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Abstract

During the object-oriented software development process, a variety of models of the
systemis built. All these models are semantically overlapping and together represent
the system as a whole. In this chapter, we present a classification of relationships
between models along three different dimensions, proposing a formal description of
them in terms of mathematical contracts, where the software development process is
seen asinvolving a number of agents (the devel opment team and the software artifacts)
carrying out actions with the goal of building a software system that meets the user
requirements. In this way, contracts can be used to reason about correctness of the
development process, and to compar e the capabilities of various groupings of agents
in order to accomplish a particular contract. The goal of the proposed formalization
isto provide formal foundations for tools that performintelligent analysis on models
assisting software engineers through the software life cycle.
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| ntroduction

A software development processis a set of activities that jointly convert users’ needs
to a software system. Modern software development processes, such as the Unified
Process (Jacobson, Booch, & Rumbaugh, 1999), areiterativeandincremental, they repeat
over aseriesof iterationsmaking up thelifecycle of asystem. Eachiteration takesplace
over time and consists of one pass through the requirements, analysis, design, imple-
mentation, and test activities, building a number of different models. Due to the
incremental nature of the process, each iteration resultsin anincrement of models built
in previousiterations. This creates a natural relationship between the elements among
different phases and iterations; elements in one model can be related to elementsin
another model. For instance, a use case (in the use case model) can be traced to a
collaboration (intheanalysisor design model) representingitsrealization. Figure 1 lists
the classical phases or activities—requirements, analysis, design, implementation, and
test—inthevertical axisandtheiterationinthehorizontal axis. Threedifferent dimensions
are distinguished in order to classify relationships between models:

i horizontal dimension (internal dimension)
i vertical dimension (activity dimension)

i evolution dimension (iteration dimension)

The horizontal dimension deals with relations between submodels that coexist consis-
tently making up amore complex model. The UML incorporates several sublanguages,
each one allowing a specific view on the system. Models of different viewpoints have
a certain overlap, for instance, an analysis model consists of sequence diagrams and

Figure 1. Dimensions in the development process
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182 Pons and Baum

collaboration diagramsboth representing different aspects of the behavior of the system.

The vertical dimension considers relations between models belonging to the same
iteration in different activities (e.g., adesign model realizing an analysis model). Two
related models represent the same information but at different levels of abstraction.

The evolution dimension considers relations between artifacts belonging to the same
activity in different iterations (e.g., ause case is extended by another use case). In this
dimension, new models are built or derived from previous models by adding new
information that was not considered before or by modifying or detailing previous
information.

An essential element to the success of the software development processisthe support
offered by casetools. Existing casetoolsfacilitate the construction and manipul ation of
models, butingeneral, they do not provide checksof consistency between modelsalong
either vertical or evolution dimension. Tools neither provide automated evolution of
models (i.e., propagation of changes when a model evolves, to its dependent models).
Theweaknessof toolsismainly duetothelack of ageneral underlying formal foundation
for the software development process (particularly focused on relations between
models).

To overcome this problem, we propose to apply the well-known mathematical concept
of contract to the specification of software development processes by introducing the
concept of software process contract (sp-contract). Sp-contractsintroduce precision of
specification, avoiding ambiguities and inconsistencies, and enabling developers to
reason about the correctness of their joint activities. The goal of the proposed formalism
is to provide foundations for case tools assisting software engineers during the
development process. Sp-contractsprovideaformalization of softwareartifactsandtheir
relationships. They clearly specify pre- and post-conditionsfor each software devel op-
ment task, allowing for the verification of consistency between models through evolu-
tion.

Theremainder of thischapter isorganized asfollows. First, we describe the underlying
formalism we use to develop our proposal. Then, we introduce the concept of software
process contract (sp-contract), which constitutes our proposal to improve formality of
software devel opment process. The next section containssomeideasabout futuretrends
and the construction of a case tool based on sp-contracts. Finally, we present the
conclusion and related works.

Background: The Notion of Software
Contract

Generally, acomputation can be seen asinvolving anumber of agents(objects) carrying
out actions according to a document (specification, program) that has been laid out in
advance. This document represents a contract between the agentsinvolved. A contract
imposes mutual obligations and benefits; it protects both sides (the client and the
contractor):
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i It protectsthe client by specifying how much should be done; the client isentitled
to receive a certain result.

i It protectsthe contractor by specifying how littleisacceptable; the contractor must
not be liable for failing to carry out tasks outside of the specified scope.

The notion of contract regulating the behavior of a software system has been investi-
gated by several authors (Andrade & Fiadeiro, 1999; Back, Petre, & PorresPaltor, 1999;
Helm, Holland, & Gangopadhyay, 1990; Meyer, 1992; Meyer, 1997). Inparticular, inour
work, we apply theformalism of contracts proposed by Ralf Back which isbased on the
Refinement Calculus(Back & von Wright, 1998).

The refinement calculus is a logical framework for reasoning about programs. It is
concerned with two main questions: Is a program correct with respect to a given
specification? And, how can we improve, or refine, a program while preserving its
correctness? Both programs and specifications can be seen as special cases of a more
general notion, that of acontract between independent agents. Refinement isdefined as
anordering relation between contracts. Correctnessisaspecial caseof refinement where
aspecification isrefined by a program.

Therefinement cal culusisformalized within higher order logic, allowing usto provethe
correctnessof contractsand to cal culate contractsrefinementsin arigorous, mathemati-
cally precise manner. The refinement calculus is equipped with automatic tools: the
Mechanised Reasoning Group led by Joakim von Wright has developed a system for
supporting program derivation, precondition calculation and correctness calculation
within the Refinement Calculus framework that is called the Refinement Calculator
(Butler, Grundy, L angbacka, Ruksenas, & VonWright, 1997; Celiku & von Right, 2002).
This system is based on the HOL theorem prover.

Contract L anguage

Consider acollection of agents, where each agent hasthe capability to changetheworld
in various ways through its actions and can choose different courses of action. The
behavior of agents and their cooperation is regulated by contracts. The contract can
stipulate that the agent must carry out actions in a specific order. Thisis written as a
sequential statement S ;...;S ,whereS ,...,S, aretheindividual actionsthat theagent has
tocarry out. A contract may al sorequiretheagent to choose one of thealternativeactions
S1,...Sm. Thechoiceiswritten asthe alternative statement S1E...ESm.

Theworld is described as a state s. The state space Sisthe set of all possible statess.
The state is observed as a collection of attributes x, x,, ...,X, €ach of which can be
observed and changed independently of the others. An agent changes the state by
applying a function f to the present state s, yielding a new state f.s. These functions
mapping states to states are the most primitive form of action that agents can carry out.
An example of state transformer is the assignment x:=exp, that updates the value of
attribute x to the value of the expression exp.
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The language for contractsis simple:

Su=(f) | if pthen S else S, fi |Sl; SZ| assert_ p | R, | S uU.S, | rec Xes

Here a stands for an agent while f stands for a state transformer, p for a state
predicate (i.e., a boolean function p:X—Bool) and R for a state relation (i.e., relation
R:X— X— Bool relates a state ¢ to a state 6~ whenever R.c.¢" holds).

Each statement in this language describes a contract for an agent. Intuitively, a
contract is executed as follows:

The functional update <f> changes the state according to the state transformer f,
that is, if the initial state is o, then the final state is f.c,. An assignment statement
isaspecial kind of update where the state transformer is expressed as an assignment.
For example, the assignment statement <x:=x+y> requires the agent to set the value
of attribute x to the sum of the values of attributes x and y.

In the conditional composition if p then S else S, fi, S, is carried out if p holds in
the initial state, and S, otherwise. In the sequential composition S, ; S, , statement
S, is carried out first, followed by S.,.

An assertion assert, p , for example, assert, (x+y=0) expresses that the sum of (the
values of) x and y in the state must be zero. If the assertion holds at the indicated
place when the agent a carries out the contract, then the state is unchanged, and
the rest of the contract is carried out. If, on the other hand, the assertion does not
hold, then the agent has breached the contract.

The relational update and choice both introduce nondeterminism into the language
of contracts. Both are indexed by an agent which is responsible for deciding how
the nondeterminism is resolved. The relational update Ra requires the agent a to
choose a final state ¢ so that R.6.¢” is satisfied, where ?c is the initial state. In
practice, the relation is expressed as a relational assignment. For example, updatea
{x = x| X" <x} expresses that the agent a is required to decrease the value of the
program variable x. If it isimpossible for the agent to satisfy this, then the agent has
breached the contract.

The statement S, U_ S, allows agent a to choose which is to be carried out, S, or
S,.
Finally, recursive contract statements are allowed. A recursive contract is defined
using an equation of the form X = S, where S may contain occurrences of the
contract variable X. With this definition, the contract X is intuitively interpreted as
the contract statement S, but with each occurrence of statement variable X in S
treated as a recursive invocation of the whole contract S. It also is permitted the
syntax (rec XeS) for the contract X defined by the equation X=S. An important
special case of recursion is the while-loop which is defined in the usual way: while
p do S od =(rec Xeif p then S; X else skip fi) where skip is the well-known “do
nothing” statement.
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Formal Specification of Software Model Evolution Using Contracts 185

Cooperation Contract

Consider aset of agents that work on the same state independently of each other. Each
agent has a will of its own and makes decisions for itself. If these agents want to
cooperate, they need a contract that stipulates their respective obligations.

A typical situation is that one of the agents acts as a server, and the other as clients.
Assume that a client follows contract S,

Contract S=(fLu skip); T; f2

Where f1 and f2 are primitive actions and T is the contract for the server,

Contract T =f3u f4

The occurrence of T in the contract statement S signals that the client asks the server
to carry out its contract T.

We can combine the two statements Sand T into asingle contract statement regul ating
the behavior of both agents. The combined contract is described by

Contract V = (flu, _skip); (f3u_ _f4);f2

client server

The combined collaborative contract isthe result of substituting the contract statement
T fortheinvocationon T inthe contract Sand explicitly indicating for each choicewhich
agent is responsible for it.

Another form of interaction between agents occurswhen they need to synchronizetheir
individual actions. Assumethat theagents(a,, a , a,) areplacedinaring, withacollection
of resources situated between them (r, is the collection of resources placed between
agentsa , and a,,, where modulo-3 arithmetic is used). This situation isillustrated in
Flgure2

|+1'

Each agent a has access to the resource in r,, and r,,, but not to r, . Resources are
nonrenewabl e, and we assumethat the agentstaketurnsgrabbing one of them from either

Figure 2. Resource game
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186 Pons and Baum

side (left or right). An agent also can choose to do nothing. Initially, no agents have

grabbed any resource, and the resources are evenly distributed,
init=n,,n,,n,r.r.r,:=0,0,0,mmm

where n, models the number of resources that agent a has grabbed and mistheinitial
number of resources at each point.

The alternatives open to agent a are described by the following contract:

Contract S = grabl, U, skip U grabr,
Where
grabl, = assert .r,, >0 ; n ,r
grabr, = assert  r

=n+ 1 -1
=n+ 1l -1

i-
i+1 >0 : ni ! ri+
Now the whole system can be described as the combination of subcontract S, S and S,
into a single contract statement that regulates the behavior of the three agents, as
follows:

Contract System = init; whiler +r,+r,>0doS;; S, ; S,od

According to this contract, on every round the order of choicesis deterministic: agent
a,choosesfirst, thena andfinally a,. Itispossibletowriteadifferent contract permitting
adifferent order of choices.

Semantics of Contracts: The Rules of a Game

Agentstry toachievetheir goals, that is, to reach anew, moredesirabl e state. Thedesired
states are described by giving condition that they have to satisfy (the post-condition).
The possibility of an agent to achieve such adesired state depends on the functionsthat
it can use to change the state.

Given acontract for asingle agent and adesired post-condition, we can ask whether the
agent following the contract can establish the post-condition. Thiswill depend on the
initial state, the state in which the agent starts to carry out the contract. For instance,
consider the contract

Contract S=x:=x+1 U X:=X+2

Theagent can establishthepost-conditionx=2if x=1or x=0initially. Whenx=1initially,
the agent should choose the first alternative; but when x=0, the agent should choose the
second alternative. But the agent cannot achieveitsgoal fromany initial state satisfying
either x>1 or x<0.
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On the other hand, an agent cannot be required to follow acontract if the assumptions
that it makes are violated for non-allied agents. Violating the assumptions rel eases the
agent from the contract.

Themain concern with acontract isto determinewhether aset of agents, say A, can use
the contract to achieve the stated goals. In this sense, agents have to make the right
choicesin their cooperation with other agents, which are pursuing different goals that
need not be in agreement with their goals. The other agents need not to be hostile; they
just have different priorities and are free to make their own choices. However, because
no one agent in A can influence the other agentsin any way, they have to be prepared
for theworst and consider the other agent ashostile. From the point of view of aspecific
agent or agroup of agents, itisthereforeinterestingto know what outcomesare possible
regardless of how the other agents resolve their choices.

Asfar as analyzing what can be achieved with acontract, it isjustified to consider the
agentsinvolved asthe opponentsin agame. The actionsthat the agents can take are the
movesin the game. The rules of the game are expressed by the contract; it states what
moves the opponents can take and when.

A playerinthegameissaid to haveawinning strategy inacertaininitial stateif theplayer
can win (by doing the right moves) no matter what the opponents do.

Consider the situation where the initial state ¢ is given and a group of agents A
agree that their common goal is to use contract S to reach a final state satisfying
g. Satisfaction of a contract (denoted by o{S}q) corresponds to the existence of a
winning strategy. It means that 6{S,}q holds if and only if the set of agents has a
winning strategy to reach the goal g when playing with the rules S, when the initial
state of the game is G.

If some of the agentsin A are forced to breach an assertion, then the coalition loses
the game. If the opponents are forced to breach an assertion, they lose the game,
and the coalition wins. In this way, an agent can win the game either by reaching
a final state that satisfies the post-condition or by forcing the opponents to breach
an assertion.

This notion of satisfaction is precisely defined, in the following way: The predicate
transformer wp,.S maps post-condition g to the set of all initial states ¢ from which
the agents in A jointly have a winning strategy to reach the goal g. Thus, wp,.S.q
is the weakest precondition that guarantees that the agents in A can cooperate to
achieve post-condition . This means that a contract S for a coalition A is
mathematically seen as an element (denoted by wp,.S) of the domain PX —PX. Then,
the satisfaction of contracts is captured naturally by the notion of weakest

precondition, as follows: 6{S}q=wp,.S.q.c

Thedefinition of the predicatetransformer isasfollows. See Back & von Wright (1998)
for amoredetailed explanation:

(i) wp,(f).q=(ro.q.(f.0))
(i) wp,.(if pthen S else S, fi).q= (p nwp,.S.q) U (=p N wp,.S,.q)
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(iif) wp,.(S;;S,).9=wp,.S,.(wp,.S,.q)
(iv) wp,.(assert_p).q = Ac.(p.c A g.0), if ac A
AG.(—p.c v q.0),if ag A
(V) wp,.R.g=Ac.dc’eRoc.c'AQc ,ifacA
A0.Vo'e Ro.c'— g6 , if agA
(vi) wp,.(S,u,S).q=wp,.S.quwp,S,.q,ifacA

wp,.S.q nwp,.S,.q, if agA

The Notion of a Softwar e Process
Contract

While the notion of a formal contract regulating the behavior of software agents is
accepted, the concept of contract regulating the activitiesof software devel opersisquite
vague. In general, thereis no explicit contract establishing obligations and benefits of
members of the development team. At best, the development process is specified by
either agraph of tasksor object-oriented diagramsin asemi-formal style, whilein most
cases activities are carried out on-demand, with little previous planning.

However, a disciplined software development methodology should encourage the
existence of formal contracts between developers, so that contracts can be used to
reason about correctness of the development process, and to compare the capabilities
of various groupings of agents (coalitions) in order to accomplish a particular goal.

We propose to apply the notion of aformal contract described in the previous section,
to the software development process itself. That is to say, the software development
process can be seen as involving a number of agents (the development team and the
software artifacts) carrying out actionswith the goal of building a software system that
meetsthe user requirements. The software devel opment process consists of acollection
of interacting activities. When specifying aspecific activity, we may consider the other
activitiesto becontrolled by other agents. We may need some of these activitiesin order
to carry out the set of tasks of our activity, but we cannot influence the choices made
by the other agents. This situation is analogous to a contractor using subcontractors.

A specification of an activity isacontract that gives some constraints on the results and
effectsof theactivity but leavesfreedom for the agent to decide how the actual behavior
istoberealized. For example, amember of the devel opment team, say theagent ai, agrees
to take over the task of specifying a method of a given Class by either creating a State
machine, or a sequence diagram or a set of pre-and post-conditions,

Contract S= create-SM U create-SeqD U write-Pre& Post
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Formal Specification of Software Model Evolution Using Contracts 189

The rest of the agents can assume that after ai carries out their contracts, some
specificationfor themethod doesexists, but they do not know precisely which alternative
was chosen; so whatever they want to achieve, it should be achieved no matter which
alternative was chosen.

A remarkable difference between traditional software contracts and software process
contracts (sp-contracts) is the kind of object constituting a state. While in software
contracts, objectsinthestate represent objectsin asoftware system (e.g., abank account
object in a banking system), in sp-contracts, objects in the state are process artifacts,
such asaclassdiagram or ause case model. But thisdifferenceisjust conceptual, from
the mathematical point of view we can reason about process contracts in the standard
way, asif they were software contracts. Thisview of software process as softwareisnot
new, we can go back to the work of Osterweil (1997).

Building sp-Contracts

There are different levels of granularity in which sp-contracts are defined. On the one
hand we have contracts regulating primitive evolution, such as adding asingle classin
aClassdiagram, whileonthe other hand, we have contractsdefining complex evol ution,
such astherealization of ause case in the analysis phase by a collaboration diagramin
thedesign phase, or the reorgani zation of acompl eteclasshierarchy. Complex evolutions
are non-atomic tasks which are composed by a number of primitive tasks. We start
specifying atomic contracts (contracts explaining primitive tasks) which will be the
building blocksfor non-atomic contracts(i.e., regulationsfor complex evolution activi-
ties).

Primitive sp-contracts

To make contracts more understandable and extensible, we use the object-oriented
approach to specify them. The object-oriented approach deals with the complexity of
description of software development process better than the traditional approach.
Examples of thisare the framework for describing UML compatible development pro-
cessesdefined by Hruby (1999) and themetamodel defined by the OM G ProcessWorking
Group (OMG, 1998), among others. In the object-oriented approach, software artifacts
produced during the development process are considered objects with methods and
attributes.

A Classisatemplate used to describe objects with identical behavior. The Refinement
Calculushasbeen appliedtothe specification of Classes, by giving asyntax for the Class
declaration and aformal semanticsfor object instantiation, message passing, inheritance
and substitutability (Back, Mikhajlova, & von Wright, 1997; Back, Mikhajlov, & von
Wright , 2000).

A Classis given by the following declaration:
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190 Pons and Baum

C = subclass of P

var attr:¥1,....attr_:¥m
C(val x,:I')= K,
Meth (val x:T", , resy ;A ) = M,

Meth (val x:.T", , resy;:A) =M,

end

This class C describes attributes, specifies the way the objects are created, and gives
a (possibly nondeterministic) specification for each method. Class attributes
attr ,..,attr _have the corresponding types Z....X . The identifier self represents the
tuple (attr,,...,attr ). The type of self isX=X x .. x Z_. A class constructor is used
to instantiate objects and has the same name as the class. The statement K :I' —
2 x I, representing the body of the constructor, introduces the attributes into the
state space and initializes them using the input parameter x:.I'.. Methods Meth, ...
Meth_ specified by bodies M, ... M operate on the attributes and realize the object
functionality. Every statement M, is of type (Zx I', X A) — (ZxT',x A). Theidentifier
self acts as an implicit result parameter of the constructor and an implicit variable
parameter of the methods.

Ingeneral, every body M, includes a precondition p, and an effect S (M =assertp,; S).
When a method M, is called there is an agent a responsible for the call. The method
invocationistheninterpreted asthefollowing contract: (assert_p,; S), that is, the agent
isresponsiblefor verifying the preconditions of the method. If agent a hasinvoked the
method in astatethat doesnot satisfy the precondition, then a has breached the contract.

Figure 3. Part of the UML metamodel
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For the sake of readability, we write Meth(val x,: T') : A, = M,[resu/y ], to denote
the declaration Meth (val x :I", , resy A ) =M, . Theresult variable y, is replaced
by the special variable called resu in the body of the method. And regarding method
invocation, we write o.methi(xi).methj(xj) to indicate that the second method is applied
on the object that results from the first invocation, that is to say: o.meth(x;, 2);
z.methj(xj).

Thelibrary of primitive contractsintentionally reflectsthe class hierarchy of the UML
metamodel (OM G, 2003). Contract library consistsof aset of UML artifact’ sspecifica-
tions (metaclasses), where each specification describes both the artifact’s properties
(i.e., attributes of the artifact ) and all the possible ways of modifying the artifact (i.e.,
operations that can be applied on the artifact, such as adding a new feature to a class).

Figure 3 showsapart of the UML metamodel. Primitive contractsfor these artifactsare
(partially) specified asfollows:

Generalization = subclassof Relationship
var parent, child: Generalizabl eElement,

Constructor Generalization(val p,c: GeneralizableElement) = parent:=p;
child:=c, parent() : GeneralizableElement =r esu:=parent,

child() : GeneralizableElement =resu:=child,
end

The Class Generalization hasan internal state composed by two attributes called parent
and child, respectively, both storing a GeneralizableElement. The Class defines a
constructor operation and two observer methods, one for each attribute.

NameSpace = subclass of Model Element
var ownedElements : Set of Model Element,
Constructor NameSpace() = ownedElements:= {} ,
ownedElements() : Set of ModelElement = resu:=ownedElements,
addElement(val e:ModelElement) =
assert (ez ownedElements A Vge (ge ownedElements — e.name #
g.name) ) ;
ownedElements;= ownedElements U {€} ,
deleteElement(val e:Model Element) =
assert (ee ownedElements) ; ownedElements:= ownedElements - {€} ,
end

GeneralizableElement = subclass of Model Element
var generalizations, specializations : Set of Generalization,
isAbstract: Bool
Constructor GeneralizableElement() = generalizations := {}; specializations

={}
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parents() : Set of GeneralizableElement = resu:=
generalizations.collect(parent) 1,
children() : Set of GeneralizableElement = resu:=

specializations.collect(child),
allParents() : Set of GeneralizableElement = ps := self.parents() ;
resu = ps U ps.collect(allParents),
isA(val c : GeneralizableElement) : Bool = resu:= (self=c v ¢ €
self.allParent()) ,
end

The Class GeneralizableElement has an internal state composed by three attributes, the
first two attributes containing a set of Generalizationsand thethird attribute containing
a Boolean value. The Class defines a set of methods: method parents() returns a Set
consisting of all direct parents of the generalizabl e element which are accesibl e through
its Generalizations; the method children() returnsaset of all direct children; the method
allParents() resultsin a Set containing all ancestors. IsA() returnstrueif thereceiver of
the message is a subclass (direct or indirect) of the parameter.

Feature = subclass of Model Element
var owner : Classifier,
Constructor Feature (val o : Classifier) = owner:=o,
owner() : Classifier = resu:=owner,
setOwner(val o:Classifier) = owner:=0,
end
Classifier = subclass of GeneralizableElement, NameSpace
var features : Set of Feature,
associationEnds : Set of AssociationEnd,
Constructor Classifier() = features :={}; associationEnds :={},

allFeatures() : Set of Feature = resu:= (features U
self.parents.collect(all Features) ),
associations(): Set of Association = resu:=

self.association.collect(association),
oppositeAssociationEnds() : Set of AssociationEnd = ...
addFeature(val f : Feature) =
assert (f ¢ features A g e (g € features v
g € self.oppositeAssociationEnds — f.name # g.name) )

features:= features U {f} ; f.setOwner(self),
deleteFeature(val f:Feature) = assert
fe self .features;self.features;=self.features - {f}

end

The Class Classifier has an internal state with two attributes; the first one stores a set
of Features while the second one stores a set of AssociationEnds. The Class defines a
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set of query methods: the method all Features() resultsin a Set containing all Features
of the Classifier itself and all itsinherited Features; the operation associations results
in a Set containing all Associations of the Classifier itself; the operation
oppositeAssociationEnds resultsin aset of all AssociationEndsthat are oppositeto the
Classifier. Additionally, the Class declares a set of mutator methods which modify the
object internal state: the method addFeature() has a precondition stating that the new
featuredoesnot belongtotheclassifier, and the new feature should haveadifferent name
from all the other attributesin the classifier, and from all the opposite associationEnds
of theclassifier. The effect of themethod isthat thefeatureisadded tothelist of features
and the classifier is set as the feature’ s owner.

Package = subclass of NameSpace, GeneralizableElement
var importedElements : Set of ModelElement,
Constructor Package() = importedElement:= {} ,
allContents() : Set of ModelElement = resu:=ownedElement U
importedElement,
addGeneralization(val g:Generalization) =
assert (g ¢ ownedElements A g.parent € ownedElements A
g.child € ownedElements A — g.parent.isA(g.child) ;
self.addElement(qg) ,

end

The class Package inherits from NameSpace and GeneralizableElement. It specifies a
method addGeneralization() to insert anew generalization in the package. The precon-
ditions for the method are that the generalization is not in the package, all elements
connected by the new relationship (i.e., the parent and the child) are included in the
package and that the new generalization preserves absence of circular inheritance. The
effect of the method isthat the new element isadded in the collection of owned elements
of the package by invoking the method addElement() inherited from the classNameSpace.

Apart from software artifact specifications, the other component in theformalism of sp-
contract isthe specification of software devel opers. Software devel opers are specified
by declaring their attributes and the contracts for their activities:

Developer = subclass of Object
var name : String , skills : Set of String,
Constructor Developer(val n : String) = name := n,

end

The class Developer isthe root in the hierarchy, it will be subsequently specialized in
order to specify concrete behavior of specific developers.
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Complex sp-Contracts

Ontop of primitive contractsit is possibleto define complex contracts, specifying non-
atomic forms of evolution through the software development process. Then, by using
the wp predicate transformer we can verify whether a set of agents (i.e., software
developers) can achievetheir goal or not. We can analyze whether adevel oper (or team
of devel opers) can apply agroup of modificationson amodel or not by meansof acontract
designed in terms of a set of primitive operations conforming the group.

Developerswill successfully carry out themodificationsif somepreconditionshold. We
can determinetheweakest preconditionsto achieveagoal by computingwp, . C. Q, where
C isthe contract, A isthe set of software developers (agents) and Q is the goal.

If computing thewp we obtain apredicatedifferent fromfal se, then we proved that with
the contract the developers can achieve their goal under certain preconditions.

Thewp formalism allowsusto analyzeasinglecontract fromthepoint of view of different
coalitions of agents. If computing the wp we obtain ‘false,” we can look for adifferent
coalition (e.g., we can permit an outside agent to join the coalition) and compare the
results. In other case (if the coalition should be preserved) to achieve the goal the
contract have to be modified.

Inthefollowing sections, we give examples of complex contract.
Examplel: Contract ontheEvolution Dimension

Consider acollaborative activity, in which two software devel opers have to carry out a
refactoring on a class diagram. One of the agents will detect and move all the features
that could be pulled up to a superclass, while the other agent will simplify the class
diagram by collecting empty classes.

To coordinate this collaborative activity, both agents (e.g., the lifter and the cleaner)
subscribe a complex contract that is built on top of primitive contracts establishing the
primitiveresponsibilitiesfor each agent.

The primitive specification for the cleaner agent describes a method called
deleteEmptyClass(), asfollows:

Cleaner = subclass of Developer
deleteEmptyClass(val p : Package) =
(update_, c:=c” | ¢’ € p.ownedElement A c’.features=J A
¢’ .children=ZA c’.associations=9) ;
p.del eteElement(c);

end

Thecontract for thismethod statesthat the agent will detect nondeterministically aclass
cfromthe packagep given asparameter, such that classcisempty (i.e., it hasno children
and no features). Then the selected class is deleted from the package.
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The primitive specification for the lifter agent contains three methods:

Lifter = subclass of Developer
pasteRepeatedFeature(val c : Class) =
(update_,, f.=f" | ¢’e c.childrenefe ¢ .features) ; c.addFeature(f)

deleteRepeatedFeature(val ¢ : Class) =
(update, f:=f" | c’e c.children e f'e c'.features) ;
for i=1to (c.children.size) do ¢ :=c.children.at(i); ¢".deleteFeature(f)

liftRepeatedFeature(val p : Package) =
(update_, c=s| se p.ownedElement A
df:Feature e ( c'e s.children e fec’.features) ) ;
(pasteRepeatedFeature(c); deleteRepeatedFeature(c))
kJself
(deleteRepeatedFeature(c); pasteRepeatedFeature(c)) ;
end

Themethod pasteRepeatedFeature() saysthat theagent will receive aclassasparameter
and will select nondeterministically afeature that appearsin all subclasses of the given
class. Then, theselected featureispastedin the class; the method del eteRepeatedFeature()
states that the agent will select nondeterministically a feature that appears in all
subclasses of agiven class. Then, the selected featureisdeleted from all the subclasses;
finally liftRepeatedFeature() isamore complex method that all ows the agent to choose
nondeterministically in which order to carry out its activities, after having selected
(nondeterministically) aclassthat is candidate for refactoring).

The complex contract R states that both developers (plus a coordinator agent named
coord) commit themselvesto carry out the refactoring task in acollaborative way. The
coordinator agent will nondeterministically choose either asking a, to lift a repeated
feature or asking a, to delete an empty class. The terms of the contract are as follows:

R = a :=new Lifter ; a, := new Cleaner ;
while ( —Q ) do a,.liftRepeatedFeature(p) v

a,.deleteEmptyClass(p) od;

coord

Where Q specifiesthe expected effect of therefactoring activity: (i) thereisno repeated
feature and (ii) the model does not contain any empty class:

Q = Vc:Class e ce p.ownedElement —
( —3f:Feature o (Vc ec.children e fec'.features ) A )]

( c.featuresz@ v c.children=d v c.associationszd ) ) (i)
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Wemay beinterestedin cal culating theweakest precondition for agentsa and a,toreach
the goal G by using the contract R. That isto say: WP, coord, e, a2y - R- G

where G = QUT , being T a formula specifying that the resulting model keeps all the
functionality of the original model.

Applyingthecalculusispossibleto determinethat if agentsa and a, work together (i.e.,
both of them integrate the coalition), then they can reach the goal.

But if a, leaves the coalition, the wp is false. The achievement of the goal cannot be
guaranteed because agent a, isfreeto resolvetheir nondeterministic choicesinahostile
way. For example, inthefollowing choice:

(pasteRepeatedFeature(c) ; deleteRepeatedFeature(c))
|\
(deleteRepeaIealFeaIure(c) ; pasteRepeatedFeature(c))

only the first option guarantees the achievement of the goal. If agent a chooses the
second option a problem will occur: A feature is deleted before being pasted in the
superclass; consequently, the model loses functionality and the final goal cannot be
achieved.

Example2: Contract ontheHorizontal Dimension

Arbitrary modificationsthat do not cause problems when they are applied exclusively,
may originate conflictswhenthey areintegrated. Consider acollaborativetask inwhich
two agents a and a, need to add a generalization relationship respectively to amodel,
preserving the consistency of the model.

Contract statement C specifiesthat agentsa, and a, will performtheir activities sequen-
tially, one after the other:

C= a, := new Designer ; a, := new Designer ;

a.addGeneralization(p,r) ; a,.addGeneralization(p,g)

Theprimitive contract regulating the behavior for Designer statesthat any designer will
accomplishthistask by directly invoking the method addGeneralization() of the package
artifact:

Designer = subclass of Developer
addGeneralization(val p : Package, g: Generalization) = p.addGeneralization(g)

end

Aswe explained before, the method invocationisinterpreted asthe foll owing contract:
(assert,, p,; S), that is, the agent takes over the responsibility for the preconditions of
themethod. If agent a, (respectively a,) invokesthemethod in astate that doesnot satisfy
the precondition, then a, breaches the contract.
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Usingthecalculus, itispossibletofind out whichistheweakest preconditionto achieve
the goal of introducing two generalization relationships without breaking the non-
circularity principleof inheritance hierarchiesby computing: WP 1 ooy - C.Q,whereCis
the contract between agents and Q is the post-condition that specifies the goal of the
activity, which is the creation of new generalization relationships guaranteeing the
absence of circularity in the class hierarchy:

Q= (r € p.ownedElements A g € p.ownedElements) A

vc,,c, :GeneralizableElement. (c,.iSA(c,) A C,.iSA(c,) — C,=C, )

Theweakest precondition Pfor agentsa and a,to reach the goal Q by using the contract
C, (i.e,P= WP, . - C Q) can be semi automatically calculated applying therulesin
section 2.3 arriving to the following result:

P=

(i) re p.ownedElements A r.parent € p.ownedElements A
r.child e p.ownedElements A — r.parent.isA(r.child) A

(ii) g e p.ownedElements A g.parent € p.ownedElements A
g.child € p.ownedElements A — g.parent.isA(g.child) A

(iif) Vc,,c,:GeneraizableElement.(c .isA(c,) AC,.iSA(c,)—C,=C))

(iv) — (g.parent.isA(r.child) A r.parent.isA(g.child) )

Where (i), (ii) and (iii) specify the precondition for applying the first and the second
evolution, respectively (asif they wereappliedinisolation), and (iv) specifiesaspecial
requirement to avoid circular inheritance in the case that both evolution actions were
applied together.

Figuredillustratesaconflictive case, in which the expected weakest precondition does
not holdintheinitial state. Asaconsequence agentscannot achievetheir goal s (because
acircularity isintroduced) in spite of fulfilling the contract.

Future Trends

The sp-contract formalism shoul d be equi pped with automatic tool s supporting contract
derivation, precondition calculation, and correctness calculation. These tools should
be connected with the Refinement Calculator (Butler et al., 1997; Celiku & von Right,
2002), which supportsthe Refinement Cal culus (Back & von Wright, 1998).

The need for automatic support is the main motivation for future work. It is necessary
to count with atool to assist developersin thetask of writing and applying sp-contracts.
This tool should be integrated with an environment for thesoftware development
process, providing the following functionality:
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Figure 4. Collaborative evolution breaching consistency rule
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. Contract edition and storage: Devel operscan create new contractsand storethem
in arepository. There are different ways in which a new contract can be created:
from scratch asaprimitive contract; by specializing an existing contract stored in
the repository; or by selecting a group of contracts stored in the repository and
composing them to form a new complex contract.

. Precondition cal culus: Given acontract between aset of agentsand aspecificgoal,
the tool would be able to compute the weakest precondition for the application of
that contract.

. Contract refinement: Specific contracts can be derived from abstract contracts by
applying the refinement calculus.

. Contract correctness: If a precondition p and a post-condition q are given and
contract S has already been defined, we can provethat Sis correct with respect to
precondition p and post-condition g.

. Visual assistance: functions of edition of contracts have atextual interface using
mathematical notation, but also may have agraphical interface. A contract can be
created using a UML editor that both records the operations applied on models
(suchasadding anew class) and translatesthem to the mathematical notation. This
translation is straightforward using the primitive contracts on the UML artifacts
described. On the other hand, the task of selecting a contract from the repository
will be assisted by the generation of a graphical view of the contract. Thisis
provided by animating acontract, that isto say, showing how the execution of the
contract modifies agiven UML model, step by step.

Conclusion and Related Work

Duringthe softwaredevel opment processdifferent UM L model sareemployed to specify
the system from different viewpoints at different levels of abstraction. Models of
different viewpointshaveacertain overlap (Spanoudakis, Frinkelstein, & Till, 1999) and
models produced at different levels of abstractionsin the development process also are
related. Consequently, handling of consistency between modelsis of major importance
(Ghezzi & Nuseibeh, 1999; Kuzniarz, Huzar, Reggio, & Sourrouille, 2002; Kuzniarz, Huzar,
Reggio, Sourrouille, & Ataron, 2003).
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Different types of consistency problems have been identified; Engels, Kister, Heckel,
and Groenewegen (2001) distinguish two dimensions of consistency problems —
horizontal and vertical:

i Horizontal consistency concerns specifications consisting of different parts
representing the different points of view from which the system is specified.

i Vertical consistency ariseswhenamodel istransformedinto another refined model.
For example acollaboration diagram can be derived from a use case diagram.

However, we need to distinguish three dimensions of consistency (Pons, Giandini, &
Baum, 2000): Horizontal, Vertical, and Evolution dimensions(thelast tworefineEngels’
vertical dimension) becausetwo dimensionsareinsufficient to compriseaniterativeand
incremental software process where model refinement occurs vertically, inside each
iteration; but also horizontally, from one iteration to the next one.

A widerangeof different approachesfor checking consistency of UML modelshasbeen
proposed in theliterature. Hereis an overview of the most relevant works, classifiedin
two groups. Thefirst group focuses on the consistency between afixed set of artifacts:

Glinz (2000) definesalightwei ght approach to consistency between ascenario model
and a class model. He assumes semi-formal, loosely coupled models that are
complementary: scenarios model the external system behavior, the class model
specifiestheinternal functionality. He achievesconsistency by minimizingoverlap
between the two models and by systematically cross referencing corresponding
information. He gives a set of rules (some of them automatically checked) that can
be used both for developing a consistent specification and for checking the
consistency of a completed specification.

Petriu Sun (2000) analyzethe consi stency betweentwo different UML sublanguages:
Activity diagrams and Sequence Diagrams.

Whittleand Schumann (2000) devel oped an algorithm for automatically generating
statechart designs from a collection of sequence diagrams.

Ehrig and Tsiolakis (2000) investigate the consistency between UML class and
sequence diagrams by representing them by attributed graph grammars.

Works in the second group propose a general methodology that can be applied to
different consistency problems:

Astesiano and Reggio (2003) look at the consistency problemsinthe UML interms
of the well-known machinery of classical algebraic specifications. Thus, first they
review how the various kinds of consistency problems were formulated in that
setting. A similar approach, but using dynamiclogic, wasdefined by Ponsand Baum
(2000).
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Engelsetal. (2001) discusstheissue of consistency of behavioral modelsintheUML
and present a general methodology about how consistency problems can be dealt
with. According to the methodology, those aspects of the models relevant to the
consistency are mapped to asemantic domaininwhich preciseconsistency testscan
beformulated. The choice of the semanticsdomain and the definition of consistency
conditions vary according to each concrete consistency problem. An instantiation
of thisapproach isthework of Fradet, Le Métayer, and Périn (1999) where systems
of linear inequalities are used to check consistency for multiple view software
architectures. The general ideaisfurther enhanced in Engels, Heckel, Kister, and
Groenewegen (2002) with dynamic metamodeling rules. M odel transformationrules
are used to represent evolution steps, and their effect on the overall model consis-
tency is explored.

Egyed (2001) presents an approach for automated consistency checking among
UML diagrams, called Viewlntegra. Theapproach makesuse of consistent transfor-
mation to translate diagrams into interpretations to bring models closer to one
another in order to simply comparison.

Grundy, Hosking, and Mugridge (1998) claim that akey requirement for supporting
inconsistency management is the facilities for developers to configure when and
how inconsistencies are detected, monitored, stored, presented and possibly
automatically resolved. They describetheir experiencewith building complex mul-
tiple-view software development tools supporting inconsistency management fa-
cilities.

Toval and Aleman (2000) formalizethe UM L notation and transformations between
different UML modelswithinrewritinglogic. They implement their formalizationin
the Maude system, focussing on using reflection to represent and support the
evolution of models.

Van Der Straeten, Mens, Simmonds, and Jonckers (2003) propose and validate an
approachto detect and resolveinconsistenciesbetween different versionsof aUML
model, specified as a collection of class diagrams, sequence diagrams, and state
diagrams. Theformalism usedisdescriptionlogic, adecidablefragment of first-order
predicate logic. Logic rules are used to detect and to suggest ways to resolve
inconsistencies.

The proposal described in this chapter belongs to the second group; sp-contract is a
mathematical tool the objective of which is to improve the formality of software
development processes. The core of sp-contractsisthe formalization of UML software
artifacts and their relationships on three dimensions. Sp-contracts handle consistency
between models through evolution by specifying state invariant and pre- and post-
conditions for each software development task. This feature is closely related to the
mechanism of reuse contracts(Steyaert, Lucas, Mens, & D’Hondt, 1996; Mens, ., Lucas,
& D’Hondt, 2000). A reuse contract describes a set of interacting participants. Reuse
contracts can only be adapted by means of reuse operatorsthat record both the protocol
between developers and users of a reusable component and the relationship between
different versions of one component that has evolved.
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Theoriginality of sp-contracts residesin the fact that software developers areincorpo-
ratedintotheformalism asagents(or acoalition of agents) who makedecisionsand have
responsibilities (Pons & Baum, 2001; Pons & Baum, 2002). Given aspecific goal that a
coalition of agentsisrequested to achieve, we can usetraditional correctnessreasoning
to show that the goal can in fact be achieved by the coalition, regardless of how the
remaining agentsact. Theweakest precondition formalism allowsusto analyzeasingle
contract from the point of view of different coalitions and compare the results. For
example, it is possible to study whether a given coalition A would gain anything by
permitting an outsideagent btojoin A. Onthe other hand, formal refinement techniques
can be applied to a contract in order to obtain an improved contract preserving its
correctness.

We believe the formalism of sp-contracts can play an important role in the study of
software development process: sp-contracts can be useful for reasoning about and
justifying good practicesin software process, providing aformal rational for them; sp-
contracts can provide a means to analyze and reason about refactoring tasks, refine-
ments, and transformation of models.

Regarding scal ability i ssues, when the software devel opment processbecomescomplex,
theformalism allows usto manage the complexity by means of ahierarchical definition
and classification of contracts. Ontheonehand, thelibrary of contractsisorganizedinto
ageneralization-specialization hierarchy. Then, itispossibleto defineanew contract by
specializing an existing one, by writing only theincremental features. Onthe other hand,
contracts can be specified in acompositional way. It means that complex contractsare
builtintermsof lesscomplex ones, and weakest preconditionsfor acomplex contract are
calculated from weakest preconditions of its constituent contracts. Furthermore, speci-
fications are organized along three different dimensions (horizontal, vertical, and
evolution dimension), thus increasing the cohesion and readability of each contract.
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Footnotes

! The type Set provides the traditional operations: select, reject, collect (or map),
size,U,N,—, €, C.
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