
Formalizing the Model Transformation Using
Metamodeling Techniques

Carlos G. Neil 1, Claudia Pons 2

1Universidad Abierta Interamericana, Facultad de Tecnología Informática
Buenos Aires, Argentina

carlos.neil@vaneduc.edu.ar

2 Universidad Nacional de La Plata, LIFIA
 Buenos Aires, Argentina
cpons@info.unlp.edu.ar

Abstract. This paper establishes a formal connection among data models. It
applies Meta Object Facility (MOF), based on metamodeling techniques to
represent the translation, by means of an algorithm, from the temporal Entity-
Relationship model into the temporal multidimensional model. MOF class
diagrams and their corresponding OCL rules were used to establish constraints
to the metamodel, which implemented in a CASE tool will make it possible to
keep the model consistency.

Keywords: Metamodel, Datawarehouse, Entity-Relationship Model, MOF,
UML.

1. Introduction

Metamodeling is a technique frequently used in software designing, which permits to
describe the basic abstractions to define models and their relationships. The Meta
Object Facility [10] provides a framework to give support to different types of
metadata and it can be used to define different information models. This characteristic
allows designers to define models that differ from the philosophy or details of the
initial model; in this context, the MOF is considered a meta-metamodel since it used
to define metamodels, such as that of the UML language [18]. The data model
architecture of the MOF matches up with a meta-metamodel consisting of a four-stage
architecture. The MOF is used to define the structure and semantics of metamodels
for both specific and general domains. The MOF being an object-oriented model, it is
also suitable for defining object-orient or more general metamodels; for example the
main aspects of the Entity-Relationship schema may be represented by means of
MOF class diagrams [6]. The MOF is also used to define specific metamodels for
databases, datawarehouse and model transformation.

At present, the Entity-Relationship model [4] is commonly used and it has had a
huge impact on database modelling; many of the information systems implemented by
companies over the last decades are relational and their documentation is based on
Entity-Relationship schemes. Datawarehouse is a subject-oriented, time varying, non-
volatile collection of data that is used in organizational decision-making [17]. In a
datawarehouse, the dimensions determine the granularity adopted for representing
facts and the hierarchy in the dimensions determines how the instances can be
aggregated and selected for the decision-making processes [2]. In [5] a semiautomatic
algorithm for building a conceptual datawarehouse model from an Entity-Relationship
model was presented, which was broaden in [8] using temporal entity-relationships
models.

Our research consists in linking the temporal Entity-Relationship model with the
temporal multidimensional model, by means of an approach to MOF metamodeling;
we will present a MOF Model for both schemes, which is similar to the modelling of
UML by means of MOF [6], where class diagrams are specified and complemented
by invariant expressed in OCL [13]. Besides, we will consider constraints in
connection with the transformation, using a recursive algorithm, from temporal
Entity-Relationship scheme into the temporal multidimensional model by means of
MOF class diagrams and their respective OCL rules.

There is a big amount of CASE tools that make it easy to create and manipulate
UML diagrams. Many of these tools also provide automatic generators of codes and
reverse engineering of existing software systems. However, the support provided by
these tools is not enough to validate the models on the designing stage [16]. A well-
developed semantics is an essential prerequisite to build CASE tools with advanced
validation characteristics. Particularly, if a CASE tool adopts the algorithmic
transformation process, the constraints imposed over the metamodel will enable the
resulting model to remain consistent.

This paper is structured as follows: In chapter 2, we present a multidimensional
model. In chapter 3, we explain model transformation. In chapter 4, we explain the
metamodel by means of class diagrams. In chapter 5, we express constraints by means
of OCL rules. In chapter 6, we briefly explain the related research, and finally, in
chapter 7, we present our conclusion and future research.

2. Temporal Multidimensional Model

A multidimensional scheme is made up of facts, measures, dimensions and
hierarchies. A fact represents point of interest for the decision-making process, model
the events that occur in the company. The measures are attributes that describe the
fact from different points of view. The dimensions determine the granularity adopted
for representing facts, and the hierarchy in the dimensions determines how the
instances can be aggregated and selected for the decision-making process. The
temporal multidimensional includes, apart from the main fact for analysis, temporal
schemes that although they will not belong to the hierarchy in the dimensions, they
will register the variation of certain attributes o relationships that will vary in time.
The resulting conceptual scheme unify in only one model, the multidimensional and

temporal scheme to register and analyze the temporal variations and queries about the
multidimensional structure.

Despite the fact that commercial object-oriented databases are available, the
relational database technology for data storage tends to be used more frequently
because of its maturity. A datawarehouse applied to a standard relational database
administrator system is called ROLAP (OLAP Relational). These servers store data in
a relational database, apart from supporting SQL extensions, special accesses and
methods adopted to make the multidimensional model and its is functions more
efficient [3]. In a relational architecture data are organized in star or snowflake
schemes; the first one consists in a main fact table and several denormalized
dimension table, interest measures are stored in the fact table. The normalized version
of the star scheme is the snowflake scheme in which every aggregation level has its
own dimension table [19]. In this work, we will limit ourselves to describe conceptual
models that are independent from implantation.

3. Model Transformation

The transformation methodology involves a series of steps that we will explain in
detail later. But, in short, it consists in applying an algorithm that has temporal Entity-
Relationship model as its input and a temporal multidimensional model as its output.

To apply the recursive algorithm we transformed the Entity-Relationship diagram
(Fig. 1) into a temporal Entity-Relationship model (Fig. 2). The multi-valued attribute
will turn into a weak entity with a temporal relationship (named T) and the temporal
relationship will turn into an entity with binary relationships (named T) related to the
participating entities [8]. In cases where it is advisable to preserve a future hierarchy
we suggest keeping both relationships (the instantaneous relationship and the
temporal one).

In the example of Fig. 2, we keep the relationship between Supplier and the Place.

3.1. Building the Fact Scheme from the Temporal Entity-Relationship Model

A conceptual scheme of a datawarehouse will derive from a temporal Entity-
Relationship model and it will include temporal aspects in its design. The
methodology for building a schema of multidimensional facts consists of the
following steps:

• Define facts
• For each fact:

a) Building attributes graph
b) Pruning and grafting the attribute graph
c) Defining dimensions
d) Defining fact attributes
e) Defining hierarchies.

PRODUCT

SUPPLIER

PLACE
SALE

(1, n)

(1, n)

(1, n)

final time

productID

supplierID

initial time

placeID

T

date

amont

(1, n)

(1, n)

initial time

final time

price
price-T

Fig. 1. Temporal Entity-Relationship Diagram

3.2. Building the Temporal Graph

The facts, as concepts of primary interest for decision-making process, correspond to
events that occur dynamically in real life. These can be represented in the temporal
Entity-Relationship model by means of an entity F or by means of an n-aria
relationship R between entities E1... En .

Given an area of interest of a temporal Entity-Relationship model and an entity F
that belongs to it, we will call attributes graph to the graph in which:

• Each vertex corresponds to an attribute - simple or compound - of the Entity-

Relationship model.
• The root corresponds to the identifier of F.
• For each vertex v, the corresponding attribute functionally determines all the

attributes corresponding to the descendants of v.

Definition 1: Given a vertex v marked with a T, it is called terminal vertex if it does
not have descendants that are identifiers of an entity.

Definition 2: Given a vertex v marked with a T, it is called non-terminal vertex if it
has descendants that are identifiers of an entity.

PRODUCT SALE

SUPPLIERPRICE-T

PLACE

T T

PLACE-SUPP-TT

(1, 1)

(1, n)

(1, 1)

(1, 1)
(1, n)

(1, n)

(1, n)

(1, n)

(1, 1)

(1, n)

(1, 1)

(1, 1)

initial timefinal time

price

productID

supplierID final time

initial time

placeID

amount

date

Fig. 2. Modified temporal Entity-Relationship diagram

In addition

• Each terminal vertex v will correspond to a temporal attribute.
• Each non-terminal vertex v will correspond to a temporal relationship.

The temporal vertexes represent schemas that have, as a focus of interest, the

variation of attributes and relationships in accordance with time, at are related to the
fact schema being of interest for the decision-making process. The attributes graph
will be used in for building a facts schema corresponding to F. Given an identifier (F)
that indicates a group of attributes that identifies the entity F, the attributes graph (Fig.
3) can be built semi-automatically by means of the application of the following
recursive procedure:

root = newVertex(identifier(F));

//newVertex (<attributeSet>) returns a new vertex

//labeled with the concatenation of the names of the

//attributes in the set

translate(F, root);

where

translate(E, v):

//E is the current entity, v is the current vertex

{ for each attribute a ∈ E  a ∉ identifier(E) do

addChild (v, newVertex({a}));

//adds child a to vertex v

for each entity G connected to E by relationship R

 card-max(E, R)= 1 or R is temporal do

//Temporal relationships and attributes are considered

 { for each attribute b ∈ R do

 addChild (v, newVertex({b}));

 next = newVertex(identifier(G));

 addChild (v, next);

 translate(G, next);

}

}

When we amplified the Entity-Relationship model with temporal aspects, the

varying attributes and relationships turn into entities linked to relationships marked
with a T of the type x-to-many (card-max(E, R) > 1), so they cannot be included in
the hierarchy to make aggregations. The line of dots in the attributes graph shows this
peculiarity.

Probably all the attributes represented in the graph are not of interest for the data
warehouse. For this reason, this can be pruned and grafted to eliminate the
unnecessary details. The dimensions determine how fact instances can be aggregated
in a significant way for the decision-making process. These must be chosen in the
attributes graph among the son vertexes of the root. Measures are defined by means of
the application, to the attributes of the graph, of aggregation functions that operate on
all of the instances of F belonging to each primary fact instance. The last step in the
construction of fact schemes is the definition of hierarchies on dimensions. Along
these, the attributes must be ordered in the graph so as one a-to-one relationship is
placed between each vertex and its descendants. The inclusion of attributes and
temporal relationships (these are linked with each other by means of lines of dots)
needs a special consideration in the transformation of the fact schema: these will not
be part of the hierarchy for the operations of roll-up and drill-down, they will only
enable to evaluate how certain attributes and relationships have varied as time passes
by. They form what it is called non-strict hierarchies [15]. In the Fig. 4 the resulting
scheme is shown.

final time

price

productID

supplierID placeID

amount date

T

T

productID +
initial time

placeID +
initial time

sale

Fig. 3. Attribute Graph

SALE

amount

PLACE-SUPP-T

PLACEPRICE-T SUPPLIER

DATEPRODUCT

1..*

1..*1..*

1..11..1

1..*

1..1

1..*

1..*

1..*
1..*

1..*

1..*

1..1

Fig. 4. Temporal Multidimensional Scheme.

4. MOF Class Diagrams

In Fig. 5 we describe, in a same figure, the metamodel for the temporal Entity-
Relationship model and for the temporal multidimensional model, which we will
explain below.

An ERTSchema consists, at least, in one Entity object and cero or more
Relationship objects. These Entity objects have one or more than one
Attribute object, which in turn, have an associated Datatype. The
Relationship objects may have cero or more Attributes objects, also with
an associated Datatype. The Entity objects may be temporal, that is, they may
have temporal attributes. In this case, every Entity object is linked with an

Interval object that determines the validity interval of the attribute’s value. The
temporal relationships have no attributes and are linked with an Interval object. A
Relationship object is related to with two RelationshipEnd objects, each of
them being linked with an Entity object.

0..1

RelationshipEnd

DataTy pe

Dimension

Hierarchy
isTemp : Boolean

0..*

1

0..*

1

0..* 10..* 1

Interval
initialTime : DataTime
f inalTime : DataTime

0..1

0..1

0..1

0..1

Att rib ute

1

1..*

1

1..*

1..*

0..1

1..*

0..1

1..*

0..1

1..*

0..1

0..1

0..1

0..1

0..1

Entity
asRoot : Boolean
isTemp : Boolean

1

0..*

1

0..*

1..*

0..1

1..*

0..1

Relationship
isTemp : Boolean

2

1

2

1

0..10..10..1

0..*

0..1

0..*

0..1

ERTSchema

1..*

1

1..*

1

0..*

1

0..*

1

Fact

1..*

1

1..*

1

0..*

0..1

0..*

0..1

MDTSchema

1

1

1

1

Mapping

1 0..11 0..1 10..1 10..1

Fig. 5. Metamodel of Transformation.

A MDTSchema object consists in Fact object, which, in turn, it is related to one
or more than one Dimension object, which, in turn, it is related to cero or more
Hierarchy objects. A Hierarchy object may be linked with cero or more objects
of the same type. A Fact object may have cero or more Attribute objects.
Besides, both the Dimension and the Hierarchy objects have one or more than
one Attribute object. The Hierarchy may be temporal. If it is derived from a
temporal Relationship, no Attribute objects are linked with it. But it will be
linked with an Interval object that determines the validity interval; if the

Hierarchy is derived from a temporal Entity, then it will linked with an
Attribute object, which in turn, will be linked with an Interval object.

The transformation is expressed in the metamodel by means of the Mapping,
together with two links specifying that a Mapping object is perfectly linked with an
ERTSchema object and a MTDSchema object.

All the classes inherit the name attribute from a Named superclass, which is not
displayed in the Figure.

5. Constraints to the Metamodel

In the object-oriented model, a graphic like the class diagram is not enough to achieve
an accurate and unambiguous specification [11] [12]. There is a need to describe the
additional constraints to the objects of the model. Many times, those constraints are
described by means of a natural language. However, in practice, they frequently
become ambiguous. To avoid these ambiguities, formal languages have been
developed. Although they are suitable for people having an important maths
background, the disadvantage is that they are difficult for the average system
modeller. The OCL has been created to close that gap. It is a formal and easy- to-
read-and-write language and provides extra information about the models used in the
object-oriented development. It is a declarative language and without side effects. The
state of an object does not change after having evaluated by an OCL expression.
Every expression is written in the context of a class which has been defined in UML
model and it defines a group of associated operation. In the data models (temporal
database and datawarehouse) there is a series of constraints related to the application
domain, which are nor frequently recorded. When one works with temporal ranks,
determining constraints that will prevent the data established in the ranks according to
the valid periods of time from being overlapped becomes a mechanism to keep the
stored data integrity.

The constraints may be imposed both over the model and the metamodel. Next, we
will show, as examples, a series of constraints applied in the metamodel (Fig. 5) using
OCL sentences.

5.1. Constraints Over the Value of the Name Attribute

We can create constraints establishing that facts, dimensions and hierarchies have no
attributes with the same name:

Two entities (or relationships) belonging to the same Entity-Relationship scheme
cannot have the same name.

Context ERSTchema inv UniqueNameAttribute:
entity -> forAll (e1,e2 � e1.name = e2.name

implies e1 = e2)

The facts (dimensions and hierarchies) belonging to the same multidimensional
scheme cannot have the same name.

Context MDTSchema inv NameFactUnique:
fact -> forAll (e1, e2 � e1.name = e2.name
implies e1 = e2)

The names of the attributes entities (and relationships) are unique

Context entity inv nameAttributeEntity Unique:
attribute -> forAll (e1,e2 � e1.name = e2.name
implies e1 = e2)

5.2. Constraints Over the Validity Interval

The attributes and temporal relationships have always an interval in which their value
is valid:

If the relationship is temporal it is linked with no attribute, but only with a validity
interval

Context Relationship inv TemporalRelationship:
self.isTemp = ´true´ implies
self.attribute -> IsEmpty() and
self.interval -> notEmpty()

The temporal entities have at least a temporal attribute that is linked with a validity
interval.

Context Entity inv Temporalentity:
self.isTemp = ´true´ implies
self.attribute -> exists (a � a.interval -> notEmpty())

5.3. Constraints On the Model Transformation

The syntax and semantic constraints between the Entity-Relationship model and its
corresponding multidimensional model generated by means of the transformation
algorithm are expressed by means of the OCL expressions en the context of the
metamodel of transformation.

There is a temporal hierarchy for each temporal attribute of the entity; this hierarchy
has the same name as the attribute, and both of them are linked with the same validity
interval

Context Mapping inv Temporalhierarchyattribute:
self.ERTSchema.entity.attribute
-> forAll (a � a.isTemp implies
self.MDTSchema.hierarchies -> exists(h � h.isTemp =
´true´ and a.name = h.name and a.interval = h.interval))
to be defined: a.isTemp == a.interval -> notEmpty() =
´true´ s.hierarchies == s.fact.dimension.hierarchy

Every temporal relationship is linked with a non-strict temporal hierarchy sharing the
same name with the relationship which is linked with a validity interval.

Context Mapping inv RelationshipTemporalHierarchy:
self.ERTSchema.relationship ->
forAll (r � r.isTemp =´true´ implies
self.MDTSchema.hierarchies -> exists (h � r.name =
h.name and r.interval = h.interval))

The set of fact attributes is included in the set of attributes of the root entity of the
ERTSchema.

Context Mapping inv Root:
self.ERTSchema.entity -> exists (e � e.asRoot = ’true’
and self.MDTSchema.fact.attribute -> forAll (a �
e.attribute -> includes(a)))

6. Related Research

This paper is related to other research where metamodeling techniques were used. In
[7] a formal connection was made between the Entity-Relationship model and the
relational model, using based-MOF metamodeling techniques to represent both
models and their transformation. In [6] the semantics and syntax of the Entity-
Relationship model, the relational model and their transformation were studied. In

both research, constraints were imposed over the metamodels and their
transformations using OCL. In [14] a framework to represent metadata about source
data, target data, transformations, and the processes and operations that create and
administer a datawarehouse were presented. In [1] the problem arising in the scheme
translation between different data models was studied and a theoretical-graphic
formalism was introduced making it possible to represent uniformly schemes and
models to make a comparison among different data models and to describe the
translation performance. In [9] a transformation from the multidimensional model into
UML was presented, and the constraints imposed both over the model and the
metamodel, by means of OCL sentences were described

7. Conclusions and Future Research

In this paper, we propose the formalization of the transformation of the temporal
Entity-Relationship model into the temporal multidimensional one; we use MOF
class-diagrams to represent both models and we impose constraints over them using
OCL sentences. A pending research is related to the transformation of the temporal
multidimensional model into the relational model using metamodeling techniques. On
the other hand, the temporal model has temporal attributes represented as multi-
valued complex attributes, which, in turn are transformed into weak entities and
temporal relationships. The integration of both metamodels through a Metamodel of
Transformation allowed as to formally express a number of consistency constraints
between the input and the output models of the transformation algorithm; however
additional formalizations will be required to specify the transformations
unambiguously

References

1. Atzeni P, Torlone R., Schema translation between heterogeneous data models in
a lattice framework. 6th IFIP TC-2 Working Conference on Database Semantics
(DS-6), Atlanta, Georgia, May 30-June 2, 1995.

2. Agrawal R, Gupta A, Sarawagi S., Modeling Multidimensional Databases,
Research Report, IBM Almaden Research Center, San Jose, California, 1995.
ICDE '97

3. Chaudhuri S. and Dayal U., An Overview of Data Warehousing and OLAP
Technology, ACM SIGMOD Record 26(1), March 1997.

4. Chen P. The Entity-Relationship Model – Toward a Unified View of Data. ACM
Transactions on Database System. 1976

5. Golfarelli M., Maio D., Rizzi S., The Dimensional Fact Model: a Conceptual
Model for Data Warehouses. International Journal of Cooperative Information
Systems, vol 7, n.2&3, 1998

6. Gogolla Martin, Lindow Arne, Richters Mark, Ziemann Paul: Metamodel
Transformation of Data Models, Workshop in Software Model Engineering 2002

7. Gogolla Martin, Lindow Arne: Transforming Data Models with UML, IOS Press,
2003

8. Neil Carlos, Ale Juan. A Conceptual Design for Temporal Data Warehouse. 31º
JAIIO. Santa Fe. Symposium of Argentine Software Engineering. 2002

9. Neil Carlos, Pons Claudia. Aplicando Restricciones a un Datawarehouse
Temporal Utilizando UML/OCL Congreso Argentino de Ciencias de la
Computación e Informática 2003.

10. MOF. Mata Object Facility 1.3. OMG (1999) www.omg.org
11. Pons, Claudia, Baum, Gabriel and Felder Miguel. Foundations of Object Oriented

Modeling Notations in a Dynamic Logic Framework. Fundamentals of
Information Systems. Kluwer Academic Publisher. Chapter 1. 1999.

12. Pons, Claudia, Baum, Gabriel and Felder Miguel. Formal Foundations of Object
Oriented Modeling Notations. 3th International Conference on Formal
Engineering Methods, IEEE ICFEM 2000. UK.

13. OCL. Object Constraint Language - version 1.5. 2002
14. OMG, ed: The Common Warehouse Metamodel Specifications. OMG (2000).

www.omg.org
15. Pedersen T. B. and Jensen C. S, Multidimensional Data Modeling for Complex

Data. 1998. ICDE 1999:336-345.
16. Richters, Mark and Gogolla, Martin. Validating UML Models and OCL

Constraints. In Andy Evans and Stuart Kent, editors, Proc. 3rd Int. Conf. Unified
Modeling Language (UML'2000), pages 265-277. Springer, Berlin, LNCS 1939,
2000

17. Surajit Chaudhuri and Umesh Dayal, An Overview of Data Warehousing and
OLAP Technology, ACM SIGMOD Record 26(1), March 1997.

18. UML. The Unified Modeling Language Specification – version 1.3. 2001
19. Vassilliadis P, Sellis T. A Survey on Logical Models for OLAP Databases.

SIGMOD Record 28(4), pp. 64-69, December 1999

