
Available online at www.sciencedirect.com
www.elsevier.com/locate/infsof

Information and Software Technology 50 (2008) 390–405
A preliminary study on various implementation approaches
of domain-specific language q

Tomaž Kosar a,*, Pablo E. Martı́nez López b, Pablo A. Barrientos b, Marjan Mernik a

a University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova ulica 17, 2000 Maribor, Slovenia
b Universidad Nacional de La Plata, Facultad de Informática, LIFIA (1900) La Plata, Buenos Aires, Argentina

Received 14 March 2006; received in revised form 8 March 2007; accepted 6 April 2007
Available online 21 April 2007
Abstract

Various implementation approaches for developing a domain-specific language are available in literature. There are certain common
beliefs about the advantages/disadvantages of these approaches. However, it is hard to be objective and speak in favor of a particular
one, since these implementation approaches are normally compared over diverse application domains.

The purpose of this paper is to provide empirical results from ten diverse implementation approaches for domain-specific languages,
but conducted using the same representative language. Comparison shows that these discussed approaches differ in terms of the effort
need to implement them, however, the effort needed by a programmer to implement a domain-specific language should not be the only
factor taken into consideration. Another important factor is the effort needed by an end-user to rapidly write correct programs using the
produced domain-specific language. Therefore, this paper also provides empirical results on end-user productivity, which is measured as
the lines of code needed to express a domain-specific program, similarity to the original notation, and how error-reporting and debugging
are supported in a given implementation.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Domain-specific languages; Embedded approach; Preprocessing; Compiler/interpreter; Compiler/interpreter generator; Extensible compiler/
interpreter; Commercial-Off-The-Shelf
1. Introduction

A domain-specific language (DSL) is a language
designed to provide a notation tailored toward an applica-
tion domain, and is based only on the relevant concepts
and features of that domain. As such, a DSL is a means
of describing and generating members of a program family
within a given domain, without the need for knowledge
about general programming. By providing notations tai-
lored to the application domain, a DSL offers substantial
gains in productivity and even enables end-user program-
0950-5849/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2007.04.002

q This work is sponsored by bilateral project ‘‘Implementation of DSLs:
Evaluation of Approaches’’ (code ES/PA02/E01, BI-BA/03-05-002)
between Slovenia and Argentina, part of the program SECyT-MESS.

* Corresponding author. Tel.: +386 22207448.
E-mail address: tomaz.kosar@uni-mb.si (T. Kosar).
ming. The main disadvantage of DSLs is the cost of their
development, requiring both domain and language devel-
opment expertise. This is one of the reasons why DSLs
are rarely used in solving software engineering problems.
The other one is the lack of guidelines and experienced
reports on DSL development. In a recent survey on DSLs,
various patterns on when and how to develop them were
identified and explained in a qualitative manner [19]. How-
ever, the quantitative approach was stated as an open
problem in the DSL research field. Can the costs and ben-
efits of DSLs be reliably quantified? This paper presents a
first step in this direction.

Although at present many articles have been written on
the development of particular DSLs, there are none, to the
best of our knowledge, that compare different implementa-
tion approaches on the same DSL. Since these DSLs were
implemented for very different domains and used various

mailto:tomaz.kosar@uni-mb.si

T. Kosar et al. / Information and Software Technology 50 (2008) 390–405 391
implementation approaches, it is hard to be objective and
speak in favor of a certain domain-specific language imple-
mentation approach. The main goal of this paper is to
compare various implementation approaches conducted
on the same selected DSL. This comparison is based on
the project IDEA – Implementation of DSLs: Evaluation
of Approaches – carried out by the University of Maribor,
in Slovenia, and the University of La Plata, in Argentina.
In particular, we have taken the short guidelines given by
Mernik et al. [19] on how to proceed with DSL implemen-
tation, and extended them, by providing a detailed descrip-
tion of our practical experience with each of them [17].

In order to perform a comparison of these implementa-
tions, several approaches were selected for testing, and then
a fixed DSL was chosen as a case study. The study carried
out was to implement the chosen DSL using all the selected
approaches, to write programs using this DSL, and to com-
pare the results obtained. Further, results regarding com-
parison were used to investigate the following claims
about DSL development taken from the literature:

• The embedded implementation approach is more effi-
cient when compared with other implementation
approaches [8,13].

• Turning an API into a DSL incurs in a lot of additional
work [10].

• Original notation is not fully feasible for all DSL imple-
mentation approaches [19].

• Error-reporting is unsatisfactory in all DSL implemen-
tation approaches [4,15].

These statements are the object of our study and are fur-
ther examined in this paper. The organization of this paper
is as follows. Related work and basic characteristics of
DSLs are briefly explained in Section 2. An overview of
the comparisons carried out on the specific DSL (together
with the basis for the case study) are given in Section 3.
Key findings are given in Section 4. Finally, concluding
remarks are summarized in Section 5.

2. Related work

In order to implement a DSL, a programmer can choose
from among several implementation approaches, and of
course, the most suitable one should be chosen. However,
there is a shortage of guidelines for helping DSL developers
choose the most suitable implementation. The first attempt
to classify these approaches was carried out by Spinellis
[29], listing design patterns for DSLs. Later, these patterns
were improved and extended by Mernik et al. [19]. For
example, the Spinellis’ pattern classification does not
include traditional general-purpose language (GPL) design
and implementation techniques, but Mernik’s does. More-
over, the classification of patterns by Spinellis [29] does not
correspond to any obvious way of classifying into decision,
analysis, design, and implementation patterns. For exam-
ple, the data structure representation pattern is classified
as a creational pattern by Spinellis, while it is obvious that
this pattern can be implemented using the different imple-
mentation patterns described. Mernik et al.’s implementa-
tion patterns are briefly presented below:

Preprocessing. DSL constructs are translated into con-
structs in the base language. Static analysis is limited to
that done by the base language processor. There are impor-
tant sub-patterns.

Macro processing. In this approach, the meaning of new
constructs is defined in terms of other constructs in the
language.
Source-to-source transformation. DSL source code is
translated into the source code of an existing language.
The translation is usually defined via syntax-directed
patterns.
Pipeline. Processors successively handling the sub lan-
guages of a DSL and translating them to the input lan-
guage of the next stage.
Lexical processing. Only simple lexical scanning is
required, without complicated tree-based syntax
analysis.

An advantage of this approach is that implementation
of the DSL is very easy since most, if not all, semantic anal-
ysis is postponed and performed by the base language pro-
cessor. However, this absence of semantic analysis is also
the main disadvantage because there is no static checking
and it is impossible to make optimizations at the domain
level. Another disadvantage is that error reporting is a
problem because error messages are in terms of base lan-
guage concepts.

Embedding. In this approach, existing mechanisms in the
host language are used to build a library of domain-specific
operations. The syntactic mechanisms of the host language
are used to express the idiom of the domain. The embedded
DSL inherits the generic language constructs of its host
language and adds domain-specific primitives that are clo-
ser to the DSL user. An advantage of this approach is that
the compiler or interpreter of the host language is reused as
it is, for the DSL. The main limitation is in the expressive-
ness of the syntactic mechanisms in the host language. In
many cases, the optimal domain-specific notation is com-
promised because of the limitations of the host language.
As with the previous approach, error reporting is also
problematic, for the same reasons as before.

Compiler/interpreter. In this approach standard com-
piler/interpreter techniques are used to implement a DSL.
In the case of the compiler, the DSL constructs are trans-
lated into base language constructs and library calls. A
complete static analysis is done on the DSL program/spec-
ification. In the case of an interpreter, DSL constructs are
recognized and interpreted using a fetch-decode-execute
cycle. An important disadvantage is the cost of building a
compiler/interpreter from scratch. However there are some
advantages such as closer syntax to the notation used by
domain experts, and good error reporting.

392 T. Kosar et al. / Information and Software Technology 50 (2008) 390–405
Compiler generator. This approach is similar to the pre-
vious one, except that some of the compiler/interpreter
phases are implemented using language development sys-
tems or so-called compiler writing tools (compiler-compil-
ers). In this manner the implementation effort is
minimized, hence minimizing the disadvantages of the pre-
vious approach.

Extensible compiler/interpreter. The GPL compiler/
interpreter is extended using domain-specific optimization
rules and/or domain-specific code generation. Facilities like
reflection and introspection are very useful for this
approach when they are applicable. Compared to the pre-
vious two approaches, implementation effort is minimized
due to the reuse of an existing complete compiler infra-
structure. As a disadvantage it should be noted that
extending a compiler is hard: extreme caution is needed
to prevent any interference of domain-specific notation
with an existing one.

Commercial Off-The-Shelf (COTS). Existing tools and/
or notations are applied to a specific domain (e.g., XML-
based DSLs). This approach provides a feasible alternative
when solving particular domain problems (e.g., XML
brings promising solutions in processing and querying doc-
uments). In general, XML tends to be cumbersome for
humans to read and write.

Empirical research in software engineering is a difficult
but important discipline. In order to avoid questionable
results from experiments, certain conditions must be con-
sidered while preparing them. In [1] a framework is intro-
duced to motivate and replicate studies. The proposed
framework concentrates on building knowledge about the
context of an experiment and is based on organizing sets
of related studies (family of studies). These studies contrib-
ute to a common hypotheses which does not vary for indi-
vidual experiments. The research presented in this paper is
rather a comparison – a single study of domain-specific
implementation approaches, where our comparison is the
first step toward experimenting on domain-specific imple-
mentation approaches. Therefore, we have followed the
guidelines, mentioned below, in order to prepare our
comparison:

• comparison validity,
• context of the study,
• measurement framework, and
• presentation of key findings, focused on hard/unex-

pected/controversial results.

No other similar work on comparing DSL implementa-
tion approaches appears in literature, while the systematic
study on DSL development [19] is rather new. In a certain
sense our work is similar to that carried out by Prechelt
[23], which provides some objective information comparing
seven programming languages (C, C++, Java, Perl,
Python, Rexx, and Tcl). The pros and cons of various pro-
gramming languages were discussed on a given program-
ming problem (string processing program), where
programmers were asked to provide the same set of
requirements. All implementations were compared for sev-
eral properties, such as run time, memory consumption,
source text length, comment density, program structure,
reliability, and the amount of effort required to write them.
Our study differs from Prechelt’s in its object of ‘compari-
son’ (in our study this is a domain-specific implementation
approach), the context of comparison and the extent of the
experiment – in [23] several implementations were carried
out in seven languages, while our comparison contains
optimized samples on 10 diverse DSL implementation
approaches.

3. Methodological issues

Many problems have to be faced while preparing the
comparison. In the following section these issues are
exposed and discussed according to their influence on com-
parison validity.

3.1. Subject of comparison

More than 3000 programming languages, general-pur-
pose as well as domain-specific, have been developed in
the past [32,33]. Only a small portion of them have been
properly documented (e.g., [2]). Hence, a complete compar-
ison of language implementation approaches will probably
never be achieved. In a recent paper [19] around 40 DSLs
were categorized using the approaches listed above. The
study [19] showed that most of DSLs were implemented
using the compiler approach (42.1%), followed by embed-
ding (15.8%), and source-to-source sub-pattern (13.2%).
Therefore, all the most commonly used implementation
approaches have been included into our case study. Com-
munities advocate their DSL implementation approaches
and currently work on improvement of those techniques,
supporting tools, etc. This study aims to help those com-
munities by providing some realistic information for com-
paring different DSL implementation approaches, which is
the subject of our comparison in this experiment. All imple-
mentation approaches were tested on the same DSL, in
order to prepare comparison rigorously and systematically,
and obtain realistic results.

In order to choose our case study, we took into account
that we needed a DSL that is neither too simple nor too
complex. One good language that we had been using is a
language to capture the variable parts of application
domains. It is called FDL (Feature Description Language)
[7] and it was created to provide a textual description for
feature diagrams [6], which is a technique used in domain
analysis (specially FODA – Feature Oriented Domain
Analysis [16]).

Feature diagrams and their textual representation FDL,
provide ways to express what a given system is composed
of. We used a simple example, in order to introduce both
notations simultaneously. This example concerns a com-
puter hardware composition. The feature diagram is pre-

Fig. 2. IOdevice program using DSL.

T. Kosar et al. / Information and Software Technology 50 (2008) 390–405 393
sented in Fig. 1 and the corresponding FDL description in
Fig. 2. Basically it expresses that a IO device is composed
of several parts (indicated by the tree-like structure in the
diagram, and by the operation all in the program). Some
of these parts are optional (indicated by the empty circle
in the diagram, and by the operation opt in the program),
whilst some of the others are mandatory (full circle in dia-
gram, default in program). Additionally, some features are
atomic (i.e. they are basic units, indicated by leaves of the
tree in the diagram, and by identifiers, starting with a low-
ercase letter in the program) and some of the others are
composed of subfeatures – this is indicated by the tree-like
structure in the diagram, and by named features (feature
names starting with a capital letter) in the program. In
regard to composite features, there are two ways to select
alternatives: the first one is to pick only one option from
among several (identified by the empty triangle in the dia-
gram, and by operation one-of in the program), and the
second one is to pick several of the options (identified by
the full triangle in the diagram, and by operation more-of
in the program). The meaning illustrated by the feature dia-
gram or the FDL program is the set of all possible system
configurations. Ninety-six various compositions of the IO
devices are possible, for the given example.

The language FDL introduced in [7] has many benefits
over the graphical description. One of them is its ability
to express constraints. The purpose of constraints is to
limit the variability of the system. A constraint can have
one of the following forms:

• f1 requires f2: if feature f1 is present, then feature f2 must
be present as well,

• f1 excludes f2: if feature f1 is present, then feature f2
must not be present,

• include f: feature f must be present,
• exclude f: feature f must not be present.

If the constraints webcamera requires microphone and
include lcd are introduced to the example in Fig. 1, the ori-
ginal 96 possibilities are reduced to just 36.

In order to evaluate an FDL program, the following
transformation steps (reductions) need to be applied [7].

Regularization. Named features are substituted with the
corresponding definitions. For the given example, the reg-
ular FDL form is:
I/O

Printer mouse webcameraDisplay

laser inkjet crt lcd

Fig. 1. Feature diagram for
allðoptðone� ofðlaser; inkjetÞÞ;mouse; one� ofðcrt; lcdÞ;
optðwebcameraÞ; keyboard; optðmicrophoneÞ;
optðmore� ofðspeaker; headphonesÞÞÞ
Normalization. Normalization is obtained using rules
that simplify a given feature expression by eliminating
duplicated features and degenerate cases, for the various
constructors. Since detailed descriptions of all the normal-
ization rules are unimportant for this paper, only the fifth
normalization rule (from [7]) is shown below – it removes
the nested appearance of features all.

½N5� allðFs; allðFtÞ;Fs0Þ ¼ allðFs;Ft;Fs0Þ
(note that Fs and Fs’ refer to possibly empty lists of fea-
tures, while Ft refer to an inclusion of some features).

Expansion. Expansion rules are applied after normaliza-
tion in order to transform normalized forms into disjunc-
tive normal forms (DNF). Again, any detailed
description of the rules is outside the scope of this paper.
Only the second expansion rule (from [7]) is presented –
it translates a feature starting with an all and containing
an optional feature f into two different all features (enclosed
in one-of): one with and one without the optional feature f.

½E2� allðFt; optðfÞ;FsÞ ¼ one� ofðallðFt; f;FsÞ; allðFt;FsÞÞ
Constraint satisfaction. This phase checks the conditions
imposed, removing those configurations that do not satisfy
the rules. The rules for the constraint operator requires are
presented. Other constraint rules are described in [7].

½S3� :is-elementðA2;FsÞ ^ :is-elementðA2;Fs0Þ
:satisfiesðallðFs;A1;Fs0Þ;CsA1requiresA2Cs0Þ

½S4� is-elementðA2;FsÞ _ is-elementðA2;Fs0Þ
satisfiesðallðFs;A1;Fs0Þ;CsA1requiresA2Cs0Þ

¼ satisfiesðallðFs;A1;Fs0Þ;CsCs0Þ
computer devices

keyboard microphone Receiver

speakers headphones

computer I/O devices.

Table 1
FDL comparison to other DSLs

DSL TERM VAR MCC HAL AVS PROD

FDL 13 11 11 2948 3.91 22
PG 9 5 5 774 3.4 7

394 T. Kosar et al. / Information and Software Technology 50 (2008) 390–405
3.2. Importance of the subject

Of course, the question might arise as to how represen-
tative FDL is as a domain-specific language. This question
is hard to answer, since the term representative can be
highly subjective. One way of determining how representa-
tive, is to compare it against other DSLs. The following
DSLs were chosen for comparison with FDL:

• Production Grammars (PG) for software testing [28],
• A DSL that allows experimentation for the different reg-

ulation of traffic lights (RoTL) and supports the
domain-specific analysis of junctions [18],

• Context-Free Design Grammar (CFDG),1 designed for
generating pictures from specifications. DSL domain is
similar to Elliot’s work [9],

• GAL, a well-known DSL used to describe video device
drivers [31], and

• Extended BNF (EBNF), a standard notation used to
unambiguously define language grammar.

Grammar size metrics defined by Power and Malloy [22]
were used for comparison. They are the following:

• number of terminals (TERM) and non-terminals
(VAR),

• McCabe cyclomatic complexity (MCC),
• Halstead effort (HAL), and
• average of right hand side size (AVS).

The number of productions (PROD) was also added to
these metrics.

Despite being size metrics, TERM and VAR can nonethe-
less provide useful information about grammar. A greater
maintenance effort might be required if a grammar has a
large number of non-terminals (VAR). The McCabe
cyclomatic complexity (MCC), when adapted for grammars,
measures the number of alternatives for a grammars’ non-
terminals. A high MCC value denotes a large effort required
for grammar testing and a greater potential for parsing
conflicts. A big AVS value indicates a less readable grammar
and may also impact performance for some parsers, since
more symbols need to be placed on the parse stack. The
Halstead effort metric (HAL) estimates the effort required
to understand the grammar; the HAL number is directly
proportional to the effort of understanding the grammar.

Grammar metric comparisons between FDL and other
DSLs were obtained by SynC tool [22] and are summarized
in Table 1. It can be seen that, against most metrics FDL is
comparable to many of the above-mentioned DSLs (PG
[28], RoTL [18], and EBNF). Of course, DSL complexity
depends on the domain and can reach the complexity of
some GPLs. For instance, domain-specific language GAL
1 Context Free Design Grammars, available at http://www.chris-
coyne.com/cfdg/index.php
is comparable by MCC and HAL to the general-purpose
language Oberon [26].
3.3. Conditions when applying comparison

The results from a family of experiments can be general-
ized when repetitive experiments can be proved. According
to Basili et al. [1], repetition is strongly connected to a cer-
tain ‘consensus’ that is agreed upon before starting an
experiment. In our study, consistency of results was
obtained through the following comparison conditions
for all DSL implementation approaches:

• DSL implementors were chosen according to their previ-
ous GPL experiences, and

• DSL implementations were reviewed by other experts in
this field, to obtain code as optimal as possible.

Additionally, DSL implementors were advised:

• to follow the same design issues presented in the techni-
cal report [17] (DSL grammar, API that was given to
DSL implementors by UML diagrams, etc.),

• to include minimum functionality for presenting the
domain,

• to prepare DSL notation as optimally as possible for the
end-users (we consider the notation as presented in Sec-
tion 3 of the technical report [17], as optimal),

• to provide the same output for all compiled DSL pro-
grams, and

• to compile and run end-user programs from a shell.

For DSL end-users, the following rules were defined:

• DSL end-users are experienced GPL programmers, but
have only general knowledge about using DSLs, and

• usage of the same IDE tools for writing end-user pro-
grams on specific DSL implementation.
3.4. Comparison validity

Making general conclusions on the basis of empirical
study in the process of software development (and also
other research fields) is extremely risky, whilst the
reliability of results is hardly connected to the experimental
RoTL 23 12 6 3890 3.833 13
CFDG 28 12 28 6698 6.833 40
GAL 73 75 90 33296 3.853 131
EBNF 20 18 22 5523 3.778 28

http://www.chriscoyne.com/cfdg/index.php
http://www.chriscoyne.com/cfdg/index.php

T. Kosar et al. / Information and Software Technology 50 (2008) 390–405 395
environment and its context variables [1]. The threats to the
validity of our comparison are given below.
3.4.1. DSL implementation approaches

DSL implementation approaches, together with sub-
patterns, are given in Section 2. The approaches in Table
2 were taken from among this list. This table also denotes
the programming languages used by DSL implementation
approaches, DSL implementors integrated development
environment (IDE) and end-user environment. Few other
approaches mentioned in Section 2 were inapplicable, due
to the domain chosen, namely pipeline and lexical process-
ing. The former is inapplicable because the FDL language
cannot be divided into the core language and extensions
which can be expressed by the core language. Hence, pipe-
line approach is inappropriate. The latter is inapplicable
because FDL semantics is complicated enough that pro-
grams cannot be processed with simple lexical replacement.
However, since most of the approaches were tested, we
believed that this shortcoming is not a serious threat to
the validity of our comparisons.
3.4.2. Functionality of DSL implementations

Comparison of DSL implementation approaches is pos-
sible only if the same functionality is provided. Many fac-
tors can affect comparability among various programming
languages. For instance, API details were given to the DSL
implementor by UML diagrams. These diagrams are useful
accessories for those who use object-oriented languages,
however they bring less information for those who use
functional programming languages. Therefore, FDL design
issues were also needed for functional programming lan-
guages (see [17], Section 4.3.). It is important to note that
all the conducted implementations which were considered
inappropriate for comparison (incomplete implementa-
tions, run-time failures, etc.) were removed from further
investigations.
3.4.3. Programmers capabilities

Two options for implementing the DSL were considered
at the beginning of this study. Either each programmer
involved in this project writes all DSL implementations,
or each implementation is done by the single most appro-
Table 2
DSL implementation approaches’ comparison details

Approach Language DSL impl

Source to source Java JBuilder 9
LISA Lisa 2.0
Haskell Hugs98

Preprocessing C++ Visual Stu
Embedded Haskell Hugs98
Handwritten interpreter Java JBuilder 9
Compiler generator LISA Lisa 2.0

SmaCC Visual Wo
Extensible compiler C# Mono 0.9
COTS XML XML Spy
priate programmer, and later reviewed by senior research-
ers. The first possibility offers greater advantages: more
implementations of the same DSL implementation
approach can even-up the differences among individual
programmers and can be statistically processed. However,
a programmer with skills in six different programming lan-
guages and knowledge of specific programming techniques
is hard to find. Therefore, the second option was chosen for
the DSLs implementation phase. In our humble opinion,
this decision does not affect or threaten the validity, since
implementations were also reviewed by others. Therefore,
the result obtained should be equal or better than a mean
obtained from implementations conducted by several pro-
grammers. Another threat to validity is represented by sin-
gle case studies. The results presented in this paper could
become more reliable when similar results occur in other
research with different contexts. Using these compari-
sons/experiments we can build up knowledge through a
family of related experiments.
3.4.4. Reporting end-user efficiency

Experienced GPL programmers were included, in the
end-users’ effort study, but they had only very general expe-
rience about using DSLs. Diverse students were chosen
from undergraduate to postgraduate. These programmers
came with different backgrounds and knowledge, and
could have affected the accuracy of the results. Therefore,
this part of the study was statistically analyzed.
4. The study

In this section we compare committed DSL implemen-
tation approaches. This comparison offers empirical data
on the effort involved using different DSL implementation
approaches, and evaluates how friendly the implementa-
tions thus obtained are for the users. Quantitative results
from implementation effort are presented as stacked bars.
Significant observations can be obtained directly from
these charts. The end-user friendliness of the resulting
environment’ is displayed as box plots: each of the hori-
zontal lines representing a subset of end-user data con-
ducted for specific implementation; the small gray circles
represent individual data; the box indicates the middle
ementor execution platform End-user execution platform

Text editor
Text editor
Text editor

dio 6.0 Text editor
Text editor
Text editor
Lisa 2.0

rks 7.3 Text editor
Text editor
XML Spy

512

98

512

103

1283

1272

480

1482

294

1003

911
794

515

1383

2948
44

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Java Lisa Haskell C++ Haskell Java LISA SmaCC C# XML

Semantics
Syntax

Source-to-source Compiler generatorEmbedded
Macro-processing Interpreter/compiler Extensible compiler

COTS

1795

1316

578

1482

294

1515

959
823

618

1383

eL
O

C

Fig. 3. Comparison of code in size.

396 T. Kosar et al. / Information and Software Technology 50 (2008) 390–405
section of data (between 25% and 75%); the big black dot
stands for arithmetic mean. Some observations for end-
user efficiency were also statistically tested. The ANOVA
test (analysis of variance) [3] was used, which tests the dif-
ferences between the observed samples. For the statistical
significance of a test, the p value is substituted by words:
statistically independent for p < 0.01 and statistically

dependent for p > 0.01.
4.1. Implementors’ effort

Analysis of implementation effort is a difficult task, when
measuring DSL. Very different languages were used, from
object-oriented and functional to imperative and hybrid.
On the other hand, different approaches contain different
sections of code – for example, while the interpreter/com-
piler approach can have hundreds of lines of code for syntac-
tic analysis, the embedded approach will have none.
2 SmaCC – parser generator for Smalltalk, available at http://
www.refactory.com/Software/SmaCC/
4.1.1. Comparisons between implementation approaches

The first and basic comparison describes the effort
needed to implement a DSL; a rough measure of this effort
can be obtained in terms of the number of lines of code
(LOC). We measured the size of code with the numbers
of effective lines of code (eLOC) – that is, all lines that
are not blanks, standalone-braces, or parentheses.

The DSL development effort in terms of eLOC is pre-
sented in Fig. 3. Most of the approaches presented in this
paper require some kind of syntactic and semantic analysis
for the problem domain. Therefore, the language process-
ing effort is divided into syntactical and semantical parts,
represented in Syntax and Semantics stacked-bars. In the
Syntax bar (gray color) we present the eLOC of the toke-
nizer and parser. Semantic equations are included in
Semantics bar (white color). In these cases where there is
no need for syntactic analysis – such as in the embedded
approach – the corresponding bar in the graph is left
empty.

From the eLOC point of view, it takes less effort to
implement DSLs by embedding, followed by source-to-
source (Haskell [24]), extensible compiler (C# [30]), and
compiler generators (SmaCC,2 LISA [20]). Much greater
effort is required when DSL is implemented using COTS
(XML [25]), macro processing, interpreter/compiler or
source-to-source (Java [12]). Looking at the total number
of lines for each approach, it can be observed that the
embedded approach using Haskell requires a much less
amount of coding than the rest.

Measuring eLOC is connected to the language chosen
because some languages are more expressive than others
and need less lines of code to express the same thing. Jones
[14] defined, for each language, the average source state-
ments for the same functionality – a language factor (see
legend in Fig. 4). For example, on average, 38 lines of code
are needed to implement an equivalent functionality in
Haskell, while Java requires 53 lines of code.

Some of the languages used in this work (LISA,
SmaCC) are absent in Jones’s work [14]. We took the clos-
est programming language/tool available for each of the
used languages in our comparison. For instance, for
SmaCC we used Smalltalk language factor, since semantics
is given by Smalltalk statements. In Fig. 4, XML is denoted
as N/A (not-available), since the language factor is
unknown. The ratio of actual lines of code (eLOC) with
the language factor was computed in order to eliminate

http://www.refactory.com/Software/SmaCC/
http://www.refactory.com/Software/SmaCC/

33,87

24,83

15,21

27,96

7,74

28,58

18,09

30,48

11,66

0

5

10

15

20

25

30

35

40

Java Lisa Haskell C++ Haskell Java LISA SmaCC C# XML

eL
O

C
/L

F

LF
53
53
38
53
27
53

Java
Lisa
Haskell
C++
Smacc
C#

N/A

Source-to-source Compiler generatorEmbedded
Macro-processing Interpreter/compiler Extensible compiler

COTS

Fig. 4. Comparison of codes after normalizing with the language factor.

T. Kosar et al. / Information and Software Technology 50 (2008) 390–405 397
language expressiveness. Despite the language expressive-
ness being eliminated, the results are similar to those pre-
sented in Table 3. Less effort (smaller ratio) was required
when DSL was implemented using Haskell as host/base
language, extensible compiler/interpreter and compiler
generator approach (LISA). Interesting insight about com-
piler generators can be deduced from Figs. 3 and 4, where
SmaCC and LISA are confronted. SmaCC is Yacc3 imple-
mentation integrated into the Smalltalk development envi-
ronment, with very basic functionality. On the other hand,
LISA is a compiler generation-dedicated tool, where spe-
cial emphasis is placed on the modularity, extensibility,
and reusability of language specifications. Both implemen-
tations contain similar eLOC. Implementation on LISA
scores much better, after normalization using the language
factor. We can conclude that the above-mentioned features
of LISA increase programmers’ productivity. On the other
hand, using automatically generated tools to work with
code [11], such as language knowledgeable editor (an editor
that is aware of the regular definitions of the lexicon) and
various inspectors (e.g., finite state automata visualizer,
syntax and semantic tree animators) are very helpful in
the process of language definition.
4.1.2. Turning API to DSL

Application libraries are serious competitors to DSLs.
In combination with an application library, any GPL can
act as a DSL. However, the shortcomings of application
libraries such as limited domain-specific notations and
3 Yacc – parser generator, available at http://dinosaur.compilertools.net
the inability of domain-specific analysis, verification, opti-
mization and transformation restrict their usefulness. In
most cases, we never get beyond the application library
stage despite the numerous advantages of DSLs [19]. One
of the reasons is the lack of reliable knowledge about
DSLs. Therefore, it is interesting to investigate how much
effort is needed to turn an API into a DSL. To achieve this,
we split the implementation into two parts (Fig. 5): the API
(white bar in Fig. 5) and the rest of the work (DSL,
denoted as a shaded bar).

The common belief is that turning API into DSL takes a
lot of additional work (see Section 1). A first glance at
Fig. 5 might confirms this. However, a closer look reveals
some interesting insights. Source-to-source and compiler/
interpreter approaches require much more additional work
when turning API into DSL. On the other hand, embedded
and COTS (XML) approaches can already be seen as a
basic form of application libraries, with many of the
already mentioned shortcomings of APIs. Therefore, we
decided to categorize the approaches into two categories.
The first category contains source-to-source and inter-
preter/compiler approaches. The second category covers
the macro-processing, compiler-generators and extensible
compiler approaches. The non-categorized are embedded
and COTS (XML) approaches. Comparing categories 1
and 2 in Table 3 it can be concluded that, if the proper
implementation approach is used (macro processing, com-
piler generator, and extensible compiler) the DSL imple-
mentor can gain in effort, since selecting a proper
implementation approach on FDL gave smaller mean
(M = 88.00) and standard deviation (Std. dev. = 46.93) in
terms of eLOC than selecting other approaches

http://dinosaur.compilertools.net

885 885

294

1369

294

885 885 794

482

1383

910

431

284

113

630

136

74

29

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Java Lisa Haskell C++ Haskell Java LISA SmaCC C# XML

eL
O

C

DSL
API

Source-to-source Compiler generatorEmbedded
Macro-processing Interpreter/compiler Extensible compiler

COTS

103%

49%

97%

8%

0%

71%

8%

4%

28%

0%

Fig. 5. Comparison of APIs with DSLs.

398 T. Kosar et al. / Information and Software Technology 50 (2008) 390–405
(M = 563.75, Std. dev. = 270.90). Additionally, statistical
tests confirm that variations in both categories vary
drastically.

Fig. 5 also shows the ratio between API and DSL
parts (see percentages above the stacked bars). For
instance, in the handwritten compiler/interpreter
approach 71% additional code was needed to obtain a
DSL. The implementation cost can be modest using com-
piler generators (e.g., when using LISA only 8% addi-
tional work was needed).

4.2. End-user effort

4.2.1. End-user program length
As previously mentioned, APIs are serious competitors to

DSLs. Domain-specific functionality in API is simply
achieved through object creation and method invocation
(if object-oriented GPL is used), while domain-specific nota-
tion is usually sacrificed. This can be clearly seen by compar-
ing a GPL program using the API (Fig. 6) and a DSL
program (Fig. 2) using the original domain notation. The
advantages of DSLs compared to API are obvious in respect
of eLOC and understandability. Both programs (Figs. 2 and
6) describe a simple computer hardware composition from
which different valid system configuration can be obtained.
For details about the FDL please refer to Section 3.1.
Table 3
Comparison of code after categorization

Category N DSL mean Std. dev.

1 4 563.75 270.90
2 4 88.00 46.93
Using source-to-source (Java, LISA, Haskell), inter-
preter/compiler (Java), and compiler generator (LISA,
SmaCC) we were able to achieve the requested original
notation (Fig. 2), while in other approaches we experi-
enced some drawbacks: we were unable to express the
requested DSL notation due to the reuse of language
facilities or simply to follow the rules of language used.
For example, in macro-processing (Fig. 7) instead of a
comma, the operator ‘j’ is used as a list separator. The
overloaded comma operator can affect ordering proper-
ties and this can confuse users. Therefore, avoiding over-
loading comma is recommended. Moreover, the order of
features is reversed (from composite features – e.g.,
Receiver, Display to main concept IOdevice). This is
because of the C++ language restriction that macro def-
inition must appear before the use of a macro. On the
other hand, atomic features have to be expressed as
string using quotes.

When embedding the language FDL into Haskell, we
found that most of the work has already been done by
the API – so-called combinator library, that is used for
expressing the syntax and semantics constructs of a given
domain. Fig. 8 presents the complete end-user program
for the IODevice. Some observations about notation fol-
low. Instead of using atomic features with a name, we
use the representation of them as strings (literals between
double quotes "), and the operation atomic, that trans-
forms a string into an atomic feature. This is why the
FDL expression mouse is written atomic "mouse" in
the program. The second observation about notation is
that, in Haskell, function names can be converted into infix
notation by using backquotes (‘). This explains the defini-
tion of constraint1. Note also that list notation (square
brackets) is different than that requested by the original

Fig. 6. IOdevice program using API.

Fig. 7. C++ code (macro processing approach) representing the example
for IOdevice.

Fig. 8. Haskell code (embedded approach) representing the example for
IOdevice.

T. Kosar et al. / Information and Software Technology 50 (2008) 390–405 399
notation. Moreover, in several places definitions from API
(e.g., Feature, Constraint, Spec) have to be used, which can
be hard to understand for an end-user programmer without
experience in functional programming.

Similar observations can be noticed for the extensible
compiler approach (Fig. 9) where class definition is
extended with domain-specific notations (features and con-
straints). Here, the end-user programmer needs to be famil-
iar with the method Main(), passing results as parameters
(strResult), using packages (System), etc.

Fig. 9. C# code (extensible compiler approach) representing the example
for IOdevice.

400 T. Kosar et al. / Information and Software Technology 50 (2008) 390–405
It can be claimed that implementations from Figs. 7–9
contain just minor deviations from the requested notations
(see Fig. 2). However, as will be presented later, these
shortcomings have a big impact on end-user productivity.
These implementations are definitely much better than
the COTS (XML) approach (Fig. 10), where the obtained
notation is cumbersome to write and read.

eLOC for 14 FDL programs was measured (Fig. 11) in
order to have a rough idea of how different the resulting
code might be. It can be observed that DSL programs in
some approaches (COTS, API, and the embedded
approach) need many more lines of code in order to write
Fig. 10. XML code (COTS approach) representing the example for
IOdevice.
specific FDL programs. For example, the embedded
approach needed almost 5 times more lines of code to
express FDL programs. Additionally, Fig. 11 confirms
the advantages of DSLs compared to API solution, since
DSL programs were at least 8 times shorter for the
observed FDL domain. Note, that in this observation,
the COTS (XML) approach was excluded.

The average program length of the observed DSL pro-
grams in Fig. 11 is 11.25 eLOC. The mean was much bigger
for some implementation approaches. On the other hand,
the middle half confirms that, whilst DSL programs
increase in size, the variation of DSL programs stays the
same for these approaches (macro processing, embedded,
and extensible compiler approaches). Therefore, the
ANOVA test supports the fact that DSL end-user effort
(in terms of eLOC) is statistically independent of their cho-
sen implementation approach.

However, the eLOC metric does not contain enough
information about program differences. As denoted in
Figs. 7–10, solutions can be very different from what eLOC
measurement expresses. In order to evaluate these differ-
ences, a similarity factor was used (Fig. 12) between the
obtained and desired program notations. The idea here
was to use a known plagiarism-detection system. Many
software similarity systems exist, such as MOSS [27], how-
ever these systems use some kind of syntax analyzers,
which makes them very useful for detecting copies when
known GPL is used. Since notation differs in our DSLs,
we had to use a context independent copy detection system.
One we know well is integrated into our information sys-
tem and used for educational purposes [21]. This similarity
system uses fuzzy logic. This system was used to compare
all programs with the original FDL notation. Similarity
results show how much specific notation differs from the
original FDL notation. One hundred percentage of similar-
ity with original FDL notation was achieved in the source-
to-source, interpreter/compiler, and the compiler genera-
tor. In all other approaches (macro processing, extensible
compiler, embedded, and COTS) the similarity is not as
good as that presented with eLOC measurement – the sim-
ilarity is around or less than 50%.

This study also measured the time to successfully write
and execute FDL programs, where correct results must
be obtained. End-users used different tools (see Table 2)
for specific implementation (e.g., XML-Spy, LISA IDE)
in order to accomplish this task. The results are presented
in Fig. 13. Differences in notation resulted in bigger end-
user effort times. All approaches, where original notation
was not achieved (XML, embedded, extensible compiler,
macro-processing), resulted in worse end-user productivity.
Even when taking into account that, for example, a special
tool was used when using XML. On the other hand, there
was still a difference in approaches where 100% similarity
with original notation was achieved (source-to-source,
interpreter/compiler, compiler generator). Since end-users
were using an integrated development environment with a
language knowledgeable editor in the LISA compiler

0 20 40 60 80 100 120 140 160 180 200

API

Java

Lisa

Haskell

C++

Haskell

Java

LISA

SmaCC

C#

XML

Source-
to-source

Macro
processing

Embedded

Interpreter/
compiler

Compiler
generator

Extensible
compiler

COTS

eLOC

Fig. 11. Comparison of DSL program sizes (eLOC) together with API (N = 14).

24%

100% 100% 100%

53%

38%

100% 100% 100%

53%

26%

0%

20%

40%

60%

80%

100%

API Java Lisa Haskell C++ Haskell Java LISA SmaCC C# XML

Source-to-source Compiler generatorEmbedded
Macro-processing Interpreter/compiler Extensible compiler

COTS

Fig. 12. Similarity comparison of DSL program

T. Kosar et al. / Information and Software Technology 50 (2008) 390–405 401
generator, they were most efficient when using this approach.
This is further evidence that end-user productivity can be
enhanced by proper tools. But, good tools alone (e.g.,
XML Spy) are not enough if notation is compulsory. The
importance of syntax [19] should not be underestimated.

A couple of first-year students of computer science with
no prior knowledge of DSLs were selected in order to
obtain results on error reporting. After explaining the basic
notions of FDL to them, they were challenged to write a
couple of examples, and report the results. This experiment
was repeated with young researchers, teaching assistants,
and other laboratory members at the University of Mari-
bor, and the combined results are presented in Fig. 14.
They were asked to measure the debugging facilities and
error reporting understandability for each approach. A
five-graded scale, going from very bad to very good, was
used to measure these subjects. It can be concluded from
Fig. 14 that better error reporting (mean > 3) was achieved
in the extensible compiler, interpreter/compiler and com-
piler generator approach (LISA).

Last, but not least, performance comparison between
different DSL implementation approaches was included
in this study. Performance issues might be very important
for some domains (e.g., embedded systems). For the per-
formance test, a figurative FDL program was invented
for the purpose of performance testing. The executed pro-
gram has 20 lines of code and the corresponding expanded
version contains 11,880 configurations. Additionally we
also measured other programs but since the results were
similar, they were excluded from Table 4.

0 10 20 30 40 50 60
time (in minutes)

Java

Lisa

Haskell

C++

Haskell

Java

LISA

SmaCC

C#

XML

Source-
to-source

Macro
processing

Embedded

Interpreter/
compiler

Compiler
generator

Extensible
compiler

COTS

Fig. 13. End-user time effort to implement a DSL program (N = 5).

0 1 2 3 4 5
Grades

Java

Lisa

Haskell

C++

Haskell

Java

LISA

SmaCC

C#

XML

Source-
to-source

Macro
processing

Embedded

Interpreter/
compiler

Compiler
generator

Extensible
compiler

COTS

very good 4 = good 3 = regular5

2 = bad 1 = very bad

=

Fig. 14. End-user experience on provided DSL debugging and error reporting (N = 9).

402 T. Kosar et al. / Information and Software Technology 50 (2008) 390–405
The compilation process was carried out using standard
compilers of each base/host language (e.g., ghc for Haskell,
Mono for C#, javac for Java based approaches, etc.). We
took this decision based on the idea that most of DSL
implementors would use standard compilers and tools.
Additionally, we compiled each code with no additional
parameters. All approaches were tested on the same com-
puter, run from the console and the average of three tests
was used for each approach. The FDL program is read
from the file (without user interaction), executed, and the
transformation results stored in a text file. The fastest
DSL translator was obtained using the extensible compiler
approach, followed by translators written in Haskell as
host/base language, macro processing, and translators

Table 4
Comparison of DSL program time performance

Approach Language/Tool Time

Source-to-source Java 7min 41s 021 ms
Lisa 5min 23s 075ms
Haskell 8s 980ms

Macro processing C++ 57s 887ms
Embedded Haskell 5s 756ms
Interpreter/compiler Java 7min 30s 951ms
Compiler generator LISA 5min 49s 902ms

SmaCC 7min 59s 257ms
Extensible compiler C# 119ms
COTS XML N/A

T. Kosar et al. / Information and Software Technology 50 (2008) 390–405 403
implemented in Java. On the other hand, the COTS
approach is the only approach that did not return a result
for transformation, although the program was running for
several hours. Usually, if not always, compiled code is
more efficient than the interpreted code and this must be
taken into account by the implementor if efficiency is an
important issue. The performance of interpreter approach
can be speeded up by using various techniques (e.g., partial
evaluation and program specialization [5], and compiling
embedded languages [8]).

4.3. Comparison remarks

A summary for these comparison of DSL implementa-
tion approaches from Figs. 3–5, 11–13, and 14 are pre-
sented in Table 5, where rankings were used for
individual comparison.

Comparing DSL implementation approaches is a hard
task. Throughout the study two prospects on comparisons
regarding DSL implementation approaches were shaped:
implementation and end-user effort. Standard metrics were
used (eLOC, FP) to achieve fair comparisons among differ-
ent implementation approaches. These standard metrics
show that the most efficient way, in terms of lines of code,
to implement a DSL is the embedded approach (Table 5).
In the future our task is to find some additional DSL – spe-
cific metrics which could better express the differences
between approaches.
Table 5
Ranking of DSL implementation approaches

Approach Language Implementation effort

A B C

Source-to-source Java 10 9 10
Lisa 6 5 7
Haskell 2 3 9

Macro processing C++ 8 6 4
Embedded Haskell 1 1 1
Interpreter/compiler Java 9 7 8
Compiler generator LISA 5 4 5

SmaCC 4 8 3
Extensible compiler C# 3 2 6
COTS XML 7 N/A 1

A = Comparison of code in size; B = Comparison of codes after normalizing; C
(eLOC); E = Similarity comparison of DSL program; F = End-user time effort
debugging and error reporting; AVG1 = Ranking on implementation effort; A
From the DSL end-user point of view, our compari-
son shows that original notation (Table 5) was fully
achieved in some implementation approaches (ranking
1, columns D and E of Table 5), with positive influence
on end-user productivity (column F, Table 5). Moreover,
understandability of notation, programming interface,
debugging, and error reporting are unsatisfactory in
some implementation approaches (COTS, source-to-
source, embedding).

Finally, which implementation approach gives the best
solution? To answer this question we accumulated rankings
from Table 5. However, such rankings must be used with
extreme care and should not be generalized in all situa-
tions. In practice, several parameters need to be considered,
such as implementation language, developer experience,
end-user background, DSL performance (compilation, ver-
ification, optimization), time-to-market, and other critical
issues.

5. Conclusions

The meaningful insight of this paper is to offer empirical
data involving ten DSL implementation approaches, and
statistical data about the user-friendliness of these imple-
mentations. This paper describes a comparison based on
the same case study (FDL), where certain anecdotal claims
from literature were taken into consideration. Our key
findings are listed below:

• Standard metrics were used (eLOC, eLOC/LF) to
achieve fair comparisons among different implementa-
tion approaches. These standard metrics show that the
most efficient way, in terms of lines of code to implement
a DSL, is the embedded approach. Normalizing with the
language factor did not change this fact.

• The comparison section also shows that turning API
into a DSL is not that difficult in terms of additional
eLOC if the proper implementation approach (compiler
generator, macro processing, extensible compiler) is
chosen.
AVG1 End-user effort AVG2

D E F G

9 1 1 6 4 3
6 1 1 4 8 5
3 1 1 5 9 6
6 7 7 7 4 7
1 9 9 9 4 9
8 1 1 2 1 1
3 1 1 1 3 2
5 1 1 3 7 3
2 8 8 8 1 7

N/A 10 10 10 9 10

= Turning an APIs into a DSLs; D = Comparison of DSL program sizes
to implement a DSL program; G = End-user experience on provided DSL
VG2 = Ranking value on end-user effort.

404 T. Kosar et al. / Information and Software Technology 50 (2008) 390–405
• Original notation was hard to achieve in some imple-
mentation approaches (COTS-XML, embedding,
macro-processing, extensible compiler) with conse-
quences for DSL end-user productivity.

• Error reporting and debugging are unsatisfactory in
some implementation approaches (COTS-XML,
source-to-source, embedding).

Many authors [8,13,15] promote the embedding
approach as the most appropriate one. According to imple-
mentation effort, our study supports this claim. However,
the embedding approach has significant penalties when
end-user effort is taken into account. We strongly believe
that the effort needed by an end-user to rapidly write cor-
rect programs is, in many cases, more important than the
effort required by a programmer to implement a DSL. Nev-
ertheless, there is no straight relation between implementa-
tion and end-user effort in all situations. The decision in
favor of any implementation approach depends on the con-
text a DSL uses and depends on the languages, developers,
end-users and critical issues such as performance, analyz-
ability, time-to-market, etc. Our simplified advice to future
DSL developers is: when small groups of users are going to
use a new DSL (error reporting is not that important) and
when notation should not be strictly obeyed, then the rec-
ommended approach is embedding. Otherwise, the recom-
mended solution is to implement a full DSL compiler using
compiler generators.

We consider that the results of the study are reliable
despite the threats of validity. This work presents a preli-
minary study on the subject of DSL implementation
approaches done on a representative language FDL. The
experiment needs to be repeated on other domains, in order
to obtain more general results. It is planned to revise this
comparison using other representative languages, to see
how it impacts on DSL development, and end-user effort.
We hope that this work will stimulate other researchers
contributions to this experiment. In order to implement
our case study (FDL) we took domain analysis from [7].
Domain analysis is an important part of DSL develop-
ment. In the future it is also planned to focus on domain
analysis and DSL design, which is often argued as a more
demanding task than implementation.

To the best of our knowledge, no other experiment nor
comparison of DSL implementation approaches for the
same case study appears in literature. Further research into
this topic is necessary to advocate the strengths and weak-
nesses of various approaches and trade-offs between them
for diverse domains. Results can then be generalized and
become more reliable. The study presented is only a first
step towards this goal.

Acknowledgements

Thanks to Jerónimo Irazábal, Diego Yanivello, Federico
Feller, Mariana Báez, and David Krmpotić who helped
with some of the implementations of FDL. We would like
to thank James Power and Brian Malloy for giving use
their tool SYNQ [22] for grammar metric calculation.
The authors thank anonymous reviewers for their detailed
and constructive comments that helped us to increase the
quality of this work.
References

[1] V. Basili, F. Shull, F. Lanubile, Building knowledge through families
of experiments, IEEE Transactions on Software Engineering 25 (4)
(1999) 456–473.

[2] T.J. Bergin Jr., R.G. Gibson Jr., History of Programming Languages
II, Addison-Wesley, 1996.

[3] G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for Experimenters:
Design, Innovation, and Discovery, second ed., Wiley, Interscience,
2005.

[4] M. Bravenboer, R. Vermaas, J. Vinju, E. Visser, Generalized type-
based disambiguation of meta programs with concrete object syntax,
in: Proceedings of the Fourth International Conference on Generative
Programming and Component Engineering (GPCE’05), Springer-
Verlag, 2005, pp. 157–172.

[5] C. Consel, R. Marlet, Architecturing software using a methodology
for language development, in: Proceedings of the 10th International
Symposium on Programming Language Implementation and Logic
Programming, vol. 1490, September 1998, pp. 170–194.

[6] K. Czarnecki, U. Eisenecker, Generative Programming: Methods,
Tools and Applications, Addison-Wesley, Reading, MA, 2000.

[7] A. van Deursen, P. Klint, Domain-specific language design requires
feature descriptions, Journal of Computing and Information Tech-
nology 10 (1) (2002) 1–17.

[8] C. Elliott, S. Finne, O. de Moor, Compiling embedded lan-
guages, in: International Workshop on Semantics, Applications,
and Implementation of Program Generation (SAIG’00), Springer-
Verlag, Berlin, 2000.

[9] C. Elliott, An embedded modeling language approach to interactive
3D and multimedia animation, IEEE Transactions on Software
Engineering 25 (3) (1999) 291–309.

[10] J. Heering, Application software, domain-specific languages, and
language design assistants, in: Proceedings of the International
Conference on Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet (SSGRR 2000), 2000.

[11] P.R. Henriques, M.J. Varanda Pereira, M. Mernik, M. Lenič, J.
Gray, H. Wu, Automatic generation of language-based tools using
the LISA system, IEE Software 152 (2) (2005) 54–69.

[12] C.S. Horstmann, G. CornellCore Java – Advanced Features, vol. 2,
Sunsoft Press, Mountain View, CA, USA, 1998.

[13] P. Hudak, Modular domain specific languages and tools, in:
Proceedings: Fifth International Conference on Software Reuse,
IEEE Computer Society Press, MD, 1998, pp. 134–142.

[14] C. Jones, Applied Software Measurement: Assuring Productivity and
Quality, second ed., McGraw-Hill, NY, 1997.

[15] S. Kamin, Research on domain-specific embedded languages and
program generators, Electronic Notes in Theoretical Computer
Science 12 (1998).

[16] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature-oriented
domain analysis (FODA) feasibility study. Technical report CMU/
SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, November 1990.

[17] T. Kosar, P.E. Martı́nez López, P.A. Barrientos, M. Mernik,
Experiencing diverse implementation approaches for domain-specific
languages. Technical report, University of Maribor, National Uni-
versity of La Plata, 2005. FERI report RAJ-T0501 <http://mar-
vin.uni-mb.si/technical-report/RAJ-T0501.pdf>.

[18] S. Mauw, W.T. Wiersma, T.A.C. Willemse, Language-driven system
design, International Journal of Software Engineering and Knowl-
edge Engineering 6 (14) (2004) 625–664.

http://marvin.uni-mb.si/technical-report/
http://marvin.uni-mb.si/technical-report/

T. Kosar et al. / Information and Software Technology 50 (2008) 390–405 405
[19] M. Mernik, J. Heering, A. Sloane, When and how to develop
domain-specific languages, ACM Computing Surveys 37 (4)
(2005) 316–344.

[20] M. Mernik, V. Žumer, M. Lenič, E. Avdičaušević, Implementation of
multiple attribute grammar inheritance in the tool LISA, ACM
SIGPLAN Notices 34 (6) (1999) 68–75.

[21] M. Lenič, J. Brest, E. Avdičaušević, M. Mernik, V. Žumer,
Information system for laboratory work management, in: Proceed-
ings of the 5th Euromedia Conference 2000 (Euromedia’2000), SCS
Europe BVBA, cop., 2000, pp. 245–249.

[22] J.F. Power, B.A. Malloy, A metrics suit for grammar-based software,
Journal of Software Maintenance and Evolution: Research and
Practice 16 (6) (2004) 405–426.

[23] L. Prechelt, An empirical comparison of seven programming
languages, IEEE Computer 33 (10) (2000) 23–29.

[24] S.P. Jones, J. Hughes (Eds.), Haskell 98: a non-strict, purely
functional language, February 1999. Available at: <http://www.hask-
ell.org/onlinereport/>.

[25] E.T. Ray, Learning XML. A Nutshell Handbook, O’Reilly &
Associates, Inc., USA, 2001.
[26] M. Reiser, N. Wirth, Programming in Oberon – Steps Beyond Pascal
and Modula, first ed., Addison-Wesley, Reading, MA, 1992.

[27] S. Schleimer, D.S. Wilkerson, A. Aiken, Winnowing: local algorithms
for document fingerprinting, in: Proceedings of the ACM SIGMOD
International Conference on Management of Data, ACM Press, NY,
2003, pp. 76–85.

[28] E.G. Sirer, B.N. Bershad, Using production grammars in software
testing, in: Proceedings of the 2nd Conference on Domain-Specific
Languages, pp. 1–14. USENIX Association, 1999.

[29] D. Spinellis, Notable design patterns for domain-specific languages,
The Journal of Systems and Software 56 (1) (2001) 91–99.

[30] T. Thai, H.Q. Lam, .NET Framework Essentials. A Nutshell
Handbook, third ed., O’Reilly & Associates, Inc., USA, 2003.

[31] S. Thibault, R. Marlet, C. Consel, Domain-specific languages: from
design to implementation – application to video device drivers genera-
tion, IEEETransactionsonSoftwareEngineering25(3) (1999)363–377.

[32] Categorized Lists of Computer Programming Languages. Available
at: <http://en.wikipedia.org/wiki/list_of_programming_ languages>.

[33] Collection On Computer Programming Languages. Available at:
<http://www.people.ku.edu/nkinners/langlist/extras/ langlist.htm>.

http://www.haskell.org/onlinereport/
http://www.haskell.org/onlinereport/
http://en.wikipedia.org/wiki/list_of_programming_languages
http://www.people.ku.edu/nkinners/langlist/extras/

	A preliminary study on various implementation approaches of domain-specific language
	Introduction
	Related work
	Methodological issues
	Subject of comparison
	Importance of the subject
	Conditions when applying comparison
	Comparison validity
	DSL implementation approaches
	Functionality of DSL implementations
	Programmers capabilities
	Reporting end-user efficiency

	The study
	Implementors ' effort
	Comparisons between implementation approaches
	Turning API to DSL

	End-user effort
	End-user program length

	Comparison remarks

	Conclusions
	Acknowledgements
	References

