6, T. Opluštil, M. Sakkinen7, and P. Valtchev8

1 Laboratoire d’Informatique Signaux et Systèmes de Sophia Antipolis (I3S),
Université de Nice Sophia antipolis, France

Philippe.Lahire@unice.fr
2 Software Composition Group, Institut für Informatik und angewandte Mathematik,

Bern, Switzerland
arevalo@iam.unibe.ch

3 Departamento de Informática, Universidad Técnica Federico Santa Maŕıa
Valparáıso, Chile
hernan@acm.org

4 Dept. of Computer Science & Engineering, OGI School of Science & Engineering,
Oregon Health & Science University (OGI/OHSU), Beaverton, USA

black@cse.ogi.edu
5 Department of Computer Science, University of Aarhus, Denmark

eernst@daimi.au.dk
6 Laboratoire d’Informatique, de Robotique et Micro-électronique de Montpellier

(LIRMM), CNRS and Université de Montpellier 2, France
huchard@lirmm.fr

7 Department of Computer Science and Information Systems, University of
Jyväskylä, Finland
sakkinen@cs.jyu.fi

8 Dépt. d’Informatique et recherche opérationnelle (DIRO), Université de Montréal,
Québec, Canada

petko.valtchev@umontreal.ca

Abstract. MASPEGHI 2004 is the third edition of the MASPEGHI
workshop. This year the organizers of both the ECOOP 2002 Inheritance
Workshop and MASPEGHI 2003 came together to enlarge the scope of
the workshop and to address new challenges. We succeeded in gathering
a diverse group of researchers and practitioners interested in mechanisms
for managing specialization and generalization of programming language
components. The workshop contained a series of presentations with dis-
cussions as well as group work, and the interplay between the more than
22 highly skilled and inspiring people from many different communities
gave rise to fruitful discussions and the potential for continued collabo-
ration.

� The title of this report sould be referenced as “Report from the ECOOP 2004 Work-
shop on Mechanisms for Specialization, Generalization and Inheritance (MASPEGHI
2004)”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 101–117, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



102 Ph. Lahire et al.

1 Introduction and Summary of the CFP

The MASPEGHI workshop took place on Tuesday, June 15th, at ECOOP 2004
in Oslo. It was the third edition of MASPEGHI (after OOIS 2002 and ASE
2003), but it was at the same time a follow-on to the Inheritance Workshop at
ECOOP 2002 in Málaga (see Section 6) — a case of multiple inheritance. The
meaning of the acronym MASPEGHI was modified from MAnaging SPEcializa-
tion/Generalization HIerarchies to MechAnisms for SPEcialization, Generaliza-
tion and inHerItance, thus broadening the scope of the workshop.

MASPEGHI 2004 continued the discussion about mechanisms for manag-
ing specialization and generalization of programming language components. The
workshop was organized around concepts such as inheritance and reverse inher-
itance, subclassing, and subtyping, and specialized into variants such as single
or multiple inheritance, mixins, and traits.

The workshop was concerned with (i) the various uses of inheritance, and (ii)
the difficulties of implementation and control of inheritance in practical applica-
tions. Several communities were represented, including those dealing with design
methods, databases, knowledge representation, data mining, object-oriented pro-
gramming languages, and modeling: each community addresses these concerns in
different ways. Thus, one important goal of this workshop was to bring together
a diverse group of participants to compare and contrast the use, implementation
and control of inheritance as practiced in their communities.

This report summarizes the workshop. Section 2 lists the organizers, the
participants and the written contributions. Section 3 provides an overview of
the contributions and debates. Section 4 summarizes the outcome of the three
work groups. We end this overview of the workshop with a conclusion and a list
of pointers (Sections 5 and 6).

2 People and Contributions

2.1 Organizers

The organizers of this workshop were (in alphabetical order):

– Gabriela Arévalo: Software Composition Group, Institut für Informatik
und angewandte Mathematik, Bern, Switzerland. (arevalo@iam.unibe.ch)

– Hernán Astudillo: Departamento de Informática, Universidad Técnica
Federico Santa Maŕıa Valparáıso, Chile. (hernan@acm.org)

– Andrew P. Black: Dept. of Computer Science & Engineering, OGI School
of Science & Engineering, Oregon Health & Science University (OGI/OHSU),
Beaverton, USA. (black@cse.ogi.edu)

– Erik Ernst: Department of Computer Science, University of Aarhus, Den-
mark. (eernst@daimi.au.dk)

– Marianne Huchard: Laboratoire d’Informatique, de Robotique et Micro-
électronique de Montpellier (LIRMM), CNRS and Université de Montpellier
2, France. (huchard@lirmm.fr)



MASPEGHI 2004 103

– Philippe Lahire: Laboratoire d’Informatique Signaux et Systèmes de
Sophia Antipolis (I3S), Université de Nice Sophia antipolis, France.
(Philippe.Lahire@unice.fr)

– Markku Sakkinen: Department of Computer Science and Information Sys-
tems, University of Jyväskylä, Finland. (sakkinen@cs.jyu.fi)

– Petko Valtchev: Dépt. d’Informatique et recherche opérationnelle (DIRO),
Université de Montréal, Québec, Canada. (petko.valtchev@umontreal.ca)

2.2 Participants and Position Papers

A total of 22 persons participated in the workshop, although some of them only
for part of the day. The attendees came from 13 different countries, the largest
attendance (4) coming from France. Among them 15 were paper authors (see the
table below) and/or members of the organizing committee. Five of the organizers
were able to come: A. Black, E. Ernst, M. Huchard, Ph. Lahire and M. Sakkinen.
All the papers in the following table are in the proceedings of the workshop [1],
which is accessible from the website.

Contribution Presenter / Other Authors

Object Identity Typing: Bringing

Distinction between Object Be-

havioural Extension and Specializa-

tion

D. Janakiram, Indian Institute of

Technology Madras, India (djram@

lotus.iitm.ernet.in) / C. Babu

(1)

A Reverse Inheritance Relationship

for Improving Reusability and Evo-

lution: the Point of View of Feature

Factorization

Philippe Lahire (see above) / C.-B.

Chirila and P. Crescenzo

(2)

Mathematical Use Cases lead nat-

urally to non-standard Inheritance

Relationships: How to make them

accessible in a mainstream language

Marc Conrad, University of Luton,

UK (marc.conrad@luton.ac.uk) /

T. French, C. Maple, and S. Pott

(3)

Proposals for Multiple to Single In-

heritance Transformation

Michel Dao, France Télécom R&D,

France (michel.dao@francetelecom.

com) / M. Huchard, T. Libourel, A.

Pons and J. Villerd

(4)

The Expression Problem, Scandina-

vian Style

Erik Ernst (see above)(5)

The Logic of Inheritance DeLesley Hutchins, University of Ed-

inburgh, UK (D.S.Hutchins@sms.ed.

ac.uk)

(6)



104 Ph. Lahire et al.

An anomaly of subtype relations at

component refinement and a gener-

ative solution in C++

Zoltán Porkoláb, Eötvös Loránd Uni-

versity, Hungary (gsd@elte.hu) / I.

Zólyomi

(7)

Java with Traits— Improving Op-

portunities for Reuse

Philip J. Quitslund, Oregon Health

and Science University, USA

(philipq@cse.ogi.edu) / A. P.

Black

(8)

Merging conceptual hierarchies us-

ing concept lattices

Marianne Huchard (see above) / M.

H. Rouane, P. Valtchev, P. and H.

Sahraoui

(9)

Behaviour consistent Inheritance

with UML Statecharts

Markus Stumptner, University of

South Australia, Australia (mst@cs.

unisa.edu.au) / M. Schrefl

(10)

Domain Modeling in Self Yields

Warped Hierarchies

Ellen Van Paesschen, Vrije Univer-

siteit Brussel, Belgium (evpaessc@

vub.ac.be / W. De Meuter and T.

D’Hondt

(11)

Inheritance Decoupled: It’s More

Than Just Specialization

L. Robert Varney, University of Cali-

fornia at Los Angeles, USA (varney@

cs.ucla.edu) / D. S. Parker

(12)

Among the other participants were the following (alphabetically):

– Antoine Beugnard, Ecole Nationale Supérieure de Télécommunication,
France (Antoine.Beugnard@enst-bretagne.fr)

– Kim Bruce, Williams College, Massachusetts, USA (kim@cs.williams.edu)

– Sebastián González, Université catholique de Louvain, Belgium
(sgm@acm.org)

– H̊avard Hegna, Norwegian Computing Center, Norway (hegna@nr.no)

– Tomáš Opluštil, Charles University in Prague, Czech Republic
(oplustil@nenya.ms.mff.cuni.cz)

– Wilfried Rupflin, University of Dortmund, Germany
(Wilfried.Rupflin@uni-dortmund.de).

3 Workshop and Contribution Overview

3.1 Workshop Organization

The organizers prepared for the workshop by a quite lengthy process of charac-
terizing and classifying the papers, based on their main topics. In this process
it turned out to be useful to apply techniques from concept analysis, which is



MASPEGHI 2004 105

a core research area for some of the organizers. Here is an early version of the
classification1; note that some papers match several topics.

– Contradiction between a desired subtyping or specialization relation and
available language mechanisms. What should designers and developers do
when a desired subtyping relation cannot be expressed in the particular
technology (e.g., programming language) employed to create the software?
Papers P6, P7, P3, P1, P11, P8, P12, P5, P9, P2 deal with this topic. They
propose, roughly, to rearrange the desired hierarchy to fit the language, or
to design a new language.

– Is class composition worthwhile? One example of a class composition mech-
anism is multiple inheritance, and it is well-known that multiple inheritance
is hard to do well. People who think class composition is worthwhile empha-
size that it is powerful, and the more sceptical people emphasize that the
resulting software is complex and hard to maintain. Papers P11, P8, P12,
P5, P4 are related to this topic.

– Different kinds of subclassing relationships. How many kinds of inheritance
relationships are needed? How many kinds does your technology have? Pa-
pers P10, P12, P4, P2 deal with this topic.

– Form and Transform, Dealing with evolution. How can methodologies, lan-
guages and tools help us to deal with classification, construction and evolu-
tion? Papers P3, P4, P9, P2 deal with this topic.

This process of establishing an overview of the issues and positions repre-
sented by the papers continued, and at the workshop we ended up with three
sessions:

1. Form and Transform: Dealing with Evolution (papers P3, P2, P4, P10).
2. Class composition (papers P11, P8, P5).
3. Contradiction between a desired subtyping or specialization relation and

available language mechanisms (papers P6, P7, P1, P12).

The workshop started with a brief welcome and the introduction of the partic-
ipants. The three sessions were organized as presentations of the position papers
followed by discussion, applying a flexible attitude to timekeeping that priori-
tized the contents of the discussions rather than adhering rigidly to a schedule.
Each presentation lasted about 10 minutes; following that, an opponent—who
prepared by carefully studying the paper and other related material—initiated
the discussion by asking questions, making comments or proposing an alternate
point of view. Gradually, the other participants would also ask questions or make
comments. Some ingenuity was needed to schedule this activity around lunch and
coffee breaks, but the flexible approach to timing worked quite well.

We now turn to the conduct of the three sessions listed above.

1 In this report, papers presented at the workshop are referred to as Pn where n is
the number of the paper in the table in Section 2.2



106 Ph. Lahire et al.

3.2 Session 1: Form and Transform: Dealing with Software
Evolution

This session dealt with the evolution of designs and of software; papers P4 and
P10 addressed the design level with UML whereas P2 and P3 addressed the pro-
gramming level. Paper P4 focused on the use of meta-information, categorizing
applications of multiple inheritance according their semantics, and then using
this categorization to select a suitable transformation to single inheritance.

Paper P10 deals with object life-cycles represented with UML statechart
diagrams. Inheritance is used to specialize life-cycles, that is, to extend and re-
fine them. The semantics of this kind of inheritance relationship relies on two
properties: observation consistency and invocation consistency [2]. Paper P3 in-
vestigates how method renaming, dynamic inheritance and interclassing can be
used to strengthen the relationships between mathematical reasoning (algebric
structuring) and object-oriented techniques [3]. This led to a discussion about
benefits and advantages of introducing these ideas within OO languages. The
last paper of the session, P2, deals with the introduction of a reverse inheri-
tance relationship to better address the reuse and evolution of hierarchies of
classes. This implies the existence of a language that provides both specializa-
tion and generalization relationships [4]. The paper introduces a factorization
mechanism that enables a programmer to move features up the hierarchy. A
discussion ensued about the semantics that should be attached to generalization
relationships.

3.3 Session 2: Class Composition

The second session included presentations of three papers that addressed this
topic, but based in the culture of three different languages — Self [5, 6], Java and
gbeta [7].

In P11 the authors demonstrate that the hierarchies required for proper do-
main modeling are the reverse of the hierarchies required by the Self program-
ming language for the proper execution of the corresponding code. Self uses a
particular kind of prototype object, called a trait object, as a way of sharing
behavior. A variation of this idea is explored in paper P8, which led to some
discussion on this topic. The paper deals with a mechanism for reusing code
in Java, based on previous work on traits in Smalltalk [8]. One of the common
ideas is that the class is not the best unit of reuse; the authors demonstrate this
through a detailed study of code duplication in the Java Swing library.

The third paper, P5, is influenced by the expressiveness of the gbeta language
and explains how higher-order hierarchies [9] can be used to solve the expression
problem [10]. One of the main advantages of gbeta is that it makes it possible
to adapt and evolve whole hierarchies of classes rather than individual classes.
A discussion dealing with other possible solutions to the expression problem,
especially reverse inheritance, followed the presentation of the paper.



MASPEGHI 2004 107

3.4 Session 3: Subtyping and Specialization

The third session dealt with incompatibilities between the subtyping and spe-
cialization relations and the available mechanisms, and involved four papers. In
P6 the author argues that inheritance is fundamentally concerned with the cate-
gorization of objects, and that OO languages should thus be founded upon a for-
malism that supports categorical reasoning. He proposes a formal language called
SYM, which is aimed at representing class/object types in a way that avoids clas-
sical inheritance problems such as conflict resolution and the dichotomy between
subtyping and implementation inheritance. During the discussion we noted that
classes in SYM are like traits or mixins [11, 12] and that SYM enables the han-
dling of both virtual methods and Beta-style virtual classes.

Paper P7 describes a limitation of inheritance that the authors call the
chevron shape anomaly. It is based on the fact that (i) classes in a hierarchy may
be extended by inheritance in order to add new functionality and (ii) an appli-
cation may use several hierarchies and use them at different levels. The authors
explain that it implies an increase of complexity and propose a solution based on
generative programming [13]. Paper P1 is concerned with the expressiveness of
inheritance in conventional OO languages, which do not make a clear distinction
between object behavioral extension (which needs to preserve object identity)
and behavioral specialization (where a new object is created). The authors pro-
pose to capture this distinction by representing object identity as a type. The
paper P12 pointed out another deficiency of object-oriented languages: that they
do not provide sufficient support for interface abstraction and implementation
inheritance, thus spreading implementation bias and impairing evolution. To
address these issues, the authors propose interface-oriented programming (IOP)
[14], which decouples the client of an abstraction from the code that binds it to
a specific implementation and provides an interface-oriented form of inheritance
that keeps implementation bias in check and is useful for both specialization and
adaptation.

3.5 Group Discussions

An important part of the workshop was the group discussions held in the after-
noon. Three work groups were formed; the topics of the workgroups reflect the
interests of participants. They were largely derived from the session topics: two
of them came directly from session topics, whereas the third was formed during
the earlier discussions. The topics were as follows:

– Composition of classes
– Subtyping and subclassing
– Inheritance relations applied to components

After one hour of discussion, one representative from each group (Erik Ernst,
Andrew Black and Marianne Huchard, respectively) explained to the other par-
ticipants the perspectives of their groups and the result of the discussion. The
next section summarizes these discussions; the summary from each work group
is written by its participants, and organized by the group representatives above.



108 Ph. Lahire et al.

4 Summary of Group Discussions

In the following subsections we describe the working groups held during the
afternoon.

4.1 Composition of Classes

The members of this group were Marc Conrad, Erik Ernst, Philippe Lahire,
Philip Quitslund, and Markku Sakkinen. It quickly became clear that nobody in
the group was vehemently against class composition, even though they acknowl-
edged what Alan Snyder said many years ago: “multiple inheritance is good but
there is no good way to do it” (reported by Steve Cook [15]).

Consequently, we implicitly responded to the question of whether class com-
position is worthwhile with a ‘Yes!’, qualified by the realization that there will
probably always be wrinkles in the design of each concrete class composition
mechanism, and then continued to explore the similarities and differences be-
tween our approaches to it.

One line of exploration was to find features of each approach that other ap-
proaches could not readily match. For traits, represented by Philip, the feature
we selected was the symmetry of trait composition: two traits may both import
and export from each other, thus satisfying the requirements of both of them.
In contrast, with mixins the dependency is strictly unidirectional. Symmetric
dependencies enable the creation of composite entities, e.g., classes created by
composing traits, in a more flexible manner than is possible with strict unidi-
rectional dependencies.

The selected feature of gbeta, represented by Erik, was that of composing
nested entities, e.g., families of classes or even families of families of classes, and
having the composition propagate recursively into the structure. This enables
disciplined and well-defined composition of many classes in parallel with a very
concise syntax. In contrast, a single class composition mechanism is generally
more error-prone and typically lacks the ability to ensure compatibility among
many classes.

Reverse inheritance, which is a main topic in the paper by Philippe and also
the subject of earlier work by Markku under the name exheritance, is unique
in that it allows for non-intrusive modification of existing classes (i.e., changing
their meaning without editing them). The precise scope of this kind of modifica-
tion depends very much on the details of the mechanism, but generally it enables
addition of new supertypes to existing classes even in a type system based on
name equivalence, and some kinds of inverse inheritance or exheritance allows
for semantically significant changes, too, such as overriding an inherited method
or even adding state to the specified subclasses. Non-intrusive modification im-
proves on the flexibility in system development, especially where large amounts
of existing source code must be modified, but cannot be edited.

It is difficult to evaluate the quality of programming language mechanisms
because this would ideally require that we look at all programs that could ever
be written using the mechanism and evaluate whether those programs would
be of higher quality without the use of the mechanism, or using an alternative



MASPEGHI 2004 109

version of it. Obviously, no such thing could ever be done or even approximated.
Hence, evaluation of language mechanisms tends to be informal. However, as
Marc pointed out, one might use things like design patterns [16] in an evaluation,
because patterns represent well-known and hard problems in software design at
the level of a few classes—which is often the level where language mechanisms
for class composition are most relevant.

Finally, we discussed an inversion scenario for the unfolding of software as
a vehicle to gain insight into the real nature of class composition and other
abstraction mechanisms. Software is unfolded in the following sense: designers
and developers create abstractions such as classes, subclasses, type parameter-
ized classes or methods, etc. We may consider inheritance as a short-hand for
repeating the declarations inherited from superclasses, and similarly for type pa-
rameterization, so the most sophisticated abstractions could be ‘unfolded away’,
leaving us with a simple, flat universe of classes with no inheritance or type
parameters, etc. In fact, this would typically yield a correct description of actual
objects at run-time and their behavior.

Now imagine that we start from the other end, with a running system of
objects and behavior (with no classes or other abstractions defined a priori, as
in Self [5]). We could then examine which objects and behaviors are similar,
and construct classes and methods to describe them; next we could explore
similarities between classes and use them to build inheritance hierarchies, etc.—
which is one of the things that Marianne Huchard and others are doing with
concept analysis. We would then reconstruct the abstractions from the run-
time environment, as opposed to constructing the run-time entities from the
abstractions. The latter is an unfolding process, whereas the former is a folding
or ‘compression’ process.

The intriguing insight is that the run-time world can be considered as the
primary artifact, with the abstractions as derived entities—just the opposite of
typical thinking for class based languages, especially statically typed ones. The
very thought that abstractions may be constructed automatically may help to
make class composition and other mechanisms more lightweight and less intim-
idating, and similarly refreshing is the idea that manipulations of a “program”
could sometimes take place at the concrete level, with new abstractions arising
by subsequent (more or less automatic) analysis of the concrete level.

Of course, this thesis about the wonders of concreteness is immediately fol-
lowed by an antithesis: abstraction is one of our most powerful tools and hence
abstractions should not be reduced to mere implementation details produced by
a programming tool. However, abstractions might be more manageable if the
top-down unfolding point of view is supplemented with the bottom-up folding
point of view.

4.2 Subtyping and Subclassing

The members of this working group were Andrew P. Black, Kim Bruce, DeLesley
Hutchins, D. Janakiram, Zoltán Porkoláb, Markus Stumptner and L. Robert Var-
ney. The group focused on the problem of what to do when a programmer finds



110 Ph. Lahire et al.

that it is convenient to subclass an existing class, not to capture a specialization
relationship in the domain being modeled, but just to share implementation. It
can be argued that this is a bad programming practice, but often the only prac-
tical alternative is the wholesale use of copy and paste, which is surely a worse
programming practice. William Cook’s examination of the Smalltalk Collection
Classes [17] shows that the practice is common.

However, this activity can lead to problems. The subtyping relation that does
capture the specialization relationship of the domain is at best obscured, and at
worst destroyed. For example, in Smalltalk it is obscured: two classes A and B
that happen to be defined in completely different parts of the subclass hierarchy,
but with sets of methods such that B is a subtype of A, have the property that
aB can be substituted for anA. But this property is obscure: it is not expressed
explicitly in the program. In Java, the interface construct and the implements
keyword let the programmer say explicitly that A and B both implement a
common interface, let us call it the “I” interface: this makes the programmer’s
intention explicit. But Java has its shortcomings too, because Java insists that
any subclass is a subtype of its superclass, whether or not this makes sense in
the context of the application domain. Moreover, if A was defined by someone
else, perhaps someone working for another company, without also stating that
it implements the I interface, then when another programmer comes along and
tries to define and use aB in place of anA, the program won’t compile. In order to
substitute aB, not only must A implement I, but all declarations of parameters
and variables must use I rather than A.

The goal of the group was to consider this problem and possible solutions.
There was agreement that this is fundamentally a problem of language design: a
single mechanism (inheritance) is made to play too many roles, with the result
that programs are harder to understand. That is, the reason for the use of an
inheritance relationship is not explicit in the program text, and the reader must
try to infer it.

The problem (outlined above) with Java programs that do not use interfaces
could be solved in a backwards-compatible way by a small modification to the
language semantics. The idea is to create for each class C an interface with the
same name, and to interpret variable and parameter declarations involving C as
referring to the interface name rather than to the class name. It would then be
possible for a maintenance programmer to define a new class that implements
C, and instances of this new class could then be used in places that require a
C. However, interfaces do have a run-time cost in Java, and this patch would
impose that cost on every program. A non-compatible change to Java would
involve separating the subtyping (interface) and subclassing hierarchies entirely;
this would also make it possible to allow non-subtype-compatible changes in a
subclass, such as canceling methods.

An alternative approach is to find another mechanism for code reuse, thus
freeing inheritance to be used solely for domain modeling, which several of the
participants at the workshop had argued is the primary role of inheritance (see
for example papers P3 and P6). The trait concept described in P8 is one can-



MASPEGHI 2004 111

didate for such a mechanism. As currently implemented, traits do not subsume
inheritance because they do not allow the declaration of instance variables. How-
ever, it seems that an extended trait mechanism without this restriction would
provide all of the reuse opportunities offered today by inheritance, as well as
others, but without implying any conceptual classification that might not be
intended. An implicit or explicit subtyping system could then be used for clas-
sification.

4.3 Inheritance Relations Applied to Components

This group consisted of Michel Dao, Marianne Huchard, Ellen Van Paesschen,
Antoine Beugnard, Sebastián González, and Tomáš Opluštil. It was established
because, although the (mainly academic) research in the field of software ar-
chitecture and component systems has become mature, not much attention has
been devoted to the study of emerged high-level abstractions from the point of
view of inheritance relations. This becomes even more important in the context
of model transformations (see, e.g., OMG MDA [18]). Therefore the long-term
goal of this group is to set up a basis for research on inheritance in architecture
description languages (ADLs) and component systems.

The discussion was initiated by Tomáš Opluštil who presented some ongoing
research aimed at introducing inheritance in SOFA CDL [19, 20]. This initial
discussion resulted in the following list of key long-term goals (of which only the
first two were discussed because of time limitations).

– Selecting/defining abstractions in component models and ADLs to which
inheritance or specialization can be applied.

– Defining the terms subtyping, specialization and inheritance in the context
of components and other higher-level abstractions.

– Proposing purposes for which inheritance should be used in component mod-
els and ADLs.

– Proposing corresponding relations in implementation languages (into which
inheritance in higher-level abstractions should be mapped).

The main abstractions in component models, which are thus a priori poten-
tial candidates for specialization, reuse inheritance or subtyping, are the follow-
ing: a component is a unit of computation (often both a design-time and run-
time entity); an interface is roughly a set of operations; a component type is a
set of component interfaces; a connector manages communication between com-
ponents; an architectural configuration is a set of components and connections.
Components have ports or component interfaces, which usually characterize the
type of the component. A principle distinction is between client and provided
component interfaces which draw required and provided services; additional clas-
sifications can be by contingency (optional/mandatory) and cardinality (single-
ton/collection) as in Fractal [21].

We started with common definitions and uses of subtyping, inheritance and
specialization in object-oriented programming and modeling languages, and ini-
tiated a discussion about their interpretation in the case of component models.



112 Ph. Lahire et al.

Subtyping. Static type systems are a way to limit runtime errors in programming
languages, mainly preventing inappropriate operations to be called on entities.
Subtyping is usually based on the substitutability notion [22]: “a type t2 con-
forms to a type t1 iff any expression of type t2 can be substituted for (bound to)
any variable of type t1 without any runtime error”. Substitutability on classes is
ensured by invariant redefinition of attributes and redefinition of methods with
covariant (more specific in the subtype) return type and contravariant (more
general in the subtype) parameter types. Most of the abstractions listed above
that are involved in component systems can be also handled as types, and thus
candidates for subtyping. Our attention was primarily focused on interfaces and
components. With interfaces, which are usually sets of operation signatures, the
same policy that applies to subtyping for classes in class-based OOPLs can ap-
ply to interfaces in component systems. For component types (in the Fractal
terminology: sets of provided and client component interfaces), substitutability
can be understood as the possibility of replacing a component by another with-
out changing the environment (components and bindings) [21]. Errors that we
would like to avoid during this substitution may include plugging-binding errors
(when a component interface is missing), or invocation of non-existent services
and services with bad signatures. Subtyping is usually guided by the idea of
providing more services and requiring less services; covariant policy should ap-
ply to provided services and a contravariant policy to required services [21, 23].
However, some researchers argue (in as yet unpublished papers) that this notion
of subtyping may fail in some special cases, in which a substitution may lead
to halting communication in the component system. Therefore alternative ap-
proaches to the definitions of subtyping are being introduced; a promising one
is based on behavior protocols [24].

Specialization. In object-oriented modeling, class specialization is defined by in-
clusion of the instance sets (or extensions). Specialization hierarchies should
reflect usual domain classifications. When a class C2 specializes another class
C1, a consequence is that properties of C1 are inherited by C2, with possible
refinements [22]. The fact that components are intrinsically generalizable ele-
ments can be demonstrated by the case of the UML meta-model [25]: metaclass
Component is a subclass of Class in UML 2.0 meta-model.

Inheritance. In the object-oriented context, inheritance is a mechanism that al-
lows a class to own (inherit) properties (mainly methods and attributes) of an-
other class. The subclass can specialize, redefine and even cancel the inherited
properties. Unlike OOPLs, current proposals for components do not provide
much room for inheritance in their design, e.g., in ComponentJ [23] the lan-
guage designers argue that in the presence of inheritance the result of method
invocation (with dynamic binding) is dependent on the class hierarchy, making
it difficult to define well-encapsulated pieces of software (which should be in-
dependent deployment units). As a result, emphasis is put on aggregation and
component sharing rather than on inheritance. However, inheritance is in fact



MASPEGHI 2004 113

really useful for creating new component definitions by extending or merging
existing ones as proposed in Fractal [26] and SOFA [20].

In the case of object-oriented programming and modeling languages, sub-
typing, inheritance and specialization are unfortunately mixed: inheritance is
used to reflect domain specialization for clarity’s sake in programs; types are
often identified with classes; and subclassing is constrained by type safety [22].
Invariance policy in property redefinition, although too restrictive, is still the
usual rule. We can hope that component models will be more careful in their
interpretation of such notions: the best choice would be to define these relations
independently avoiding all confusion.

We concluded that the adaptation of relations and techniques used in object-
oriented languages to the context of component systems provides a lot of room for
further research — new, higher-level abstractions, introduced in these systems,
can bring on new uses for and give new meanings to the “old” well-explored
relations of the object-oriented world.

5 Conclusion

The contents of both the written contributions and the debates described in this
document showed that during this workshop we addressed number of interesting
topics. Of course we were not able to go into the details of all of them here,
but nevertheless feel that this report captures the atmosphere and scope of the
workshop. Both modeling and language levels were covered, and the issues of
evolution, adaptation and transformation, as well as reusability and type-safety,
were given especial emphasis.

The contributions of the participants, and in particular the lively discus-
sion that pervaded the workshop, convince us that workshops where the paper
is only the starting point for the exchange of ideas are more profitable than
mini-conferences that emphasize presentations of papers. Participants have now
enough knowledge on the work of others to think about some collaboration. The
working groups which had been set after the three sessions (even though only
the subject had been set at this time) already provide some early information
on the kind of collaboration that is starting.

A mailing list and a website will be maintained to ensure continuous discus-
sion and visibility even after the end of the workshop.

– Mailing List: maspeghi-ecoop2004@i3s.unice.fr
– Website: http://www.i3s.unice.fr/maspeghi2004

6 Pointers to Related Work

The reader wishing to delve more deeply into the topic of this workshop might
do well to start with the proceedings of the previous workshops dedicated to
inheritance [27, 28, 29], to specialization or generalization [30, 31] and to object
classification [32, 33]. Several Ph.D theses have also been written on these topics,



114 Ph. Lahire et al.

including references [34, 35, 7, 36, 37]; the books by Gamma [16] and Meyer [38]
are also a useful starting point. Papers of particular interest include references
[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

Related Workshops
(workshop name, associated conference, number of participants and Web site):

– Maspeghi 2002 - OOIS 2002 - 15 persons.
http://www.lirmm.fr/∼huchard/MASPEGHI/

– Maspeghi 2003 - ASE 2003 - 14 persons.
http://www.iro.umontreal.ca/∼maspeghi/

– Inheritance 2002 - ECOOP 2002 - 27 persons from ten countries (15 were
authors or coauthors of an accepted paper).
http://www.cs.auc.dk/∼eernst/inhws/

References

1. Arévalo, G., Astudillo, H., Black, A.P., Ernst, E., Huchard, M., Lahire, P., Sakki-
nen, M., Valtchev, P., eds.: Proceedings of the 3rd International Workshop on
”Mechanisms for Specialization, Generalization and Inheritance” (MASPEGHI’04)
at ECOOP’04. University of Nice - Sophia Antipolis, Oslo, Norway (2004)

2. Schrefl, M., Stumptner, M.: Behavior consistent specialization of object life cycles.
ACM Transactions on Software Engineering and Methodology 11 (2002) 92–148

3. Conrad, M., French, T.: Exploring the synergies between the object-oriented
paradigm and mathematics: a Java led approach. International Journal on Ed-
ucation Sciences and Technology (2004) to appear.

4. Crescenzo, P., Lahire, P.: Using both specialisation and generalisation in a pro-
gramming language: Why and how? [30] 64–73

5. Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Proceedings of OOP-
SLA’87. Volume 22(12) of ACM SIGPLAN Notices., Orlando, FL, USA, ACM
press (1987) 227–242

6. Agesen, O., Bak, L., Chambers, C., , Chang, B.W., Hölzle, U., Maloney, J., Smith,
R.B., Ungar, D., Wolczko, M.: The Self 4.0 Programmer’s Reference Manual. Sun
Microsystems, Inc., Mountain View, CA (1995)

7. Ernst, E.: gbeta – A Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Devise, Department of Computer
Science, University of Aarhus, Aarhus, Denmark (1999)

8. Schaerli, N., Ducasse, S., Niestrasz, O., Black, A.P.: Traits: composable units
of behaviour. In: Proceedings of ECOOP’03. LNCS(2743), Darmstadt, Germany,
Springer-Verlag (2003) 248–274

9. Ernst, E.: Higher-order hierarchies. In Cardelli, L., ed.: Proceedings of ECOOP’03.
LNCS(2743), Darmstadt, Germany, Springer-Verlag (2003) 303–329

10. Torgersen, M.: The expression problem revisited. In Odersky, M., ed.: Proceedings
of ECOOP’04. LNCS(3086), Oslo, Norway, Springer-Verlag (2004) 123–143

11. Bracha, G., Cook, W.: Mixin-based inheritance. In: Proceedings of OOP-
SLA/ECOOP’90. Volume 25(10) of ACM SIGPLAN Notices., Ottawa, Canada,
ACM press (1990) 303–311



MASPEGHI 2004 115

12. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: Conference
Record of POPL ’98: The 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Diego, California (1998) 171–183

13. Zólyomi, I., Pórkoláb, Z., Kozsik, T.: An extension to the subtype relationship
in C++. In: Proceedings of GPCE’03. LNCS(2830), Erfurt, Germany, Springer-
Verlag (2003) 209–227

14. Varney, L.R.: Interface-oriented programming. Technical Report TR-040016,
UCLA, Department of computer science (2004)

15. Cook, S.: OOPSLA ’87 Panel P2: Varieties of inheritance. In: OOPSLA ’87 Ad-
dendum To The Proceedings. Volume 23(5) of ACM SIGPLAN Notices., Orlando,
FL, USA, ACM Press (1987) 35–40

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, USA (1995)

17. Cook, W.R.: Interfaces and specifications for the Smalltalk-80 collection classes.
In: Proceedings of OOPSLA’92. Volume 27(10) of ACM SIGPLAN Notices., Van-
couver, Canada, ACM Press (1992) 1–15

18. Architecture Board ORMSC1: Model Driven Architecture (MDA), document num-
ber ormsc/01-07-01. Object Management Group. (2001) http://www.omg.org/

docs/ormsc/01-07-01.pdf.
19. Opluštil, T.: Inheritance in SOFA components. Master thesis, Faculty of Infor-

matics, Masaryk University, Brno, Czech Republic (2002)
20. Opluštil, T.: Inheritance in architecture description languages. In J.Šafránková,

ed.: Proceedings of the Week of Doctoral Students conference (WDS 2003), Prague,
Czech Republic, Charles University, Matfyzpress (2003) 118–123

21. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal component model. Specifi-
cation. Draft, France Telecom R&D (2004) http://fractal.objectweb.org.

22. Ducournau, R.: “Real World” as an argument for covariant specialization in pro-
gramming and modeling. [30] 3–12

23. Costa Seco, J., Caires, L.: A basic model of typed components. In Bertino, E.,
ed.: Proceedings of ECOOP’00. LNCS(1850), Cannes - Sophia Antipolis, France,
Springer Verlag (2000) 108–128

24. Plášil, F., Vǐsňovský, S.: Behavior protocols for software components. IEEE Trans-
actions on Software Engineering 28 (2002)

25. OMG: Unified Modeling Language (UML) Superstructure - Final Adopted speci-
fication. Object Management Group. (2003) Version 2.0.

26. Bruneton, E.: Fractal ADL tutorial 1.2. France Telecom R&D. (2004)
http://fractal.objectweb.org.

27. Palsberg, J., Schwartzbach, M.I., eds.: Proceedings of the Workshop ”Types, In-
heritance and Assignments” at ECOOP’91. DAIMI PB-357, Geneva, Switzerland,
Computer Science Department, Aarhus University (1991)

28. Sakkinen, M., ed.: Proceedings of the Workshop ”Multiple Inheritance and Mul-
tiple Subtyping” at ECOOP’92. Working Paper WP-23, Utrecht, the Nether-
lands, Department of Computer Science and Information Systems, University of
Jyväskylä (1992)

29. Black, A.P., Ernst, E., Grogono, P., Sakkinen, M., eds.: Proceedings of the Work-
shop ”Inheritance” at ECOOP’02. Number 12 in Publications of Information Tech-
nology Research Institute. University of Jyväskylä, Málaga, Spain (2002)



116 Ph. Lahire et al.

30. Bruel, J.M., Bellahsène, Z., eds.: Advances in Object-Oriented Information Sys-
tems: OOIS 2002 Workshops. LNCS(2426). Springer Verlag, Montpellier, France
(2002)

31. Valtchev, P., Astudillo, H., Huchard, M., eds.: Proceedings of the workshop ”Man-
aging Specialization/Generalization Hierarchies” at ASE 2003. DIRO, University
of Montreal, Montreal, Quebec, Canada (2003)

32. Huchard, M., Godin, R., Napoli, A., eds.: Proceedings of the workshop ”Objects
and Classification: a Natural Convergence” at ECOOP’00. Loria, University of
Nancy, Sophia-Antipolis, France (2000)

33. Huchard, M., Godin, R., Napoli, A.: Objects and classification. In Malenfant, J.,
Moisan, S., Moreira, A., eds.: ECOOP’00 Workshop reader. LNCS(1964), Cannes
- Sophia Antipolis, France, Springer-Verlag (2000) 123–137

34. Bracha, G.: The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. Ph.D. thesis, Dept. of Computer Science, University of Utah (1992)

35. Cook, W.R.: A Denotational Semantics of Inheritance. PhD thesis, Brown Uni-
versity (1989)

36. Kniesel, G.: Dynamic Object-Based Inheritance with Subtyping. PhD thesis,
Computer Science Department III, University of Bonn (2000)

37. Taivalsaari, A.: A Critical View of Inheritance and Reusability in Object-Oriented
Programming. PhD thesis, University of Jyväskylä (1993)

38. Meyer, B.: Object-oriented Software Construction. second edn. Prentice Hall, New
York, N.Y. (1997)

39. Tip, F., Sweeney, P.F.: Class hierarchy specialization. In: Proceedings of OOP-
SLA’97. Volume 32(10) of ACM SIGPLAN Notices., Atlanta, Georgia, USA, ACM
press (1997) 271–285

40. Ducournau, R., Habib, M., Huchard, M., Mugnier, M.L.: Proposal for a monotonic
multiple inheritance linearization. In: Proceedings of OOPSLA’94. Volume 29(10)
of ACM SIGPLAN Notices., Portland, Oregon, USA, ACM press (1994) 164–175

41. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using
Galois lattices. In: Proceedings OOPSLA’93. Volume 28(10) of ACM SIGPLAN
Notices., Washington, DC, USA, ACM press (1993) 394–410

42. Hauck, F.J.: Inheritance modeled with explicit bindings: An approach to typed
inheritance. ACM SIGPLAN Notices 28 (1993) 231–239

43. Agesen, O., Palsberg, J., Schwartzbach, M.I.: Type inference of SELF: Analysis of
objects with dynamic and multiple inheritance. In Nierstrasz, O., ed.: Proceedings
of ECOOP’93. LNCS(707), Kaiserslautern, Germany, Springer-Verlag (1993) 247–
267

44. Sakkinen, M.: A critique of the inheritance principles of C++. Computing Systems
5 (1992) 69 – 110

45. Ducournau, R., Habib, M., Huchard, M., Mugnier, M.L.: Monotonic conflict reso-
lution mechanisms for inheritance. In: Proceedings of OOPSLA’92. Volume 27(10)
of ACM SIGPLAN Notices., Vancouver, Canada, ACM press (1992) 16–24

46. Szyperski, C.A.: Import is not inheritance - why we need both: Modules and
classes. In Madsen, O.L., ed.: Proceedings of ECOOP’92. LNCS(615), Utrecht,
The Netherlands, Springer Verlag (1992) 19–32

47. Bracha, G., Lindstrom, G.: Modularity meets inheritance. In: Proceedings of
the IEEE Computer Society International Conference on Computer Languages,
Washington, DC, IEEE Computer Society (1992) 282–290



MASPEGHI 2004 117

48. Cardelli, L.: Structural subtyping and the notion of power type. In: POPL ’88.
Proceedings of the conference on Principles of programming languages, San Diego,
CA, USA, ACM Press (1988) 70–79

49. Cardelli, L., Wegner, P.: On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys 17 (1985) 480–521

50. Cardelli, L.: A semantics of multiple inheritance. In: Semantics of Data Types,
International Symposium Sophia-Antipolis Proceedings. LNCS(173). Springer-
Verlag (1984) 51–67


