
IADIS International Journal on WWW/Internet
Vol. 5, No. 2, pp. 86-99
ISSN: 1645 – 7641

 86

A COLLABORATIVE KNOWLEDGE SHARING
FRAMEWORK WITH DIVERGENCE SUPPORT

Alicia Díaz and Guillermo Baldo Lifia, Fac Informática – UNLP, CC 11, 1900 La Plata,
Argentina

[alicia.diaz, guillermo.baldo]@lifia..info.unlp.edu.ar

Gérôme Canals Loria, Campus Scientifique, B.P. 239, 54506 Vandœuvre-lès-Nancy cedex, France

gerome.canals@loria.fr

ABSTRACT

The focus of this paper is Collaborative Knowledge Sharing systems and how their usability can be
improved by supporting of knowledge divergence occurrences. This approach recognizes divergence
occurrence as a natural source of new knowledge in knowledge sharing communities. This paper
presents a framework for sharing knowledge based on an explicit process model that governs and
coordinates users’ actions. The process includes operations for externalizing new knowledge and making
complementary or divergent knowledge public. This framework conceptualizes a knowledge sharing
process-oriented groupware application which supports the development of a knowledge repository
collaboratively. In order to show how this framework can be used, we have instantiated it by ontologies
as a knowledge representation paradigm. Finally, Co-Protégé, which is a prototypical groupware
application based on the framework, is introduced.

KEYWORDS

Knowledge sharing communities, collaborative edition, collaborative ontology edition

1. INTRODUCTION

In this paper, we focus on Collaborative Knowledge Sharing systems and how their usability
can be improved by supporting the occurrence of knowledge divergence. Collaborative
knowledge sharing (CKS) systems are groupware applications that support the development of
a shared knowledge repository. This functionality is the core of any Knowledge-Based system
in which a group of people, that share a domain of interest, develop a knowledge memory in

A COLLABORATIVE KNOWLEDGE SHARING FRAMEWORK WITH DIVERGENCE SUPPORT

 87

collaboration. There are many potential applications of such a system: on-line communities,
project memory support, corporate knowledge portals within others.

We understand knowledge sharing activity as a collaborative activity through which a
group of people develops a common understanding about a domain of interest. The idea of
sharing knowledge goes hand in hand with the notion of cognitive conflicts: people sharing
knowledge also express divergent opinions about a topic of interest. From a computational
point of view, divergence occurrences correspond to the occurrence of contradictions or
inconsistencies in the repository. Traditionally, CKS systems deal with inconsistencies simply
by avoiding them or keeping them out of the scope of the system; only agreed knowledge is
hosted by the system. However, we claim that conflicts and divergence occurrences promote
more actively shared workspaces: conflicts are an important source of new knowledge; their
resolution generates more collaborative interactions among peers and improves the motivation
for participating in this kind of activity.

Consequently, we propose an approach based on the explicit representation of conflicts (as
divergence perspectives of a topic) and their resolution process. Therefore, the shared
knowledge-base does not only store knowledge about a particular domain, but also it stores
knowledge about the way it was proposed, discussed, augmented and finally agreed.

There are some requirements to take this work to action. The first one is that the process of
sharing should be explicit and controlled. This is to organize and control users’ actions and
interactions, but also to make possible the explicit representation of the conflict solving steps
in the knowledge memory. In order to stimulate a dynamic knowledge sharing activity, the
second one is to keep participants aware of the shared knowledge status and its evolution and
of the process activity. Finally, a last requirement is the need of having a unified formal model
which allows representing both domain knowledge artifacts, the conflicts and their solving
steps.

Based on these requirements, we designed a process-driven framework for supporting the
knowledge sharing activity. This framework is based on an explicit process that defines steps
and basic operations for the manipulation of a shared knowledge memory, an ontology-based
knowledge model that includes conflicts and discussion representation, and a dedicated
awareness mechanism.

The paper is organized as follows. Sections 2 introduce the process which will drive the
development of the knowledge sharing activity. Then, in section 3, it is presented the
collaborative knowledge sharing framework which joins fundamental components
(knowledge-sharing workspace and the divergence management and the awareness
components) of a groupware application which supports the knowledge sharing process
through which a knowledge repository which is developed in collaboration. The section 4
completes the domain knowledge with knowledge about the activity, people and discussion.
Section 5 deals with the particular realization of the framework through an ontology
formalism. Section 7 is dedicated to show a real implementation of this approach by the
introduction of Co-Protégé. Finally, in section 8, we present some conclusions.

IADIS International Journal on WWW/Internet

 88

2. KNOWLEDGE-SHARING PROCESS WITH DIVERGENCES

In this section we will introduce the knowledge sharing process which describes the process
that is carried out by a group of participants in order to build a knowledge repository in
collaboration.

The knowledge sharing activity can be described as a spiraled process where knowledge
keeps emerging in each cycle. This process describes an augmentative building of the common
understanding through the contribution of "knowledge". People always add more knowledge
in each contribution, whatever this contribution means. Let’s see a typical example where
people share knowledge. It is a small community that shares knowledge about tools,
experiences and news in the CSWC field:

Ale has just found out tikiwiki, a wiki environment with a forum, e-mail, etc. He
has sent an email to the community announcing his discovery; consequently, Rick
has also said that tikiwiki is similar to JSPwiki3 (another groupware tool) since it
has comparable functionalities to JSPwiki; whereas Diego has said that tikiwiki is
not exactly similar to JSPwiki, because although they share many functionalities,
they do not share all of them.

By observing, this scenario, we can remark that this activity is a collaborative learning
process by means of which the community accumulates knowledge and develops a common
understanding [Díaz 2004, Stahl 2005]. This process is an iterative and incremental process,
which shows how the knowledge is exchanged among the participants and how knowledge is
converted from tacit to explicit knowledge. However, this process also shows the reflection
among individuals which is fundamental to achieve a common understanding.

When the knowledge sharing activity is computer supported by the collaboratively
development of a knowledge repository, it is possible to remark that knowledge moves from
private knowledge contexts to the community one and comes back to individuals again. At the
same time, knowledge is no longer tacit to become explicit and then becomes tacit again
[Nonaka 1995]. In order to capture this, we suggest the knowledge sharing process as the one
to describe how a group shares knowledge at the same time that it develops its own knowledge
repository. This is a spiraled process, made up of 4 steps: externalization, publication,
internalization and reaction.

Externalization - from tacit to explicit knowledge in the private context. Externalization is
an individual and private activity through which a knowledge unit, which is tacit in the
individual knowledge context, becomes explicit as a knowledge artifact. A knowledge artifact
is the minimal unit of “explicit” and exchangeable knowledge (see details in section 3). An
example of externalization is when Ale writes an e-mail to communicate he has found out
tikiwiki. Here, an informal knowledge representation system was used.

Publication - from private to shared knowledge context. Publication is the act of making
public some externalized knowledge. It corresponds to the submission (making an
augmentative contribution) of a knowledge artifact from the private to the shared knowledge
context. In the scenario, Ale has published his discovery by sending an e-mail to the
community.

Internalization - from explicit to tacit knowledge and from shared to private context.
Internalization is an individual and private process, which takes place when individuals realize
and acquire the subject of a new contribution. Internalization makes knowledge go from

A COLLABORATIVE KNOWLEDGE SHARING FRAMEWORK WITH DIVERGENCE SUPPORT

 89

community knowledge context to the individual one. This is the case of Rick who had realized
about Ale contribution before making his contribution.

Lastly, reaction is the act of giving some kind of response to a previous contribution. It
always involves an externalization and an eventual publication. Reactions can be private, this
means that it only produces some change at individual knowledge context; or it can be public
when it is published. Public reactions involve contributions, which we call contributions by
reaction.

There are many causes for a reaction occurrence. It can be either motivated to complement
a previous contribution (like Rick) or to give a divergent point of view (like Diego) or just to
provide arguments for the original contribution. Those reactions that provide other points of
view enable the occurrence of divergences.

Depending on whether the reaction is private or public; there is either a private or public
divergence. A public divergence implies the coexistence of divergent knowledge artifacts.

Any reaction is triggered from a previous contribution and the knowledge sharing process's
cycle describes a discussion thread.

In figure 1, readers can see a schematic view of the knowledge sharing process.

Figure 1. A schematic view of the knowledge sharing process.

3. THE COLLABORATIVE KNOWLEDGE SHARING
FRAMEWORK

The collaborative knowledge sharing framework is a conceptual framework that joins
fundamental components of a groupware application which supports the knowledge sharing
process through which a knowledge repository is developed in collaboration. These
components are: the knowledge-sharing workspace, the divergence management component
and the awareness component.

Before describing the three main components of the framework, we will take a moment to
describe knowledge artifacts as the minimal unit of exchangeable knowledge. Depending on
the level of formalization of the knowledge representation system, a knowledge artifact can
be: informal, where knowledge is strong hard-coded (i.e. wikis), semi-formal where informal

IADIS International Journal on WWW/Internet

 90

knowledge representation is mixed with formal representation, for example documents are
classified by domain ontologies (i.e. semantic wikis) or typed messages; or formal where
knowledge is represented by a formal knowledge representation system (i.e. by means of a
domain ontology, as it will be shown in section 5). However, considering the knowledge
artifact as a unit which encapsulates knowledge, it is possible to conceive the knowledge
sharing framework without presupposing any knowledge representation paradigm. Thus, the
knowledge repository can be understood as a collection of knowledge artifacts arranged
according to the formalization system and the discussion thread.

3.1 The Knowledge-Sharing Workspace

The knowledge-sharing workspace is a process-driven shared workspace that supports the
collaborative development of a knowledge repository. It is based on the knowledge sharing
process which was described in section 2.

As externalization is a private activity and publication affects the public context, we
conceive the workspace made up of a public workspace and many private workspaces. The
public workspace is a shared workspace that is unique, accessible to everyone and contains the
shared knowledge repository (whose edition is only achieved by publishing knowledge
artifacts). On the other hand, the private workspace is a non-shared workspace (only
accessible by its owner) and hosts a private knowledge repository which represents the private
view of the shared one. Private knowledge repositories can differ from the shared one, but
they can have overlapped parts.

According to the structure of the workspace, the execution of public actions is perceived
by any member, but the execution of private actions is hidden to the other members. The main
private actions are those to externalize a knowledge artifact, and thus, the private repository is
developed by the direct edition of knowledge artifacts. Private actions are dependent on the
knowledge representation system. On the other hand, the main public action is the publishing
action. Publishing means making a contribution of a knowledge artifact from a private
repository to shared one. They involve changes at the shared repository.

Management of private and shared knowledge repositories has a direct consequence: each
member manages two different knowledge versions that coexist: private and shared versions.

Any contribution involves “merging” the contributed knowledge artifact with the shared
knowledge repository. The resulting merge should provoke an augmentative version of the
knowledge repository. A contribution is augmentative if it can be integrated to the shared
repository without introducing any divergence (contradiction). Let us come back to the
example, the Rick’s contribution can be integrated to the shared knowledge repository without
introducing any conflict, because it complements existing knowledge. On the other hand,
Diego’s contribution will introduce a contradiction in the shared knowledge repository. This
last contribution means a divergent perspective.

In our approach, we suggest that both augmentative and divergent contributions coexist in
the knowledge repository. Therefore, mechanisms to check the integration viability are
required. Each time a publishing action takes place, it is necessary to “check” whether it
involves an augmentative contribution. This checking is strongly dependent on the knowledge
representation system proposed (further details in section 5). Contributions that pass this
checking can be merged to the shared repository without any inconvenience. On the contrary,
non-augmentative contributions should be rejected or should be explicitly contributed as a

A COLLABORATIVE KNOWLEDGE SHARING FRAMEWORK WITH DIVERGENCE SUPPORT

 91

divergent contribution. The divergent management component is in charge of dealing with this
last case allowing the occurrence of divergences.

3.2 Divergence Management Component

Due to the shape of the workspace, divergences can occur in two senses: it can be a private or
a public divergence. Private divergences are those which remain private in the private
knowledge repository. They are the simplest and easiest ones to support because both
repositories are in two differentiated workspaces. On the other hand, a public divergence is a
divergence in the shared repository. This means having alternative knowledge artifacts in an
augmentative fashion. To achieve this, the underlined model must provide suitable primitives.

In our approach, non-augmentative contribution is published explicitly as a divergent
contribution. Divergent contributions are attached to a special kind of knowledge artifact, the
discussion artifact, which encapsulates a divergent knowledge artifact. Discussion artifacts are
the resources by means of which divergent versions can coexist in the shared repository.

The second goal of the divergence management component is to put divergent
contributions in the context of a discussion. The resource to manage this is the discussion
thread. The discussion thread model provides a simple yet formal structure for the discussion
and exploration of shared knowledge. Discussion thread is in charge of linking the discussion
artifacts and identifying the role of the contributed artifact in the context of the discussion
(initial artifact, augmentative artifact, divergent artifact and argumentations). The discussion
thread is an aggregation of augmentative and/or divergent contributions. The figure 2 shows
the discussion thread developed in the example.

tikiwiki is NOT
similar to JSPwiki

tikiwiki is a wiki
tool with forum

tikiwiki is similar
to JSPwiki

Figure 2. The discussion thread of the scenario. The black rectangle represents the initial contribution,

the dashed one represents the next augmentative contribution and the grey one is the divergent
contribution.

This discussion activity establishes a set of new knowledge sharing actions: the discussion
actions. Discussion actions refine reaction step in order to allow the development of the
discussion thread. They are comprised by two groups: the opening discussion action and the
discussion actions. To trigger a discussion thread, it is necessary to make the identification of
the initial discussion artifact. Then, the linking of the discussion contributions will take place.
The identification of the initial contribution involves the identification of the knowledge
artifact to be set "in discussion". This identified knowledge artifact becomes the initial
discussion artifact and the action is the opening discussion action. Discussion contribution
linking means attaching the new discussion contribution to an initial contribution.

3.3 Awareness Services

The third component of the knowledge sharing frameworks is in charge of the awareness
services. Awareness is a relevant component of any groupware application; it keeps users up-

IADIS International Journal on WWW/Internet

 92

to-date about the collaborative activity [Schmidt 2002]. Then, it will be useful to keep people
aware of the knowledge changes and discussion evolution. In this approach we have identified
and defined the specific requirements of awareness services for CKS systems. These
awareness services should be seen as an engine of the knowledge sharing activity and as a
facilitator of the internalization (which promotes the reaction) because they have to be in
charge of noticing about new contribution occurrences and of identifying highly-active
concepts. But also, awareness should be useful to complement the support of divergences, it
should make the divergence occurrence evident– to help people keep the discussion context.

Therefore, we have defined the awareness of knowledge sharing activity as the needed
awareness information to keep a knowledge-sharing community up-to-date about the
knowledge evolution. This awareness plays a crucial role because it is a means to internalize
and externalize knowledge. Indirectly, pushing internalization is a way of pushing also the
knowledge sharing activity, because internalization becomes the seed of reaction occurrence;
and thus, more knowledge is provided, either augmentative or conflictive. Beside, awareness
will take into account knowledge discussion occurrences and thus, it is in charge of making
divergences acceptable; it reinforces the occurrence of interaction among people. It comprises,
together with the conflict occurrence, the means to improve the knowledge sharing activity.

In order to track the collaborative activity, people need information about the historical
context of the activity. To design the awareness service, we have made an analysis to discover
which information is necessary to be tracked and captured when knowledge sharing activity
occurs and how this information may be useful to the user (we have taken an analogous
approach to the one in [Tam 2004]). This information is organized in low-level and high-level
information. Low-level information serves to answer questions like: Who has contributed with
this knowledge artifact? Which knowledge artifact has been contributed by a user? On the
other hand, high-level information could be deduced by mining the low-level information
(Who has been contributed with this person? How this knowledge artifact has evolved? What
are the more active topics?). High-level information is also useful to update de knowledge
repository by adding activity knowledge (by adding high-level actions) and rendering the
member profile (by adding new discovered interest). The member profile defined the interest
of a user on knowledge domain, other users and discussions.

Each time a new action takes place; the awareness mechanism has to capture information
about the performed action and stores it at the knowledge base. Then, the awareness
mechanism delivers this information by means of notifications (notifier component). A
notification is related to the action and attached to the users. People need to be notified
according to the member profile and their activity.

Awareness services are also useful to aid people to externalize knowledge at their own
individual knowledge repository. This means that a new contribution to the shared knowledge
repository can be automatically incorporated to the individual one. Indirect externalization is
complemented by the “notifier” component. But awareness services also have to help people
become aware of differences between the private and the shared knowledge repositories.
Because, any change at the shared repository may leave the private one out-of-date; or because
any change at the private repository may only mean a private divergence. This service helps
users to locate changes and divergences in her private repository.

A COLLABORATIVE KNOWLEDGE SHARING FRAMEWORK WITH DIVERGENCE SUPPORT

 93

4. KNOWLEDGE SHARING ACTIVITY IS PART OF THE
KNOWLEDGE REPOSITORY

As it was mentioned in previous section, it is mandatory to capture information about the
knowledge sharing activity. While the collaborative activity is carried out, knowledge about
this activity has to be captured in order to maintain the history of the activity and to improve
the collaborative activity. People also need to share information about who has contributed
with what or how was discussing some topic, independently of the awareness services.
Consequently, we conceived the knowledge repository not only as a domain knowledge
repository, but also as a repository of knowledge about the members and their activities.

On the top of the workspace, the activity knowledge is captured in term of: performed
actions, domain knowledge, people and the relationships between them. This knowledge is
ontologically represented in generic ontologies [Corcho 2003] (Figure 3).

member profile

Action

KnowledgeArtifact

wasPerformedBy
involves

DiscussionThread

Member
interestedIn

Figure 3. Schematic relationships among the domain knowledge, members and their activity.

In order to capture knowledge about the performed actions it is necessary to track each
event that occurs in the workspace. This knowledge will be part of the activity ontology.
Activity ontology represents knowledge about the performed action (action), who performed
this action (member) and which artifact it involves. It also covers knowledge about the
discussion activity. In order to complete the knowledge about the activity, the system also
captures knowledge about members by means of the members’ profile ontology and
knowledge about conflict solving process through the discussion thread ontology. In the user's
profile, people indicate what knowledge they are interested in (i.e. actions, knowledge
artifacts, users and other users’ activity).

Besides, previous knowledge is complemented by incorporating knowledge about the
discussion activity. The discussion activity knowledge is captured by the specialization of the
knowledge artifact in the different types of discussion artifacts and by the discussion thread
concept. The discussion thread concept is defined as the aggregation of discussion artifacts.
Finally, the action ontology is specialized in order to model the discussion contributions
(Figure 4).

5. WHEN ONTOLOGIES ARE THE KNOWLEDGE
REPRESENTATION FORMALISM

Choosing knowledge representation formalism is the first decision to make before facing the
instantiation of the knowledge sharing framework. Each knowledge representation system
proposes its own conceptual model, which defines the primitives to express the knowledge.

IADIS International Journal on WWW/Internet

 94

These primitives describe how the knowledge representation has to be understood and
influence in the way of updating the knowledge repository.

Although there are different knowledge representation systems, we have chosen a formal
approach by using ontologies [Corcho 2003, Staab 2004], because firstly, they allow
developing a shared and common understanding of the domain of interest; secondly, they
capture and formalize knowledge by connecting human understanding of symbols with their
machine processability; and thirdly, because they ends up the knowledge sharing activity to a
collaborative design activity --the conceptualization of the domain. This approach is in the
address of other tools that allow the collaborative design of an ontology [Corcho 2003,
Faquhar 1996] like WebOnto [Domingue 1998] and Apecks [Tennison 2002]. However, it
takes into account the asynchronous development of the ontology and its discussion and it is
more focused on the development of a shared ontology than in the development of personal
ones. Besides, in most of these systems, the occurrence of divergences is avoided or the
management of divergences and their negotiation mostly kept out of the shared ontology; and
thus the shared ontology only captures the last update.

DiscussionContribution

Externalizing

KnowledgeArtifact

DiscussionActionPublishing

Action

OpeningDiscussion

DivergentContributionComplementContribution

DiscussionArtifact1 1
involves

DiscussionThread

DivergentDAComplementaryDA InitialDA

complements isAlternativeTo

encapsulates

Figure 4. The Activity ontology and the Knowledge Artifact ontology and the Discussion Thread

ontology.

Then, an ontological knowledge repository becomes a set of interrelated ontologies:
domain ontology, activity ontology, discussion thread ontology, user’s profile ontology.
Particularly, the domain ontology will be developed collaboratively, being the subject of the
knowledge sharing and discussion activity; while the other ontologies are pre-established and
instantiated by the underlying system.

Now, when ontologies are used to represent knowledge, a knowledge artifact is seen as a
formal conceptualization of a knowledge item in terms of ontological primitives, and it is
called an ontological artifact. Then, an ontological artifact identifies the knowledge artifact of
an ontological contribution.

According to the knowledge sharing workspace presented in section 3.2, people need to be
able to manage both versions of the domain ontology: the individual domain ontology and the
shared domain ontology, representing the individual and the shared knowledge repository
respectively. Both kinds of domain ontology respect the same structure, but represent different
knowledge spaces and they are developed following different modalities; while individual
domain ontologies are developed by externalizing ontological knowledge artifact, shared
domain ontology is developed by publishing ontological knowledge artifacts. Now,
externalizing knowledge involves building a conceptualization of a knowledge artifact ---the
direct edition of ontological artifact by ontological primitives.

A COLLABORATIVE KNOWLEDGE SHARING FRAMEWORK WITH DIVERGENCE SUPPORT

 95

On the other hand, publication involves "integrating" to the shared ontology an ontological
artifact resulting in an augmentative version of the shared ontology without introducing any
description mismatches.

An ontological contribution is augmentative if its publication must conserve the monotonic
principle enunciated section 3.2.1. That is, it should avoid the occurrence of any ontological
mismatch [Klein 2001]. Understanding an ontological artifact as an ontology, the problem of
publishing an ontological artifact is reduced to combine both ontologies, the ontological
artifact and the shared domain ontology (Figure 5 (2)). This combination can be done by
integrating both ontologies, which means that they are merged into one "new version" of the
shared domain ontology [Pinto 1999].

In short, if Op denotes the private ontology and oa denotes the ontological artifact that
exists at the Op, the merging or integration of an ontological artifact oa, involves updating Os
(the shared ontology), by adding oa, where ontologies Op and Os may have overlapping parts.
This overlapping between both ontologies can be innocuous or it can eventually make
conceptual description mismatches arise. In the last case, alignment it is not possible.
Therefore, to merge both ontologies it is necessary: first, to check the viability of the
integration and secondly, to align the oa to the Os. Aligning two ontologies involves updating
the Os by adding oa. As a result, there is a new version of Os.
Dealing with ontologies, a divergent contribution means the introduction of an inconsistence
at the shared ontology. Therefore, it is necessary to propose some approach that allows
maintaining the coexistence of ontological divergence and simultaneously avoids the eventual
occurrence of inconsistencies at the shared ontology. In order to tackle this situation, we
suggest extending the ontological model with discussion thread primitives. These new
primitives will be considered as a concrete resource to make explicit the divergence and
become first order ontological primitives. The main advantage of having an ontological
representation of the discussion thread is to encapsulate inconsistencies, since they remain
encapsulated in an alternative ontological artifact.

Particularly, an ontological discussion thread identifies the initial ontological artifact and
the divergent ontological artifacts. An initial ontological artifact encloses an ontological
artifact that will be set "in conflict"; while an alternative ontological artifact encapsulates a
divergent conceptualization of a particular objected ontological artifact. Figure 4 shows the
discussion thread ontology.

To open a discussion, users are forced to identify the objected ontological artifact and then,
they may express divergent position as alternative ontological artifact. Figure 5 shows the
sequence of ontological contribution that describes a discussion thread.

 B

3

4

 A

1 2

a

f

c

e

a

b

c d

a

b

c d

e

c

e

Figure 5. A discussion thread where with the black rounded area is represented the initial ontological

artifact, and with the grey area is represented the divergent ontological artifact.

IADIS International Journal on WWW/Internet

 96

6. CO-PROTÉGÉ SYSTEM

Co-Protégé [Díaz 2006] in an extension of Protégé-2000 [Gennari 2003] which is a process-
oriented groupware application based on the process that was described in previous section to
edit ontologies and knowledge bases in a collaborative fashion. It is made up of: the
workspace, which supports the necessary functionalities for externalizing and publishing; the
divergence management component, which is in charge of making contribution by reactions
(divergence occurrences and discussion threads) explicit and lastly the awareness component
which facilitates internalization. Its visualization is in terms of tabs like in Protégé-2000
(Figure 6). There are tabs for modeling the shared-private workspace, the conflict tab, the user
tab and the difference tab.

Shared-Private Workspace Tabs. Co-Protégé proposes tabs that "overlap" both workspaces
in the same tab in order to make easily achieving to a direct manipulation of the two
ontologies. Only the private side (on the left) has the same functionality as the Protégé-2000 to
edit the private ontology; the shared side on the right) cancels them (the shared ontology is
only updated by publications). There is one tab of this kind for each kind of frame (class, slot
and instance). A conflict is created in the shared-private tab by selecting the set of frames that
will be put in conflict. After that, the frames are shown "in conflict".

The system makes incompatibility checking each time a publication is performed in order
to ensure an augmentative contribution. Whatever the checking result may be, Co-Protégé
informs it at the bottom of this tab.

Figure 6. A snapshot of Co-Protégé. Both private and shared ontologies can be appreciated

simultaneously.

User Tab is to manipulate the user profile. Users' interest can point to any kind of frame
described by the metamodel of Co-Protégé, that is, elements of the shared ontology, other
users, conflicts and conflict components. There are some cases where the system is able of
updating the user’s profile or making suggestions.

A COLLABORATIVE KNOWLEDGE SHARING FRAMEWORK WITH DIVERGENCE SUPPORT

 97

Conflict Tab defines a space where users can browse through the conflict and make it
evolve. Once a conflict was created, it becomes part of the conflict list, where all currently
open conflicts are enumerated. Users can add alternatives and argumentations. Alternative are
created with frames from the private ontology. This is the mechanism that allows for the
publication of divergent contributions.

Co-Protégé supports two visualizations of notifications. One indicates the degree of
similarity/difference that ontological artifacts in both ontologies maintain in order to provide
awareness of private divergence. This is shown over the private ontological elements. This
visualization is rendered each time any change occurs at the private or shared ontology. The
other visualization is more general and shows all the notifications in a chronological order. At
the user’s tab, users can specify different filters to show notifications.

6.1 Co-Protégé Implementation Features

Co-Protégé extends Protégé through the definition of some plugins by following Protégé
extension philosophy. In Co-Protégé a project is made up of the shared ontology plus all
private ontologies (one for each user). Co-Protégé is a client-server application, where a
project is defined as a Protégé's metaproject. In this metaproject every ontology is defined (the
shared and each private) together with the access permissions.

Co-Protégé uses the Protégé-knowledge model; however, it extends Protégé-2000
metamodel in order to provide primitives to model special primitives for modeling the shared
ontology and conflicts. Besides, Co-Protégé defines a set of generic ontologies to model
knowledge about the activity and user. Figure 7 shows the new classes which were added to
the Protégé-2000 metamodel.

:THING

-:_Action-Timestamp : String
:_Action

:Standard-Class

:Class:Slot

-:Name : String

:Meta-Class

:System-Class

-:_Awareness-Wiget : Symbol
-:_Name : String
-:_E-Mail : String

:User

:Standard-shared-Class
-:Real-Name : String
:Standard-Conflict-Class

-:_State : Symbol (read, unread)
:_Notificaction

:_THING-Alternative
-:_Dumentation : String

:Alternative

-:_Type : Symbol
:_Conflict

....:_Conflict-Action

:_Argumentation

 :Direct-Template-Slot

:Direct-Domain

:Direct-Superclass

 :Direct-Subclass

:_Involved-Concepts

:_Published-By

:_Updated-By :_Actions

:_Involved-Concept

:_Alternative-To

:_Argumentation

:_Author

:_Involved-Concept-Alternative

Figure 7. Co-Protégés’ metamodel, model and generic ontologies. Original Protégé primitives are in
grey.

IADIS International Journal on WWW/Internet

 98

Then Co-Protégé ontologies use the same types of Protégé‘s primitives (frames): classes,
slots, facets and instances. However, Co-Protégé uses two different metamodels to model both
ontologies: the private and the shared. Any private ontology is considered as a Protégé-2000
project; therefore private ontologies respond to the regular Protégé-2000 metamodel; for
example, if a user creates a class DomainClass1 at his/her private ontology, class
DomainClass1 is an instance of :Standard-Class.

However, :Standard-Class is not enough to model an ontology artifact that is at the shared
ontology, because of they also need to model other relationships that manifest features of
being a shared artifact in a collaborative process (i.e. creator or modifier (users) relationships
or it is needed to know when it was created). In order to solve this, Co-Protégé has its own
metaclass architecture that is an extension of the Protégé-2000 metaclass architecture. It is
done through the addition of a set of new metaclasses. These new classes are shared-classes,
shared-slots and shared-instances. This specialization adds the additional relationships that
shared primitives need to be a frame of a shared ontology. These metaclasses makes a
difference between the ontological artifact of the private ontology and those of the shared one.
Every ontological artifact of the shared ontology is model by :_Standard-Shared-Class,
:_Standard-Shared-Slot and :_Standard-Shared-Instace, however the remainder of concept
are model directly with the metamodel architecture of the Protégé-2000.

Taking into account that the shared knowledge it not only knowledge about the domain of
interest, but it is also knowledge about the collaborative activity, Co-Protégé incorporates
primitives that model these particular kind of knowledge. Because of knowledge about the
activity is independent of the specific domain of the discussion, the scheme of this knowledge
should be applied to any environment that supports a knowledge sharing activity, whatever the
domain of the interest of the community may be. Therefore, it is possible to design a generic
ontology to model the activity. Concepts like users, actions, conflict, argument, alternatives,
and others are modeled by this set of generic ontologies. These generic ontologies are strongly
related to the metaclass architecture of the shared ontologies (i.e :_Published-By, :_Involved-
Concepts). Knowledge about the activity in some cases is automatically (implicitly) captured
according to users actions at the workspace or in other cases it is provided explicitly by users.

7. CONCLUSIONS

The knowledge sharing framework is a conceptual framework that describes the fundamental
components of a CKS system. This framework is based on an explicit process model that
governs and coordinates users’ actions. The process model includes operations for
externalizing new knowledge and making public new or divergent contributions. This process
model is enacted on top of a workspace that includes a private part where users can externalize
their personal knowledge and a public part where shared contributions, arguments and
discussions threads are published. We have remarked that divergence can be accepted if the
participants can build a clear understanding of the shared knowledge evolution. In that way, a
special attention has been paid to the design of a dedicated awareness mechanism.

The concepts of this framework have been implemented in a prototype called Co-Protégé
[Díaz 2006], where knowledge sharing activity is considered as the collaborative design of a
shared ontology.

A COLLABORATIVE KNOWLEDGE SHARING FRAMEWORK WITH DIVERGENCE SUPPORT

 99

Although this approach seems very promising, it still needs to be evaluated. In this way,
our immediate objective is to get more feedback about the use of the tool by real users. To do
so, we are actually working on an enhanced version of the prototype that will support OWL.

Another future work is to adapt this approach to more general propose like collaborative
design activities. While the participants are designing collaboratively, they are involved in a
negotiation activity through which they share design artifacts, but they also share different
points of view, alternative/divergent designs and knowledge about the design activity. When
the design subject is based on a well-defined model, it is possible to extend this model by
adding new primitives which model the activity for negotiating designs (alternative and
divergent) and the knowledge about this activity. Therefore it is possible to state a CSCW
approach to support a collaborative design activity which involves the negotiation of the
design. This approach would be based on a well-defined conceptual model, the management
of shared and private workspaces and the occurrence and the coexistence of divergent and
alternative designs.

REFERENCES

Corcho O. et al. 2003. Methodologies, tools and languages for building ontologies: Where is their
meeting point? Data Knowledge Eng. 46(1): 41-64.

Diaz, A. and Canals G. 2004. Divergence Occurrences in Knowledge Sharing Communities. LNCS,
Springer Verlag -Proceedings of Criwg'04 pp17-24

Diaz A. et al. 2006. Co-Protégé: Collaborative Ontology Building with Divergences. Seventh
International Dexa Workshop on Theory and Applications of Knowledge Management(TAKMA).156-
160

Domingue J., Tadzebao and Webonto: Discussing, Browsing and Editing Ontologies on the Web, in:
Proc. 11th Knowledge Acquisition Workshop (KAW98), 1998.

Farquhar A. et al. 1996. The Ontolingua Server: A Tool for Collaborative Ontology Construction. In:
Proc. 10th Knowledge Acquisition Workshop(KAW96).

Gennari J., M.A. Musen, R. Fergerson. 2003. The Evolution of Protégé: An environment for knowledge-
based systems development. IJHCS, vol 58 (1): 89-123.

Klein, M. 2001. Combining and relating ontologies: an analysis of problems and solutions. In proc.of the
Workshop on Ontologies and Information Sharing, IJCAI'01, Seattle, USA.

Nonaka, I. and Takeuchi, H.1995. The Knowledge-Creating Company, Oxford University Press.
Pinto S. et al. 1999. Some issues on ontology integration. In Proceedings of the Workshop on Ontologies

and Problem Solving Methods during IJCAI-99, Stockholm, Sweden, August.
Stahl G. 2005. Group Cognition in Computer Assisted Learning. Journal of Computer Assisted Learning

(JCAL).
Schmidt K. 2002. The Problem with Awareness Introductory Remarks on Awareness in CSCW Journal

11(3-4), 285_298. Kluwer Academic Publishers.
Staab S. and R. Studer (eds.). 2004. Handbook on Ontologies. Int. Handbooks on Information Systems,

Springer Verlag,
Tam, J. and Greenberg, S. 2004, A Framework for Asynchronous Change Awareness in Collaboratively-

Constructed Documents. LNCS, Springer Verlag -Proceedings of Criwg'04.
Tennison J. et al. 2002. APECKS: using and evaluating a tool for ontology construction with internal and

external KA support. IJHCS. 56(4): 375-422.

