

Model Refactoring in Web Applications

Alejandra Garrido
1
, Gustavo Rossi

1
 and Damiano Distante

2

1
LIFIA, Universidad Nacional de La Plata, Argentina

2
Research Centre on Software Technology (RCOST), University of Sannio, Italy

{garrido, gustavo}@lifia.info.unlp.edu.ar, distante@unisannio.it

1
 Partially funded by project PICT 13623. Also CONICET.

Abstract

Refactoring has been growing in importance with

recent software engineering approaches, particularly

agile methodologies, which promote continuous

improvement of an application’s code and design. Web

applications are especially suitable for refactoring

because of their rapid development and continuous

evolution. Refactoring is about applying

transformations that preserve program behavior. Code

refactorings apply transformations to the source code

while model refactorings apply to design models, both

with the purpose of increasing internal qualities like

maintainability and extensibility. In this paper we

propose Web model refactorings as transformations

that apply to the design models of a Web application.

Particularly, we define refactorings on the navigation

and presentation models, and present examples. Since

changing these models impacts on what the user

perceives, the intent of Web model refactorings is to

improve external qualities like usability. They may also

help to introduce Web patterns in a Web application.

1. Introduction

It is not a novelty that Web applications must evolve

fast; their evolution is driven by a myriad of different

factors: new emerging requirements, such as adding

services or information types; old requirements

evolving as a consequence of users’ feedback; new

technological possibilities giving the chance to change

the application’s look and feel or interaction styles, etc.

Many times, however, evolution is only driven by

the developers’ reflection on the application structure,

behavior and/or code; in these cases, the application is

modified not to add new functionality but to improve

its maintainability and extensibility for future and

eventual additions. It is at this point where refactoring

shows up. Refactoring was introduced some years ago

in the context of object-oriented applications [11]. A

refactoring was defined as a syntactic transformation of

source code that improves its internal structure while

preserving external behavior, i.e., the mapping of input

to output values. A refactoring is performed in small

steps, thus reducing the risks of breaking the system.

Nevertheless, refactorings are usually composable [16],

yielding larger transformations that improve

readability, reusability and maintainability of a system.

With the upcoming of eXtreme Programming and

Agile Methodologies, refactoring became quite popular

as a disciplined process of continuous improvement of

design and code [1, 5]. Well-known refactoring

techniques have been catalogued as step-by-step

recipes to help developers with a manual process, and

many refactoring tools have been developed to

automate these transformations [5]. The concept of

refactoring has been applied to non-object-oriented

languages [7] and to the level of design models (as

UML class diagrams) [21, 24].

In the field of Web applications, we are interested in

model refactorings that apply at the navigation and

presentation models. In essence, navigation model

refactorings modify the navigation topology while

preserving the reachability of every node, and

presentation model refactorings modify the look-and-

feel of pages but preserve the operations available at

each page. In this way, and similarly to traditional

refactorings, Web model refactorings improve the

internal structure of Web models while preserving the

behavior as defined by these models. What differs from

traditional refactoring is that modifying the navigation

and presentation of a Web application impacts directly

on what the user perceives. As a consequence, in our

research we have analyzed those kinds of refactorings

that, even preserving the application’s functionality,

may improve external qualities such as usability. These

refactorings may also derive in the application of a

Web pattern like those described in [20].

As an example that we will elaborate later in the

paper, we show in Fig. 1 and Fig. 2, two different

indexes of the Amazon bookstore. The first index

points to a set of CDs by just exhibiting CD titles and

interpreters. Meanwhile, the index in Fig. 2 gives much

more information on each CD. Notice that the basic

intended functionality, i.e. collecting a set of CDs and

enabling navigation to pages that give details on each

of them, did not change. However, the second index

can be considered as an extension of the first one,

obtained by applying some transformations to it

(adding more information). This is the kind of atomic

refactorings in which we are interested.

Figure 1. A simple index

Figure 2. An enriched version of the index in Figure 1

In this paper we characterize model refactoring in

Web applications and present a set of concrete

refactorings to illustrate our ideas. Particularly, our

research is aimed at:

• Defining the subject of transformations of Web

model refactoring and the semantics that they

preserve.

• Analyzing the impact of Web model

refactorings on the application’s usability,

particularly when they introduce Web patterns.

• Analyzing dependencies between navigation

refactorings and presentation refactorings.

The remainder of the paper is structured as follows.

In Section 2 we review some background concepts on

refactoring and Web application development. In

Section 3 we define and characterize Web model

refactoring. In Section 4 we show examples of

refactorings, analyzing their motivation and mechanics;

we also indicate how atomic refactorings can be

composed to create a refactoring with a larger impact.

In Section 5 we discuss some related work and finally

in Section 6, we provide some concluding remarks and

discuss further research.

2. Background

2.1 An Introduction to Refactoring

Refactoring was defined in [11] as the technique

that applies syntactic transformations to the source

code of an application without changing its semantics,

i.e., on a given input, the application produces the same

output before and after refactoring. Refactoring differs

from restructuring in that transformations are usually

small and interactive. An example of refactoring is the

extraction of a method or a component from a class.

Refactoring has also spread to the level of design

models, giving rise to the concept of model refactoring

[21, 24]. Typical model refactorings are applied on

UML class diagrams and include the transformations of

a class hierarchy, like pushing up/down methods and

instance variables, and creating an abstract superclass

by factoring out common features.

2.2 Refactoring to Patterns

Design patterns came out in the early nineties as

elegant solutions that experts would apply to solve a

general problem [6]. Since then, we have seen plenty of

catalogues of design patterns, code patterns, interface

patterns, and even hypermedia and Web patterns.

One of the drawbacks of applying design patterns is

the risk of over-engineer an application by applying

patterns even when there might be a much simpler

solution [8]. Moreover, it is usually difficult to

understand when and how to apply a pattern. With the

outcome of agile methodologies, developers move

away from over-engineering and towards simpler

designs [1]. However, under-engineering is as much or

even more dangerous than over-engineering.

Refactoring comes to help keeping the balance

between over and under-engineering [8]. The

development process might start with a simple design

and, if the need for more flexibility is later discovered,

this design is refactored to incorporate the patterns that

solve the specific problem.

2.3 The Web Engineering Life-Cycle

In this paper we adhere to a model-based approach

for Web applications development, which has been

basically agreed by most mature development

approaches like WebML [2], UWE [9], UWA [19],

WSDM [3], OOWS [12], OOHDM [18], etc.

After requirement elicitation, a Web application is

usually designed in a three stage process that defines an

application model, a navigation model and a

presentation model. A running implementation is then

derived from these models either by applying to them a

set of heuristics or by using a transformation tool.

The application model (also known as content

model) describes the structure of the application’s data,

i.e., the contents it will provide to users, their

associations and the possible operations on these data.

The navigation model, which is essential for Web

software, specifies the units of consumption of the

application contents (i.e., navigation nodes), the

navigation paths through contents, (i.e., links, indexes,

etc.) and the operations each node will enable.

Finally, the presentation model (also known as user-

interface model) defines the mapping from nodes to

pages, their look and feel, the interface objects needed

to facilitate navigation or other user actions, and the

interface transformations that occur as the result of the

user interaction.

Each Web application development method uses its

own armory of primitives to represent the above design

models. We based our work on common design

primitives which we describe in Section 3.1, using the

OOHDM terminology.

3. Defining and Characterizing Model

Refactoring in Web Applications

Refactorings can be applied to Web applications

both at the implementation and the model level.

Refactorings at the implementation level are similar in

intent and structure to conventional code level

refactorings [5], though they might deal not only with

object-oriented code but also with code in typical Web

languages such as HTML, XML, JavaScript, etc. This

paper does not address Web code refactorings, but they

are mentioned in the related work section.

At the model level, refactorings can be applied to

any of the design models of a Web application, i.e.,

according to the generic development approach

described in Section 2.3, to the application, navigation

and presentation models. Since the application model

of a Web application is, for most methods, similar to a

UML class diagram, refactorings that may be applied

to this model are basically the same described in [21,

24]. Therefore, we will focus on refactorings that can

be applied to the navigation and presentation models,

which we call Web model refactorings, or specifically,

navigation model refactorings and presentation model

refactorings, respectively.

3.1 Characterizing Navigation and

Presentation Model Refactorings

Navigation and presentation model refactorings

affect the way the application presents contents,

enables navigation through contents, and provides

interaction capabilities. In order to identify the possible

navigation and presentation refactorings that may be

applied to a Web application, it is important to define

the subject of transformation and the behavior these

refactorings should preserve.

The navigation model produced with the OOHDM

method is the navigational class diagram, a UML class

diagram where classes represent navigation nodes,

associations represent navigation links, and indexes are

a particular type of node defined to enable one-to-many

navigation. Nodes are derived from classes in the

application model. They are described with anchors for

links and also content attributes and methods, the latter

mapping application class attributes and operations.

Indexes are a kind of composite node containing a set

of entries. Each entry may be defined to contain some

attributes of the target node and/or an anchor to

navigate to it. Alternatively, each entry may be a full-

fledged node. Access structures like guided tours can

also be defined.

Navigation model refactorings, having the

navigational class diagram as the subject of change,

may involve changes to any of the properties defined

by this model, such as:

• The contents of a node (including index nodes);

• The outgoing links in a node;

• The navigation topology associated to a set of

nodes (guided tour, index, etc.);

• The user operations enabled by a node.

The behavior of a Web application, as specified at

the navigation level, is given both by the set of

operations available at each node but also by the set of

links that allow the user to navigate through the set of

nodes. Thus a refactoring at this level should preserve:

• The set of possible operations and the

semantics of each operation;

• The “navigability”, which is defined as the set

of nodes the user can navigate.

We are now able to define navigation model

refactorings precisely: they are transformations applied

on the navigational class diagram that preserve

operational semantics and navigability. Preserving the

navigability of the set of nodes means that existing

nodes may not become unreachable though the set may

be augmented (e.g. by splitting a node). Moreover,

these refactorings should not introduce information,

relationships or operations that are not in the

application model. Examples of these refactorings are:

1. Add contents or operations to a node, provided

they are available in the application model.

2. Add new links between existing nodes.

3. Remove a link between nodes if that does not

make a node unreachable.

4. Add a node or remove an unreachable node.

The OOHDM presentation model describes the

“abstract interface” of the application by specifying

how the navigation objects and the application

functionality will be perceived by the user. Moreover,

it focuses on the various types of functionality that can

be played by interface elements, either displaying the

node’s data (e.g. multimedia fields) or triggering its

associated operations. The presentation model is

composed of pages and widgets describing the look and

feel of pages. Specifically, it includes the following

elements that may be subject to change:

• The general layout of a page;

• The graphical widgets that compose a page,

with their type and position;

• The nodes grouped and presented into a page;

• The interface transformations occurring as the

result of user interaction.

The behavior at the presentation level is given by

the operations that the user may trigger, including both

operations of the underlying node or link activations.

Therefore, legal presentation model refactorings may

not remove available user operations, though they may:

1. Change the look and feel of the page by moving

widgets around;

2. Add information or operations available in the

underlying node;

3. Add or change the available interface effects.

Notice that most navigation refactorings will imply

some change in the user interface and thus in the

presentation model. For example, if we add some

content to a node, we should add the corresponding

interface object to make this information perceivable; if

we add a link, its corresponding origin (anchor) should

be made visible, etc. Meanwhile, presentation model

refactorings should not change the navigational

structure, i.e., if we add some interface object or

interface effect (e.g. scrolling), the navigation topology

should be the same after the addition.

3.2 Refactoring to Web Patterns

The concept of Web patterns emerged as the

application to the Web of the hypermedia patterns

concepts developed in the late 90s [17, 10]. Web

patterns are similar to design patterns because they

address a recurrent (Web) design problem with a

generic solution that can be instantiated according to

the specific application being solved. The reader can

find catalogues of Web patterns at [20, 22, 23].

With the same spirit of “Refactoring to Patterns”

[8], we propose model refactorings on web applications

to introduce Web patterns in their architecture.

Kerievsky also calls them “pattern-directed

refactorings”. Similarly to them, Web-pattern-directed

refactorings discuss the problems that each Web

pattern helps solve and the pros and cons of applying it.

4. Towards a catalogue of navigation and

presentation model refactorings

By considering the properties/aspects defined for a

Web application in the navigation and the presentation

models, and by examining how successful Web

applications usually evolve, we have identified a group

of concrete navigation and presentation model

refactorings that we present in this section. Similarly to

the well-known refactorings described in [5, 8], each

one is described using a common template comprising

Name, Motivation, Mechanics, Examples and Impact.

The last element of the template is added here to

describe the model levels affected directly or indirectly

by the refactoring. Web patterns involved in the

refactorings are referenced in italics, while references

to other refactorings are distinguished with a

capitalized font. We first present a list of atomic (i.e.,

basic) refactorings and then an example of a composite

refactoring that uses atomic refactorings as individual

steps of its mechanics.

4.1 Atomic Refactorings

4.1.1. . . . Add IAdd IAdd IAdd Informationnformationnformationnformation

Motivation: Application usability studies may show

the need to display more information than what is

currently on a page. The kind of information may come

from different sources or have different purposes: it

may be data extracted from the application model; it

may be information added with the purpose of

attracting customers or advertising; or it may be data

introduced to help during navigation (obtained from the

navigation model itself).

This refactoring may be used to introduce patterns

like Clean Product Details [20] to add details about

products in an e-commerce website. With the purpose

of attracting customers, we may introduce Personalized

Recommendations [20] or rating information. Data that

helps during navigation may be added to introduce

Active Reference [17], i.e., to provide a reference about

the current status of navigation.

Mechanics: The mechanics may vary according to

the different sub-intents above. In the most general

case: add an attribute to a node class in the navigation

model where the information is to be added. If the

information is extracted from the application model,

attach to the attribute the statement describing the

mapping to the application model [18].

If the refactoring is used to introduce Active

Reference [17], add an index to the node class such that

the current page is highlighted in the index.

Example: This refactoring is applied to transform

the page that appears in Fig. 1 into the one that appears

in Fig. 2. In this case the information is added to each

entry of the index; the added information includes the

CD picture, price, rating, sale information, links to list

of sellers, year of edition, etc.

Impact: This is a navigation model refactoring since

it involves adding an attribute to a node class in the

navigation model. However, it will also produce a

refactoring on the presentation model (Add Widget),

to display the new information.

4.1.2. Add OAdd OAdd OAdd Operationperationperationperation

Motivation: Operations should always appear close

to the data on which they operate, and Web

applications should be designed with that in mind.

However, operations may be added later to a Web page

for various reasons: as the result of an operation added

to the application model because of a new requirement;

to speed-up the check-out process of an e-commerce

Website; to provide Printable Pages [20], etc. The

operation may be also added to each entry on an index,

so that the user does not need to navigate to the node

describing the entry to operate on it.

Mechanics: Add an operation to the appropriate

node class in the navigation model. Note that the

operation should be already available in the application

model.

Example: In the Amazon bookstore, the check-out

process has evolved to allow a considerable speed-up.

When an item is added to the shopping cart, the cart

has an extra button that says “Buy now with 1-Click”.

Selecting that button allows the user to login and

retrieve all previous information so she does not have

to re-enter the information for every purchase.

Impact: Adding an operation to the navigational

model requires the interface to be augmented with an

extra widget to dispatch it. Note that there is an

associated refactoring at the presentation model layer

(Add Button or Add Interface Operation). The

latter would be the case of including operations that

turn on accessibility features or customize the interface

to the user.

4.1.3. Anticipate TargetAnticipate TargetAnticipate TargetAnticipate Target

Motivation: Analysis of application’s usage may

show that users repeatedly backtrack after a forward

link activation. The reason for this is usually that the

target of the link is not what the user expected. Too

much false link activations (going forward and

backward) will rapidly lead to frustration and

customers leaving the site. To prevent this, the target of

the link should be somehow “explained” better, e.g., by

providing a preview of the target node or page or

anticipating the target.

Mechanics: There are at least two different ways to

anticipate the target of the link:
• Show the Target. Add a script to the anchor of the

link so that when a mouse is rolled over it, it

displays a small version of the target page. This is

an interface refactoring and it is usually

implemented using some advanced scripting

language (such as Ajax). This solution is

recommended for external links.

• Add Target Information. This solution is a

variation on Add Information; in this case the

information that is added to a node is derived from

the target of a link, in the anchor’s area. The

information displayed about the target should be

carefully chosen to reduce false link activations.

This refactoring applies at the navigation model

and will therefore unleash refactorings at the

presentation layer to reflect it. Here we can use

different alternatives, from adding widgets around

the anchor to augment it with target information, to

introducing patterns like Information on Demand

[17], which are usually found in indexes as

discussed in Section 4.2.

Examples: Google Previews displays the target of

each search result as an embedded image (instead of a

pop-up). Figure 3 shows an example from Dr. Dobb’s

Portal (http://www.ddj.com) that adds target

information for different links (“Webinars”,

“Architecture”, etc.) in the same area, using

Information on Demand [17] at the presentation level.

Figure 3. Showing different targets in the same area.

Impact: Notice that this refactoring has two

alternative mechanics, one at the presentation level,

and the second at the navigation level. Applying the

second solution, i.e., Add Target Information, on the

navigation model will trigger other refactorings at the

presentation layer to reflect the transformation.

4.2 Composite Refactorings

Each of the refactorings presented in 4.1 is self-

contained and its application may yield an

improvement in usability. However, a wise

composition of atomic refactorings may imply a non

trivial transformation with a higher impact on usability,

which is nonetheless described as a step-by-step

sequence. To illustrate, we present Enrich Index, a

composite refactoring that is accomplished in three

steps, using the atomic refactorings presented in the

previous section.

4.2.1. Enrich IndexEnrich IndexEnrich IndexEnrich Index

Motivation: In many Web applications we navigate

not only to get information about objects but also to

operate on them. While applying Anticipate Target

gives some cues on the target of a link to decide

whether to navigate or not, many times this cue is not

sufficient to make decisions, for example when we

have many different links as is typical in indexes.

Moreover, once the desired target is selected (e.g. a

product in an e-store), we might want to reduce the

number of navigation steps necessary to achieve our

goal (e.g. buy the product). One solution is to enrich

the index in such a way that it contains more

information and eventually operations on the target.

However, since the space reserved for each index entry

is usually scarce, special considerations should be

taken at the presentation layer.

Mechanics: Suppose that we begin with a simple

index like the one in Figure 1 providing access to

products. The following steps show how to use atomic

refactorings to improve the index:

1) Apply Add Target Information to Anticipate

Target of each element of the index. The information

is obtained from the target node of the corresponding

index entry. The concrete transformation, in terms of

the OOHDM navigational diagram, is to change the

index selectors (clickable anchors to navigate to the

target) into complex structures (in fact component

nodes) and writing a query on the target of the link to

get the information. The end result after mapping this

step to the interface would look as shown in Figure 2.

2) Apply Add Operation to each element of the

index. Add those operations belonging to the target

element which should be made immediately available

to the user. The end result would look as in the

example of Figure 4.

3) After applying the previous steps, the index will

have probably grown too large. There are different

alternative refactorings that may be applied at the

presentation layer to make a better use of the space:

• Introduce Information on Demand. This

solution is directed by the pattern Information on

Demand [17]. Using this pattern, the same section

of the page is devoted to show information of all

different index entries, as shown in Figure 3.

• Introduce Link Destination

Announcement. This solution is directed by the

pattern Link Destination Announcement [10]. In

this case, a control is added to each index entry or

a particular widget in the entry, so that when the

mouse is rolled over the anchor, a pop-up appears

with the information and operations added in steps

1) and 2). The drawback of applying this solution

is that pop-ups may be blocked or may be

annoying for some users. An example of this

solution appears in Figure 5.

• Introduce Scrolling. Use vertical or

horizontal scrolling to make the index co-exist

with other widgets in the page (see Figure 5).

• Split List. Divide the entries of an index into

several pages, allowing the user to navigate them

sequentially. There are plenty of examples of this,

like Google search results.

Example: E-commerce applications usually provide

recommendations for their products as an effective way

of advertising. It has become a feature that customers

usually seek. On an emerging web site,

recommendations may be just a list of the products

with a title and a link to the product’s page, i.e. a

simple index as shown in Fig. 1. We can see the

intermediate results of applying each step of this

refactoring in different versions of Amazon’s

“recommendations”. Starting from Fig. 1, we can apply

step 1, adding information about price, rating, a

picture, etc., arriving at the page shown in Fig. 2. Then

we apply step 2, to add operations “Add to cart” and

“Add to wish list”, arriving at the page shown in Fig. 5.

Here the index grew into a very long list. Finally, the

space devoted to each entry index is reduced by

applying Introduce Information on Demand and

Introduce Scrolling, as indicated in step 3. The

result appears in Figure 5.

Figure 4. Result of Add Operation refactoring on Fig. 1

Figure 5. Recommendation List after Enrich Index

Impact: Enrich Index is composed of refactorings at

both the navigation and the presentation levels.

Moreover, it shows that we can compose refactorings

in different ways: a conjunctive composition, where all

refactorings are applied in a particular order, or a

disjunctive composition, where we can apply

refactorings alternatively.

5. Related work

Our research differs from existing work in the

Refactoring field in two aspects: the subject and the

intent of refactoring. The subjects of the refactorings

we propose are the navigational and interface models

of Web design methods. Meanwhile, most of the

existing literature on refactoring is targeted at the code

level. Our work also differs from the work on model

refactoring [21, 24], even for those Web design

methods entirely based on UML [9], since our target is

not the application model but the navigation and

presentation models.

Regarding the intent of refactoring, Web model

refactorings are aimed at improving the users’

experience with the Web application. The same intent

(improving usability) is shared by the work on Web

transaction reengineering [4], although their subject are

business transactions and their transformations are not

necessarily refactorings.

Ricca and Tonella have worked on code

restructuring for Web applications [14]. They define

different categories of restructuring, like Syntax

update, Internal page improvement and Dynamic page

construction. As explained before, refactoring differs

from restructuring in that the latter implies larger

transformations that are usually run in batch mode by

applying certain rules. Instead, refactorings are smaller

and applied interactively. However, the main difference

with our work is that their transformations apply on the

source code, in this case, HTML, PHP and/or

Javascript. They have some of their restructuring rules

implemented in the DMS reengineering tool [15].

Ping and Kontogiannis propose an algorithm to

cluster links into several types and group web pages

according to these link types [13]. Applying this

technique should provide a roadmap for the

identification of controller components of a controller-

centric architecture. Although their target is the

navigational structure of a Web application, they do not

provide the mechanics to apply the transformation, but

only a first step of recognizing where to apply it.

6. Conclusions and Future Work

In this paper we presented our approach for model

refactoring in Web applications. It is based on the view

of modern Web engineering methods and it considers

refactorings to the navigation and presentation design

models.

Our proposal allows a fine-grained characterization

of the different kinds of refactorings, together with

their impact in the various design models involved in

the development life-cycle. We have demonstrated how

refactorings can help Web applications evolve by

applying well-known Web patterns into their design, in

order to improve quality in use properties, such as

usability. Moreover, we have shown how refactorings

can be combined to achieve a more complex

transformation, as one refactoring unleashes others in

the same or other design models.

We are currently working to augment our catalogue

of refactorings to a full set of navigation and

presentation model refactorings, showing their

interaction and composition. Though not discussed in

this paper, we are also researching on how to apply the

same concepts in the process of evolution to Rich

Internet Applications, in which more sophisticated

interface transformations are available. A step by step

process, based on small refactorings as shown in

Section 4.2, allows progressing from the “permanent

beta” state of this kind of software.

Once these issues are addressed, a further research

issue is to map refactorings to the implementation

level, upgrading Web design tools to support

refactoring of navigational structures, and also mapping

our model refactorings to code refactorings of

applications built with a particular web application

framework (like Struts, Shale, Tapestry, etc). A

refactoring tool should also be very helpful in

synchronizing changes at different layers, i.e., from the

navigation model to the presentation model and to the

implementation level.

7. References

[1] Kent Beck. Test-Driven Development. Addison-Wesley.

2002.

[2] Ceri, S., Fraternali, P., Bongio, A. Web Modeling

Language (WebML): a Modeling Language for Designing

Web Sites. Proc WWW9 Conference, Amsterdam, NL, May

2000 (also in Computer Networks, 33 (2000), pp. 137-157).

[3] De Troyer O., Leune C. WSDM: A User-Centered Design

Method for Web Sites. Computer Networks and ISDN

systems, Proc. of the 7th Int. WWW Conf. Elsevier. 1998.

[4] Distante, D., Tilley, S., Huang, S. “Web Site Evolution

via Transaction Reengineering”. In Proc. of the 6th Int.

Workshop on Web Site Evolution: WSE’04. Chicago, 2004.

[5] Martin Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 2000.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design

Patterns. Elements of reusable object-oriented software,

Addison Wesley 1995.

[7] Alejandra Garrido. Program Refactoring in the Presence

of Preprocessor Directives. Ph.D.Thesis, Univ. of Illinois at

Urbana-Champaign, 2005.

[8] Joshua Kerievsky. Refactoring to Patterns. Addison-

Wesley, 2005.

[9] Koch, N., Kraus, A. The Expressive Power of UML-

based Web Engineering. In Proc. of 2nd Int. Workshop on

Web Oriented Software Technology (IWWOST´02) at

ECOOP´02. 2002. Málaga, Spain. pp. 105-119.

[10] M. Nananr, J. Nanard, P.Kahn. Pushing Reuse in

Hypermedia Design: Golden Rules, Design Patterns and

Constructive Templates. In Proc. of Hypertext’98.

Pittsburgh, USA. 1998.

[11] William Opdyke. Refactoring Object-Oriented

Frameworks. Ph.D.Thesis, Univ. of Illinois at Urbana-

Champaign, 1992.

[12] Pastor, O., Abrahão, S.M., Fons, J. An Object-Oriented

Approach to Automate Web Applications Development in

Proceedings of EC-Web 2001. Munich, Germany, 2001.

[13] Y.Ping and K.Kontogiannis. Refactoring Web sites to

the Controller-Centric Architecture. In Proc. of the European

Conf. on Software Maintenance and Reengineering

(CSMR’04). Tampere, Finland, 2004.

[14] F. Ricca and P. Tonella. Program Transformations for

Web Application Restructuring. In Web Engineering:

Principles and Techniques. Woojong Suh (eds.). chapter XI:

pp. 242-260. 2005.

[15] Filippo Ricca, Paolo Tonella, Ira D. Baxter:

Restructuring Web Applications via Transformation Rules.

SCAM 2001: pp. 150-160, Firenze, Italy, 2001.

[16] Donald Roberts. Eliminating Analysis in Refactoring.

Ph.D.Thesis, Univ. of Illinois at Urbana-Champaign, 1999.

[17] G.Rossi, D.Schwabe, A.Garrido. Design Reuse in

Hypermedia Applications Development. In Proceedings of

Hypertext’97. Southampton, UK, 1997.

[18] Schwabe, D., Rossi, G. (1998) An Object Oriented

Approach to Web-Based Application Design. Theory and

Practice of Object Systems 4(4), Wiley and Sons, 1998.

[19] UWA Consortium, Ubiquitous Web Applications.

Proceedings of the eBusiness and eWork Conference e2002:

2002; Prague, Czech Republic.

[20] D. Van Duyne, J. Landay, J. Hong. The Design of Sites.

Addison-Wesley 2003.

[21] P. Van Gorp, H. Stenten, T. Mens, S. Demeyer.

Towards automating source-consistent UML Refactorings. In

Proceedings of the 6th Int. Conference on UML, 2003.

[22] Web Design Patterns. http://www.welie.com/ patterns/

[23] Web Patterns. http://webpatterns.org.

[24] J. Zhang, Y. Lin, J. Gray. Generic and Domain-Specific

Model Refactoring using a Model Transformation Engine. In

Model-driven Software Development, Springer, Ch. 9, 2005.

