
Typechecking Safe Process Synchronization

Eduardo Bonelli, a,b

aStevens Institute of Technology
bLIFIA

Adriana Compagnoni, c

cStevens Institute of Technology

Elsa L. Gunter d

dNew Jersey Institute of Technology

Abstract

Session types describe the interactions between two parties within multi-party
communications. They constitute a communication protocol in the sense that the
order and type of interactions between two parties are specified. For their part,
correspondence assertions provide a mechanism for synchronization. When session
types and correspondence assertions are combined, they are able to describe syn-
chronization across different communication sessions, yielding a rich language for
imposing expressive interaction patterns in multi-party communications.

This paper studies the typechecking problem for Iris, a typed π-calculus that
combines session types and correspondence assertions. We define a typechecking
algorithm and prove that it is sound and complete with respect to the typing rules.
Furthermore, we show that the typing system satisfies the minimum effects property.
Although session types have been extensively studied in the past few years, to our
knowledge this is the first proof of decidability of typechecking for a type system
with session types.

Keywords: Concurrency, π-calculus, communications, type systems, typechecking.

Preprint submitted to Elsevier Science 25 February 2004

Contents

1 Introduction 3

1.1 Cryptography and Language-based Security 5

1.2 Related Work 6

1.3 Structure of the Paper 7

2 The Iris-Calculus 8

2.1 Syntax 8

2.2 The Type Discipline 9

3 An Example in Iris 16

4 Typechecking 20

5 Conclusions and Future Work 34

? This work was supported in part by the NSF Grant No. CCR-0220286 ITR:Secure
Electronic Transactions and by the ARO under Award No. DAAD-19-01-1-0473.

Email addresses: ebonelli@cs.stevens-tech.edu (Eduardo Bonelli,),
abc@cs.stevens-tech.edu (Adriana Compagnoni,), elsa@cis.njit.edu (Elsa L.
Gunter).

URLs: http://guinness.cs.stevens-tech.edu/~ ebonelli (Eduardo
Bonelli,), http://www.cs.stevens-tech.edu/~ abc (Adriana Compagnoni,),
http://www.cs.njit.edu/~ elsa (Elsa L. Gunter).
1 Faculty of Informatics, University of La Plata, La Plata, Argentina.

2

1 Introduction

Increasingly in our society we are coming to depend upon processors for mon-
itoring and controlling devices in almost all aspects of our lives. In many
instances the behavior of these processors is governed by communication with
other processors, which may be other components of the same system or may
be remotely located. Examples where such communication is critical can be
found in space exploration, air traffic control, medical devices, banking, and
electronic commerce. For each of these examples, errors in the software for
these communications could lead to substantial financial loss, and, in some
cases, the loss of human life. Therefore, it is of great importance to have high
assurance that the software governing these communications and resulting
decisions is correct.

Our approach applies to any situation where there is communication between
many parties that can be factored into one-to-one communications. For exam-
ple, a rover on Mars sending data to an unmanned spacecraft that communi-
cates with a base on Earth can be factored into two communication sessions,
one between the rover and the spacecraft and another one between the space-
craft and the base. Even if exchanges in both communications have to be
interleaved, our framework allows such factorization.

Unmanned
Spaceship

Ground
Control

Rover on
Mars

Request
Sample

Request
Sample

Send
Data

Send
Data

Fig. 1. Communication between Earth and Rover via Spacecraft

Session types allow us to describe the exchange of information between two
parties. They describe the information being exchanged, in which order it
is exchanged, what party sends it and what party receives it and what type
the information has. Furthermore, by combining session types with correspon-
dence assertions we can trace the origin of information. For example, we can
automatically and statically verify whether for every possible execution of the
system the data received by the base always comes from the rover.

3

Unmanned
Spaceship

Ground
Control

Rover on
Mars

Request
Sample

Request
Sample

Send
Data

Send
Data

Fig. 2. Communication between Earth and Rover via Spacecraft

An autonomous surface rover that acts upon information received from a sen-
sor is another example where verifying the origin of data is important. The
data used by the rover should be fresh and not old data that could mistakenly
be used to perform a move that could compromise the success of the mission.
Our dependent session types system allows us to ensure that the data used by
the rover is always new. We can automatically check that the sensor is always
consulted before a move.

Unmanned
Spaceship

Ground
Control

Rover on
Mars

Request
Sample

Request
Sample

Send
Data

Send
Data

Fig. 3. Faulty Communication between Earth and Rover via Spacecraft

Programmer errors can include calling the wrong subroutine, causing an un-
manned spacecraft not to obtain data from a rover. Even if the communication
protocol between the rover and the spacecraft has been formally verified, not
contacting the rover does not violate the communication protocol, but poses
an undetected problem that can seriously compromise a mission. With depen-
dent session types, we can verify that the data used by the spacecraft always
comes from the sensor.

Closer to Earth, web services are becoming an increasingly important enabling
technology for business software, and are based on the remote procedure call,

4

one of the key elements of our language-based security approach. As such, our
approach is well-suited to provide a more secure framework for web services
and the applications built with them.

Session types have attracted considerable attention in the past decade, mo-
tivated by the benefits that such type systems provide for the analysis of
protocols. The initial proposal for session types was by Honda et al (Honda
et al., 1994). Natural extensions of this work that have been studied include
subtypes (Gay & Hole, 1999) and bounded polymorphism (Hole & Gay, 2003).
They have also been studied in the context of component-based software de-
velopment (Vallecillo et al., 2003) and reformulated in the λ-calculus with
input/output operations (Gay et al., 2003).

Iris, a statically typed language based on the π-calculus, extending (Honda
et al., 1998) with correspondence assertions (Gordon & Jeffrey, 2001a, 2003b),
was first introduced in (Bonelli et al., 2003a). There it was shown that the type
system allows us to detect irregularities in concurrent communications such
as the unauthorized modification of data, missing or avoided communications,
and extra unintended communications. In this paper we continue the study of
Iris by showding that typechecking is decidable.

In the earlier paper we developed an example of a Client, an ATM, and a Bank,
and showed how the system succeeds in detecting a dishonest ATM. Imagine
the Client selecting a deposit operation in the menu of the ATM machine. The
ATM then contacts the Bank and performs the deposit on behalf of the Client,
by selecting a deposit operation on the Bank’s menu, and the Bank sends a
balance back that the ATM forwards to the Client. In this case, the type system
can detect if the ATM contacts the Bank, if the deposit order is transmitted
faithfully by the ATM to the Bank (exact amount and correct bank account),
and if the ATM fails to contact the Bank or if it contacts the Bank to performed
an unauthorized deposit in the wrong account. Furthermore, it checks if the
final balance that the Client receives comes from the Bank.

1.1 Cryptography and Language-based Security

Cryptography and language-based security can be considered complementary
security approaches, where one deals with the static and exhaustive analysis
of code, considering every possible execution path, while the other deals with
the integrity of information in transit and authentication. Notice that our
approach is not limited to financial operations or other situations in which
secrecy must be maintained, but is applicable in any situation in which parallel
processes synchronize to exchange information.

5

Origin of Information

Our analysis allows us to trace information back to its originating point. In
contrast, cryptography can be used to authenticate who signed a message (us-
ing digital signatures), but it cannot tell us where the information originated,
only who signed it, or just whose signature was used to sign it. We have to trust
that the signed data is correct. Furthermore, cryptography adds the runtime
overhead of encryption and decryption.

Combining our analysis with cryptography, we could guarantee that the cor-
rect data was received and that it was not corrupted in transit either by
unauthorized modifications built in the code or by run-time alterations, such
as feeding the wrong data into the communication channel.

The wrong data could have been accidentally signed and sent out. Our type
system can identify where the data originated, without having to trust whoever
signed the data for its integrity.

Detection of Unintended and Missing Interactions

Our system can detect if there is an extra interaction between two parties
that was not supposed to be there, and it can also detect if an agent fails to
contact another agent in a systematic way. In other words, we can detect if
the code has a flaw that prevents the flow of information between agents.

This is a case where the accepted techniques for verification of communica-
tion protocols fall short, since a communication that does not take place, in
the case of the ATM not contacting the Bank, does not violate any commu-
nication protocol. Furthermore, if the ATM performs an extra deposit in the
wrong account, the communication protocol between the ATM and the Bank
is still satisfied, yet the operation is undesirable. Cryptography cannot ad-
dress this issue of missing or extra communications either: it only deals with
the integrity of the information being exchanged and as an authentication
mechanism between the communicating parties.

1.2 Related Work

Processes and types. This work may be included among others in which
type systems for the π-calculus are studied (Pierce & Sangiorgi, 1993; Kobayashi,
1997; Kobayashi et al., 1996; Turner, 1995). Subtyping is introduced in the
setting of session types in (Gay & Hole, 1999); however, the concept of syn-
chronization between sessions is not explored. The work (Yoshida, 1996) and
(Puntigam, 1996) does not explore session types either: the first studies a typ-

6

ing scheme for processes based on graph types and the second a type system
for restricting communication in concurrent objects; their relation to session
types is discussed in (Honda et al., 1998). While (Gordon & Jeffrey, 2001b)
shares a fair amount in common with this work, there is a major difference.
In (Gordon & Jeffrey, 2001b) dependencies in types are “horizontal” in the
sense that in a type expression such as ↓ [x : T1, y : T2] the type of y may de-
pend on the value of x, this being fixed for all communications over a channel
of this type. However, since our setting is that of session types we allow “verti-
cal” dependencies of the form ↓ [x : T1]; � {l1 :↓ [y : T2], l2 :↓ [z : T3]} where y
may depend on x and z does not. In the present work, dependency spans whole
sessions. Recently, type systems where CCS-like processes are used for typing
process expressions have appeared. The generic type system of (Igarashi &
Kobayashi, 2001, 2004) is an example, although it does not incorporate corre-
spondence assertions.Another approach is (Chaki et al., 2002) in which models
(types as CCS-processes) of π-calculus expressions are obtained and the va-
lidity of temporal formulas are analyzed through model-checking techniques
in order to deduce properties of the process expressions. They propose a type-
and-effect system which incorporates correspondence assertions; however no
long-term channel types are available.

Typechecking and type inference. The first type system for the π-calculus
is based on the notion of sort (Milner, 1999). In (Gay, 1993) a sort inference
algorithm for the polyadic π-calculus is given. B. Pierce and D. Turner define
a type checking and type inference algorithm for PICT, a concurrent program-
ming language based on a polymorphic version of the π-calculus. The Cryptic
Project, a joint project between A. Gordon and A. Jeffrey, includes an im-
plementation of a type-checker for the language they developed in (Gordon &
Jeffrey, 2001b,a, 2003b,a) that includes correspondence assertions and public
and private data. Regarding the processes as models paradigm introduced by
Chaki et al. in (Chaki et al., 2002) there is also an implementation of a type-
checker (called Piper) for their language. Typechecking for the common part
of the generic type system in (Igarashi & Kobayashi, 2001, 2004) is discussed
in that paper.

1.3 Structure of the Paper

Section 3 describes a detailed example of an electronic auction system in Iris.
Section 2 defines Iris combining session types (Honda et al., 1998) and cor-
respondence assertions (Gordon & Jeffrey, 2001b). Section 2.2.1 presents a
type system with effects for Iris. Section 4 defines a typechecking algorithm
and establishes properties such as Soundness, Completeness, Minimum Types
and Decidability of Typechecking. Finally we conclude and suggest further
research directions.

7

2 The Iris-Calculus

2.1 Syntax

This section describes the syntax of Iris. We begin with a set of names
x, y, z, We distinguish two distinct kinds of names: expression names, for
which we will use a, b, c, . . . (and which range over sessions and integers); and
channel names, for which we will use k, h, k′, We also have integer con-
stants . . . ,−1, 0, 1, . . ., (branching) labels l, l′, . . ., and process variables written
X, Y, A value is an expression name or an integer constant and is denoted
with letters v, v′, Assertion labels, written L, L′, . . ., are tuples of values
and are written 〈v1, . . . , vn〉. Process expressions, denoted with P, Q, . . ., are
defined as follows:

P ::= request a(k) in P | accept a(k) in P | k?(x) in P | k![v]; P |

throw k[k′]; P | catch k(k′) in P | (νa : T)P | (νk : ⊥{α,α})P |

k � l; P | k � {l1 : P12 . . . 2 ln : Pn} | stop | P |Q |

def D in P | X[~v] | begin L; P | end L; P

Process definitions D take the form X1[
-

a1 : T1] = P1 and . . . and Xn[
-

an : Tn] =
Pn.

Remark 2.1 Parentheses are binding constructs. The notation ~v stands for

v1, . . . , vn, and likewise for
-

ai : Ti with i ∈ 1..n. Any two process expressions
which differ only in the names of their bound names (called α-equivalent)
shall be considered equal. We use the notation P{a ← v} for the result of
substituting all free occurrences of a in P by v, and similarly for P{k ← k′}.
Note that for the benefit of a clear presentation we have chosen to present a
monadic calculus; an extension to the polyadic case should be straightforward.

The request primitive requests a session on name a. When this session is
established, the fresh private channel k shall be used for message interchange.
The accept receives a request on the same name a and generates a new
private channel for message interchange to be used once the session is estab-
lished. The request and accept constructs each bind all free occurrences of
the immediately following channel variable, k, in the subsequent process, P .
The synchronous sending and receiving of messages is achieved with k![v]; Q
and k?(x) in P respectively, although, as in (Honda et al., 1998), a transla-
tion to an asynchronous calculus with branching is possible. Controlled side-
stepping of linearity constraints on channel usage is achieved by means of the
channel delegation constructs throw k[k′]; P and catch k(k′) in Q. Mech-

8

anisms for selection of a label and branching are available as k � l; P and
k � {l1 : P12 . . . 2 ln : Pn}. The notation P |Q has already been explained;
we also use stop for inaction. We write (νa : T)P or (νk : ⊥{α,α})P for the
usual constructs for name hiding, where the former is for expression names
and the latter for channel names. T denotes a type expression (Definition 2.1)
and ⊥{α,α} is the “complete” channel type with communication protocol given
by the channel type α. Note that ⊥{α,α} = ⊥{α,α}. Definitions of processes are
also allowed through the def D in P construct, possibly introducing recur-
sion, including mutual recursion. The begin and end assertions shall be used
as type directives in the type system for Iris (Section 2.2.1): begin L; P simply
asserts begin L and then behaves as P ; likewise end L; P asserts end L and
then behaves as P .

The set of free names of a process expression, written fn(P), and that of an
assertion label, likewise written fn(e), are defined in the standard manner (see
(Bonelli et al., 2003b) for details). One case that is worth clarifying is that of
process parameters:

fn(
-

a : T , b : T ′)
def
= fn(

-
a : T) ∪ (fn(T ′) \ ~a).

Thus within process parameters, the names which occur leftmost in the pro-
tocol are available as bound variables in the types that occur to their right.

2.2 The Type Discipline

The present section enriches the type system of (Honda et al., 1998) with
correspondence assertions in order to address the shortcomings mentioned in
the introduction.

2.2.1 Session types and effects

The type system shall assign an effect to a process under a given set of type
assumptions. The effect of a process reflects its pending obligations. An asser-
tion of the form begin L shall reduce these obligations by withdrawing the
assertion label L from the current effect; likewise end L shall augment the
current effect with L. Thus effects determine lower-bounds of the number of
begin assertions that must be present. If the process has an empty effect, then
all end assertions correspond to a matching begin assertion.

As explained above, effects also have to be attached to channel types in order
for two or more processes to share information on their pending or latent
effects. Effects added to channels are thus called latent effects.

9

Definition 2.1 (Types with Effects) Assertion labels, effects and types
are given by the following grammar:

Plain Type T ::= Int | σ(α)

Channel Type α, β ::= ↓ [a : T]e; α | ↑ [a : T]e; α | ↓ [α]e; β

| ↑ [α]e; β | &{l1 : α1, . . . , ln : αn}e

| ⊕{l1 : α1, . . . , ln : αn}e | 1 | ⊥{α,α}

Effect e, e′ ::= (|L1, . . . , Ln |)

Assertion Label L, Li ::= 〈v1, . . . , vn〉

A type is either a plain type or a channel type; we use U,Ui to range over
types. The set of free names of a type U , written fn(U), is defined as usual
(see (Bonelli et al., 2003b)). The base type Int is the type of integer constants.
Session types are represented as σ(α) and may informally be seen to denote a
pair consisting of a channel type α and its dual α:

↓ [a : T]e; α
def
= ↑ [a : T]e; α ↑ [a : T]e; α

def
= ↓ [a : T]e; α 1

def
= 1

↓ [α]e; β
def
= ↑ [α]e; β ↑ [α]e; β

def
= ↓ [α]e; β

&{li : αi}e
def
= ⊕{li : αi}e ⊕{li : αi}e

def
= &{li : αi}e

The types α and α shall be assigned to the two endpoints of a communication
session. Note that ⊥{α,α} is not defined. A channel type consists of a sequence
of input/output types of values or channels, or branch/selection types; the
sequence is assumed to terminate with the channel type terminator 1. Each
of these is accompanied by a latent effect. An effect is a multi-set of assertion
labels; we use (| . . . |) for the multi-set constructor. Multiset subtraction is
defined as e \ e′, the smallest multiset e′′ such that e ≤ e′ + e′′, where “+” is
multiset union. The special channel type ⊥{α,α} models a channel that has not
yet been opened and shared between two subprocesses of the current process.

2.2.2 Typing Rules

An environment Γ is a set of type assumptions x1 : U1 · . . . · xn : Un where
x1, . . . , xn are distinct names. We use letters Γ, ∆, . . . for environments. The
domain of Γ, written dom(Γ), is the set {x1, . . . , xn}, and the range of Γ, written
ran(Γ), is the set {U1, . . . , Un}. Also, we write domCh(Γ) for the subset of
names to which Γ assigns channel types and domPl(Γ) for the subset of names
to which Γ assigns plain types. The free names of Γ, written fn(Γ), is the
set of names occurring either in the domain of Γ, or free in a type in the
range of Γ, i.e. fn(Γ) = dom(Γ) ∪ ⋃

U∈ran(Γ) fn(U). In an assumption x : U , x

10

is called the subject; if the type assigned to the subject is a plain type then
the assumption is said to be a plain assumption, otherwise it is a channel
assumption. We write Γ · x : U for the environment resulting from extending
Γ with the type assumption x : U for x /∈ dom(Γ). The notation Γ \ x : U
stands for the environment resulting from dropping the assumption x : U
from Γ (assuming it exists). Since there is a unique U such that x : U ∈ Γ for
any x ∈ dom(Γ), we may sometimes abbreviate Γ \ x : U by Γ \ x. For any
x ∈ dom(Γ), we will use Γ(x) for the unique type such that (x : Γ(x)) ∈ Γ.

Definition 2.2 (Depends on) xi : Ui depends directly on xj : Uj in Γ (writ-
ten (xj : Uj) ↪→d (xi : Ui)), if xj ∈ fn(Ui). We say xi : Ui depends on xj : Uj

in Γ if xi : Ui ↪→ xj : Uj, where ↪→ denotes the transitive closure of ↪→d.

We say that an environment is be well-formed if it satisfies the following three
conditions:

C1. For each x ∈ domPl(Γ), x is an expression name, and for each y ∈
domCh(Γ), y is a channel name.

C2. For each i ∈ 1..n, fn(Ui) ⊆ dom(Γ) \ {xi}.
C3. The relation ↪→ is irreflexive, that is, xi : Ui 6↪→ xi : Ui for all xi : Ui ∈ Γ.

The first condition, C1 requires that only channel types be assigned to channel
names, and only plain types be assigned to expression names. Condition C2
requires that all free names in types assigned by Γ must be declared within Γ.
Note that since channel names may not appear in assertion labels (hence not
in fn(Ui)), types may only depend on names which are assigned plain types.
Since interaction through channel names is restricted by linearity conditions
in the sense of linear logic (Girard, 1987) (see explanation of Type Par rule
below), this restriction states that we do not allow types depending on linear
assumptions (we do however allow types depending on shared assumptions,
that is, those of plain types). The intended application of our type discipline
is not disturbed by such a restriction, and it is not clear whether the technical
complications of the meta-theory resulting from lifting it outweigh its bene-
fits. In fact this restriction already appears in other settings in which linear
and intuitionistic assumptions coexist, such as the linear logical framework
of (Cervesato & Pfenning, 2002). The last condition, C3, requires that Γ have
no cyclic dependencies. This is usually guaranteed by the representation of
environments as sequences of type assumptions, in which an assumption x : U
depends only on those appearing to its left. Such a representation seems unfit
in a setting where channel types are present since basic results on admissibility
of structural rules fail (Remark 2.5).

11

The Iris type system consists of the following four judgements :

Γ `Θ � well-formed environment Γ and process protocol Θ

Γ `Θ v : T well-typed value v of type T

Γ `Θ (~v) : (
-

a : T) well-typed process parameters ~v of type (
-

a : T)

Γ `Θ P : e well-typed process P with effect e

The letter Θ stands for a process protocol : a set of expressions of the form

Xj : (
-

aj : Tj), for j ∈ 1 . . . n, where the X1, . . . , Xn are all distinct, and where

each
-

aj : Tj is an environment indicating the types of process parameters to
Xj. The judgment Γ `Θ � holds if Γ is a well-formed environment, and also,

for each environment
-

aj : Tj in the process protocol, Γ ∪ ((
-

aj : Tj){~aj ← ~bj})
is well-formed, for ~bj with ~bj ∩ (dom(Γ) ∪ fn(

-
aj : Tj)) = { }.

The typing rules of Iris are presented in Figure 4. The rules Type Acpt and
Type Rcv introduce a new channel name in the environment, thus guaran-
teeing that a private channel is being used for the session. Note that dual
channel types are used for the requesting and accepting parties. Type Bgn and
Type End affect process effects by eliminating or adding a new assertion label.
The rules Type Snd and Type Rcv allow the typing of the communication prim-
itives for sending and receiving data. Note that data is sent and received over
channels only. Also, note that the type of k in the upper righthand judgment of
Type Snd is α{a← v}, reflecting the fact that the “rest” of the channel type,
namely α, may depend on the output value v. In the Type Snd rule, the latent
effect associated to the ouput type of k becomes a credit. In other words, it be-
comes a “payment” obligation that must be met by some prior begin assertion
or some prior receive operation. Similar comments apply to the Type Rcv rule.
Note, however, that this time the latent effect of the type of the parameter
of the input (i.e. “b”) becomes a debit or payment. Type Brnch and Type Sel
type the branching and selection primitives, respectively; if pending effects are
seen as credits, then it is clear that the effects of each branch in Type Brnch
must be joined. Channel delegation is achieved by means of the throw and
catch primitives, which are typed by means of Type Thr and Type Cat. The
rule Type Thr is subject to the restriction that β 6= 1; this restricts delegation
of channels to those through which communication is possible, i.e. no “dead”
channels 2 . Channel and name restriction (for non-channel names) are typed
as expected. Type Stop types the inaction stop; it requires all communication
through channel names to have been completed. The Type Subsum rule allows
increasing the required assertion obligations of a process term. The Type Par

2 Technically, this allows us to correct a problem present in (Honda et al., 1998),
namely the failure of Subject Congruence.

12

rule types the parallel execution of two processes. A channel may be used
by one of the two processes P or Q. The only exception to this rule is when
both P and Q use a channel k of dual types. Since channel usage must be
restricted in order to guarantee such linear usage, the environments Γ and Γ′

are required to be compatible.

Definition 2.3 (Compatibility �) The relation� is defined as follows: ∅ �
∅, and Γ � Γ′ implies

(1) Γ · a : T � Γ′ · a : T
(2) Γ · k : α � Γ′ · k : α
(3) Γ · k : α � Γ′, if k /∈ dom(Γ′)
(4) Γ � Γ′ · k : α, if k /∈ dom(Γ)

Note that the notion of compatibility makes sense for two sets of assump-
tions which do not necessarily constitute well-formed environments. Once this
notion of compatibility is in place we may define how two environments are
combined through environment composition.

Definition 2.4 (Composition ◦) Let Γ, Γ′ be two environments such that
Γ � Γ′. We define Γ ◦ Γ′ as follows: ∅ ◦ ∅ = ∅ and

(1) (Γ · a : T) ◦ (Γ′ · a : T) = (Γ ◦ Γ′) · a : T
(2) (Γ · k : α) ◦ (Γ′ · k : α) = (Γ ◦ Γ′) · k : ⊥{α,α}
(3) (Γ · k : α) ◦ (Γ′) = (Γ ◦ Γ′) · k : α, if k /∈ dom(Γ′)
(4) Γ ◦ (Γ′ · k : α) = (Γ ◦ Γ′) · k : α, if k /∈ dom(Γ)

The subscript of ⊥{α,α} in the second clause of Definition 2.4 records the dual
channel types from which it arises, and hence the name dependencies of those
dual channel types.

Lemma 2.2 If Γ and Γ′ and well-formed environments, and Γ � Γ′, then
Γ ◦ Γ′ is a well-formed environment.

Process variables are typed by the rule Type PVar. Here we need to check
that the process variable is one that has already been introduced and that
the arguments are used at the right types. Type Def explains how to type the
definitions of process variables. This is one of the most verbose rules, owing
to the treatment of mutual recursion. It is worth noting that we require that
each process in the definition of a process variable must have an empty effect.
In the presence of recursion, if the body of a definition were allowed to have a
non-empty effect, it would potentially have to have any multiple of that effect,
to cover any number of recursive calls.

The following two facts follow by induction over the rules of type derivation.

13

Γ · a : σ(α) · k′ : α `Θ P{k ← k′} : e k′ 6∈ dom(Γ)
Type Acpt

Γ · a : σ(α) `Θ accept a(k) in P : e

Γ · a : σ(α) · k′ : α `Θ P{k ← k′} : e k′ 6∈ dom(Γ)
Type Requ

Γ · a : σ(α) `Θ request a(k) in P : e

Γ `Θ P : e fn(L) ⊆ dom(Γ)
Type Bgn

Γ `Θ begin L;P : e \ (|L |)

Γ `Θ P : e fn(L) ⊆ dom(Γ)
Type End

Γ `Θ end L;P : e + (|L |)

Γ `Θ v : T fn(e′) \ {a} ⊆ dom(Γ) Γ · k : α{a← v} `Θ P : e
Type Snd

Γ · k :↑ [a : T]e′;α `Θ k![v];P : e + e′{a← v}

Γ · c : T · k : α{a← c} `Θ P{b← c} : e

fn(e′) \ {a} ⊆ dom(Γ) c 6∈ fn(e \ e′{a← c}) ∪ fn(Γ)
Type Rcv

Γ · k :↓ [a : T]e′;α `Θ k?(b) in P : e \ e′{a← c}

Γ · k : α1 `Θ P1 : e1 . . . Γ · k : αn `Θ Pn : en fn(e′) ⊆ dom(Γ)
Type Brnch

Γ · k : &{l1 : α1, . . . , ln : αn}e′ `Θ k � {l1 : P1, . . . , ln : Pn} : (
∨

ei) \ e′

Γ · k : αj `Θ P : e (1 ≤ j ≤ n) fn(e′) ∪
n⋃

i=1

fn(α) ⊆ dom(Γ)

Type Sel
Γ · k : ⊕{l1 : α1, . . . , ln : αn}e′ `Θ k � lj ;P : e + e′

Γ · k : α `Θ P : e fn(β) ∪ fn(e′) ⊆ dom(Γ) β 6= 1
Type Thr

Γ · k′ : β · k :↑ [β]e′;α `Θ throw k[k′];P : e + e′

Γ · k′′ : β · k : α `Θ P{k′ ← k′′} : e fn(e′) ∈ dom(Γ) k′′ 6∈ dom(Γ)
Type Cat

Γ · k :↓ [β]e′;α `Θ catch k(k′) in P : e \ e′

Γ · k′ : ⊥{α,α} `Θ P{k ← k′} : e k′ 6∈ dom(Γ)
Type CRes

Γ `Θ (νk : ⊥{α,α})P : e

Γ · b : T `Θ P{a← b} : e b 6∈ fn(Γ) ∪ fn(e)
Type NRes

Γ `Θ (νa : T)P : e

Γ `Θ � ranCh(Γ) ⊆ {1,⊥{α,α}}
Type Stop

Γ `Θ stop : (||)

Γ `Θ P : e e ≤ e′ fn(e′) ⊆ dom(Γ)
Type Subsum

Γ `Θ P : e′

Γ `Θ P : e Γ′ `Θ Q : e′ Γ � Γ′

Type Par
Γ ◦ Γ′ `Θ P |Q : e + e′

Fig. 4. Well-formed process expressions

14

Γ `Θ (~v) : (
-

a : T) X : (
-

a : T) ∈ Θ ranCh(Γ) ⊆ {1,⊥{α,α}}
Type PVar

Γ `Θ X[~v] : (||)

X1, . . . , Xn distinct, Y1, . . . Yn 6∈ dom(Θ) Y1, . . . , Yn distinct

Ψ = Θ ∪ {(Y1 : (
-

a1 : T1)) . . . , (Yn : (
-

an : Tn))} ~bi 6∈ dom(Γ)

Γi = Γ \ chan(Γ) ∪
|bi|⋃
j=1

{bi,j : Ti,j{(ai,1, . . . , ai,j−1)← (bi,1, . . . , bi,j−1)}}

Γi `Ψ Pi{~ai ← ~bi}{ ~X ← ~Y } : (||) i = 1, . . . , n Γ `Ψ Q{ ~X ← ~Y } : e
Type Def

Γ `Θ def X1(
-

a1 : T1) = P1 . . . and . . . Xn(
-

an : Tn) = Pn in Q : e

Fig. 6. Well-formed process expressions (cont.)

Γ · a : T `Θ �
Wf Val EName

Γ · a : T `Θ a : T

Γ `Θ � n ∈ Z
Wf Val Int

Γ `Θ n : Int

Γ `Θ �
Wf PP Nil

Γ `Θ () : ()

Γ `Θ (~v) : (
-

a : T) Γ `Θ v : T ′{~a← ~v}
b /∈ {~a} ∪ dom(Γ)

Wf PP Cons
Γ `Θ (~v, v) : (

-
a : T , b : T ′)

Fig. 7. Well-formed values and process parameters

Lemma 2.3 If Γ `Θ P : e, then fn(P) ∪ fn(e) ∪ fn(Θ) ⊆ dom(Γ).

Lemma 2.4 If Γ `Θ P : e, then Γ `Θ �.

Remark 2.5 A representation of environments based on sequences of hypoth-
esis, as usually adopted in the literature on dependent type systems (Baren-
dregt, 1992), is not applicable to our system. The reason is that basic results on
the admissibility of structural rules fail. In particular, the Exchange Lemma,
which states that the order of independent hypothesis is irrelevant for the sake
of derivability, fails. Indeed, consider the following possible type rule Type Snd
formulated in a setting where environments are sequences:

Γ1 · Γ2 `Θ v : T Γ1 · k : α{a← v} · Γ2 `Θ P : e Γ1 · k :↑ [a : T]e′; α · Γ2 `Θ �

Γ1 · k :↑ [a : T]e′; α · Γ2 `Θ k![v]; P : e + e′{a← v}

Assume that Γ1 = Γ′
1 · v : T . Then note that v : T and k :↑ [a : T]e′; α satisfy

the condition of the Exchange Lemma, since neither one depends on the other.
However, when we attempt to exchange v : T and k : α{a← v} in the upper

15

middle judgment we fail, since α{a ← v} may have free occurrences of v.
Note that these issues do not appear in previous type-theoretic formulations
of correspondence assertions for concurrent/distributed calculi since long-term
session types are not considered.

3 An Example in Iris

This section considers an example in Iris that illustrates some of the program-
ming constructs available to the user. The example we develop (Figure 8)
illustrates one way of modeling a simplified electronic auction system in Iris.
The three main principals that integrate the system are: Auctioneer, Seller and
Buyer. In a normal processing cycle a Seller contacts the Auctioneer informing
of the product and initial bidding price desired. The Auctioneer then waits
to receive biddings from interested buyers. After some fixed amount of time,
the Auctioneer determines that the bidding process is over and assigns the
product to the highest bidder.

Two additional processes integrate the system: SellerManager and
BuyerManager. Once the Auctioneer has received notification of a Seller,
including product and price information, she delegates all further interaction
with it to the SellerManager process. Thus she becomes free to receive
requests from buyers or new sellers. Likewise, once the Auctioneer receives
notification from a Buyer, including product of interest and bid, she delegates
all further interaction with the Buyer to the BuyerManager. The Auctioneer
thus becomes available for interaction with other buyers and sellers.

In order to keep the example simple we assume that the Auctioneer can handle
at most one seller at a time and that at least one buyer shall make a bid. In
order to begin operating we assume that an initial seller and buyer have been
placed, namely dummySeller and dummyBuyer . Also, we shall make use of an
if-then-else instruction which, although not listed in the syntax of Iris, is a
straightforward extension. In what follows we describe the full set of principals:

Auctioneer. The Auctioneer waits to receive requests for one of three opera-
tions:
• sell: This is invoked by a Seller. It reads the Seller’s product and initial

base price together with a session name sSELL to be used for further
contact with the Seller. Since the auctioneer can handle at most one seller,
it lets the seller manager know that it must cancel the previous seller (in
turn the seller manager shall contact this seller to let her/him know).
It also passes on sSELL to the SellerManager. After that, it informs the
BuyerManager that a new product and base price is in effect.
• bid: This is invoked by a buyer. The Auctioneer reads in product, bid and

16

Auctioneer(sAuc, sBM , sSM) =
accept sAuc(k) in
k � {sell: k?(prod , basePrice, sSELL) in request sSM (h)in h� cancel;

h!(sSELL); request sBM (h) in h� newProduct;
h!(prod , basePrice); Auctioneer[sAuc, sBM , sSM],

2 bid: k?(prod , bid , sBUY) in request sBM (h)in h� newBidder;
h!(prod , bid , sBUY); Auctioneer[sAuc, sBM , sSM],

2 timeout: request sSM (h)in h� sold; request sBM (h) in h� bought;
Auctioneer[sAuc, sBM , sSM] }

SellerManager(sSM , currSeller) =
accept sSM (h) in
h � {sold: request currSeller(k)in k� sold;

SellerManager[sSM , dummySeller],
2 cancel: request currSeller(k)in k� cancel; h?(newSeller) in

SellerManager[sSM ,newSeller] }

BuyerManager(sBM , prod, currBid, currBuyer) =
accept sBM (h) in
h � {newProduct: h?(prod,basePrice);

BuyerManager[sBM , prod, basePrice, dummyBuyer],
2 newBidder: h?(prod, bid, newBuyer) in
if bid > currBid

then request currBuyer(k)in k� outBidded;
BuyerManager[sBM , prod, bid, newBuyer]

else request newBuyer(k)in k� tooLow;
BuyerManager[sBM , prod, currBid, currBuyer]

2 bought: request currBuyer(k)in k� bought;
BuyerManager[sBM , dummyProd, 0, dummyBuyer] }

Seller(sAuc, sSell , prod, price) = request sAuc(k) in k� sell; k![prod , price, sSell];
accept sSell(k) in
k � {sold: stop,

2 cancel: stop}

Buyer(sAuc, sBuy , prod, price) = request sAuc(k) in k� bid; k![prod , price, sBuy];
accept sBuy(k) in
k � {outBidded: stop,

bought: stop,
tooLow: stop}

Fig. 8. Full code for the auction example.

contact information from the Buyer. Then it informs the buyer manager
BuyerManager that a new bidder has arrived and passes on the bidder and
the other data that was input to this manager.

17

• timeout: This operation is invoked when no further bidding time is left
and hence the current highest bidder has successfully acquired the item
sold. It informs the seller manager SellerManager and the buyer manager
BuyerManager of this situation.

SellerManager. The seller manager acts as an accumulator which holds a ses-
sion name to interact with the current Seller that the Auctioneer is dealing
with. The Auctioneer instructs it to do two possible things:
• sold: tell the seller that her item has been sold, or
• cancel: tell the Seller that the auction has been canceled due to the arrival

of a new seller and read in the new seller.
BuyerManager. The buyer manager acts as an accumulator which holds a

session name to interact with the current Buyer that has placed the highest
bid. It waits to receive one of the following selections:
• newProduct: this is selected by the Auctioneer and informs the Buyer that

a new Seller has arrived and passes on the product and base price of this
product.
• newBidder: this is selected by the Auctioneer when a new bidder has

arrived. BuyerManager reads in the bid and compares it to its current
highest bid: if the former is greater than the latter then it informs the
current highest bidder (i.e. currBuyer) that it has been outbidded and
recursively calls itself with the new bidder as a parameter; otherwise the
new bidder is informed that her bid is too low and BuyerManager recur-
sively calls itself with the current highest bidder as the highest bidder for
the call.
• bought. this is selected by the Auctioneer to inform the buyer manager

that the current highest bidder has successfully acquired the product.
Seller. This process defines the behavior of a Seller. She requests a session

with the Auctioneer and lets her know that she is willing to sell a product
prod at price price. Also, she lets the Auctioneer know how she may be
reached for further interaction. She then waits to be informed whether her
product was sold or the auction was canceled due to the arrival of some new
seller.

Buyer. The Buyer requests a session with the Auctioneer and selects a bidding
operation. She then sends the product she is interested in and the price she
is willing to pay. Also, coordinates for further interaction are provided to
the Auctioneer. She then awaits one of three possible replies:
• outBidded: In some later cycle a new bidder has outbidded her.
• bought: She has successfully bought the product.
• tooLow: Her initial bid was too low and thus rejected.

Note that in this simple example we do not take into account error capture
and recovery, such as when a bidder attempts to make a bid for an item which
has not been placed for selling.

We use the expression def D in Q to denote the concurrent execution of all

18

parties in the system, where the process declarations D are those described
above and Q is:

Auctioneer[sAuc, sBM , sSM]|BuyerManager[sBM , 0 , 0 , dummyBuyer] |
SellerManager[sSM , dummySeller] |

Buyer[sAuc, sBuy , prod, bid]|Seller[sAuc, sSell , prod, price]

This expression is well-typed in the pure theory of session types (Honda et al.,
1998) under the following type assumptions:

Γ = sAuc : σ(α), sBM : σ(β), sSM : σ(γ),

dummyBuyer : σ(⊕{outBidded : 1, bought : 1, tooLow : 1}),

dummySeller : σ(⊕{sold:1,cancel:1}),

sBuy : σ(&{outBidded : 1, bought : 1, tooLow : 1}),

sSell : σ(&{sold : 1, cancel : 1}),

prod : Int, bid : Int, price : Int

where the channel types α, β and γ are

α = &{sell :↓ [Int, Int, σ(&{sold : 1, cancel : 1})];1,

bid :↓ [Int, Int, σ(&{outBidded : 1, bought : 1, tooLow : 1})];1,

timeout : 1}

β = &{newProduct :↓ [Int, Int];1,

newBidder :↓ [Int, Int, σ(⊕{outBidded : 1, bought : 1, tooLow : 1})];1,

bought : 1}

γ = &{sold : 1, cancel :↓ [σ(⊕{sold : 1, cancel : 1})];1}

Note that the auction example is also typable in the type system introduced
in Section 2 if we assume that all effects are empty (||).

We provide an informal explanation of the type assigned to the session name
sAuc. This session name is used by the Auctioneer. The type σ(α) is a session
type and is an abstraction of a pair of dual channel types, namely α and α. One
endpoint of the communication is assumed to abide to the interaction pattern
specified by α, while the other endpoint it assumed to abide to that specified by
its dual. The & type constructor indicates that the Auctioneer must accept
three operations sell, bid and timeout. If the first of these operations is
invoked, then the Auctioneer must read in a triple consisting of an integer,
another integer and a session name of type σ(&{sold : 1, cancel : 1}). Similar
comments apply to the bid operation. In the case of the timeout operation,
no further interaction is expected on this channel.

19

Session types such as those of sAuc, sBM and sSM express how these long
term communication abstractions behave independently of each other, even
though they all belong to a common specification, namely that of the protocol
specifying how Auctioneer, SellerManager, and the other parties should interact
in order to carry out a specific operation (such as placing a bid). This fact
may be witnessed as follows. Consider replacing the code for the bid operation
of the Auctioneer by

Example 3.1 (Changing bids)

bid: k?(prod , bid , sBUY) in
request sBM (h)in h� newBidder;
h!(prod , bid − 10 , sBUY); Auctioneer[sAuc, sBM , sSM],

This version of the bid operation places a smaller bid than the one originally
communicated to the auctioneer by the bidder. Unfortunately, the resulting
electronic auction system is declared typable by the pure theory of session
types, under the same typing assumptions as the original system. Other ex-
amples of the lack of expressiveness of the pure theory of session types are
described in Bonelli et al. (2003a).

The type system for Iris allows such badly behaved variants of the honest
Auctioneer to be detected by introducing correspondence assertions into the
picture and applying the typechecking algorithm described in this article. In-
deed, in Bonelli et al. (2003a) a notion of safe process is P introduced follow-
ing Gordon & Jeffrey (2001b,a, 2003b,a). Informally, it states that all end L
assertions are corresponded by a begin L assertion, in every possible execu-
tion of P . Also, it is shown (Bonelli et al. (2003a)) that all processes which are
typable with the empty effect (||) are safe. Example 3.1 may thus be addressed
by the insertion of appropriate effects and then showing that the resulting
code does not typecheck with the empty effect.

4 Typechecking

We define a typechecking function Ch(Γ, Θ, P), where Γ is an environment, Θ
is a process protocol, and P is a process. The function Ch(Γ, Θ, P) is defined
by recursion over the length of P , and will either return failor the minimum
possible effect for P .

We use several auxiliary functions:

• ChEnv(Γ, Θ), which checks the well-formation of contexts returning true if

20

and only if Γ `Θ �,
• ChTy(Γ, Θ, v, T) which checks the types of values returning true if and only

if Γ `Θ v : T , and

• ChVec(Γ, Θ, ~v,
-

a : T) which checks the well-formation of process parameters.

ChEnv(Γ, Θ) checks that the environment Γ and the derived environments

Γ∪ ((
-

aj : Tj){~aj ← ~bj}) are well-formed, for all
-

aj : Tj in the process protocol

Θ, and any ~bj with ~bj ∩ (dom(Γ) ∪ fn(
-

aj : Tj)) = { }. Note that the choice of

bj does not matter, because if Γ ∪ ((
-

aj : Tj){~aj ← ~bj}) is well-formed, then

Γ∪ ((
-

aj : Tj){~aj ← ~bj}{~bj ← ~cj}) = Γ∪ ((
-

aj : Tj){~aj ← ~cj}) is well-formed for

any ~cj with ~cj ∩ (dom(Γ)∪ fn(
-

aj : Tj)) = { }. To show that an environment is
well-formed requires checking conditions C1, C2, and C3. To check C3, we
construct the directed graph with edges pointing from names in domain of the
environment to each of the free names in the type the environment associates
with it. (In the process, we can easily check conditions C1 and C2.) Once
we have constructed the graph, we apply any standard algorithm to check
that it is cycle free. If v is a numerical constant ChTy(Γ, Θ, v, T) checks if
T = Int, otherwise it checks if v : T is in the environment Γ, and then ccalls
ChEnv(Γ, Θ).

We define ChV ec by recursion over the length of the process parameter:

Definition 4.1

• ChVec(Γ, Θ, (), ()) = ChEnv(Γ, Θ)

• ChVec(Γ, Θ, (~v, v), (
-

a : T , b : T ′)) =
ChVec(Γ, Θ, ~v,

-
a : T) if ChTy(Γ, Θ, v, T ′{~a← ~v}) = true

and b 6∈ {~a} ∪ dom(Γ)

false otherwise.
2

When defining the clause of Ch for parallel composition, it will be useful to
have a few special-purpose definitions.

Definition 4.2 Extended environments extend plain environments by allow-
ing channel names to be associated with plain types of the form σ(α) (session
types). Given an extend environment Γ, let

domChoice(Γ) = {k ∈ domCh(Γ) | Γ(k) = σ(α) for some channel type α}.

We will call a regular environment Γ′ a specialization of an extended envi-
ronment Γ if dom(Γ′) = dom(Γ), and for all x ∈ dom(Γ) \ domChoice(Γ) we

21

have Γ′(x) = Γ(x), and for all k ∈ domChoice(Γ), if Γ(k) = σ(α), then either
Γ′(k) = α or Γ′(k) = α. Let

Σ(Γi) = {Γ′
i | Γ′

i is a specialization of Γi}.

Definition 4.3 Let P and Q be processes and Γ be an environment. We
define the split of Γ with respect to P and Q by

• If fn(P) ∪ fn(Q) 6⊆ dom(Γ), then split(Γ, P, Q) = fail.
• If there exists k ∈ fn(P) ∩ fn(Q) such that Γ(k) 6= ⊥{α,α} for any α, then

split(Γ, P, Q) = fail.
• Otherwise, split(Γ, P, Q) = (Γ1, Γ2) where Γ1 and Γ2 are extended environ-

ments defined by the following:
· dom(Γ1) ⊆ dom(Γ) and dom(Γ2) ⊆ dom(Γ).
· For all a ∈ domPl(Γ), we have a ∈ dom(Γ1)∩dom(Γ2) and Γ1(a) = Γ2(a) =

Γ(a).
· For k ∈ fn(P)∩fn(Q) and Γ(k) = ⊥{α,α}, we have Γ1(k) = Γ2(k) = σ(α).
· For all k ∈ fn(P) but k 6∈ fn(Q), we will have k 6∈ dom(Γ2) and Γ1(k) =

Γ(k).
· For all k ∈ fn(Q) but k 6∈ fn(P), we will have k 6∈ dom(Γ1) and Γ2(k) =

Γ(k).
· For all k ∈ dom(Γ) \ (fn(P) ∪ fn(Q)), we will (arbitrarily) assign Γ1(k) =

Γ(k), and have k 6∈ dom(Γ2).

These definitions are used in the clause defining Ch(Γ, Θ, P |Q). The function
split is used to “split” the environment Γ into two, Γ′

1 and Γ′
2 such that

Γ = Γ′
1 ◦ Γ′

2. The difficulty is that when Γ(k) = ⊥{α,α}, we may need to send
k : α to one side and k : α to the other, but we do not know which side is
going to get which. The sets Σ(Γ1) and Σ(Γ2), where (Γ1, Γ2) = split(Γ, P, Q),
allow us to enumerate a sufficient set of possibilities for Γ′

1 and Γ′
2.

There were several arbitrary choices made in the definition of split. First, we
could have sent k : Γ(k) to Γ2 for any or all of the k ∈ dom(Γ)\(fn(P)∪fn(Q)).
Secondly, if Γ(k) = ⊥{1,1}, then we had an additional option of assigning k : 1
to each of Γ1 and Γ2. The use of these arbitrary choices in the definition of Γ
is justified by Lemma 4.9 and Lemma 4.10.

The function Ch is defined by induction on the length of the process it takes
as its third argument.

Definition 4.4 (Typechecking Algorithm) If fn(P) 6⊆ dom(Γ), then
Ch(Γ, Θ, P) = fail. In all subsequent cases we will assume that fn(P) ⊆
dom(Γ).

To ensure well-definedness, we assume that all classes of names are totally

22

ordered and that when choosing a fresh name we choose the least fresh name.

• Case accept a(k) in P :
Let k′ be a fresh channel variable not present in dom(Γ).

Then

Ch(Γ, Θ, accept a(k) in P) = Ch(Γ · k′ : α, Θ, P{k ← k′}) if Γ(a) = σ(α)

fail otherwise.

• Case request a(k) in P :
Let k′ be a fresh channel variable not present in dom(Γ). Then

Ch(Γ, Θ, request a(k) in P) = Ch(Γ · k′ : α, Θ, P{k ← k′}) if Γ(a) = σ(α)

fail otherwise.

• Case begin L; P :

Ch(Γ, Θ, begin L; P) = Ch(Γ, Θ, P) \ (|L |) if Ch(Γ, Θ, P) 6= fail

fail otherwise.

• Case end L; P :

Ch(Γ, Θ, end L; P) = Ch(Γ, Θ, P) + (|L |) if Ch(Γ, Θ, P) 6= fail

fail otherwise.

• Case k![v]P :

Ch(Γ, Θ, k![v]P) =

Ch((Γ \ k) · k : α{a← v}, Θ, P) + e{a← v}

if Γ(k) =↑ [a : T]e; α for some a, T and e with
fn(e) \ {a} ⊆ dom(Γ), and ChTy(Γ, Θ, v, T) 6=
fail, and Ch((Γ\k) ·k : α{a← v}, Θ, P) 6= fail

fail otherwise.

• Case k?(b) in P :
Let c be a fresh expression name not in fn(Γ). Then

23

Ch(Γ, Θ, k?(b) in P) =

Ch((Γ \ k) · c : T · k : α{a← c}, Θ, P{b← c}) \ e{a← c}
if Γ(k) =↓ [a : T]e; α for some a, T
and e with fn(e) \ {a} ⊆ dom(Γ) and
Ch((Γ \ k) · c : T · k : α{a← c}, Θ, P{b← c}) 6=
fail, and c 6∈
fn (Ch((Γ \ k) · c : T · k : α{a← c}, Θ, P{b← c})

\e{a← c})

fail otherwise.

• Case k � {l1 : P1, . . . , ln : Pn}:
Ch(Γ, Θ, k � {l1 : P1, . . . , ln : Pn}) =

(
∨n

i=1 Ch((Γ \ k) · k : αi, Θ, Pi)) \ e

if Γ(k) = &{l1 : α1, . . . , ln : αn}e, for some
α1, . . . , αn and e with fn(e) ⊆ dom(Γ), and
Ch((Γ\k) ·k : αi, Θ, Pi) 6= fail for i = 1, . . . , n,
where

∨n
i=1 ei is the least upper bound of the

effects ei’s.

fail otherwise.

• Case k � lj; P :

Ch(Γ, Θ, k � lj; P) =

Ch((Γ \ k) · k : αj, Θ, P) + e

where Γ(k) = ⊕{l1 : α1, . . . , ln : αn}e for
some l1, . . . , ln with lj ∈ {l1, . . . , ln}, some
α1, . . . , αn and some e, provided that either
Ch((Γ \ k) · k : αj, Θ, P) 6= fail and fn(e) ∪
n⋃

i=1

fn(α1) ⊆ dom(Γ).

fail otherwise.

• Case throw k[k′]P :

Ch(Γ, Θ, throw k[k′]P) =

Ch((Γ \ k \ k′) · k : α, Θ, P) + e if k 6= k′ and Γ(k) =↑ [β]e; α and
Γ(k′) = β 6= 1 for some β and e
with fn(e)∪ fn(β) ⊆ dom(Γ), and
Ch((Γ\k\k′) · k : α, Θ, P) 6= fail

fail otherwise.

24

• Case catch k(k′) in P :
Let k′′ be a fresh expression name not in dom(Γ). Then

Ch(Γ, Θ, catch k(k′) in P) =

Ch((Γ \ k) · k′′ : β · k : α, Θ, P{k′ ← k′′}) \ e

if Γ(k) =↓ [β]e; α for some β and e with
fn(e) ⊆ dom(Γ) and
Ch((Γ \ k) · k′′ : β · k : α, Θ, P{k′ ← k′′}) 6=
fail

fail otherwise.

• Case (νk : ⊥{α,α})P :
Let k′ be a fresh name such that k′ 6∈ dom(Γ). Then

Ch(Γ, Θ, (νk : ⊥{α,α})P) = Ch(Γ · k′ : ⊥{α,α}, Θ, P{k ← k′})

• Case (νa : T)P :
Let b be a fresh name such that b 6∈ fn(Γ). Then

Ch(Γ, Θ, (νa : T)P) =
Ch(Γ · b : T, Θ, P{a← b}) if Ch(Γ·b : T, Θ, P{a← b}) 6= fail and

b 6∈ fn(Ch(Γ · b : T, Θ, P{a← b}))
fail otherwise.

• Case stop:

Ch(Γ, Θ, stop) =
(||) if ChEnv(Γ, Θ) = true and ranCh(Γ) ⊆

{1,⊥{α,α}}
fail otherwise.

• Case P |Q:
If split(Γ, P, Q) = fail, then Ch(Γ, Θ, P |Q). If split(Γ, P, Q) 6= fail, let
(Γ1, Γ2) = split(Γ, P, Q). Notice that domChoice(Γ1) = domChoice(Γ2) for
the extended environments Γ1 and Γ2 defined above. Also notice that the
number of regular environments that are a specialization of a given extended
environment Γi is 2|domChoice(Γi)| ≤ 2|domCh(Γi)|.

25

Then

Ch(Γ, Θ, P |Q) =

Ch(Γ′
1, Θ, P) + Ch(Γ′

2, Θ, Q)

there exists Γ′
1 ∈ Σ(Γ1) and Γ′

2 ∈ Σ(Γ2) such
that Ch(Γ′

1, Θ, P) 6= fail and Ch(Γ′
2, Θ, Q) 6= fail

and for all k ∈ domChoice(Γ1) = domChoice(Γ2),
Γ′

1(k) = Γ′
2(k)

fail otherwise.

By Lemma 4.1, there is at most one specialization Γ′
1 ∈ Σ(Γ1) and at

most one specialization Γ′
2 ∈ Σ(Γ2) such that Ch(Γ′

1, Θ, P) 6= fail and
Ch(Γ′

2, Θ, Q) 6= fail.
• Case X[~v]:

Ch(Γ, Θ, X[v1, . . . , vn]) =

(||) if ranCh(Γ) ⊆ {1,⊥{α,α}}, X ∈ dom(Θ),
Θ(X) = ((a1 : T1), . . . , (am : Tm)) with

n = m, and ChVec(Γ, Θ, ~v,
-

a : T) = true for
all i with 1 ≤ i ≤ n.

fail otherwise.

• Case def X1(
-

a1 : T1) = P1 . . . and . . . Xn(
-

an : Tn) = Pn in Q:
Let Yi, . . . Yn be fresh process variables such that Yi 6∈ dom(Θ) for 1 ≤
i ≤ n. Let { ~X ← ~Y } mean the simultaneous substitution of Yi for Xi

for 1 ≤ i ≤ n. For each i with 1 ≤ i ≤ n, let ~bi be a vector of distinct
fresh variables such that |~bi| = |~ai| and bi,j 6∈ dom(Γ) for 1 ≤ j ≤ |~ai|.
Let Ψ = Θ ∪ {(Y1 :

-
a1 : T1), . . . , (Yn,

-
an : Tn)}, and for 1 ≤ i ≤ n let Γi =

Γ \ chan(Γ) ∪
|bi|⋃
j=1

{bi,j : Ti,j{(ai,1, . . . , ai,j−1)← (bi,1, . . . , bi,j−1)}}.

Ch(Γ, Θ, def X1(
-

a1 : T1) = P1 . . . and . . . Xn(
-

an : Tn) = Pn in Q) =
Ch(Γ, Ψ, Q{ ~X ← ~Y }) if Ch(Γi, Ψ, Pi{ai ← bi}) = (||) for all i with

1 ≤ i ≤ n.

fail otherwise.

2

In order to prove that Ch defines a typechecking algorithm we first need to
show that it defines a total function. There are several points in the definition
where choices are made, and we wish to show that the end result does not

26

depend on any particular choice. There are two kinds of choices. The first
type of choice is of fresh names. To ensure well-definedness, we take the least
fresh name in each case, but we need to know that a different choice does
not affect the result of Ch. The second type of choice appears in the case
of parallel composition Q|R, where we “split” our environment Γ into two
extended environments Γ1 and Γ2, and then choose specializations Γ′

1 and Γ′
2

respectively, such that Ch(Γ′
1, Θ, Q) 6= fail and Ch(Γ′

2, Θ, R) 6= fail. The next
lemma shows that, if such Γ′

1 and Γ′
2 exist, they are unique.

Lemma 4.1 Let Γ and Γ′ be two environments such that dom(Γ) = dom(Γ′)
and for any a ∈ domPl(Γ) we have Γ(a) = Γ′(a), and for any k′ ∈ domCh(Γ), we
either have Γ(k′) = Γ′(k′) or Γ(k′) = Γ′(k′). If P is a process with k ∈ fn(P)
with Γ′(k) = Γ(k) 6= Γ(k), and Ch(Γ, Θ, P) 6= fail then Ch(Γ′, Θ, P) = fail.

Proof: There are two cases to consider.

(1) If fn(P) 6⊆ dom(Γ′) then Ch(Γ′, Θ, P) = fail.
(2) If fn(P) ⊆ dom(Γ′) = dom(Γ), then we proceed by case analysis on the

form of P , and the argument follows by induction on the length of P . We
show here the most complicated cases.

• P = h � {l1 : P1, . . . , ln : Pn}: Since Ch(Γ, Θ, P) 6= fail, we must
have Γ(h) = &{l1 : α1, . . . , ln : αn}e, for some α1, . . . , αn and e with
fn(e) ⊆ dom(Γ), and Ch((Γ \ h) · h : αi, Θ, Pi) 6= fail for i ∈ {1, . . . , n}.
Since k ∈ fn(P), we must have either k = h or k ∈ fn(Pi) for at
least one i ∈ {1, . . . , n}. If Γ′(h) = Γ(h), and in particular if k = h, then
Γ′(h) = ⊕{l1 : α1, . . . , ln : αn}e 6= &{l1 : β1, . . . , ln : βn}e′, for any β1, . . . , βn

and e′. Therefore, Ch(Γ′, Θ, h � {l1 : P1, . . . , ln : Pn}) = fail. Thus, we
may assume that k 6= h, Γ′(h) = Γ(h), and k ∈ fn(Pi) for some i. Then,
by the induction hypothesis, since Ch((Γ \ h) · h : αi, Θ, Pi) 6= fail,
we must have that Ch((Γ′ \ h) · h : αi, Θ, Pi) = fail. Since
Γ′(h) = &{l1 : α1, . . . , ln : αn}e but Ch((Γ′ \ h) · h : αi, Θ, Pi) = fail, we
again have that Ch(Γ′, Θ, h � {l1 : P1, . . . , ln : Pn}) = fail.
• P = throw h[h′]Q: Since Ch(Γ, Θ, throw h[h′]Q) 6= fail we have that

h 6= h′ and Γ(h) =↑ [β]e; α and Γ(h′) = β for some α, β and e
with fn(e) ∪ fn(β) ⊆ dom(Γ), and Ch((Γ \ h \ h′) · h : α, Θ, Q) 6= fail. If
Γ′(h) = Γ(h), then Γ′(h) =↓ [β]e; α 6=↑ [β′]e′; α′ for any β′, e′ and α′.
Therefore, Ch(Γ′, Θ, throw h[h′]Q) = fail. If Γ′(h′) = Γ(h′) 6= Γ(h′), then
Γ′(h′) = β 6= β, and thus again Ch(Γ′, Θ, throw h[h′]Q) = fail. Finally,
if Γ′(h) = Γ(h) and Γ′(h′) = Γ(h′) (and hence h 6= k 6= h′), then by
the induction hypothesis Ch((Γ′ \ h \ h′) · h′ : α, Θ, Q) = fail, and hence
Ch(Γ′, Θ, throw h[h′]Q) = fail.
• P = Q|R: Since k ∈ fn(P), we must have that k ∈ fn(Q) ∪ fn(R). Since

Ch(Γ, Θ, Q|R) 6= fail, we have for all h ∈ fn(Q)∩fn(R) that Γ(h) = ⊥{α,α}

for some α, and Γ(h) does not exist. Therefore, k 6∈ fn(Q) ∩ fn(R). If

27

k ∈ fn(Q) \ fn(R), then in the extended environment Γ1, Γ1(k) = Γ(k).
Also, Γ′

1(k) = Γ′(k) for the comparable extended environment Γ′
1. Let Π be

a specialization of Γ1 and Π′ be a specialization of Γ′
1. Then domPl(Π) =

domPl(Γ) = domPl(Γ′) = domPl(Π′) and for all a ∈ domPl(Π) we have
Π(a) = Γ(a) = Γ′(a) = Π′(a). For channel names

domCh(Π) = (fn(Q) ∩ fn(R) ∩ domCh(Γ)) ∪ (domCh(Γ) \ fn(R))

= (fn(Q) ∩ fn(R) ∩ domCh(Γ′)) ∪ (domCh(Γ′) \ fn(R))

= domCh(Π′)

To apply the induction hypothesis to Ch(Π, Θ, Q) and Ch(Π′, Θ, Q), we
need to know for all h ∈ domCh(Π) that either Π(h) = Π′(h) or Π(h) = Π′(h),
and that Π(k) = Π′(k). For all h ∈ fn(Q) ∩ fn(R), Γ(h) = Γ′(h) = ⊥{α,α},
so both Γ1(h) ∈ {σ(α), σ(α)} and Γ′

1(h) ∈ {σ(α), σ(α)}, so both Π(h) ∈
{α, α} and Π′(h) ∈ {α, α}. Therefore, either Π(h) = Π′(h) or Π(h) =
Π′(h). For all h ∈ domCh(Γ) \ fn(R) we have Γ1(h) = Γ(h) and Γ′

1(h) =
Γ′(h), so again either Π(h) = Π′(h) or Π(h) = Π′(h). Therefore, for all
h ∈ domCh(Π), we have either Π(h) = Π′(h) or Π(h) = Π′(h). Moreover,
since k ∈ fn(Q) \ fn(R), we have that Π(k) = Γ(k) and Π′(k) = Γ′(k), so
Π(k) = Π′(k). Therefore, by induction, we know that if Ch(Π, Θ, Q) 6= fail,
then Ch(Π′, Θ, Q) = fail. Since the choice of Π and Π′ was arbitrary, we
must have that if there exists Π ∈ Σ(Γ1) such that Ch(Π, Θ, Q) 6= fail,
then for all Π′ ∈ Σ(Γ′

1) we must have Ch(Π′, Θ, Q) = fail. Therefore, if
Ch(Γ, Θ, Q|R) 6= fail, then Ch(Γ′, Θ, Q|R) = fail.

The last case of k ∈ fn(R) \ fn(Q) is much the same except we focus on
R, Γ2 and Γ′

2 instead of Q, Γ1 and Γ′
1, and for channel names, we have

domCh(Π) = domCh(Γ) ∩ fn(R)

= (fn(Q) ∩ fn(R) ∩ domCh(Γ)) ∪ (domCh(Γ) ∩ (fn(R) \ fn(Q)))

= (fn(Q) ∩ fn(R) ∩ domCh(Γ′)) ∪ (domCh(Γ′) ∩ (fn(R) \ fn(Q)))

= domCh(Γ′) ∩ fn(R) = domCh(Π′)

where Π is a specialization of Γ2 and Π′ is a specialization of Γ′
2. 2

The previous lemma tells us that there is at most one specialization of the
extended environments in the definition of Ch(Γ, Θ, P |Q) that can give a
non-failure result. The next lemma tells us the effect that renaming with fresh
names has on the result of Ch.

Lemma 4.2 (Renaming Lemma) Let b1, . . . , bm be distinct expression
names with bi 6∈ fn(Γ) ∪ fn(P), 1 ≤ i ≤ m. Let k′ be a channel name with

k′ 6∈ dom(Γ) ∪ fn(P). Let Y1, . . . , Yn = ~Y be distinct process names such
that Yj 6∈ dom(Θ) ∪ fn(P), 1 ≤ j ≤ m. Then, for any m distinct expres-
sion names a1, . . . , am, any channel name k, and any distinct process names

28

X1, . . . , Xn = ~X, we have that

(1) ChEnv(Γ{~a← ~b}, Θ{~a← ~b}) = ChEnv(Γ{k ← k′}, Θ)

= ChEnv(Γ, Θ{ ~X ← ~Y }) = ChEnv(Γ, Θ),

(2) ChTy(Γ{~a← ~b}, Θ{~a← ~b}, v{~a← ~b}, T{~a← ~b})
= ChTy(Γ{k ← k′}, Θ, v, T)

= ChTy(Γ, Θ{ ~X ← ~Y }, v, T) = ChTy(Γ, Θ, v, T),

(3) ChVec(Γ{~a← ~b}, Θ{~a← ~b}, v{~a← ~b},
-

c : T {~a← ~b})
= ChVec(Γ{k ← k′}, Θ, ~v,

-
a : T) = ChVec(Γ, Θ{ ~X ← ~Y }, ~v,

-
c : T)

= ChVec(Γ, Θ, ~v,
-

a : T)

(4) Ch(Γ, Θ{ ~X ← ~Y }, P{ ~X ← ~Y }) = Ch(Γ{k ← k′}, Θ, P{k ← k′})
= Ch(Γ, Θ, P).

(5) Ch(Γ, Θ, P) = fail if and only if Ch(Γ{a ← b}, Θ{a ← b}, P{a ← b}) =
fail, and if Ch(Γ, Θ, P) 6= fail, then Ch(Γ{a ← b}, Θ{a ← b}, P{a ←
b}) = Ch(Γ, Θ, P){a← b}

Proof: The proof of the Renaming Lemma is by induction on the definition
of ChEnv, ChTy, ChV ec, and Ch. It is long, and fairly unnoteworthy. It is
omitted here. 2

Proposition 4.3 (Well-definedness of Ch) Ch is a total function.

Proof: By Lemmas 4.1, 4.2, and 4.4, Ch defines a function. Furthermore, Ch
is a total function because the size of the third argument (process P) decreases
in every recursive call. 2

The following lemmas let us know that the existence of certain judgments
assures us of other related judgments.

Lemma 4.4 If k 6∈ fn(P) but k ∈ dom(Γ) and Γ `Θ P : e, then Γ(k) = 1 or
there exists an α such that Γ(k) = ⊥{α,α}.

Lemma 4.5 If Γ `Θ P : e and k 6∈ fn(P), then Γ \ k `Θ P : e.

Lemma 4.6 If Γ `Θ P : e and k 6∈ dom(Γ), then Γ · k : 1 `Θ P : e and
Γ · k : ⊥{α,α} `Θ P : e for all channel types α.

The corresponding facts for Ch are below.

Lemma 4.7 If Ch(Γ, Θ, P) 6= fail, then fn(Ch(Γ, Θ, P)) ⊆ fn(Γ).

Lemma 4.8 If k 6∈ fn(P) but k ∈ dom(Γ) and Ch(Γ, Θ, P) 6= fail, then
Γ(k) = 1 or there exists an α such that Γ(k) = ⊥{α,α}.

29

Lemma 4.9 If k 6∈ fn(P), then Ch(Γ \ k, Θ, P) = Ch(Γ, Θ, P).

Lemma 4.10 If k 6∈ fn(Γ) ∪ fn(P), then Ch(Γ · k : 1, Θ, P) = Ch(Γ, Θ, P)
and Ch(Γ · k : ⊥{α,α}, Θ, P) = Ch(Γ, Θ, P) for all channel types α.

Lemma 4.11 Let Γ1 and Γ2 be environments such that Γ1 � Γ2, and let
Γ = Γ1 ◦ Γ2. Suppose that Ch(Γ1, Θ, P) 6= fail and Ch(Γ2, Θ, q) 6= fail and
split(Γ, P, Q) 6= fail for some processes P and Q. Let (Π1, Π2) = split(Γ, P, Q).
Then there exist Γ′

1 ∈ Σ(Γ1) and Γ′
2 ∈ Σ(Γ2) such that Γ′

1 � Γ2′ and Γ = Γ′
1◦Γ′

2

and Ch(Γ′
1, Θ, P) = Ch(Γ1, Θ, P) and Ch(Γ′

2, Θ, Q) = Ch(Γ2, Θ, Q).

Proof: Notice that because Γ1◦Γ2 = Γ we have that domPl(Γ1) = domPl(Γ2) =
domPl(Γ) = domPl(Π1) = domPl(Π2) and Γ1(a) = Γ2(a) = Γ(a) = Π1(a) =
Π2(a), and we have dom(Γ1) ∩ dom(Γ2) ⊆ domChoice(Π1) = domChoice(Π2),
and for all k ∈ domChoice(Π1) we have that Γi(k) ∈ {α, α} for i = 1, 2. Let

Bad(Γi) = (domCh(Γi) \ domCh(Πi)) ∪ (domCh(Πi) \ domCh(Γi))

∪{x ∈ dom(Γi) \ domChoice(Πi)|Γ1(k) 6= Πi(k)}

Notice that Γi ∈ Σ(Πi) if and only if BadΓi = ∅. The proof is by induction
on the combined length of Bad(Γ1) ∪ Bad(Γ2). Observe that domCh(Π1) =
domCh(Γ) \ (fn(Q) \ fn(P)) and domCh(Π2) = domCh(Γ) ∩ fn(Q).

Suppose there exists k ∈ domCh(Γ1)\domCh(Π1). Then k ∈ fn(Q)\fn(P). Since
k 6∈ fn(P), by Lemma 4.9, Ch(Γ1\k, Θ, P) = Ch(Γ1, Θ, P). Since k ∈ fn(Q) ⊆
domCh(Γ2) and k ∈ domCh(Γ1) and Γ1 � Γ2, we must have that Γ2(k) = Γ1(k).
But by Lemma 4.8, either Γ1(P) = 1 or Γ1(P) = ⊥{α,α} for some α. However,
⊥{α,α} does not exist. Therefore, Γ1(k) = 1 = Γ2(k), and Γ(k) = 1. Then
(Γ1 \ k) � Γ2 and (Γ1 \ k) ◦ Γ2 = Γ. Moreover, |Bad(Γ1 \ k) ∪ Bad(Γ2)| <
|Bad(Γ1) ∪ Bad(Γ2)|, so by induction we there exist Γ′

1 ∈ Σ(Π1) and Γ′
2 ∈

Σ(Π2) such that Γ′
1 � Γ′

2 and Γ = Γ′
1 ◦ Γ′

2 and Ch(Γ′
1, Θ, P) = Ch(Γ1, Θ, P)

and Ch(Γ′
1, Θ, P) = Ch(Γ1 \ k, Θ, P) and Ch(Γ′

2, Θ, Q) = Ch(Γ2, Θ, Q). Since
Ch(Γ1 \ k, Θ, P) = Ch(Γ1, Θ, P), we are done in this case.

Suppose there exists k ∈ domCh(Γ2) \ domCh(Π2). Then k /∈ fn(Q). By Lemma
4.8, Γ2(k) ∈ {1,⊥{α,α}}. If k ∈ domCh(Γ1), then the argument proceeds as
before. Therefore, we only need to consider k /∈ domCh(Γ1) ∪ fn(Q). Since
k /∈ domCh(Γ1) and Γ = Γ1 ◦ Γ2, we have the Γ(k) = Γ2(k). Then by Lemmas
4.10 and 4.9, Ch(Γ1 · Γ(k), Θ, P) = Ch(Γ1, Θ, P) and Ch(Γ2 \ k, Θ, Q) =
Ch(Γ2, Θ, Q). Moreover, (Γ1 · Γ(k)) � (Γ2 \ k) and Γ = (Γ1 · Γ(k)) ◦ (Γ2 \ k).
Therefore, by induction, as above we are done in this case.

The case of k ∈ domCh(Π1) \ domCh(Γ1) is basically the same as the pre-
vious case. The case of k ∈ domCh(Π2) \ domCh(Γ2) can’t happen because

30

domCh(Π2) ⊆ fn(Q)dom(Γ2). If k ∈ domCh(Γi) \ domChoice(Πi), then Γ(k) 6=
⊥{α,α} and k 6∈ domCh(Γ1)∩domCh(Γ2) and Γi(k) = Γ(k). If k ∈ fn(P)∪fn(Q),
then Γi(k) = Πi(k). If k /∈ fn(P) ∪ fn(Q), then Γi(k) = 1. Moreover, since
Γ(k) = 1 and Πi(k) 6= 1, k /∈ domCh(Πi), and we must have i = 2. Then, as
before we use Lemmas 4.10 and 4.9 to move k from domCh(Γ2) to domCh(Γ1).

2

We now show that if the a process P is typable in a given environment Γ
and definitions Θ, then the algorithm does not fail (Completeness Proposition
4.12); we also show that if the algorithm does not fail with inputs Γ,Θ, and
P , then P has effect returned by the algorithm under Γ and Θ (Soundness
Proposition 4.13). Finally, we show that the effect found by the algorithm is
the least effect (Minimum Effects 4.14).

Proposition 4.12 (Completeness) If Γ `Θ P : e, then Ch(Γ, Θ, P) 6= fail
and Ch(Γ, Θ, P) ≤ e.

Proof: The proof follows by induction on the derivation of Γ `Θ P : e. We
consider a case analysis on the last rule applied in the derivation. We give a
representative sample here.

• Type Acpt: If the last rule applied in the derivation of Γ `Θ P : e is
Type Acpt, then P = accept a(k) in Q and Γ(a) = σ(α) for some ex-
pression name a, process Q, and channel type α. Moreover, there exists
k′ 6∈ dom(Γ) such that Γ · k′ : α `Θ Q{k ← k′} : e by a smaller deriva-
tion. Therefore, by induction we have that Ch(Γ · k′ : α, Θ, Q) 6= fail and
Ch(Γ · k′ : α, Θ, Q) ≤ e. Since Ch(Γ · k′ : α, Θ, Q) 6= fail we have that
fn(Q) ⊆ dom(Γ)∪{k′}. Since Γ(a) = σ(α), by the definition of Ch, we have
that Ch(Γ, Θ, accept a(k) in Q) = Ch(Γ · k′′ : α, Θ, Q{k ← k′′}) for some
k′′ 6∈ dom(Γ). If k′′ = k′, we are done with this case, so suppose k′′ 6= k′.
By Lemma 2.4, since Γ `Θ P : e, we have that Γ is well-formed, and hence
fn(Γ) ⊆ dom(Γ). Therefore, k′′ 6∈ fn(Γ) and k′′ 6∈ fn(Q) ⊆ dom(Γ), and
hence Γ{k′′ ← k′} = Γ and Q{k′′ ← k′} = Q. Thus we have

Ch(Γ, Θ, accept a(k) in Q)

= Ch(Γ · k′′ : α, Θ, Q{k ← k′′})
= Ch((Γ · k′′ : α){k′′ ← k′}, Θ, Q{k ← k′′}{k′′ ← k′})
= Ch(Γ · k′ : α, Θ, Q{k ← k′}) ≤ e.

This finishes the case of Type Acpt. The case of Type Requ is completely
analogous.
• Type Bgn and Type End: Suppose P = begin L; Q or P = end L; Q. In

either case, we have that Γ `Θ Q : e′, where e = e′ \ (| L |) in the
begin case, and e = e′ + (| L |) in the begin case. By induction we
have that Ch(Γ, Θ, Q) 6= fail and Ch(Γ, Θ, Q) ≤ e. Therefore, in each

31

case Ch(Γ, Θ, begin L; Q) = Ch(Γ, Θ, Q) \ (| L |) ≤ e′ \ (| L |) = e, or
Ch(Γ, Θ, end L; Q) = Ch(Γ, Θ, Q) + (|L |) ≤ e′ + (|L |) = e,
• Type Snd: If Type Snd is the last rule applied, then P = k![v]Q for some k, v

and Q, and Γ(k) =↑ [a : T]e′; α for some a, T , e′, and α with e′{a← v} ≤ e,
and Γ \ k `Θ v : T and fn(e′) \ {a} ⊆ dom(Γ) and (Γ \ k) · k : α{a← v} `Θ

Q : e \ e′. Therefore, by induction we have that Ch((Γ \ k) · k : α{a ←
v}, Θ, Q) 6= fail and Ch((Γ \ k) · k : α{a ← v}, Θ, Q) ≤ e \ e′{a ← v}, and
by the definition of Ch, we have Ch(Γ, Θ, k![v]Q) 6= fail and

Ch(Γ, Θ, k![v]Q) = Ch((Γ \ k) · k : α{a← v}, Θ, Q) + e′{a← v}
≤ (e \ e′{a← v}) + e′{a← v}
= e because e′{a← v} ≤ e.

• Type Rcv: In this case we must have P = k?(b) in Q for some k, b and Q,
and Γ(k) =↓ [a : T]e′ for some a, T and e′ with fn(e′) \ {a} ⊆ dom(Γ), and
(Γ \ k) · c : T · k : α{a ← c} `Θ Q{b ← c} : e′′ for some c and e′′ such
that c 6∈ fn(e′′ \ e′{a← c}) ∪ fn(Γ) and such that e = e′′ \ e′{a← c}. By
induction, we have Ch((Γ \k) · c : T ·k : α{a← c}, Θ, Q{b← c}) 6= fail and
Ch((Γ \ k) · c : T · k : α{a ← c}, Θ, Q{b ← c}) ≤ e′′ Since Ch((Γ \ k) · c :
T · k : α{a← c}, Θ, Q{b← c}) 6= fail, by Lemma 4.2, we have that

Ch((Γ \ k) · c′ : T · k : α{a← c}′, Θ, Q{b← c}′)

= Ch((Γ \ k) · c : T · k : α{a← c}{c← c′}, Θ{c← c′}, Q{b← c}{c← c′})

= (Ch(Γ, Θ, Q{b← c})){c← c′} ≤ e′′{c← c′′}

for any c′ 6∈ fn(Γ). Also, since c /∈ fn(e′′ \ e′{a← c}) ∪ fn(Γ), we have
c′′ /∈ fn(e′′{c ← c′} \ e′{a← c}′) ∪ fn(Γ) and hence c′ /∈ Ch((Γ \ k) · c′ :
T · k : α{a← c}′, Θ, Q{b← c}′) \ e′{a← c}′. Therefore, by the definition of
Ch, Ch(Γ, Θ, k?(b) in Q) 6= fail and

Ch(Γ, Θ, k?(b) in Q)

= Ch((Γ \ k) · c′ : T · k : α{a← c′}, Θ, Q{b← c}′) \ e′{a← c}′

≤ e′′{c← c′} \ e′{a← c′}

≤ (e′′ \ e′{a← c}){c← c′} = e′′ \ e′{a← c} because c /∈ fn(e′′ \ e′{a← c})

= e

• Type Par: If Type Par was the last rule to be applied, then P = Q|R and
there exist environments Γ1 and Γ2 and effects e1 and e2 such that Γ1 `Θ

Q : e1 and Γ2 `Θ R : e2 and Γ1 � Γ2 and Γ = Γ1 ◦Γ2 and e = e1 +e2. By the
inductive hypothesis, we have that Ch(Γ1, Θ, Q) 6= fail, Ch(Γ1, Θ, Q) ≤ e1,
Ch(Γ2, Θ, R) 6= fail, and Ch(Γ2, Θ, R) ≤ e2.

32

Since Ch(Γ1, Θ, Q) 6= fail and Ch(Γ2, Θ, R) 6= fail, we have fn(Q) ⊆
dom(Γ1) and fn(R) ⊆ dom(Γ2). Since Γ = Γ1 ◦ Γ2, we have that
fn(Q) ∪ fn(R) ⊆ dom(Γ) and for each k ∈ fn(Q) ∩ fn(R) there ex-
ists an α such that Γ(k) = ⊥{α,α}. Therefore split(Γ, Q, R) 6= fail. Let
(Π1, Π2) = split(Γ, Q, R). By Lemma 4.11 we have there exist Γ′

1 ∈ Σ(Π1)
and Γ′

2 ∈ Σ(Π2) such that Γ′
1 � Γ′

2 and Ch(Γ′
1, Θ, Q) = Ch(Γ1, Θ, Q) and

Ch(Γ′
2, Θ, R) = Ch(Γ2, Θ, R). Since Γ′

1 � Γ′
2, we have that Γ′

1(k) = Γ′
2(k)

for all k ∈ domChoice(Γ1). Therefore, by the definition of Ch we have that
Ch(Γ, Θ, Q|R) 6= fail and

Ch(Γ, Θ, Q|R) = Ch(Γ′
1, Θ, Q) + Ch(Γ′

2, Θ, R)

= Ch(Γ1, Θ, Q) + Ch(Γ2, Θ, R)

≤ e1 + e2 = e

2

Proposition 4.13 (Soundness) If Ch(Γ, Θ, P) 6= fail, then Γ `Θ P :
Ch(Γ, Θ, P).

Proof: The proof follows by induction on the definition of Ch(Γ, Θ, P). We
show here a few representative cases.

• accept a(k) in P : By the definition of Ch, Ch(Γ, Θ, accept a(k) in P) =
Ch(Γ · k′ : α, Θ, P{k ← k′}), where k′ 6∈ dom(Γ) and Γ(a) = σ(α). By the
induction hypothesis, Γ · k′ : α `Θ P{k ← k′} : Ch(Γ · k′ : α, Θ, P{k ←
k′}). By the definition of Ch, and applying Type Acpt, Γ · a : σ(α) `Θ

accept a(k) in P : Ch(Γ, Θ, accept a(k) in P).
• begin L; P : By the induction hypothesis, Γ `Θ P : Ch(Γ, Θ, P). Since,
fn(P) ∈ dom(Γ), it follows that fn(L) ∈ dom(Γ). By the rule Type Bgn,
Γ `Θ begin L; P : Ch(Γ, Θ, P) \ (|L |), and by the definition of Ch, Γ `Θ

begin L; P : Ch(Γ, Θ, begin L; P).
• P |Q : By the definition of Ch, Ch(Γ, Θ, P |Q) = Ch(Γ′

1, Θ, P) +
Ch(Γ′

2, Θ, Q), for some Γ′
1 and Γ′

2. By construction of Γ′
1 and Γ′

2, it fol-
lows that Γ′

1 � Γ′
2 and Γ = Γ′

1 ◦ Γ′
2, and by the induction hypothesis,

Γ′
1 `Θ P : Ch(Γ′

1, Θ, P) and Γ′
2 `Θ Q : Ch(Γ′

2, Θ, Q). Finally, by the rule
Type Par, the result follows. 2

Corollary 4.14 (Minimum Effects) If Γ `Θ P : e, then Γ `Θ P :
Ch(Γ, Θ, P) and Ch(Γ, Θ, P) ≤ e.

Proof: The result holds immediately from Soundness (Proposition 4.13) and
Completeness (Proposition 4.12). 2

We can now state our main result.

33

Corollary 4.15 (Decidability of Typechecking) Given Γ, Θ, P and e it
is decidable whether Γ `Θ P : e.

Proof: We first call Ch(Γ, Θ, P) that always terminates, by Proposition 4.3.
If Ch(Γ, Θ, P) = fail, by Completeness (Proposition 4.12), Γ `Θ P : e is not
derivable. If Ch(Γ, Θ, P) 6= fail, we check the multiset inclusion Ch(Γ, Θ, P) ≤
e which is also decidable. If Ch(Γ, Θ, P) ≤ e holds, then by Soundness (Propo-
sition 4.13) and Type Subsum, Γ `Θ P : e. If Ch(Γ, Θ, P) 6≤ e, by Completeness
(Proposition 4.12), Γ `Θ P : e is not derivable. 2

5 Conclusions and Future Work

A session type describes the interactions between two parties within multi-
party communications. It is a communication protocol describing the order
and type of interactions between two parties. Iris is a typed π-calculus resulting
from a combination of session types with correspondence assertions that takes
session types a step further. Indeed, not only does Iris allow the description of
the exchange protocol, but also the synchronization between parties that may
not participate in the same session.

This paper studies the typechecking problem for Iris. We define a typecheck-
ing algorithm Ch(Γ, Θ, P) that checks whether process P is typable under the
typing assumptions in Γ. If P is typable under Γ, it returns the least effect for
P , and otherwise it returns fail. Although session types have been extensively
studied in the past few years, to our knowledge this is the first proof of decid-
ability of typechecking for a type system with session types. A related open
problem that we are currently investigating is the decidability of type infer-
ence, where type unification has to be considered in the presence of equations
such as those defining the dual of a channel type.

Iris allows us to express the relationship between the information being sent at
its origin and the information being received at the intended destination. If we
stay within a decidable fragment (such as linear arithmetic) we can capture a
considerable family of communication and data exchange patterns: in a large
percentage of the cases where data is transferred, we are interested in seeing
the exact same data at both ends, and many other cases involve very simple
linear arithmetic transformations. For example, frequently an ATM is allowed
to charge a processing fee for a transaction, and then the relation between
the amount entered by the Client and that received by the Bank will not be
identical, but will satisfy a simple linear arithmetic equation. To address this
issue we are considering the extension of Iris with arithmetic.

If we allow general arithmetic, which is not decidable, we can expect to define

34

a sound semi-decision procedure: An algorithm without false positives or false
negatives. If the algorithm says yes, then all information can be traced back to
its sources. If the algorithm says no, the algorithm will exhibit a path showing
that the data is not coming from the intended origin. If the algorithm fails to
terminate, then we cannot deduce any information.

Future work also includes developing the formal theory of this calculus in
HOL (Gordon & Melham, 1993) and using the development to encode and
reason about security and networking protocols.

Acknowledgments: We are grateful to the Laboratory for Secure Systems
group at Stevens for interesting discussions, and in particular to Georgi
Babayan, Pablo Garralda, and Ricardo Medel for inspiring brainstorming ses-
sions. We also thank Healfdene Goguen for comments and suggestions on pre-
vious drafts. This work was partially supported by The Stevens Technogenesis
Fund, the NSF Grant No. CCR-0220286 ITR: Secure Electronic Transactions,
and the ARO Award No. DAAD-19-01-1-0473.

References

Barendregt, Henk. (1992). Lambda calculi with types. Pages 117–309 of: Abramsky,
S., Gabbay, D. M., & Maibaum, T. S. E. (eds), Handbook of Logic in Computer
Science: Background - Computational Structures (Volume 2). Oxford: Clarendon
Press.

Bonelli, Eduardo, Compagnoni, Adriana, & Gunter, Elsa. (2003a). Correspondence
assertions for process synchronization in concurrent communications. Brogi, An-
tonio, Jacquet, Jean-Marie, & Pimentel, Ernesto (eds), FOCLASA 2003. 2nd In-
ternational Workshop on Foundations of Coordination Languages and Software
Architectures. Electronic Notes in Theoretical Computer Science, vol. 91, no. 2.
Marseille, France: Elsevier Science. To appear.

Bonelli, Eduardo, Compagnoni, Adriana, & Gunter, Elsa. (2003b). Correspondence
assertions for process synchronization in concurrent communications. Tech. rept.
2003-7. Department of Computer Science, Stevens Institute of Technology.

Cervesato, Iliano, & Pfenning, Frank. (2002). A linear logical framework. Informa-
tion and Computation, 179(1), 19–75.

Chaki, Sagar, Rajamani, Sriram, & Rehof, Jakob. (2002). Types as models: Model
checking message-passing programs. Pages 45–57 of: Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM.

Gay, Simon. (1993). A sort inference algorithm for the polyadic pi-calculus. Proc.
of the 20th ACM SIGACT/SIGPLAN Symposium on Principles of Programming
Languages. ACM Press.

Gay, Simon, & Hole, Malcolm. (1999). Types and subtypes for client-server interac-
tions. Pages 74–90 of: Proceedings of the European Symposium on Programming
Languages and Systems. LNCS, no. 1576. Springer-Verlag.

35

Gay, Simon, Vasconcelos, Vasco, & Ravara, Antonio. (2003). Session types for
inter-process communication. Tech. rept. TR-2003-133. Department of Comput-
ing Science, University of Glasgow.

Girard, Jean-Yves. (1987). Linear Logic. Theoretical Computer Science, 1–102.
Gordon, Andrew, & Jeffrey, Alan. (2001a). Authenticity by typing for security pro-

tocols. Pages 145–159 of: 14th IEEE Computer Security Foundations Workshop.
IEEE Computer Society Press.

Gordon, Andrew, & Jeffrey, Alan. (2001b). Typing correspondence assertions for
communication protocols. Seventeenth Conference on the Mathematical Founda-
tions of Programming Semantics (MFPS 2001). ENTCS, no. 45. Elsevier.

Gordon, Andrew, & Jeffrey, Alan. (2003a). Authenticity by typing for security
protocols. Journal of computer security, 11(4), 451–521.

Gordon, Andrew, & Jeffrey, Alan. (2003b). Typing correspondence assertions for
communication protocols. Theoretical Computer Science, 300, 379–409.

Gordon, Michael J.C., & Melham, Thomas F. (1993). Introduction to HOL: A
theorem proving environment for higher-order logic. Cambridge: CUP.

Hole, Malcolm, & Gay, Simon. (2003). Bounded polymorphism in session types.
Tech. rept. TR-2003-132. Department of Computing Science, University of Glas-
gow.

Honda, Kohei, Kubo, Makoto, & Takeuchi, Kaku. (1994). An interaction-based
language and its typing system. Pages 398–413 of: Proceedings of PARLE’94.
LNCS, no. 817. Springer-Verlag.

Honda, Kohei, Vasconcelos, Vasco, & Kubo, Makoto. (1998). Language primitives
and type discipline for structured communication-based programming. Pages
122–138 of: Proceedings of ESOP’98. LNCS. Springer-Verlag.

Igarashi, Atsushi, & Kobayashi, Naoki. (2001). A generic type system for the pi-
calculus. Pages pp.128–141 of: Proceedings of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM.

Igarashi, Atsushi, & Kobayashi, Naoki. (2004). A generic type system for the pi-
calculus. Theoretical Computer Science, 311(1–3), 121–163.

Kobayashi, Naoki. (1997). A partially deadlock-free type process calculus. Pages
128–139 of: Proceedings of the Twelth Annual IEEE Symposium on Logic in
Computer Science. IEEE Computer Society Press.

Kobayashi, Naoki, Pierce, Benjamin, & Turner, David N. (1996). Linearity in the
pi-calculus. Pages 358–371 of: Proceedings of the 23rd ACM Symposium on Prin-
ciples of Programming Languages.

Milner, Robin. (1999). Communicating and mobile systems: the π-calculus. Cam-
bridge University Press.

Pierce, Benjamin, & Sangiorgi, Davide. (1993). Typing and subtyping for mobile
processes. Pages 376–385 of: Proceedings of the eighth annual ieee symposium on
logic in computer science. IEEE Computer Society Press.

Puntigam, Franz. (1996). Synchronization expressed in the types of communication
channels. Pages 762–769 of: Proceedings of the EURO-PAR’96. LNCS, no. 1123.
Springer-Verlag.

Turner, David. (1995). The polymorphic pi-calculus: Theory and implementation.
Ph.D. thesis, University of Edinburgh.

Vallecillo, Antonio, Vasconcelos, Vasco, & Ravara, António. (2003). Typing the

36

behavior of objects and component using session types. Electronic Notes in The-
oretical Computer Science, 68(3).

Yoshida, Nobuko. (1996). Graph types for monadic mobile processes. Pages 371–386
of: FST/TCS’16. LNCS, no. 1180. Springer-Verlag.

37

