Detecting Implicit Collaboration Patterns *

Gabriela Arévalo, Frank Buchli, Oscar Nierstrasz
Software Composition Group - Institut fiir Informatik und angewandte Mathematik
University of Bern, Switzerland
{arevalo, buchli, oscar } @iam.unibe.ch

Abstract

A key problem during software development and main-
tenance is to detect and recognize recurring collabora-
tions among software artifacts that are tmplicit in the
code. These collaboration patterns are typically signs
of applied idioms, conventions and design patterns dur-
ing the development of the system, and may entail im-
plicit contracts that should be respected during mainte-
nance, but are not documented explicitly. In this paper
we apply Formal Concept Analysis to detect implicit
collaboration patterns. Our approach generalizes Anto-
niol and Tonella one for detecting classical design pat-
terns. We introduce a variation to their algorithm to re-
duce the computation time of the concepts, a language-in-
dependent approach for object-oriented languages, and a
post-processing phase in which pattern candidates are fil-
tered out. We identify collaboration patterns in the ana-
lyzed applications, match them against libraries of known
design patterns, and establish relationships between de-
tected patterns and their nearest neighbours.

1. Introduction

One of the key difficulties faced by developers who
must maintain and extend complex software systems,
is to know what are the implicit contracts in the sys-
tem. Such contracts are typically manifested as recur-
ring patterns of software artifacts, which may represent
design patterns, architectural constraints, or simply id-
ioms and conventions adopted for the project. We in-
troduce the term collaboration pattern to cover all these
cases.

In most applications, the implicit contracts may be
recovered by recognizing occurrences of collaboration

% In Proceedings of WCRE 2004 (11*"* Working Conference on
Reverse Engineering) pp.122-131, IEEE Computer Society
Press, 2004

patterns in the source code [4] [14]. However this task
is anything but trivial in medium-sized to large appli-
cations. In most cases, the documentation of the sys-
tems is out-of-date, and the information we seek is not
explicit in the code [7] [17].

We explore an approach for detecting collaboration
patterns that refines and extends that which was pro-
posed by Tonella and Antoniol [18] for detecting clas-
sical design patterns. We take the source-code of an
object-oriented application as our main information
source and extract structural relationships between
classes. We then apply Formal Concept Analysis (FCA)
to identify recurring “concepts” (i.e., patterns) in the
software. Our approach consists in:

e improvements to the pattern detection algorithm
used by Tonella and Antoniol to avoid redundancy
in the representation of structural relationships
and improve the time performance of calculating
concepts,

e generalization of the technique to a language-in-
dependent approach,

e the introduction of a filtering phase to narrow the
scope of candidate patterns.

Based on the results from our experiments, the main
contributions of this paper are:

e the detection of both classical and non-classical
patterns in the different applications using simple
structural relationships between classes. We are
not limited to known design patterns but can de-
tect any recurring collaboration between classes in
the analyzed applications.

e the possibility of establishing relationships, called
pattern neighbourhoods, over detected patterns.
With the neighbours of the patterns, we can de-
tect either missing relationships between classes
needed to complete a pattern, or excess relation-
ships between classes that extend a pattern. We
can also analyze the connections of the identi-

fied patterns with the classes implemented in the
analyzed application.

e the incremental construction of a pattern library
to match candidates against known design pat-
terns and detected patterns after each case study.

For the sake of conciseness, we use the term patterns
to refer to collaboration patterns in the rest of the pa-
per.

The paper is structured as follows: In section 2 we
describe in detail the steps of the pattern detection ap-
proach in section. We describe and evaluate our experi-
mental results in sections 3 and 4. We give an overview
of related work in section 5, and we conclude with some
remarks concerning related and future work.

2. Recognizing Collaboration
Patterns with FCA

Formal concept analysis (FCA) [9] is a branch of lat-
tice theory that allows us to identify meaningful group-
ings of “elements” that have common “properties” (re-
ferred to, respectively, as objects and attributes in the
standard FCA literature!). The sets of elements, prop-
erties and binary relation (represented in an incidence
table) between them are known as context, and the
groupings based on the common properties of the ele-
ments are named as concepts. The set of all the con-
cepts of a given context forms a complete partial or-
der. Thus the set of concepts constitutes a concept lat-
tice £L(T) and there are several algorithms for comput-
ing the concepts and the concept lattice. For more de-
tails, the interested reader should consult Ganter and
Wille [9].

We will now explain (i) how the source code is
mapped in terms of elements and properties, (i) how
the concepts are computed, and (iii) how we apply
post-filtering to reduce the set of candidate patterns.

2.1. FCA Mapping: Setup of the Formal
Context

In order to use FCA, we need to define the ele-
ments and properties of a context C. The elements
&, are tuples of classes from the analyzed application.
The length of these tuples is defined as the order o.
The properties P, are relations inside one class tu-
ple. Whenever such a relation p; € P, within the tuple
e;j € &, is fulfilled we add the relation (p;, e;) to the in-
cidence table Z. We use a simple example to clarify the

1 We use the terms element and property instead to avoid the
unfortunate clash with object-oriented terminology.

terms and the definitions. Figure 1 introduces an ex-
ample consisting of seven classes. The key information
of interest to us is the relationships that hold among

classes.
<Abstract>
X
4

<Abstract>

A
4
d
& |

Figure 1. Example class diagram

Elements: Permutation of Classes. We have said that
the elements are tuples of classes. We build the ele-
ments as all the permutations of the classes with the
length of order o:

5(,:{(1'1,..."%(,)|xi€C,1§i§0}

We adapt the algorithm proposed by Tonella and
Antoniol [18]. This is an inductive context construc-
tion algorithm that avoids the combinatorial explosion
which results when generating all possible tuples of
classes. The underlying hypothesis is that the patterns
consist of classes which are all connected together by
their relations (unrelated classes are not interesting).
In the initial step of the algorithm, all pairs of related
classes are collected. In the inductive step, the class se-
quence from the previous iteration is augmented with
all the classes having some relation with the classes in
the sequence.

In our variation of the algorithm, we avoid gener-
ating all permutations of class sequences. For exam-
ple, if the tuple (C A P) is generated, and we subse-
quently generate (A P C) or (C P A), we only keep
one of these as being representative of all three alter-
natives.

In case of Figure 1 all possible combinations of the
class tuples of order o = 3 would lead to 210 elements?,
while the inductively constructed context contains only
seven elements, listed in first column of Table 1.

Properties: Class Relations and Characteristics. The
properties are all the possible combinations of a re-
lation C' x C' inside a tuple e; € £ together with the
unary relations of each single class C:

7
| —
2 <3>3.—210

(1,2)sub | 3 D)sub | (3,2)sub | (2,1 ace | (1,2)ace | (3,2)ace | (2,3)ace | (D)avs | (2)abs | (3)abs

{C AP} X X X X

{C A B} X X X X

{ZXY} X X X X

{Z X P} X X X X

{A P B} X X X

{A P X} X X X X
{Y X P} X X X

Table 1. Order 3 context for the example in Figure 1

PO = {(Zvj)t ‘ (xivxj)t € R371 S 7’7] S O}U
{(@)¢ | (z4): € Ry, 1 <i <o}

Each property has one or two indices that refer to
the position of the class to be analyzed inside the tu-
ple, and a subindex ¢ to indicate the name of the prop-
erty. For example, the property (3,2) g, applied to the
element {C A B} means that the class B is a subclass of
the class A. Using indices instead of names allows dis-
junct tuples to share common properties. In the exam-
ple result (Table 2) the tuples {C A B} and {Z X Y}
have the common properties (1,2)sup, (2) s, (1,2)Acc
and (3,2)susb-

2.2. ConAn Engine: Calculation of the
Concepts

There are several algorithms to calculate the con-
cepts and its lattice [16]. We use the Ganter algorithm
[9], which is one of the fastest algorithms known [12].

The example of Figure 1 yields ten concepts for the
order o = 3. They are listed in Table 2.

Let’s consider the specific case of a well-known pat-
tern, such as Composite Pattern [8]. We can reduce and
generalize the structural information to the relation-
ships isSubclass, isAbstract and accesses and see it as
in Figure 2. This simplified Composite Pattern is de-
tected twice in the example of Figure 1: {C A B} and
{Z X Y} as concept 2.

<Abstract>

Figure 2. Structural relationships of the Compos-
ite Pattern

2.3. Concept Lattice: Post Filtering

Once the concepts are calculated, each concept is a
candidate for a pattern. But not all concepts are rel-
evant. Therefore a post processing is needed to filter
out concepts that are not meaningful. Two particu-
larly useful filters are: removing disconnected patterns
and merging equivalent patterns, which can be applied
to a graph representation of concepts for our domain.

Intent relation graph: An intent relation graph is
a graph whose nodes are the indices of the properties
of the binary relation Rp and whose edges are binary
relations Rp between the indices.

The intent graphs of concepts 2, 4 and 8 from Ta-
ble 2 are shown in Figure 3. The edge between node 1
and node 2 in graph ¢2 represents the property (1, 2) sup
or (1,2) acc and the second edge between node 2 and 3
is from the property (3,2)gyup. We similarly build the
graph of concepts 4 and 8. As soon as at least one re-
lation between two nodes holds, the edge exists.

L o oy

c5
Figure 3. The intent graph of concepts 2, 4 and
8 of Table 2

Remowving Disconnected Patterns. A concept is mean-
ingful when the intent (all properties which are true for
this concept) is a set of structurally connected nodes.

A connected pattern is a pattern whose intent rela-
tion graph (definition 2.3) is connected. In the exam-
ple result (Table 2) the following concepts are discon-
nected: 6, 7, 8 and the top concept.

Merging Equivalent Patterns. Suppose we have a sys-
tem with the classes as shown in Figure 4. It might

top (all elements G, 0)

8 ({ {C A P}7 {Z X P}v {C A B}a {Z X Y}a {Y X P} }7 { (172)Sub7 (Q)Abs })
7 ({ {A p X}’ {A p B} }’ {(2, 1)Acca (1)Abs })

6 ({{CAP}{ZXP} {CAB} {ZXY}} { (1,2)5up, (2)abs; (1,2)ace })
2 ({ {C A P}’ {Z X P}7 {Y X P} }’ { (1a2)5ub7 (Q)Abw (372)Acc })

4 ({ {A P B} }7 { (371)Suba (1)Ab57 (2 1)1465 })

3 ({ {A p X} }7 { (2a I)Acca (1)Absa ()Abav (2’3)1400})

2 ({ {C A B}7 {Z X Y} }7 { (172)Suba ()Ab87 (P)Acc () Sub })

1 ({ {C A P}7 {Z XP } }7 { (1a2)5uba ()Ab37 (’)Acc () Acc })

bottom (0, all properties M)

Table 2. Concepts of the example in Figure 1

then happen that during the concepts and lattice cal-
culation, we find the two concepts shown in Table 3.

[o]

I I
I o I RES en 0

Figure 4. Twice the Adapter Pattern

¢ | {{DEF}} { (2, Dsup, (3,2)Acc})
c2 | ({{TUS}} {1, 3)sub, (2,1)ace })

Table 3. Concepts of the example in Figure 4

Even though {D E F} and {T U S} are exactly the
same pattern, the algorithm treats them separately.
This happens because when generating the class se-
quences, we just keep one representative of each possi-
ble combination of classes. This means we just look at
{D E F} which represents the class sequence {(D F E),
(EDF), (EFD),(FDE), (FED)}.

Two concepts, representing collaboration patterns,
are equivalent if a permutation of the indices of the in-
tent properties exists such that each property from the
first concept can be transformed into a property of the
second concept by that permutation, and vice versa
[18].

In our example we find a permutation a« = {3 —
1,1 — 2,2+ 3}, which transforms the tuple: {T U S}
+* {S T U}. Concept ¢y (from Figure 4) can now be
removed when the translated extent of this concept is
added on concept c¢;.

In the main example (Table 2) concepts 4 and 5 are
equivalent: The permutation & = {3 +— 1,2 — 1,3 —

2} translates the properties of concept 5 into those of
concept 4.

Applying these two filters (remowving disconnected
patterns and merging equivalent patterns) on the main
example leads to the four patterns presented in Table 4.
The first three patterns are directly taken from the first
three concepts. Pattern p4 is merged from concepts 4
and 5. The elements of concept 5 are translated into
{P C A}, {P Z X} and {P Y X}, and are appended to
{A P B}.

2.4. Pattern Neighborhood

One of the advantages of the FCA approach is that
the generated concepts are related within a complete
partial order. Thus given a concept ¢, we can identify
the superconcept (also known as cover concept) and
subconcept(also known as subordinate concept) of ¢ in
a lattice.

With these two ideas, we define the idea of neigh-
borhood. We define two kinds of neighbours. Consider-
ing that each concept c is a potential pattern, we de-
fine:

Almost pattern: An almost pattern X of a pat-
tern Y is a pattern X which is contained in the super-
concept of the pattern Y in the lattice.

Overloaded pattern: An overloaded pattern X of
a pattern Y is a pattern X which is contained in the
subconcept of a pattern Y in the lattice.

As a generic example, Figure 5 shows the structure
of almost and overloaded patterns of a concept repre-
senting the structure of a Composite Pattern.

In the lattice of the example (shown in Figure 6),
we see that concept 5 is an almost pattern of concept
1. For example, tuple {Y X P} is missing the property
(1,2) Ace, s0 belongs to concept 5 instead of concept 1.

But the problem with our concrete approach is that
the side-effect of having equivalent patterns has to be
taken into account here as well. As we have seen con-
cept 4 is equivalent to concept 5. This new concept

ps | ({{APB} {PCA}{PZX} {PYX}} {3 Dsub, (1)abstrs (2,1)ace })
p3 ({ {A P X} }7 { (27]-)Accv (1)Abst'r’a (3)Abstrv (2a3)Acc})

D2 ({ {C A B}’ {Z X Y} }7 { (172)Sub7 (Z)Abstw (1’2)Acca (372)Sub })

P1 ({ {C A P}, {Z XP } }, { (172)Sub7 (Q)Abstra (172)Accv (312)Acc })

Table 4. Resulting Patterns after the merging of equivalent patterns from the concepts of Table 2

2
4B
<Abstract>

2
4

1

<Abstract>
2

{CAB}

Figure 5. Almost and overloaded patterns of a
Composite Pattern

(from the union of concepts 4 and 5) has two main con-
sequences:

e the union of concepts 4 and 5 is now an almost
pattern of concept 1

e new connections with other concepts can appear.
In this specific case, if we translate the proper-
ties of concept 2 with the permutation o = {1 —
3,2 +— 1,3 — 2}, we see that this transforms the
union of the concepts 4 and 5 in an almost pat-
tern of the new concept 2 considering the intents of
the concepts. But the union of the concepts 4 and
5 have to add the transformed elements of the ex-
tent of concept 2. Thus the elements of p, have to
be added in py: {C A B} v% {A C B} and {Z X
Y} -5 (X ZY)

After the post-filtering process, where we modify the
extent of some concepts, finding equivalent patterns
and removing disconnected patterns, we no longer have
a valid lattice, but simply a partial order [6]. Now the
patterns have reached their final state and are listed in
Table 5.

1 isSubclassOf 2

2 accesses 1 2 isAbstract

1 isAbstract

3 isAbstract
2 accesses 3 -~ -

3 isSubclassOf 2

~~{CAB}
ZXY}

Figure 6. Lattice of Incidence Table 1

Almost and overloaded patterns remain in the same
order o. There are as well related patterns when we cal-
culate the lattice for the order o—1 and the order o+ 1.
Patterns in a higher order have subpatterns from the
lower order. They can be detected by subgraph match-
ing techniques.

Cover pattern: (5 is a cover pattern of the pattern
c1, if the intent relation graph (Definition 2.3) of the
pattern ¢; is a subgraph of the intent relation graph
of cy. Cover patterns are the connection links to the
patterns in the order o + 1.

Subpattern: Cs is a subpattern of the pattern cq,
if the intent relation graph (Definition 2.3) of the pat-
tern ¢y is a subgraph of the intent relation graph of
c1. Subpatterns are the connection links to the pat-
terns in the order o — 1. Linking the different orders of
the patterns is made after applying the post process-
ing filter.

Figure 7 show the subpatterns of the Composite Pat-
tern py in the lower order o = 2, and the cover pattern
in order o = 4.

The pattern neighborhood is now the union of all
the above mentioned sets:

Pattern Neighborhood: A pattern neighborhood of a pat-
tern c is the union of the almost, overloaded, cover and
subpatterns of the pattern c.

The approach of Antoniol and Tonella [18] deals
with patterns as isolated entities. With our approach
we relate the patterns within the same lattice and also

y2 ({{APBL{PCAL{PZX} {PYX}, {ACB}{XZY}},
(3; l)Suba (I)Abstrv (27 1)Acc })

ps3 ({ {A P X} }7 { (27 1)Ac¢:7 (1)Abstr7 (3)Abstr7 (2a3)Acc})

b2 ({ {C A B}a {Z X Y} }7 { (172)Suba (2)Abstr7 (1a2)ACCa (372)Sub })

P1 ({ {C A P}7 {Z XP } }7 { (172)Sub7 (2)Abst’r’> (172)14667 (3ﬂ2)Acc })

Table 5. Final Patterns after applying the post filters to the concepts from Table 2

Cover Pattern

O0=4
0=3
<Abstract> <Abstract>
2 2
A A
0=2 —
Bl
{AB} {CA}
Sub Patterns

Figure 7. Sub and cover patterns of the Compos-
ite Pattern (p2)

with other patterns calculated in higher and lower or-
ders. Thus, we are able to analyze not only the de-
tected patterns but also the relationships to other pat-
terns in the applications.

3. Validation: Case Studies

We have validated our approach by applying the
tool we have implemented called CONAN PADI to three
mid-sized Smalltalk applications: ADvance and Code-
Crawler.

e ADvance? is a system round-trip engineering tool

from IC&C. It is a multidimensional OOAD-tool
for supporting object-oriented analysis and design,
reverse engineering and documentation.

3 http://www.io.com/~icc/

e CodeCrawler is a language independent software
visualization tool*. CodeCrawler supports reverse
engineering through the combination of metrics
and software visualization [13].

We have applied the approach as outlined in sec-
tion 2 to each case study. After the concepts have
been generated, we classify the patterns in terms of
the properties that are used to describe them. We have
built two Classifiers A and B. The Classifier A con-
tains three properties: isSubclass, hasAsAttribute,
isAbstract and the Classifier B contains two proper-
ties: isSubclass, hasAsAttribute.

Thus, for example, we take the Classifier B
and we get all the patterns that can be described
with a set of properties that include isSubclass
or hasAsAttribute. In the specific case of Code-
Crawler in order= 3, we get 14 patterns which are dis-
tributed in 300 tuples of classes in total (Table 6). This
means that Classifier B gives us an average of 21 tu-
ples per pattern (300 / 14).

The complete analysis of the quantitative impact
of the classifiers is seen in the Table 6. A classifier
with less properties gives a clearer image of the situa-
tion. Applying Classifier B with less properties heav-
ily reduces the number of different patterns whereas
the found patterns in total are much less reduced. This
leads to patterns which have more tuples as elements.
The patterns of Classifier A are too “noisy”. Compar-
ing again the case of CodeCrawler in order=3, we see
that the Classifier A has an average of 13 tuples per
pattern (431 / 32) meanwhile the Classifier B has an
average of 21 tuples per pattern (300 / 14).

To better compare the three cases we selected eight
reference patterns which are introduced in Tables 7 and
8. Subclass Star is a tuple where one class has all the
others as subclass. In the Subclass Chain the classes
form an inheritance chain, whereas in the Attribute
Chain the classes form an access chain. Attribute Star
is a pattern with a class which is used as attribute in
all the other classes from the tuple. The next four pat-
terns (Facade, Composite, Adapter and Bridge) have
all names from the collection of Gamma et. al. [8]. It

4 http://www.iam.unibe.ch/~scg

http://www.io.com/~icc/
http://www.iam.unibe.ch/~scg

ADvance CodeCrawler

Classifier Classifier

A B A B
different patterns 12 5 7 3
patterns in total 215 181 116 85

3 | # different patterns 57 32 32 14

patterns in total 1103 907 431 300

4 | # different patterns 329 218 110 58

patterns in total 7521 6093 | 1423 983

Table 6. Classifier statistics

o=3 o=4
Subclass Star
A A

afinlilin(s

Subclass Chain

e [0

Attribute Chain

L [A]

Attribute Star
A /°|:| A _°|:|

] hE

Table 7. Structure of investigated patterns

is important to see that they are simplified to the used
structural definitions of inheritance, aggregation and
abstractness of a class. If our tool identifies a found pat-
tern with such a reference pattern it just means that it
could be a candidate for this pattern. The letter A in
a box means that the class should be abstract.

Table 9 shows all the found patterns of those eight
references for the order o = 2, 3, 4. Most of the patterns
appear twice: Once in the first line (e.g., Composite)
where the reference pattern lacks the property isAb-
stract; whereas in the second line the isAbstract prop-
erty is taken into consideration. As Classifier B has no
property isAbstract it is obvious that no patterns con-
taining an isAbstract property can be found.

One interesting observation concerns the two zeros
marked with an asterisk: Subclass Chain and Attribute
Chain of order o = 4 of the CodeCrawler application.
Applying Classifier A no Subclass Chain nor Attribute
Chain of order o = 4 is found. Nevertheless Classi-

o=3

Composite
A 7 A
Adapter
Bridge

L
b oc

Table 8. Structure of investigated patterns

fier B detects 12 instances of Subclass Chain and 15
instances of Attribute Chain. Classifier A does not de-
tect those patterns because CodeCrawler has no chain
with an abstract class exactly at the beginning and
the rest of the chain consisting of non abstract classes.
Just one representative with an abstract class on top
would be enough that the FCA approach would de-
tect the rest of the 12 (resp. 15) patterns. This effect
shows that having too many properties can be counter-
productive and the basic patterns cannot be detected
if there is too much noise.

4. Evaluation of the Results

Based on the results, we are able to evaluate our ap-
proach from different viewpoints:

Detect class dependencies: As all the different re-
lations (inheritance, access, invocation) are shown, the
dependencies derived from those relations are then
available. Looking again at CodeCrawler, we see that
e.g., the class CCTool cannot have a lot of dependencies
because this class is in none of the patterns, whereas
CCNodePlugin is in 47 patterns up to order o = 4 and
must therefore have several dependencies.

ADvance CodeCrawler
Classifier Classifier
Pattern A B A B
2 Subclasses 95 95 57 57
Attributes 80 80 26 26
3 Subclass Star 271 271 | 140 140
Abst. Sub. Star 46 - 22 -

Subclass Chain 44 44 28 28
Abst. Sub. Chain 10 11 -

Attribute Chain 108 108 25 25

Facade 214 214 | 42 42
Abst. Facade 0 - 15 -
Attribute Star 44 44 9 9

Abst. Attrib. Star 3 - 1 -
Composite 6 6 0 0
Abst. Composite 2 - 0 -

Adapter 32 32 4 4
Abst. Adapter 13 - 1

Bridge 37 37 19 19
Abst. Bridge 6 - 12 -

4 Subclass Star 1073 1073 | 313 313
Abst. Sub. Star 87 - 15 -

Subclass Chain 12 12 0* 12
Abst. Sub. Chain 1

Attribute Chain 137 137 | 0* 15

Facade 627 627 56 56
Abst. Facade 0 - 20

Attribute Star 15 15 0
Abst. Attrib. Star 1 - 0 -
Composite 3 3 0 0
Abst. Composite 1 - 0 -
Bridge 20 20 6 6

Table 9. Investigated Patterns

Identify the possible presence of classical de-
sign patterns: Candidates for classical design pat-
terns are found. Some of these turn out to be false can-
didates, i.e., structural patterns which superficially re-
semble design patterns, but are not in fact instances
of those design patterns. The reasons for the misin-
terpretation are: (1) Not all the properties are abso-
lutely reliable. For example, the extraction of the type
of an attribute is based on a heuristic [1], because we
work with Smalltalk, which is a dynamically typed lan-
guage; (2) The collaboration of the detected structural
pattern matches that of the known design pattern, but
not its intent. This happens mainly with the Facade,
Adapter and Bridge patterns in our case studies. Con-
sider, for instance, the Bridge pattern of order o = 3 in
Table 7. A class that has a subclass and accesses an-
other class is a candidate for a Bridge, but there is no

guarantee that such a class is actually serving the pur-
pose of a Bridge.

Identify the neighborhood of a pattern: The
neighborhood can be analyzed by navigating through
the almost, overloaded, sub and cover patterns. This
can be important to detect all candidates for a clas-
sical pattern. For example, we consider the Abstract
Composite pattern of order o = 3 of the ADvance ap-
plication. Applying Filter A CONAN PADI detects two
Abstract Composite patterns, but in the neighborhood
we find four more Composite patterns without an ab-
stract composite root.

Mining patterns: As our approach with FCA detects
any kind of pattern we found numerous “new” pat-
terns, meaning that they are not referred to in the lit-
erature. Whether those patterns are useful and make
sense as Design Patterns is another issue.

Identify coding styles: We have noted that occur-
rence and frequency of certain types of patterns in a
system may be a matter of coding style. In our case
studies we have seen that CodeCrawler makes heavy
use of Subclass Star and Facade, whereas ADvance is
the only application with the Composite pattern.

5. Related Work

The starting point for our work was the approach of
Tonella and Antoniol [18], and we have already sum-
marized our improvements to their approach. Other re-
lated work focuses on the detection of design patterns
a la Gamma as opposed to more general software pat-
terns. We cite some of these approaches.

Brown [2] presents in his Masters thesis a tool
to detect design patterns in Smalltalk environments.
He explains how to deal with the typeless language
Smalltalk. The detection itself is then based on Cor-
man’s cycle-detection technique [5]. There is no gen-
eral abstraction proposed to encode patterns. In par-
ticular, Brown does not demonstrate a clearly general-
izable approach to detect patterns: for each pattern, a
specialized detection algorithm must be developed.

Seemann and von Gudenberg [15] use a compiler
to generate graphs from the source code. This graph
acts as the initial graph of a graph grammar that de-
scribes the design recovery process. The validation is
made with respect to well-known design patterns such
as Composite and Strategy in the Java AWT package.

Keller et al. [10] present an environment for the
reverse engineering of design components based on
the structural descriptions of design patterns. Their
validation is made with SPOOL on three large-scale
C++ software systems. They store the meta-model as
UML/CDIF and query then this model for patterns.

Niere et al. [14] provide a method and a correspond-
ing tool which assist in design recovery and program
understanding by recognizing instances of design pat-
terns semi-automatically. The algorithm works incre-
mentally and needs the domain and context knowledge
given by a reverse engineer. To detect the patterns they
use a special form of annotated abstract syntax graph
(ASG). Using a subgraph matching algorithm allows
them as well to define a pattern neighborhood as we
gain out of the lattice. An evaluation of the approach
is made with the Java AWT and JGL libraries.

In Kramer and Prechtel’s approach [11], the pat-
terns are stored as Prolog rules. Their Pat tool takes
the meta-information directly from the C++ header
files and queries them. The validation on the C++ li-
braries shows that the precision is around 40 percent.

6. Conclusions
6.1. Contributions

A complete description of the approach including
the analysis of the cases studies and the tool imple-
mented to support it is described elsewhere [3]. Al-
though our work is based on that developed by Tonella
and Antoniol, there are some notable differences:

e According to our measurements of Tonella and
Antoniol’s algorithm, the performance with our
data was a critical issue. We propose an improve-
ment to their algorithm to make it faster. We elim-
inate the redundancy in the sets of elements con-
sidered to reduce the calculation time for the for-
mal context generation. Using as example figure
1 (Section 2.1) where there are 7 classes, we have
made a comparison of both approaches (shown in
table 10) in terms of time performance. The calcu-
lation time in the different orders in our approach
is uniform , whereas in their approach it increases
for each order. The number of tuples also increase
with each order in their approach, whereas it re-
mains relatively constant in ours.

e With our improvement in the algorithm where we
keep one representative of the set of possible com-
binations of a class sequence, we avoid repeated
information and we avoid to remove equivalent in-
stances [18] inside the concepts.

e With our approach, we are not constrained to the
detection of design patterns. We are focused on
the larger scope of detecting recurring collabora-
tions patterns implicit in the code, which we refer
to as collaboration patterns. These collaborations
may represent design patterns, architectural con-

our approach [18]
order || Number | time [s] || Number | time s
of Tu- of Tu-
ples ples
2 6 0.1 8 0.1
3 7 0.1 18 0.2
4 6 0.1 34 0.4
5 6 0.1 70 2.4
6 4 0.1 140 17.6
7 1 0.1 140 27.5
[total | 30 [06 [410 [482

Table 10. Comparison between our inductive ap-
proach and the inductive approach from Tonella

straints, or simply idioms and conventions adopted
for the system.

e In contrast to Tonella and Antoniol’s approach, we
relate the patterns to each other using the connec-
tions between the concepts given by the partial or-
der in the lattice, and the lattices calculated with
the different orders. This is what we named pat-
tern neigbourhoods. For example, it is possible to
detect patterns which are almost like another pat-
tern.

e We propose to take the information from a lan-
guage independent meta-model instead from the
source code itself. This makes the approach more
general because it can be applied to applications
in different programming languages. In contrast,
Tonella and Antoniol focus on experiments done
with C++ applications.

e To gain an overview more quickly, as a starting
point, we compare the detected patterns against
a reference library of well-known design patterns
in the post-processing phase. This library is incre-
mented with new detected patterns with each ap-
plication we analyze.

6.2. Future Work

¢ Enhance the model with information at a
higher abstraction level. Instead of only using
the structural information, we could use properties
of an higher abstraction level. Such higher-level in-
formation could include properties like: isLeaf, is-
Component, isFacade. Among the resulting pat-
terns, behavioral patterns might be inferred.

e Solve the scalability problem. In an industrial
environment CONAN PADI has to be much faster.
Results should be available in real time or at least

within seconds, otherwise the developer will not
use this tool. One idea to improve the speed is not
to take all orders into consideration.

Better name guessing. Use a better reference
library to detect well-known patterns and improve
the matching algorithm for them, i.e., making the
matching algorithm more fuzzy.

Acknowledgments: We gratefully acknowledge the
financial support of the Swiss National Science Founda-
tion for the project “Tools and Techniques for Decom-
posing and Composing Software” (SNF Project No.
2000-067855.02, Oct. 2002 - Sept. 2004).

References

(1

2]

(4]

(5]

(6]

(9]

[10]

(11]

[12]

(13]

T. Aebi. Extracting Architectural Information using
Different Levels of Collaborations. Diploma thesis, Uni-
versity of Bern, Sept. 2003.

K. Brown. Design Reverse-Engineering and Automated
Design Pattern Detection in Smalltalk. Masters thesis,
North Carolina State University, 1996.

F. Buchli. Detecting Software Patterns using Formal
Concept Analysis. Diploma thesis, University of Bern,
Sept. 2003.

E. J. Chikofsky and J. H. Cross, II. Reverse Engineer-
ing and Design Recovery: A Taxonomy. IEEE Software,
pages 13-17, Jan. 1990.

T. H. Corman, C. E. Leiserson, and R. L. Rivest. Intro-
duction to Algorithms. MIT Press, 1990.

B. Davey and H. A. Priestley. Introduction to Lat-
tices and Order: Second Edition. Cambridge University
Press, 2002.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-
Oriented Reengineering Patterns. Morgan Kaufmann,
2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading, Mass., 1995.

B. Ganter and R. Wille. Formal Concept Analysis: Math-
ematical Foundations. Springer Verlag, 1999.

R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé.
Pattern-based Reverse Engineering of Design Compo-
nents. In Proceedings of ICSE 99 Conference, pages
226-235. IEEE Computer Society Press, May 1999.

C. Kramer and L. Prechelt. Design Recovery by Auto-
mated Search for Structural Design Patterns in Object-
Oriented Software. In Proceedings of WCRE °96 Con-
ference. IEEE, Nov. 1996.

S. Kuznetsov and S. Obédkov. Comparing Performance
of Algorithms for Generating Concept Lattices. In Pro-
ceedings of International Workshop on Concept Lattices-
based KDD, 2001.

M. Lanza. Object-Oriented Reverse Engineering —
Coarse-grained, Fine-grained, and Evolutionary Soft-
ware Visualization. PhD thesis, University of Bern, May
2003.

(14]

(15]

(16]

(17]

18]

J. Niere, W. Schéfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards Pattern-based Design Recov-
ery. In Proceedings of the 24th International Conference
on Software Engineering, pages 338—348. ACM Press,
2002.

J. Seemann and J. W. von Gudenberg. Pattern-based
Design Recovery of Java Software. In Proceedings of the
6th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 10-16. ACM
Press, 1998.

M. Siff and T. Reps. Identifying Modules via Concept
Analysis. In Proceedings of the International Conference
on Software Maintenance, pages 170-179. IEEE Com-
puter Society Press, 1997.

P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse
contracts: Managing the Evolution of Reusable Assets.
In Proceedings of OOPSLA ’96 Conference, pages 268—
285. ACM Press, 1996.

P. Tonellaand G. Antoniol. Object Oriented Design Pat-
tern Inference. In Proceedings ICSM ’99 Conference,
pages 230238, Oct. 1999.

	Introduction
	Recognizing CollaborationPatterns with FCA
	FCA Mapping: Setup of the Formal Context
	ConAn Engine: Calculation of theConcepts
	Concept Lattice: Post Filtering
	Pattern Neighborhood

	Validation: Case Studies
	Evaluation of the Results
	Related Work
	Conclusions
	Contributions
	Future Work

