
Designing Evolvable Location Models for Ubiquitous
Applications

Silvia Gordillo1, Javier Bazzocco1, Gustavo Rossi1 and Robert Laurini2

1 Lifia. Facultad de Informatica. Universidad Nacional de La Plata, Argentina
{gordillo,jb,gustavo}@lifia.info.unlp.edu.ar

 2 INSA-Lyon, France
Robert.Laurini@lisi.insa-lyon.fr

Abstract. In this paper we present an object-oriented approach for building lo
cation models in the context of ubiquitous applications. We first motivate our
research by discussing which design problems we face while building this kind
of applications; we stress those problems related with applications’ evolution.
We then present a set of simple design micro-architectures for representing lo
cations and their interpretation. We finally discuss some further research work.

1 Introduction

In the last 5 years, we have experienced an increasingly interest in the development of
ubiquitous applications, i.e. those applications that follow the anytime/anywhere/any-
media paradigm and provide transparent access to information and other kind of ser
vices trough different (in general portable) devices. One of the most important fea
tures of these applications is their ability to gracefully adapt themselves to the user’s
context, e.g. his location, the device he is using (a laptop, palm computer, cell phone,
etc), his preferences, etc. Research issues related with ubiquitous computing range
from hardware (small memory devices, interface appliances) and communication net
works (trustable connections, security, etc) to software and data management aspects
such as new interface metaphors, data models for mobile applications, continuous
queries, adaptive applications, information exchange between disparate applications,
etc.

In this paper we address one of the interesting facets of these applications: their
evolution. According to Abowd [1]: “Ubicomp applications evolve organically. Even
though they begin with a motivating application, it is often not clear up front the best
way for the application to serve its intended user community”. As a consequence, de
sign issues are critical for the application to evolve seamlessly when requirements
change. In our research we are pursuing the identification of a set of design micro-ar
chitectures to build evolvable location models, i.e. those application components that
represent the user location and which are used to customize the application’s behavior
accordingly.

Suppose for example a simple application to help the user move through a city like
Paris; while using his preferred device he can be informed about how to go to a place
from where he is now, which hotels and restaurants he can find in the neighborhood,
etc. In our first application’s release we assume that we can obtain the user’s location
in terms of the address where he is and we use a cartography service such as [5] to in
form him what he needs. Existing state-of-the-art technologies such as positioning de
vices and Internet cartography [7] make this scenario absolutely feasible. Being the
application successful, we want to integrate it with a new component that helps the
user guide through the Metro (or bus) network. Using a new set of positioning artifacts
like beacons [6], we know in which station he is and we can tell him how to go where
he wants. Notice that we now need to represent the location as the name of a Metro
station or bus stop. Eventually, some stations (huge ones) will have their own informa
tion systems offering shops and bars and we might need to guide him through the sta
tion; once more, the location representation changes and the functionality needs to be
extended. When he enters a Museum the problem has a new shift: if we are able to
know the artwork the user is watching (another kind of “location”), we may want to
explain him some facts about its author, the historical context, etc. There is no need to
say that the application’s structure might get rather complex and evolution and mainte
nance may become a nightmare when we add new location classes and contexts for
these kinds of queries.

The structure of this paper is as follows: In Section 2 we discuss why we should
carefully design the location model. Next we outline our solution by presenting an
adaptive location model and carefully describing its most important features. We then
summarize evolution issues related with locations. In section 3 we present some fur
ther work and concluding remarks

2 Designing a flexible location model

The above scenario shows that we face a set of problems regarding the structure of
classes related to the representation of locations; while rule-based approaches (see for
example [4]) can help in expressing context-related expressions such as: If the user is
in position X, execute action A, they do not suffice to solve other problems like those
presented in the introduction. More precisely we have the following design problems:

1-Objects representing locations have different attributes according to the position
al system we use. It may be not possible or reasonable to define new classes
each time the application evolves.

2-The way in which we interpret the location’s attributes varies with the context
(for example x, y in a local Cartesian system or in a global positioning one).

3-For each new kind of location we might need new ways to calculate distances,
trajectories; moreover, new services, previously unforeseen, may appear.

4-The “granularity” of locations might change, e.g. we want to see the station as a
point in the Metro network or as a building with corridors, rooms, facilities, etc.

For the sake of conciseness we will only address points 1 to 3 above. We assume an
object-oriented representation of the geographic objects as discussed in [3]

2.1 Using an Adaptive Object Model for Locations

To solve the first problem indicated above we use a generalization of the Type Object
Pattern, named “Adaptive Object Model” in [8], replacing different location classes
with a generic class LocationType whose instances are different types of locations as
shown in Figure 1.a. Each Location type defines a set of property types, having a
name and a type (class PropertyType). Instances of Location contain a set of proper
ties (instances of class Property) each one referring to one property type. Using the
“square” in Figure 1.a we can manage the meta (or knowledge) level by creating new
instances of the “type side” (at the right) and the concrete level by creating new in
stances of classes in the left.

type

type

properties p rop erti es

Property
value : Symbol

Location

0..*0..*

PropertyType
name : String
type : Type11

LocationType
11

0..*0..*

Figure 1a. Adaptive model for locations and their properties.

By this mean, adding new types of locations is not restricted by the code, compile & deploy
process, which is known to be a very “static” solution. By using the preceding approach, the
definition of a new kind of location can be easily made by arranging the required properties in
stances as needed (each one of them belonging to a particular type of property). The static defi
nition of the structure imposed by the classes approach is changed in favour of the more dynam
ic alternative presented by the “square” solution presented above. This can be done primarily
because the differences found in different types of locations resides in their structure rather than
in their behaviour.

2.2 Decoupling Location from its Context

It is clear from the discussion above that certain computations (distance, trajectories,
etc.) depend on the interpretation of the location attributes, being them coordinates,
street names, rooms in a museum, etc. We have generalized the idea of reference sys
tem defined in [3] which is used to decouple latitude, longitude pair from the corre
sponding (global) reference system. In this way we define the LocationContext class
hierarchy shown in Figure 2; each class defines a new application context for locations
providing specific behaviors according to the specific context. Usually, location con
texts are singletons since we can see them as providing behaviors that do not depend
on the particular location object. Some location classes may just act as adapters of ex
isting applications (e.g. a museum information systems) to improve interoperability.

Notice that class behaviors will be generally mapped to interface options in the user’s
device. Modeling LocationContext classes as typed objects as in 2.1 is also possible,
though we do not discuss it in this paper. Each location object collaborates with the
corresponding context to be able to answer usual queries such as: how do I reach a
place, how far am I from somewhere, etc.

Location

MetroNetwork MetroStation. . .

LocationContext

distance()
findPath()11

context

MuseumAdapter

Museum Information
System

Figure 2. The relationship between the location and its context.

2.3 Adding new functionality

One of the most complex aspects related with the evolution of location contexts is the
fact that new unforeseen functionality may arise, e.g. while in a museum, operations to
know more about an artwork; in the metro network operations to find the shortest path
between two stations, etc. In our model we implement context-specific operations as
Commands [2]. New operations are just implemented as new classes, which are inte
grated seamlessly in the model as shown in Figure 3.

It is neccesary to note that a solution based on new classes to add new functionality,
as the Command Pattern states, is particularly useful since no changes to the existing
system has to be done in order to use the new function. Here the “new class” ap
proach is used since the different commands vary in their behaviour rather than in
their structure, which is the opposite of the situation presented in 2.1.

While location contexts have a simple polymorphic interface (providing primitive
operations for computing distance, trajectories, etc), an interface for commands is also
provided. Thus, a location context is able to execute (acommand) which is an instance
of one of the sub-classes of Command.

Command
LocationContext

distance()
findpath()

1..*1..*

ShowShops AnotherCommand. . .

commands

Figure 3. Adding new functionality.

Location contexts may refine specific locations; for example (as discussed above),
we might want to see the station either as a node in the network or we might be “in
side” the station. We express this possibility with the relationship “refines” between
LocationContext and Location (not shown in the diagram) that allows us to easily pro
vide the user with all behaviors associated to the set of possible nested contexts.

3 Concluding Remarks and Further Work

In this paper we have discussed the problem of dealing with evolvable location mod
els; this problem is typical of ubiquitous information systems because of the way in
which they grow, i.e. as new communication and positioning services appear new un
foreseen functionality has to be added. We have shown that using a combination of an
adaptive object model with varying location contexts, we can make the evolution
seamless by eliminating the need to modify existing classes or code. Furthermore, de
coupling new functionality from location classes by using commands, we can also
cope with the addition of new behaviors. We are now studying the integration of loca
tion models into applications that deal with more general kind of geographic behav
iors. In this kind of software, application objects (cities, stations, etc) are generally
geo-referenced and described using pre-defined topologies such as points, lines, poly
gons, etc. We are studying the impact of combining location models with discrete and
continuous geographic models.

References

1. Abowd, G.: Software Engineering Issues for Ubiquitous Computing. Proceedings of the In
ternational Conference on Software Engineering (ICSE 99), ACM Press (1999), 75-84

2. Gamma, E., Helm, R., Johnson, J., Vlissides, J. : Design Patterns. Elements of reusable ob
ject-oriented software, Addison Wesley 1995.

3. Gordillo, S., Balaguer, F., Mostaccio, C., Das Neves, F. Developing GIS Applications with
Objects: A Design Pattern Approach. GeoInformatica. Kluwer Academic Publishers. Vol
3:1, pp. 7-32. 1999.

4. Kappel, G., Proll, B., Retschitzegger, W.: Customization of Ubiquitous Web Applications.
A comparison of approaches. International Journal of Web Engineering and Technology, In
derscience Publishers, January 2003

5. Navigation Technologies Corporation, www.navtech.com
6. Pradham, S.: Semantic Location. Personal and Ubiquitous Computing. Springer Verlag

2002 (6) 213-216.
7. Virrantaus, K., Veijalainen, J., Markkula, J.: Developing GIS-Supported Location-Based

Services. Proceedings of the Second International Conference on Web Information Systems
Engineering (WISE’02).

8. Yoder, J., Razavi, R.: Metadata and Adaptive Object-Models, ECOOP 2000 Workshops, in
www.adaptiveobjectmodel.com

