
180 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Formal Specification of
Software Model
Evolution Using

Contracts
Claudia Pons, Universidad Nacional de La Plata, Argentina

Gabriel Baum, Universidad Nacional de La Plata, Argentina

Abstract

During the object-oriented software development process, a variety of models of the
system is built. All these models are semantically overlapping and together represent
the system as a whole. In this chapter, we present a classification of relationships
between models along three different dimensions, proposing a formal description of
them in terms of mathematical contracts, where the software development process is
seen as involving a number of agents (the development team and the software artifacts)
carrying out actions with the goal of building a software system that meets the user
requirements. In this way, contracts can be used to reason about correctness of the
development process, and to compare the capabilities of various groupings of agents
in order to accomplish a particular contract. The goal of the proposed formalization
is to provide formal foundations for tools that perform intelligent analysis on models
assisting software engineers through the software life cycle.

Formal Specification of Software Model Evolution Using Contracts 181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

A software development process is a set of activities that jointly convert users’ needs
to a software system. Modern software development processes, such as the Unified
Process (Jacobson, Booch, & Rumbaugh, 1999), are iterative and incremental, they repeat
over a series of iterations making up the life cycle of a system. Each iteration takes place
over time and consists of one pass through the requirements, analysis, design, imple-
mentation, and test activities, building a number of different models. Due to the
incremental nature of the process, each iteration results in an increment of models built
in previous iterations. This creates a natural relationship between the elements among
different phases and iterations; elements in one model can be related to elements in
another model. For instance, a use case (in the use case model) can be traced to a
collaboration (in the analysis or design model) representing its realization. Figure 1 lists
the classical phases or activities – requirements, analysis, design, implementation, and
test – in the vertical axis and the iteration in the horizontal axis. Three different dimensions
are distinguished in order to classify relationships between models:

• horizontal dimension (internal dimension)

• vertical dimension (activity dimension)

• evolution dimension (iteration dimension)

The horizontal dimension deals with relations between submodels that coexist consis-
tently making up a more complex model. The UML incorporates several sublanguages,
each one allowing a specific view on the system. Models of different viewpoints have
a certain overlap, for instance, an analysis model consists of sequence diagrams and

Figure 1. Dimensions in the development process

182 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

collaboration diagrams both representing different aspects of the behavior of the system.

The vertical dimension considers relations between models belonging to the same
iteration in different activities (e.g., a design model realizing an analysis model). Two
related models represent the same information but at different levels of abstraction.

The evolution dimension considers relations between artifacts belonging to the same
activity in different iterations (e.g., a use case is extended by another use case). In this
dimension, new models are built or derived from previous models by adding new
information that was not considered before or by modifying or detailing previous
information.

An essential element to the success of the software development process is the support
offered by case tools. Existing case tools facilitate the construction and manipulation of
models, but in general, they do not provide checks of consistency between models along
either vertical or evolution dimension. Tools neither provide automated evolution of
models (i.e., propagation of changes when a model evolves, to its dependent models).
The weakness of tools is mainly due to the lack of a general underlying formal foundation
for the software development process (particularly focused on relations between
models).

To overcome this problem, we propose to apply the well-known mathematical concept
of contract to the specification of software development processes by introducing the
concept of software process contract (sp-contract). Sp-contracts introduce precision of
specification, avoiding ambiguities and inconsistencies, and enabling developers to
reason about the correctness of their joint activities. The goal of the proposed formalism
is to provide foundations for case tools assisting software engineers during the
development process. Sp-contracts provide a formalization of software artifacts and their
relationships. They clearly specify pre- and post-conditions for each software develop-
ment task, allowing for the verification of consistency between models through evolu-
tion.

The remainder of this chapter is organized as follows. First, we describe the underlying
formalism we use to develop our proposal. Then, we introduce the concept of software
process contract (sp-contract), which constitutes our proposal to improve formality of
software development process. The next section contains some ideas about future trends
and the construction of a case tool based on sp-contracts. Finally, we present the
conclusion and related works.

Background: The Notion of Software
Contract

Generally, a computation can be seen as involving a number of agents (objects) carrying
out actions according to a document (specification, program) that has been laid out in
advance. This document represents a contract between the agents involved. A contract
imposes mutual obligations and benefits; it protects both sides (the client and the
contractor):

Formal Specification of Software Model Evolution Using Contracts 183

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• It protects the client by specifying how much should be done; the client is entitled
to receive a certain result.

• It protects the contractor by specifying how little is acceptable; the contractor must
not be liable for failing to carry out tasks outside of the specified scope.

The notion of contract regulating the behavior of a software system has been investi-
gated by several authors (Andrade & Fiadeiro, 1999; Back, Petre, & Porres Paltor, 1999;
Helm, Holland, & Gangopadhyay, 1990; Meyer, 1992; Meyer, 1997). In particular, in our
work, we apply the formalism of contracts proposed by Ralf Back which is based on the
Refinement Calculus (Back & von Wright, 1998).

The refinement calculus is a logical framework for reasoning about programs. It is
concerned with two main questions: Is a program correct with respect to a given
specification? And, how can we improve, or refine, a program while preserving its
correctness? Both programs and specifications can be seen as special cases of a more
general notion, that of a contract between independent agents. Refinement is defined as
an ordering relation between contracts. Correctness is a special case of refinement where
a specification is refined by a program.

The refinement calculus is formalized within higher order logic, allowing us to prove the
correctness of contracts and to calculate contracts refinements in a rigorous, mathemati-
cally precise manner. The refinement calculus is equipped with automatic tools: the
Mechanised Reasoning Group led by Joakim von Wright has developed a system for
supporting program derivation, precondition calculation and correctness calculation
within the Refinement Calculus framework that is called the Refinement Calculator
(Butler, Grundy, Langbacka, Ruksenas, & Von Wright, 1997; Celiku & von Right, 2002).
This system is based on the HOL theorem prover.

Contract Language

Consider a collection of agents, where each agent has the capability to change the world
in various ways through its actions and can choose different courses of action. The
behavior of agents and their cooperation is regulated by contracts. The contract can
stipulate that the agent must carry out actions in a specific order. This is written as a
sequential statement S

1
;...;S

m
, where S

1
,...,S

m
 are the individual actions that the agent has

to carry out. A contract may also require the agent to choose one of the alternative actions
S1,...Sm. The choice is written as the alternative statement S1È...ÈSm.

The world is described as a state s. The state space S is the set of all possible states s.
The state is observed as a collection of attributes x

1
, x

2
, ...,x

n
, each of which can be

observed and changed independently of the others. An agent changes the state by
applying a function f to the present state s, yielding a new state f.s. These functions
mapping states to states are the most primitive form of action that agents can carry out.
An example of state transformer is the assignment x:=exp, that updates the value of
attribute x to the value of the expression exp.

184 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The language for contracts is simple:

 S ::= 〈f〉  if p then S
1
 else S

2
 fi S

1
 ; S

2
 assert

a
 p  R

a
  S

1
 ∪∪∪∪∪a

S
2
  rec X•S

Here a stands for an agent while f stands for a state transformer, p for a state
predicate (i.e., a boolean function p:Σ→Bool) and R for a state relation (i.e., relation
R:Σ→ Σ→ Bool relates a state σ to a state σ´ whenever R.σ.σ´ holds).

Each statement in this language describes a contract for an agent. Intuitively, a
contract is executed as follows:

The functional update <f> changes the state according to the state transformer f,
that is, if the initial state is σ

0
 then the final state is f.σ

0
. An assignment statement

is a special kind of update where the state transformer is expressed as an assignment.
For example, the assignment statement <x:=x+y> requires the agent to set the value
of attribute x to the sum of the values of attributes x and y.

In the conditional composition if p then S
1
 else S

2
 fi, S

1
 is carried out if p holds in

the initial state, and S
2
 otherwise. In the sequential composition S

1
 ; S

2
 , statement

S
1
 is carried out first, followed by S

2
.

An assertion assert
a
 p , for example, assert

a
 (x+y=0) expresses that the sum of (the

values of) x and y in the state must be zero. If the assertion holds at the indicated
place when the agent a carries out the contract, then the state is unchanged, and
the rest of the contract is carried out. If, on the other hand, the assertion does not
hold, then the agent has breached the contract.

The relational update and choice both introduce nondeterminism into the language
of contracts. Both are indexed by an agent which is responsible for deciding how
the nondeterminism is resolved. The relational update Ra requires the agent a to
choose a final state σ´ so that R.σ.σ´ is satisfied, where ?σ is the initial state. In
practice, the relation is expressed as a relational assignment. For example, updatea
{x := x´| x´ <x} expresses that the agent a is required to decrease the value of the
program variable x. If it is impossible for the agent to satisfy this, then the agent has
breached the contract.

The statement S
1
 ∪

a
 S

2
 allows agent a to choose which is to be carried out, S

1
 or

S
2
 .

Finally, recursive contract statements are allowed. A recursive contract is defined
using an equation of the form X = S, where S may contain occurrences of the
contract variable X. With this definition, the contract X is intuitively interpreted as
the contract statement S, but with each occurrence of statement variable X in S
treated as a recursive invocation of the whole contract S. It also is permitted the
syntax (rec X•S) for the contract X defined by the equation X=S. An important
special case of recursion is the while-loop which is defined in the usual way: while
p do S od =(rec X•if p then S ; X else skip fi) where skip is the well-known “do
nothing” statement.

Formal Specification of Software Model Evolution Using Contracts 185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cooperation Contract

Consider a set of agents that work on the same state independently of each other. Each
agent has a will of its own and makes decisions for itself. If these agents want to
cooperate, they need a contract that stipulates their respective obligations.

A typical situation is that one of the agents acts as a server, and the other as clients.
Assume that a client follows contract S,

Contract S = (f1 ∪ skip) ; T ; f2

Where f1 and f2 are primitive actions and T is the contract for the server,

Contract T = f3 ∪ f4

The occurrence of T in the contract statement S signals that the client asks the server
to carry out its contract T.

We can combine the two statements S and T into a single contract statement regulating
the behavior of both agents. The combined contract is described by

Contract V = (f1 ∪
client

 skip) ; (f3 ∪
server

 f4) ; f2

The combined collaborative contract is the result of substituting the contract statement
T for the invocation on T in the contract S and explicitly indicating for each choice which
agent is responsible for it.

Another form of interaction between agents occurs when they need to synchronize their
individual actions. Assume that the agents (a

0
, a

1
, a

2
) are placed in a ring, with a collection

of resources situated between them (r
i
 is the collection of resources placed between

agents a
i-1

 and a
i+1

, where modulo-3 arithmetic is used). This situation is illustrated in
Figure 2.

Each agent a
i
has access to the resource in r

i-1
 and r

i+1
 but not to r

i
 . Resources are

nonrenewable, and we assume that the agents take turns grabbing one of them from either

a1
r 0 r 2

r 1

a2 a0

Figure 2. Resource game

186 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

side (left or right). An agent also can choose to do nothing. Initially, no agents have
grabbed any resource, and the resources are evenly distributed,

init = n
0
,n

1
,n

2
,r

0
,r

1
,r

2
 := 0,0,0,m,m,m

where n
i
 models the number of resources that agent a

i
 has grabbed and m is the initial

number of resources at each point.

The alternatives open to agent a
i
 are described by the following contract:

Contract S
i
 = grabl

i
 ∪

ai
skip ∪

ai
grabr

i

 Where

 grabl
i
 = assert

 ai
r

i-1
 >0 ; n

i
 , r

i-1
:= n

i
+ 1, r

i-1
- 1

 grabr
i
 = assert

 ai
r

i+1
 >0 ; n

i
 , r

i+1
:= n

i
+ 1, r

i+1
– 1

Now the whole system can be described as the combination of subcontract S
0
, S

1
 and S

2

into a single contract statement that regulates the behavior of the three agents, as
follows:

Contract System = init; while r
o

+ r
1

+ r
2

> 0 do S
0
 ; S

1
 ; S

2
od

According to this contract, on every round the order of choices is deterministic: agent
a

0
 chooses first, then a

1
 and finally a

2
. It is possible to write a different contract permitting

a different order of choices.

Semantics of Contracts: The Rules of a Game

Agents try to achieve their goals, that is, to reach a new, more desirable state. The desired
states are described by giving condition that they have to satisfy (the post-condition).
The possibility of an agent to achieve such a desired state depends on the functions that
it can use to change the state.

Given a contract for a single agent and a desired post-condition, we can ask whether the
agent following the contract can establish the post-condition. This will depend on the
initial state, the state in which the agent starts to carry out the contract. For instance,
consider the contract

Contract S = x:=x+1 ∪ x:=x+2

The agent can establish the post-condition x=2 if x=1 or x=0 initially. When x=1 initially,
the agent should choose the first alternative; but when x=0, the agent should choose the
second alternative. But the agent cannot achieve its goal from any initial state satisfying
either x>1 or x<0.

Formal Specification of Software Model Evolution Using Contracts 187

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 On the other hand, an agent cannot be required to follow a contract if the assumptions
that it makes are violated for non-allied agents. Violating the assumptions releases the
agent from the contract.

The main concern with a contract is to determine whether a set of agents, say A, can use
the contract to achieve the stated goals. In this sense, agents have to make the right
choices in their cooperation with other agents, which are pursuing different goals that
need not be in agreement with their goals. The other agents need not to be hostile; they
just have different priorities and are free to make their own choices. However, because
no one agent in A can influence the other agents in any way, they have to be prepared
for the worst and consider the other agent as hostile. From the point of view of a specific
agent or a group of agents, it is therefore interesting to know what outcomes are possible
regardless of how the other agents resolve their choices.

As far as analyzing what can be achieved with a contract, it is justified to consider the
agents involved as the opponents in a game. The actions that the agents can take are the
moves in the game. The rules of the game are expressed by the contract; it states what
moves the opponents can take and when.

A player in the game is said to have a winning strategy in a certain initial state if the player
can win (by doing the right moves) no matter what the opponents do.

Consider the situation where the initial state σ is given and a group of agents A
agree that their common goal is to use contract S to reach a final state satisfying
q. Satisfaction of a contract (denoted by σ{S}q) corresponds to the existence of a
winning strategy. It means that σ{S

A
}q holds if and only if the set of agents has a

winning strategy to reach the goal q when playing with the rules S, when the initial
state of the game is σ.

If some of the agents in A are forced to breach an assertion, then the coalition loses
the game. If the opponents are forced to breach an assertion, they lose the game,
and the coalition wins. In this way, an agent can win the game either by reaching
a final state that satisfies the post-condition or by forcing the opponents to breach
an assertion.

This notion of satisfaction is precisely defined, in the following way: The predicate
transformer wp

A
.S maps post-condition q to the set of all initial states σ from which

the agents in A jointly have a winning strategy to reach the goal q. Thus, wp
A
.S.q

is the weakest precondition that guarantees that the agents in A can cooperate to
achieve post-condition q. This means that a contract S for a coalition A is
mathematically seen as an element (denoted by wp

A
.S) of the domain PΣ →PΣ. Then,

the satisfaction of contracts is captured naturally by the notion of weakest

precondition, as follows: σ{S}q ≡ wp
A
.S.q.σ

The definition of the predicate transformer is as follows. See Back & von Wright (1998)
for a more detailed explanation:

(i) wp
A
.〈f〉.q = (λσ.q.(f.σ))

(ii) wp
A
.(if p then S

1
 else S

2
 fi).q = (p ∩ wp

A
.S

1
.q) ∪ (¬p ∩ wp

A
.S

2
.q)

188 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(iii) wp
A
.(S

1
;S

2
).q = wp

A
.S

1
.(wp

A
.S

2
.q)

(iv) wp
A
.(assert

a
p).q = λσ.(p.σ ∧ q.σ), if a∈A

 λσ.(¬p.σ ∨ q.σ),if a∉A

(v) wp
A
.R

a
.q = λσ.∃σ´• R.σ.σ´∧ q.σ´ , if a∈A

 λσ.∀σ´• R.σ.σ´→ q.σ´ , if a∉A

(vi) wp
A
.(S

1
∪

a
 S

2
).q = wp

A
.S

1
.q ∪ wp

A
.S

2
.q , if a∈A

 wp
A
.S

1
.q ∩ wp

A
.S

2
.q , if a∉A

The Notion of a Software Process
Contract

While the notion of a formal contract regulating the behavior of software agents is
accepted, the concept of contract regulating the activities of software developers is quite
vague. In general, there is no explicit contract establishing obligations and benefits of
members of the development team. At best, the development process is specified by
either a graph of tasks or object-oriented diagrams in a semi-formal style, while in most
cases activities are carried out on-demand, with little previous planning.

However, a disciplined software development methodology should encourage the
existence of formal contracts between developers, so that contracts can be used to
reason about correctness of the development process, and to compare the capabilities
of various groupings of agents (coalitions) in order to accomplish a particular goal.

We propose to apply the notion of a formal contract described in the previous section,
to the software development process itself. That is to say, the software development
process can be seen as involving a number of agents (the development team and the
software artifacts) carrying out actions with the goal of building a software system that
meets the user requirements. The software development process consists of a collection
of interacting activities. When specifying a specific activity, we may consider the other
activities to be controlled by other agents. We may need some of these activities in order
to carry out the set of tasks of our activity, but we cannot influence the choices made
by the other agents. This situation is analogous to a contractor using subcontractors.

A specification of an activity is a contract that gives some constraints on the results and
effects of the activity but leaves freedom for the agent to decide how the actual behavior
is to be realized. For example, a member of the development team, say the agent ai, agrees
to take over the task of specifying a method of a given Class by either creating a State
machine, or a sequence diagram or a set of pre-and post-conditions,

Contract S = create-SM ∪
ai
 create-SeqD ∪

ai
 write-Pre&Post

Formal Specification of Software Model Evolution Using Contracts 189

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The rest of the agents can assume that after ai carries out their contracts, some
specification for the method does exists, but they do not know precisely which alternative
was chosen; so whatever they want to achieve, it should be achieved no matter which
alternative was chosen.

A remarkable difference between traditional software contracts and software process
contracts (sp-contracts) is the kind of object constituting a state. While in software
contracts, objects in the state represent objects in a software system (e.g., a bank account
object in a banking system), in sp-contracts, objects in the state are process artifacts,
such as a class diagram or a use case model. But this difference is just conceptual, from
the mathematical point of view we can reason about process contracts in the standard
way, as if they were software contracts. This view of software process as software is not
new, we can go back to the work of Osterweil (1997).

Building sp-Contracts

There are different levels of granularity in which sp-contracts are defined. On the one
hand we have contracts regulating primitive evolution, such as adding a single class in
a Class diagram, while on the other hand, we have contracts defining complex evolution,
such as the realization of a use case in the analysis phase by a collaboration diagram in
the design phase, or the reorganization of a complete class hierarchy. Complex evolutions
are non-atomic tasks which are composed by a number of primitive tasks. We start
specifying atomic contracts (contracts explaining primitive tasks) which will be the
building blocks for non-atomic contracts (i.e., regulations for complex evolution activi-
ties).

Primitive sp-contracts

To make contracts more understandable and extensible, we use the object-oriented
approach to specify them. The object-oriented approach deals with the complexity of
description of software development process better than the traditional approach.
Examples of this are the framework for describing UML compatible development pro-
cesses defined by Hruby (1999) and the metamodel defined by the OMG Process Working
Group (OMG, 1998), among others. In the object-oriented approach, software artifacts
produced during the development process are considered objects with methods and
attributes.

A Class is a template used to describe objects with identical behavior. The Refinement
Calculus has been applied to the specification of Classes, by giving a syntax for the Class
declaration and a formal semantics for object instantiation, message passing, inheritance
and substitutability (Back, Mikhajlova, & von Wright, 1997; Back, Mikhajlov, & von
Wright , 2000).

A Class is given by the following declaration:

190 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

C = subclass of P

 var attr
1
:Σ1,...,attr

m
:Σm

 C(val x
0
:Γ

0
)= K,

 Meth
1
(val x

1
:Γ

1
 , res y

1
:∆

1
) = M

1
,

 ...
 Meth

n
(val x

1
:Γ

1
 , res y

1
:∆

1
) = M

n
,

 end

This class C describes attributes, specifies the way the objects are created, and gives
a (possibly nondeterministic) specification for each method. Class attributes
attr

1
,..,attr

m
have the corresponding types Σ

1
...Σ

m
. The identifier self represents the

tuple (attr
1
,...,attr

m
). The type of self is Σ= Σ

1
 x ... x Σ

m
. A class constructor is used

to instantiate objects and has the same name as the class. The statement K :Γ
0
→

Σ x Γ
0
, representing the body of the constructor, introduces the attributes into the

state space and initializes them using the input parameter x
0
:Γ

0
. Methods Meth

1
...

Meth
n

specified by bodies M
1

... M
n
 operate on the attributes and realize the object

functionality. Every statement M
i
 is of type (Σ x Γ

i
x ∆

i
) → (Σ x Γ

i
x ∆

i
). The identifier

self acts as an implicit result parameter of the constructor and an implicit variable
parameter of the methods.

In general, every body M
i
includes a precondition p

i
 and an effect S

i
 (M

i
=assert p

i
; S

i
).

When a method M
i
 is called there is an agent a responsible for the call. The method

invocation is then interpreted as the following contract: (assert
a
 p

i
 ; S

i
), that is, the agent

is responsible for verifying the preconditions of the method. If agent a has invoked the
method in a state that does not satisfy the precondition, then a has breached the contract.

Figure 3. Part of the UML metamodel

Generalization
GeneralizableElement

isAbstract : Boolean *1

+spcialization

*

+parent

1
*1

+generalization

*

+child

1

Association

Feature

Classifier

*

0..1

+feature*

+owner
0..1

AssociationEnd

2..* 1

+connection

2..* 11

*+participant

1

*

StructuralFeature BehavioralFeature

Attribute Operation

NameSpace

ModelElement

name
*

+ownedElement

*

Package

*

+importedElement

*

Formal Specification of Software Model Evolution Using Contracts 191

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For the sake of readability, we write Meth
i
(val x

i
: Γ

i
) : ∆

i
 = M

i
[resu/y

n
], to denote

the declaration Meth
n
(val x

n
:Γ

1
 , res y

n
:∆

n
) = M

n
, . The result variable y

n
 is replaced

by the special variable called resu in the body of the method. And regarding method
invocation, we write o.meth

i
(x

i
).meth

j
(x

j
) to indicate that the second method is applied

on the object that results from the first invocation, that is to say: o.meth
i
(x

i
, z);

z.meth
j
(x

j
).

The library of primitive contracts intentionally reflects the class hierarchy of the UML
metamodel (OMG, 2003). Contract library consists of a set of UML artifact’s specifica-
tions (metaclasses), where each specification describes both the artifact’s properties
(i.e., attributes of the artifact) and all the possible ways of modifying the artifact (i.e.,
operations that can be applied on the artifact, such as adding a new feature to a class).

Figure 3 shows a part of the UML metamodel. Primitive contracts for these artifacts are
(partially) specified as follows:

Generalization = subclass of Relationship

var parent, child : GeneralizableElement,

Constructor Generalization(val p,c : GeneralizableElement) = parent:=p;
child:=c, parent() : GeneralizableElement = resu:=parent,

 child() : GeneralizableElement = resu:=child,

end

The Class Generalization has an internal state composed by two attributes called parent
and child, respectively, both storing a GeneralizableElement. The Class defines a
constructor operation and two observer methods, one for each attribute.

NameSpace = subclass of ModelElement
 var ownedElements : Set of ModelElement,
 Constructor NameSpace() = ownedElements:= {} ,
 ownedElements() : Set of ModelElement = resu:=ownedElements,
 addElement(val e:ModelElement) =
 assert (e∉ ownedElements ∧ ∀g• (g∈ ownedElements → e.name ≠

g.name)) ;
 ownedElements:= ownedElements ∪ {e} ,
 deleteElement(val e:ModelElement) =
 assert (e∈ ownedElements) ; ownedElements:= ownedElements - {e} ,
end

GeneralizableElement = subclass of ModelElement
 var generalizations, specializations : Set of Generalization,
 isAbstract: Bool
 Constructor GeneralizableElement() = generalizations := {}; specializations
:= {},

192 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 parents() : Set of GeneralizableElement = resu:=
generalizations.collect(parent)1,
 children() : Set of GeneralizableElement = resu:=
specializations.collect(child),
 allParents() : Set of GeneralizableElement = ps := self.parents() ;
 resu := ps ∪ ps.collect(allParents),
 isA(val c : GeneralizableElement) : Bool = resu:= (self=c ∨ c ∈
self.allParent()) ,
end

The Class GeneralizableElement has an internal state composed by three attributes, the
first two attributes containing a set of Generalizations and the third attribute containing
a Boolean value. The Class defines a set of methods: method parents() returns a Set
consisting of all direct parents of the generalizable element which are accesible through
its Generalizations; the method children() returns a set of all direct children; the method
allParents() results in a Set containing all ancestors. IsA() returns true if the receiver of
the message is a subclass (direct or indirect) of the parameter.

Feature = subclass of ModelElement
 var owner : Classifier,
 Constructor Feature (val o : Classifier) = owner:=o,
 owner() : Classifier = resu:=owner,
 setOwner(val o:Classifier) = owner:=o,
end
Classifier = subclass of GeneralizableElement, NameSpace
 var features : Set of Feature,
 associationEnds : Set of AssociationEnd,
 Constructor Classifier() = features :={}; associationEnds :={},
 allFeatures() : Set of Feature = resu:= (features ∪
self.parents.collect(allFeatures)),
 associations(): Set of Association = resu:=
self.association.collect(association),
 oppositeAssociationEnds() : Set of AssociationEnd = ...

 addFeature(val f : Feature) =
 assert (f ∉ features ∧ g • (g ∈ features ∨
 g ∈ self.oppositeAssociationEnds → f.name ≠ g.name))
;
 features:= features ∪ {f} ; f.setOwner(self),
 deleteFeature(val f:Feature) = assert
f∈self.features;self.features:=self.features - {f}

end

The Class Classifier has an internal state with two attributes; the first one stores a set
of Features while the second one stores a set of AssociationEnds. The Class defines a

Formal Specification of Software Model Evolution Using Contracts 193

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

set of query methods: the method allFeatures() results in a Set containing all Features
of the Classifier itself and all its inherited Features; the operation associations results
in a Set containing all Associations of the Classifier itself; the operation
oppositeAssociationEnds results in a set of all AssociationEnds that are opposite to the
Classifier. Additionally, the Class declares a set of mutator methods which modify the
object internal state: the method addFeature() has a precondition stating that the new
feature does not belong to the classifier, and the new feature should have a different name
from all the other attributes in the classifier, and from all the opposite associationEnds
of the classifier. The effect of the method is that the feature is added to the list of features
and the classifier is set as the feature’s owner.

Package = subclass of NameSpace, GeneralizableElement
 var importedElements : Set of ModelElement,
 Constructor Package() = importedElement:= {} ,
 allContents() : Set of ModelElement = resu:=ownedElement ∪
importedElement,
 addGeneralization(val g:Generalization) =
 assert (g ∉ ownedElements ∧ g.parent ∈ ownedElements ∧
 g.child ∈ ownedElements ∧ ¬ g.parent.isA(g.child) ;
 self.addElement(g) ,

end

The class Package inherits from NameSpace and GeneralizableElement. It specifies a
method addGeneralization() to insert a new generalization in the package. The precon-
ditions for the method are that the generalization is not in the package, all elements
connected by the new relationship (i.e., the parent and the child) are included in the
package and that the new generalization preserves absence of circular inheritance. The
effect of the method is that the new element is added in the collection of owned elements
of the package by invoking the method addElement() inherited from the class NameSpace.

Apart from software artifact specifications, the other component in the formalism of sp-
contract is the specification of software developers. Software developers are specified
by declaring their attributes and the contracts for their activities:

Developer = subclass of Object
 var name : String , skills : Set of String,
 Constructor Developer(val n : String) = name := n ,

end

The class Developer is the root in the hierarchy, it will be subsequently specialized in
order to specify concrete behavior of specific developers.

194 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Complex sp-Contracts

On top of primitive contracts it is possible to define complex contracts, specifying non-
atomic forms of evolution through the software development process. Then, by using
the wp predicate transformer we can verify whether a set of agents (i.e., software
developers) can achieve their goal or not. We can analyze whether a developer (or team
of developers) can apply a group of modifications on a model or not by means of a contract
designed in terms of a set of primitive operations conforming the group.

Developers will successfully carry out the modifications if some preconditions hold. We
can determine the weakest preconditions to achieve a goal by computing wp

A
 . C . Q, where

C is the contract, A is the set of software developers (agents) and Q is the goal.

If computing the wp we obtain a predicate different from false, then we proved that with
the contract the developers can achieve their goal under certain preconditions.

The wp formalism allows us to analyze a single contract from the point of view of different
coalitions of agents. If computing the wp we obtain ‘false,’ we can look for a different
coalition (e.g., we can permit an outside agent to join the coalition) and compare the
results. In other case (if the coalition should be preserved) to achieve the goal the
contract have to be modified.

In the following sections, we give examples of complex contract.

Example 1: Contract on the Evolution Dimension

Consider a collaborative activity, in which two software developers have to carry out a
refactoring on a class diagram. One of the agents will detect and move all the features
that could be pulled up to a superclass, while the other agent will simplify the class
diagram by collecting empty classes.

To coordinate this collaborative activity, both agents (e.g., the lifter and the cleaner)
subscribe a complex contract that is built on top of primitive contracts establishing the
primitive responsibilities for each agent.

The primitive specification for the cleaner agent describes a method called
deleteEmptyClass(), as follows:

Cleaner = subclass of Developer
 deleteEmptyClass(val p : Package) =
 (update

self
 c:=c´  c’ ∈ p.ownedElement ∧ c’.features=∅ ∧

 c’.children=∅∧ c’.associations=∅) ;
 p.deleteElement(c);

end

The contract for this method states that the agent will detect nondeterministically a class
c from the package p given as parameter, such that class c is empty (i.e., it has no children
and no features). Then the selected class is deleted from the package.

Formal Specification of Software Model Evolution Using Contracts 195

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The primitive specification for the lifter agent contains three methods:

Lifter = subclass of Developer
 pasteRepeatedFeature(val c : Class) =
 (update

self
 f:=f´  c´∈ c.children • f´∈ c’.features) ; c.addFeature(f)

,
 deleteRepeatedFeature(val c : Class) =
 (update

self
 f:=f´  c´∈ c.children • f´∈ c’.features) ;

 for i=1 to (c.children.size) do c´:=c.children.at(i); c´.deleteFeature(f)
od,
 liftRepeatedFeature(val p : Package) =
 (update

self
 c:=s s ∈ p.ownedElement ∧

 ∃f:Feature • (c´∈ s.children • f∈c’.features)) ;
 (pasteRepeatedFeature(c); deleteRepeatedFeature(c))
 ∪

self

 (deleteRepeatedFeature(c); pasteRepeatedFeature(c)) ;
end

The method pasteRepeatedFeature() says that the agent will receive a class as parameter
and will select nondeterministically a feature that appears in all subclasses of the given
class. Then, the selected feature is pasted in the class; the method deleteRepeatedFeature()
states that the agent will select nondeterministically a feature that appears in all
subclasses of a given class. Then, the selected feature is deleted from all the subclasses;
finally liftRepeatedFeature() is a more complex method that allows the agent to choose
nondeterministically in which order to carry out its activities, after having selected
(nondeterministically) a class that is candidate for refactoring).

The complex contract R states that both developers (plus a coordinator agent named
coord) commit themselves to carry out the refactoring task in a collaborative way. The
coordinator agent will nondeterministically choose either asking a

1
 to lift a repeated

feature or asking a
2
 to delete an empty class. The terms of the contract are as follows:

R = a
1
 := new Lifter ; a

2
 := new Cleaner ;

 while (¬Q) do a
1
. l if tRepeatedFeature(p) ∪

coord

a
2
.deleteEmptyClass(p) od;

Where Q specifies the expected effect of the refactoring activity: (i) there is no repeated
feature and (ii) the model does not contain any empty class:

Q = ∀c:Class • c∈p.ownedElement →
 (¬∃f:Feature • (∀c´∈c.children • f∈c’.features) ∧ (i)

 (c.features≠∅ ∨ c.children≠∅ ∨ c.associations≠∅)) (ii)

196 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We may be interested in calculating the weakest precondition for agents a
1
 and a

2
to reach

the goal G by using the contract R. That is to say: wp
{coord, a1, a2}

 . R. G

where G = QÙT , being T a formula specifying that the resulting model keeps all the
functionality of the original model.

Applying the calculus is possible to determine that if agents a
1
 and a

2
 work together (i.e.,

both of them integrate the coalition), then they can reach the goal.

But if a
1
 leaves the coalition, the wp is false. The achievement of the goal cannot be

guaranteed because agent a
1
 is free to resolve their nondeterministic choices in a hostile

way. For example, in the following choice:

(pasteRepeatedFeature(c) ; deleteRepeatedFeature(c))
 ∪

a1

(deleteRepeatedFeature(c) ; pasteRepeatedFeature(c))

only the first option guarantees the achievement of the goal. If agent a
1
 chooses the

second option a problem will occur: A feature is deleted before being pasted in the
superclass; consequently, the model loses functionality and the final goal cannot be
achieved.

Example 2: Contract on the Horizontal Dimension

Arbitrary modifications that do not cause problems when they are applied exclusively,
may originate conflicts when they are integrated. Consider a collaborative task in which
two agents a

1
 and a

2
 need to add a generalization relationship respectively to a model,

preserving the consistency of the model.

Contract statement C specifies that agents a
1
 and a

2
 will perform their activities sequen-

tially, one after the other:

C = a
1

:= new Designer ; a
2
 := new Designer ;

 a
1
.addGeneralization(p,r)

; a

2
.addGeneralization(p,g)

The primitive contract regulating the behavior for Designer states that any designer will
accomplish this task by directly invoking the method addGeneralization()

of the package

artifact:

Designer = subclass of Developer
 addGeneralization(val p : Package , g: Generalization) = p.addGeneralization(g)

end

As we explained before, the method invocation is interpreted as the following contract:
(assert

a1
 p

i
 ; S

i
), that is, the agent takes over the responsibility for the preconditions of

the method. If agent a
1
(respectively a

2
) invokes the method in a state that does not satisfy

the precondition, then a
1
breaches the contract.

Formal Specification of Software Model Evolution Using Contracts 197

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using the calculus, it is possible to find out which is the weakest precondition to achieve
the goal of introducing two generalization relationships without breaking the non-
circularity principle of inheritance hierarchies by computing: wp

{a1,a2}
. C . Q, where C is

the contract between agents and Q is the post-condition that specifies the goal of the
activity, which is the creation of new generalization relationships guaranteeing the
absence of circularity in the class hierarchy:

Q = (r ∈ p.ownedElements ∧ g ∈ p.ownedElements) ∧

 ∀c
1
,c

2
:GeneralizableElement. (c

1
.isA(c

2
)

∧ c

2
.isA(c

1
) → c

2
= c

1
)

The weakest precondition P for agents a
1
 and a

2
to reach the goal Q by using the contract

C, (i.e., P = wp
{a1,a2}

 . C. Q) can be semi automatically calculated applying the rules in
section 2.3 arriving to the following result:

P =
(i) r ∉ p.ownedElements ∧ r.parent ∈ p.ownedElements ∧
 r.child ∈ p.ownedElements ∧ ¬ r.parent.isA(r.child) ∧
(ii) g ∉ p.ownedElements ∧ g.parent ∈ p.ownedElements ∧
 g.child ∈ p.ownedElements ∧ ¬ g.parent.isA(g.child) ∧
(iii) ∀c

1
,c

2
:GeneralizableElement.(c

1
.isA(c

2
)

∧c

2
.isA(c

1
)→c

2
=c

1
)

(iv) ¬ (g.parent.isA(r.child) ∧ r.parent.isA(g.child))

Where (i), (ii) and (iii) specify the precondition for applying the first and the second
evolution, respectively (as if they were applied in isolation), and (iv) specifies a special
requirement to avoid circular inheritance in the case that both evolution actions were
applied together.

Figure 4 illustrates a conflictive case, in which the expected weakest precondition does
not hold in the initial state. As a consequence agents cannot achieve their goals (because
a circularity is introduced) in spite of fulfilling the contract.

Future Trends

The sp-contract formalism should be equipped with automatic tools supporting contract
derivation, precondition calculation, and correctness calculation. These tools should
be connected with the Refinement Calculator (Butler et al., 1997; Celiku & von Right,
2002), which supports the Refinement Calculus (Back & von Wright, 1998).

The need for automatic support is the main motivation for future work. It is necessary
to count with a tool to assist developers in the task of writing and applying sp-contracts.
This tool should be integrated with an environment for thesoftware development
process, providing the following functionality:

198 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Contract edition and storage: Developers can create new contracts and store them
in a repository. There are different ways in which a new contract can be created:
from scratch as a primitive contract; by specializing an existing contract stored in
the repository; or by selecting a group of contracts stored in the repository and
composing them to form a new complex contract.

• Pre condition calculus: Given a contract between a set of agents and a specific goal,
the tool would be able to compute the weakest precondition for the application of
that contract.

• Contract refinement: Specific contracts can be derived from abstract contracts by
applying the refinement calculus.

• Contract correctness: If a precondition p and a post-condition q are given and
contract S has already been defined, we can prove that S is correct with respect to
precondition p and post-condition q.

• Visual assistance: functions of edition of contracts have a textual interface using
mathematical notation, but also may have a graphical interface. A contract can be
created using a UML editor that both records the operations applied on models
(such as adding a new class) and translates them to the mathematical notation. This
translation is straightforward using the primitive contracts on the UML artifacts
described. On the other hand, the task of selecting a contract from the repository
will be assisted by the generation of a graphical view of the contract. This is
provided by animating a contract, that is to say, showing how the execution of the
contract modifies a given UML model, step by step.

Conclusion and Related Work

During the software development process different UML models are employed to specify
the system from different viewpoints at different levels of abstraction. Models of
different viewpoints have a certain overlap (Spanoudakis, Frinkelstein, & Till, 1999) and
models produced at different levels of abstractions in the development process also are
related. Consequently, handling of consistency between models is of major importance
(Ghezzi & Nuseibeh, 1999; Kuzniarz, Huzar, Reggio, & Sourrouille, 2002; Kuzniarz, Huzar,
Reggio, Sourrouille, & Ataron, 2003).

Figure 4. Collaborative evolution breaching consistency rule

Formal Specification of Software Model Evolution Using Contracts 199

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Different types of consistency problems have been identified; Engels, Küster, Heckel,
and Groenewegen (2001) distinguish two dimensions of consistency problems —
horizontal and vertical:

• Horizontal consistency concerns specifications consisting of different parts
representing the different points of view from which the system is specified.

• Vertical consistency arises when a model is transformed into another refined model.
For example a collaboration diagram can be derived from a use case diagram.

However, we need to distinguish three dimensions of consistency (Pons, Giandini, &
Baum, 2000): Horizontal, Vertical, and Evolution dimensions (the last two refine Engels’
vertical dimension) because two dimensions are insufficient to comprise an iterative and
incremental software process where model refinement occurs vertically, inside each
iteration; but also horizontally, from one iteration to the next one.

A wide range of different approaches for checking consistency of UML models has been
proposed in the literature. Here is an overview of the most relevant works, classified in
two groups. The first group focuses on the consistency between a fixed set of artifacts:

Glinz (2000) defines a lightweight approach to consistency between a scenario model
and a class model. He assumes semi-formal, loosely coupled models that are
complementary: scenarios model the external system behavior, the class model
specifies the internal functionality. He achieves consistency by minimizing overlap
between the two models and by systematically cross referencing corresponding
information. He gives a set of rules (some of them automatically checked) that can
be used both for developing a consistent specification and for checking the
consistency of a completed specification.

Petriu Sun (2000) analyze the consistency between two different UML sublanguages:
Activity diagrams and Sequence Diagrams.

Whittle and Schumann (2000) developed an algorithm for automatically generating
statechart designs from a collection of sequence diagrams.

Ehrig and Tsiolakis (2000) investigate the consistency between UML class and
sequence diagrams by representing them by attributed graph grammars.

Works in the second group propose a general methodology that can be applied to
different consistency problems:

Astesiano and Reggio (2003) look at the consistency problems in the UML in terms
of the well-known machinery of classical algebraic specifications. Thus, first they
review how the various kinds of consistency problems were formulated in that
setting. A similar approach, but using dynamic logic, was defined by Pons and Baum
(2000).

200 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Engels et al. (2001) discuss the issue of consistency of behavioral models in the UML
and present a general methodology about how consistency problems can be dealt
with. According to the methodology, those aspects of the models relevant to the
consistency are mapped to a semantic domain in which precise consistency tests can
be formulated. The choice of the semantics domain and the definition of consistency
conditions vary according to each concrete consistency problem. An instantiation
of this approach is the work of Fradet, Le Métayer, and Périn (1999) where systems
of linear inequalities are used to check consistency for multiple view software
architectures. The general idea is further enhanced in Engels, Heckel, Küster, and
Groenewegen (2002) with dynamic metamodeling rules. Model transformation rules
are used to represent evolution steps, and their effect on the overall model consis-
tency is explored.

Egyed (2001) presents an approach for automated consistency checking among
UML diagrams, called ViewIntegra. The approach makes use of consistent transfor-
mation to translate diagrams into interpretations to bring models closer to one
another in order to simply comparison.

Grundy, Hosking, and Mugridge (1998) claim that a key requirement for supporting
inconsistency management is the facilities for developers to configure when and
how inconsistencies are detected, monitored, stored, presented and possibly
automatically resolved. They describe their experience with building complex mul-
tiple-view software development tools supporting inconsistency management fa-
cilities.

Toval and Alemán (2000) formalize the UML notation and transformations between
different UML models within rewriting logic. They implement their formalization in
the Maude system, focussing on using reflection to represent and support the
evolution of models.

Van Der Straeten, Mens, Simmonds, and Jonckers (2003) propose and validate an
approach to detect and resolve inconsistencies between different versions of a UML
model, specified as a collection of class diagrams, sequence diagrams, and state
diagrams. The formalism used is description logic, a decidable fragment of first-order
predicate logic. Logic rules are used to detect and to suggest ways to resolve
inconsistencies.

The proposal described in this chapter belongs to the second group; sp-contract is a
mathematical tool the objective of which is to improve the formality of software
development processes. The core of sp-contracts is the formalization of UML software
artifacts and their relationships on three dimensions. Sp-contracts handle consistency
between models through evolution by specifying state invariant and pre- and post-
conditions for each software development task. This feature is closely related to the
mechanism of reuse contracts (Steyaert, Lucas, Mens, & D’Hondt, 1996; Mens, ., Lucas,
& D’Hondt, 2000). A reuse contract describes a set of interacting participants. Reuse
contracts can only be adapted by means of reuse operators that record both the protocol
between developers and users of a reusable component and the relationship between
different versions of one component that has evolved.

Formal Specification of Software Model Evolution Using Contracts 201

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The originality of sp-contracts resides in the fact that software developers are incorpo-
rated into the formalism as agents (or a coalition of agents) who make decisions and have
responsibilities (Pons & Baum, 2001; Pons & Baum, 2002). Given a specific goal that a
coalition of agents is requested to achieve, we can use traditional correctness reasoning
to show that the goal can in fact be achieved by the coalition, regardless of how the
remaining agents act. The weakest precondition formalism allows us to analyze a single
contract from the point of view of different coalitions and compare the results. For
example, it is possible to study whether a given coalition A would gain anything by
permitting an outside agent b to join A. On the other hand, formal refinement techniques
can be applied to a contract in order to obtain an improved contract preserving its
correctness.

We believe the formalism of sp-contracts can play an important role in the study of
software development process: sp-contracts can be useful for reasoning about and
justifying good practices in software process, providing a formal rational for them; sp-
contracts can provide a means to analyze and reason about refactoring tasks, refine-
ments, and transformation of models.

Regarding scalability issues, when the software development process becomes complex,
the formalism allows us to manage the complexity by means of a hierarchical definition
and classification of contracts. On the one hand, the library of contracts is organized into
a generalization-specialization hierarchy. Then, it is possible to define a new contract by
specializing an existing one, by writing only the incremental features. On the other hand,
contracts can be specified in a compositional way. It means that complex contracts are
built in terms of less complex ones, and weakest preconditions for a complex contract are
calculated from weakest preconditions of its constituent contracts. Furthermore, speci-
fications are organized along three different dimensions (horizontal, vertical, and
evolution dimension), thus increasing the cohesion and readability of each contract.

References

Andrade, L.F. & Fiadeiro, J.L. (1999). Interconnecting objects via contracts. Proceedings
of The Second International Conference on the Unified Modeling Language.
Lecture Notes in Computer Science 1723. Springer.

Astesiano E. &, Reggio G. (2003). An Algebraic Proposal for Handling UML Consistency,
Workshop on Consistency Problems in UML-based Software Development,.
Blekinge Institute of Technology Research Report 2003:06.

Back, R., Mikhajlova, A. & von Wright, J. (1997) Class refinement as semantics of correct
subclassing. Turku Centre for Computer Science. TUCS Technical Report No 147.
ISBN 952-12-0114-2. December 1997.

Back, R. & von Wright, J.(1998). Refinement calculus: a systematic introduction,
graduate texts in computer science, Springer Verlag.

202 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Back, R. Petre L. & Porres Paltor, I. (1999). Analysing UML use cases as contract.
Proceedings of The Second International Conference on the Unified Modeling
Language. Lecture Notes in Computer Science 1723. Springer Verlag.

Back, R., Mikhajlov, L. & von Wright, J. (2000). Formal semantics of inheritance and
object substitutability. Turku Centre for Computer Science. TUCS Technical
Report No 337. ISBN 952-12-0637-3. January 2000.

Butler, M. Grundy, J., Langbacka, T., Ruksenas, R., & Von Wright, J. (1997). The
refinement calculator – proof support for program refinement. Proc. Formal
Methods Pacific, Springer-Verlag.

Celiku, O. & von Right, J. (2002). Theorem prover support for precondition and correct-
ness calculation. Proc. 4th International Conference on Formal Engineering
Methods ICFEM (LNCS 2495), Springer-Verlag.

Egyed, A. (2001, November). Scalable consistency checking between diagrams – the
VIEWINTEGRA approach. Proceedings of the 16th IEEE International Confer-
ence on Automated Software Engineering (ASE), San Diego.

Ehrig, H. & Tsiolakis, A. (2000). Consistency analysis of UML class and sequence
diagrams using attributed graph grammars. In H. Ehrig and G. Taentzer (Eds.),
ETAPS 2000 workshop on graph transformation systems (pp. 77-86).

Engels G., Küster J., Heckel R., & Groenewegen L. (2001). A methodology for specifying
and analyzing consistency of object oriented behavioral models. Procs. of the IEEE
International Conference on Foundation of Software Engineering, Vienna.

Engels,G., Heckel, R., Küster, J. & Groenewegen, L. (2002). Consistency-preserving
model evolution through transformations. In Proc.of the International Conference
on. The Unified Modeling Language. Model Engineering, Concepts, and Tools,
number 2460 in Lecture Notes in Computer Science, (pp. 212–227). Springer-
Verlag.

Fradet, P., Le Métayer, D., & Périn, M. (1999). Consistency checking for multiple view
software architectures. In Proc. Int. Conf. ESEC/FSE’99, volume 1687 of Lecture
Notes in Computer Science (pp. 410-428). Springer-Verlag.

Ghezzi, C. & Nuseibeh, B. (1999). Special Issue on Managing Inconsistency in Software
Development (2). IEEE Transaction on Software Engineering, 25(11).

Glinz, Martin. (2000, June 10-23). A lightweight approach to consistency of scenarios and
class models. Proceedings of the Fourth International Conference on Require-
ments EngineeringSchaumburg, IL.

Grundy, J.C, Hosking, J.G., & Mugridge, W.B. (1998). Inconsistency management for
multiple-view software development environments. IEEE Transactions on Soft-
ware Engineering, 24(11), 960-981.

Helm, R. Holland, I., & Gangopadhyay, D. (1990). Contracts: specifying behavioral
compositions in object-oriented systems. Proceedings of OOPSLA ’90. ACM
Press.

Hruby, Pl. (1999). Framework for describing UML compatible development processes.
Proceedings of the Unified Modeling Language Conference. Lecture Notes in
Computer Science 1723. Springer.

Formal Specification of Software Model Evolution Using Contracts 203

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development
process, Addison Wesley.

Kuzniarz, L., Huzar, Z., Reggio, G., and Sourrouille, J., editors (2002) Proceedings of the
first Workshop on “Consistency Problems in UML-Software Development,” RR-
2002-6.

Kuzniarz, L., Huzar, Z., Reggio, G., Sourrouille, J., & Ataron, M., editors (2003) Proceed-
ings of the 2nd Workshop on “Consistency Problems in UML-Software Develop-
ment.” Blekinge Institute of Technology Research Report 2003:06.

Mens, T., Lucas, C., & D’Hondt, T. (2000). Automating support for software evolution
in UML. Automated Software Engineering Journal 7,1, Kluwer Academic Publish-
ers.

Meyer, B. (1992). Design by contract. In Advances in object oriented software engineer-
ing. Prentice Hall.

Meyer, B.(1997). Object-oriented software construction, Second Edition, Prentice Hall.

OMG (1998, July). Analysis and design process engineering. Process Working Group,
Analysis and Design Platform Task Force..

OMG (2003, March). The unified modeling language specification version1.5, revised by
the Object Management Group. Available online at http://www.omg.org.

Osterweil, L. (1997). Software processes are software too. Revisited: an invited talk on
the most influential paper of ICSE, Proc. 19th International Conference on
Software Engineering. ACM Press.

Overgaard G. & Palmkvist K.(2000). Interacting subsystems in UML. In Proceedings of
The 3rd. International Conference on the Unified Modeling Language. Lecture
Notes in Computer Science. Spring Verlag.

Petriu, D. & Sun, Y. (2000) Consistent behaviour representation in activity and sequence
diagrams. In Proceedings of The 3rd. International Conference on the Unified
Modeling Language. Lecture Notes in Computer Science. Spring Verlag.

Pons, C. & Baum, G. (2000). Formal foundations of object-oriented modeling notations.
3rd International Conference on Formal Engineering Methods, ICFEM 2000,
York, UK. IEEE Computer Society Press.

Pons, C., Giandini, R., & Baum, G. (2000). Dependency relationships between models
through the software development process. 10th International Workshop on
Software Specification and Design (IWSSD), California, IEEE Computer Society
Press.

Pons, C. & Baum G. (2001). Software development contracts, 5th European Conf. on
Software Maintenance and Reengineering, Special Session on Formal Founda-
tion of Software Evolution. Portugal.

Pons, C. & Baum G. (2002). Contracts soundness for object oriented software develop-
ment process. OOPSLA’2002 Workshop on Behavioral Semantics. Seattle, WA.
Northeastern University, College of Computer Science, 163-177.

Spanoudakis, G., Frinkelstein, A., & Till, D. (1999). Overlaps in requirement engineering.
Automated Software Engineering: An International Journal. 6(2), 171-198.

204 Pons and Baum

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Steyaert, P., Lucas, C., Mens, K., & D’Hondt, T. (1996). Reuse contracts: managing the
evolution of reusable assets. Proceedings of OOPSLA’96, New York, ACM Press.

Toval, A. & Alemán, J. (2000). Formally modeling UML and its evolution: a holistic
approach. In S. Smith and C. Talcott (Eds.), Formal methods for open object-based
distributed systems IV, (pp. 183-206). Kluwer Academic Publishers.

Van Der Straeten, R., Mens, T., Simmonds, J., & Jonckers, V.(2003) Using description
logic to maintain consistency between UML-models. Proc. 6th International
Conference on the Unified Modeling Language. Lecture Notes in Computer
Science number 2863. Springer.

Van Gorp, P., Stenten, H., Mens, T., & Demeyer, S. (2003). Towards automating source-
consistent UML refactoring. Proc. 6th International Conference on the Unified
Modeling Language. Lecture Notes in Computer Science number 2863. Springer.

Whittle, J. & Schumann, J. (2000). Generating statechart designs from scenarios.
Proceedings of International Conference on Software Engineering ICSE 2000.
Limerick, Ireland.

Footnotes

1 The type Set provides the traditional operations: select, reject, collect (or map),
size, ∪, ∩, − , ∈, ⊆.

