
Distributed Algorithms on IoT Devices: Bully
Leader Election

Mariano Méndez
dept. Computer Science
Facultad de Ingenierı́a

Universidad de Buenos Aires
CABA, Argentina

marianomendez@fi.uba.ar

Fernando G. Tinetti
III-LIDI, Fac. de Informática, UNLP

Comisión de Inv. Cient. de la Prov. de Bs. As.
La Plata, Argentina

fernando@info.unlp.edu.ar

Adrian M. Duran
dept. Computer Science
Facultad de Ingenierı́a

Universidad de Buenos Aires
CABA, Argentina

aduran@fi.uba.ar

Daniel A. Obon
dept. Computer Science
Facultad de Ingenierı́a

Universidad de Buenos Aires
CABA, Argentina

marianomendez@fi.uba.ar

Natalia G. Bartolome
dept. Computer Science
Facultad de Ingenierı́a

Universidad de Buenos Aires
CABA, Argentina

nbartolome@fi.uba.ar

Abstract—We present in this paper the implementation of
a well-known coordination algorithm on specific and low-
performance IoT (Internet of Thing) devices. The implementation
of the bully algorithm for leader election is achieved in a two-
stage process: a) an IoT independent implementation, made in
a high level progamming language (Java, in particular), and b)
the implementation on the IoT devices, where several limitations
and characteristics have to be taken into account. We have used
this algorithm for coordination of a set of small cars. Beyond
the specific implementation, this work has two main underlying
contributions: a) show that it is possible to take advantage
of many algorithms and results already proven to be useful
in the area of distributed computing, and b) show that IoT
devices limitations (e.g. in computing power and storage) do not
necessarily imply that useful algorithms cannot be used.

Index Terms—Distributed System, Leader Election, Internet of
Things

I. INTRODUCTION

The term Internet of Things (IoT) was coined in 1999

by Kevin Ashton, as the title for the presentation on RFID

technology delivered by the author at Procter & Gamble

(P&G) [15] [1]. About twenty years later, IoT became one

of the most prosperous fields in Computer and Electronic

Science and techonology. As claimed by Atzori et al [2],

the power behind IoT lies in the high impact it has had on

several aspects of everyday life and in the behavior of its

users. Gartner Inc. estimates that 8.4 billion connected things

will be in use worldwide in 2017, “The consumer segment

is the largest user of connected things with 5.2 billion units

in 2017” [18]. If the current trends on IoT devices connected

on the Internet persist, the number of connected devices is

expected to grow to 30 billion by 2020 [21] [11]. As explained

in [15], there are 100.000 billion potential objects to be

connected to the Internet. In this new era, where “Sensors

and actuators embedded in physical objects are linked through

wired and wireless networks, often using the same Internet

Protocol (IP) that connects the Internet“ [13] one of the many

fields of Computer Science that has become closely related

with these trends is that of Distributed Systems. They have

been studied along several years in Computer Science as well

as Electronic Engineering, to the extent that they have become

a science and technology field in themselves.

Distributed systems have been thoroughly studied on per-

sonal computers (PCs), and there exists abundant bibliography

on Distributed Algorithm and implementation on PCs. A set

of IoT devices can be considered a distributed system in itself.

Thus, several well-known problems can be approached as in

distributed systems, but IoT devices devices are by far less

powerful than a common desktop computer/PCs. The specific

adaptation of well-known approaches to distributed systems

problems to IoT devices should be taken into account and

specifically analyzed too.

The main objective of this research work is to implement

a Leader Election Algorithm (classically built on distributed

systems of full-blown computers), on IoT development boards

in order to develop a task guided by a leader, in this case

to traverse a land. IoT development boards are available for

developers to “internetize” things or objects. We will use a

STM32F205RGY6 120Mhz ARM Cortex M3 with 1MB flash,

128KB RAM and a Broadcom BCM43362 Wi-Fi chip that

support 802.11b/g/n Wi-Fi as the hardware to implement a

Leader Election Algorithm as described in classical bibliogra-

phy [12]. Figure 1 shows the cars on which we have evaluated

the implementation, and the same controlling hardware has

been responsible for car control and movement coordination,

using a set of six cars.

The concurrency features available in the device firmware

2017 International Conference on Computational Science and Computational Intelligence

978-1-5386-2652-8/17 $31.00 © 2017 IEEE

DOI 10.1109/CSCI.2017.235

1351

Fig. 1. Cars to be Coordinated

based on FreeRTOS operating Systems allowed the imple-

mentation with multi-threading programming. Thus, each IoT

controller will implement the election algorithm as well as

other real-time tasks, such as car movement, communication,

etc.

The aim of this research work is centered on the foundation

for distributed systems comprised by IoT development boards

that can interact with one another to perform the task of

rescuing survivors in the event of a natural catastrophe or when

searching for missing people. Infrastructure and human life

struck by natural catastrophes involves losses worth millions

and causes deep public concern. Hurricanes (i.e. 2017 Irma),

earthquakes (2017, Chiapas Mexico, 8.2 Richter scale) are

some examples of natural disasters that countries have had

to face. A possible contribution of technology can be the

combination of IoT and Distributed System as they are of

great use to assist survivors of such disasters. In addition, this

application can be used to pinpoint the location of missing

people in landscapes that are difficult to access by human

beings.

The structure of this paper is as follows. The next section

describes the related work on the research topic. In Section

III the hardware platform and components in used have

been described. Section IV presents a thorough description

of how the Bully algorithm is implemented. Finally, Section

V presents conclusions and future work.

II. RELATED WORK

There are several works related to IoT coordination and

networks of nodes (many of them in the context of sensor

networks) used to cover a destination area, such as:

1) IoT Coordination:

• The coordination of nodes in the Internet of Things [4]:

a method is proposed for synchronization of IoT nodes.

The proposed method is divided in two main activities:

a) Controller or ”well-known area” activity, where a

coordinator handle a group of IoT nodes, and b) Cloud

processing or ”unknown area” activity, where the cloud

is used for finding and communicate IoT nodes.

• A Revised BROGO (Branch Optima to Global Optimum)

Algorithm for Leader Election in Wireless Sensor and

IoT Networks [5]: the BROGO Algorithm is taken as

a departure point/basis, in which a spanning tree is

generated. Each leaf of the spanning tree sends a message

to the root tree (through its corresponding tree branch) in

order to identify the leader. Then, the root choses the

global leader from the information received through the

tree branches. It is possible that the tree root fails before

or during the selection process. In order to avoid the

failure of the whole selection process, the spanning tree

root node is dynamically selected. The requirements set

for the spanning tree root node selection are a) it has to be

non-failing node, and b) it is the node with the minimum

identification.

• A Networking Perspective on Self-Organizing Intersec-

tion Management [16]: the inter car communication such

as Wi-Fi and 3G/4G is used in order to avoid possible car

collisions. Several possible analysis range from enhanc-

ing traffic performance to handling critical security issues.

The proposed ”Virtual Traffic Light” (VTL) system is

an enhancement of the current physical light system.

The VTL underlying strategy is to handle cars clusters

taking advantage of inter car communication, and the

main objective is the reduction of urban area vehicular

traffic.

2) Node Networks Used to Cover a Destination Area:
• Semi-Stochastic Topology Control with Application to

Mobile Robot Team of Leader-Following Formation [9]:

a team of robots following leader is highly effective

when an underground area has to be covered during

an emergency. This paper proposes a semi stochastic

topology, a combination of control and movement of

the robot team. Experiments show that the performance

if optimized by controlling the topology as the robots

approach the destination points.

• Several projects in which a set of autonomous drone for

real-time operation in disaster areas [19]. Drones may

explore and process audio and video, and a team of

operators would access to the drone reports via a web

site. Thus, the drones provide information for decision

support of rescue missions.

III. THE HARDWARE

A set of six autonomous small robots (cars, such as that

in Figure 1) have been built. The central processing and

control unit is an ARM Cortex M3 processor based on

an IoT development board has been selected, the Particle

Photon. This development board combines a high speed Wifi

chip with the ARM processor. Specifications are listed below

(https://docs.particle.io/datasheets/photon-datasheet/) :

• The Microcontroller:

– STM32F205 120 Mhz ARM Cortex M3

1352

– 1 Mb of Flash Memory

– 128 Kb of RAM

– 18 inputOutput GPIO, See Table I

• The WiFi chip:

– Cypress BCM43362

– WLAN Standards:IEEE 802 11bgn

– Antenna Port: Single Antenna

– Frequency Band:2.412GHz – 2.462GHz

– Sub Channels:1 – 11

– Modulation: DSSS, CCK, OFDM, BPSK, QPSK,

16QAM, 64QAM

Other features described by the board seller are: Open

Source Design, Real-Time Operating System (FreeRTOS),

Soft AP (Access Point) setup, FCC, CE and IC certified.

Programming is mostly made using a web interface or an

internet connection to the seller company.

Peripheral Type Qty Input(I) / Output(O)
Digital 18 I/O

Analog (ADC) 8 I
Analog (DAC) 2 O

SPI 2 I/O
I2S 1 I/O
I2C 1 I/O

CAN 1 I/O
USB 1 I/O
PWM 9[3] O

TABLE I
BOARD PERIPHERALS

A. The processor

The processor family STM32F20x is based on the high-

performance ARM Cortex-M3 32-bit RISC core operating

at a frequency of up to 120 MHz (STM32F205x August

2016, datasheet, STMicroelectronics). This processor has been

designed to provide high performance and low power con-

sumption. It has been released by ARM in 2006. The main

focus of the processor design has been the 32-bit embedded

processors market, and some of its applications are [20]:

• Low-cost microcontrollers

• Automotive

• Data communications

• Industrial control

• Consumer products

The ARM Cortex M3 is a fifteen general register processor

with dual mode operation (Privileged mode, User mode).

The processor is a 3-stage Pipeline Core Based on Harvard

Architecture (thus maximizing memory usage) and the core

executes the Thumb-2 instruction set. Some other features

of this processor are: a Nested Vectored Interrupt Controller

(NVIC) closely integrated with the processor core to achieve

low latency interrupt processing, multiple high-performance

bus interfaces, a low-cost debug solution, and optional Mem-

ory Protection Unit (MPU). An abbreviated scheme of the

STM32F205 can be seen in Figure 2 (at the right of the figure),

Fig. 2. Particle Photon Scheme

along with its connection to the WiFi module, the BCM43362

(at the left of the figure).

Other minor hardware components have been used to build

the mobile units such as digital compass HMC5883L, and H-

bridge whose main component is a L298N chip, a proximity

sensor HC-SR04, and finally a robot chassis kit (including all

the mechanical parts, such as motors, wheels, etc.).

IV. THE SOFTWARE

The software design and implementation process of the

Bully Algorithm has been carried out in a two-stage process:

• A first stage implementation in a high-level programming

language, independently of IoT devices.

• A seconds stage on the IoT devices themselves, taking

into account all the details and restrictions involved in

the IoT devices.

For the first stage, i.e. the implementation of the Bully election

Algorithm [7] by using a high level programming language

we selected the Java programming language. Each node in

the system is identified with an exclusive name, in this case

the device MAC (Media Access Control) address has been

selected as the unique identifier. The basic idea behind the

Bully Algorithm is to use such name to impose the nodes with

smaller identifier to adopt the node with the highest unique

identifier as the leader or coordinator [7] [17]. When each

device starts, it assumes itself to be the coordinator and then

relays its Id to the other network nodes by sending a multi-cast

message (i.e. the same as the one used in the Spanning Tree

Protocols to select the root bridge [10]). When the message is

received by a node, it compares the newly received id, idnew,

with the id of the current coordinator, idCoordinator. If the

new idnew is smaller than the idCoordinator, then the sender of

the id is now considered the new coordinator idCoordinator =
idnew. Otherwise, if the receiver of this message is the current

1353

Coordinator, it sends a new message with its own id in order

to let the other nodes know that it is still the coordinator. For

this scenario, the device MAC address serves as id and at the

same time as the node priority. Multi-cast messages have been

selected in order to guarantee that any new node which joins

the network can do so without restrictions.

The second stage of the algorithm implementation has been

carried out and tested on a hardware-dependent platform. The

selected device imposes a programming language which is

a subset of C++ programming language. The IoT develop-

ment board provides a cloud IDE (Integrated Development

Environment) and it can also be used on a text editor plus

some plug-ins. Due to the fact that the implementation is

highly coupled with the hardware, a Kernel summary has been

made. The ARM Cortex-M3 is a multitasking microcontroller

with a single core which implies that only one thread or task

can be executed at a time. There are two kinds of real time

requirements, hard real time requirements which implies that

there is a time deadline after which an absolute system failure

will be reached; or a soft real time requirement which does

not imply an absolute system failure [14] [8]. FreeRTOS, the

real time kernel running on the IoT working platform, can run

many tasks concurrently, scheduling them according to the

priority assigned by the programmer. Tasks related with hard

real time requirements will be assigned higher priorities, and

tasks related with soft requirements have lower ones [6] [14].

The version of FreeTOS ported for the Cortex-M3 provides or

implements several usefull features [3]:

• Pre-emptive or co-operative operation

• Very flexible task priority assignment

• Queues

• Binary semaphores

• Counting semaphores

• Mutexes

• Tick hook functions

• Idle hook functions

• Stack overflow checking

• Trace hook macros

The bully algorithm implementation has been designed to

be run on the previously described IoT platform, taking into

account the multi-threading features of the microcontroller.

The main thread will include three child tasks:

• The leader election main thread: This is the main thread

or the core of the leader election algorithm. By Following

the process described in [7] the leader election process

will start by setting itself as a new leader; each device will

perform it after booting. After that, three child threads

will be created: ReceiverBully, KeepAliveSender, and

LeaderLivenessVerifier.

• Receiver bully child thread: This thread will be listening

for the messages belonging to the leader election process.

When a Bully message is received, the thread checks the

message device id and its priority. If the received priority

is considered better than the stored one, then the id of

the current leader will be replaced by the id included in

the received message. If the received priority is lower,

the current thread will consider itself the new leader, by

broadcasting a message with its id and its priority. If the

received priority is lower than the stored one, and the

thread is not the leader, the message is discarded and the

thread will wait for a message sent by the leader.

• Leader liveness verifier: Due to the fact that the imple-

mented algorithm works essentially by using timers, when

a new leader is elected or a message of the current leader

is received, each thread on each device will initialize a

timer. If the timer goes off without a received message

of the current leader, then the device will assume that

the leader have failed and it is necessary to elect a new

leader by starting the algorithm again. This thread is in

charge of checking the timer and start the leader’s election

algorithm again in case the conditions require so.

• Keep alive sender: Once a leader has been selected, the

network of devices reach a stable state where no election

messages are sent. In order to keep this state as long as

possible the selected leader must regularly broadcast keep

alive messages, to let the other devices know that he is

still alive and coordinating the work performed by the

devices.

Due to the characteristics of the hardware, each device

possesses two RGB leds. In order to identify which device has

been elected as the leader, the two leds will be turned on, while

the other devices will only have one led light on. Once the

leader device has been selected, it will become responsible for

coordinating the other devices in order to achieve a cooperative

task. In this research work, the leader’s objective defines the

direction to be followed by each device, in order to cover

as much area as possible. To achieve this task, the leader

device has a list with the network addresses (IP) of the cars it

“manages” and the directions each car is supposed to follow.

Such directions are obtained by a magnetic compass installed

in each device and they are sent by using multi-cast messages

along with the IP device. The decision of using multi-cast

messages is based on the fact that each device can get the

information of the others and in the event of failure by the

leader, the new leader counts on all the information on the

rest of the devices without the need to request it from other

devices.

V. CONCLUSIONS AND FUTURE WORK

Distributed coordination algorithms have been widely used

and implemented on distributed systems based on personal

computers. Nowadays, with the advent of the Internet of

Things and its major breakthrough in our daily activities,

distributed algorithms based on such devices are gaining

momentum.

In this paper, a classic election algorithm (the Bully Algo-

rithm), has been implemented on a distributed system based

on IoT device nodes. A detailed description of the selected

hardware has been presented. Based on such selection, a

distributed leader election algorithm in a wifi private network

has been built. Such implementation has been tried out using

1354

real robots built with the described hardware. Additionally,

the multithreading features of the freeRTOS operating system

supported by the hardware have been tested.

Future research work will encompass:

• The development of a more robust robot platform.

• The study of coordinated movement such as squadron

movement coordinated by a leader device.

• The development of such concept on a based in Long-

Term Evolution (LTE) network.

• The application on a real catastrophe scenario.

ACKNOWLEDGMENT

The physical support and the technical contributions of

‘Computer Science Department of the Engineering Faculty of

the University Of Buenos Aires’ is highly appreciable. Without

their care, it would have been impossible to reach the goal.

We are also very thankful that this project has been developed

with the support of Grupo de Investigación en Ciencias In-

formáticas (REINVENT) http://www.fi.uba.ar/es/node/537 at

the Universidad de Buenos Aires.

REFERENCES

[1] Kevin Ashton. That ‘internet of things’ thing. RFiD Journal, 22(7),
2011.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of
things: A survey. Computer networks, 54(15):2787–2805, 2010.

[3] Richard Barry. Using the freertos real time kernel-arm cortex-m3 edition,
2010.

[4] Gang Liu Ben Zhang and Bi Hu. The coordination of nodes in the
internet of things. 2010 International Conference on Information,
Networking and Automation (ICINA), 2:V2–299–V2–302, 2010.

[5] Ahcène Bounceur, Madani Bezoui, Reinhardt Euler, Farid Lalem, and
Massinissa Lounis. A Revised BROGO Algorithm for Leader Election
in Wireless Sensor and IoT Networks. In IEEE Sensors 2017, IEEE
Sensors 2017, Glasgow, United Kingdom, October 2017.

[6] Maryline Chetto. Real-time Systems Scheduling. ISTE. Wiley-ISTE, 1
edition, 2014.

[7] Hector Garcia-Molina. Elections in a distributed computing system.
IEEE transactions on Computers, (1):48–59, 1982.

[8] Amitava Gupta, Anil Kumar Chandra, and Peter Luksch. Real-Time and
Distributed Real-Time Systems: Theory and Applications. CRC Press,
2016.

[9] Yanjun Hu, Lei Zhang, Li Gao, and Enjie Ding. Semi-Stochastic
Topology Control with Application to Mobile Robot Team of Leader-
Following Formation, pages 125–134. Springer Berlin Heidelberg, 2015.

[10] Sivalasya Kasu, Larry Hash, John Marsh, Ronny Bull, et al. Spanning
Tree Protocol. PhD thesis, 2015.

[11] Arun Kejariwal, Sanjeev Kulkarni, and Karthik Ramasamy. Real
time analytics: algorithms and systems. Proceedings of the VLDB
Endowment, 8(12):2040–2041, 2015.

[12] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
[13] James Manyika, Michael Chui, Jacques Bughin, Richard Dobbs, Peter

Bisson, and Alex Marrs. Disruptive technologies: Advances that will
transform life, business, and the global economy, volume 180. McKinsey
Global Institute San Francisco, CA, 2013.

[14] Giorgio Buttazzo (auth.) Sanjoy Baruah, Marko Bertogna. Multiproces-
sor Scheduling for Real-Time Systems. Embedded Systems. Springer
International Publishing, 1 edition, 2015.

[15] Gérald Santucci. The internet of things: Between the revolution of the
internet and the metamorphosis of objects. Vision and Challenges for
Realising the Internet of Things, pages 11–24, 2010.

[16] Christoph Sommer, Florian Hagenauer, and Falko Dressler. A Network-
ing Perspective on Self-Organizing Intersection Management. In IEEE
World Forum on Internet of Things (WF-IoT 2014), pages 230–234,
Seoul, March 2014. IEEE.

[17] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems:
principles and paradigms. Prentice-Hall, 2007.

[18] Rob van der Meulen. Gartner says 8.4 billion connected “things”
will be in use in 2017, up 31 percent from 2016. Gartner, Inc.,
https://www.gartner.com/newsroom/id/3598917, 2017.

[19] E. Yanmaz, M. Quaritsch, S. Yahyanejad, B. Rinner, H. Hellwagner, and
C. Bettstetter. Communication and Coordination for Drone Networks,
chapter 17, pages 77–91. Springer Cham, 2017.

[20] Joseph Yiu. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-
M4 Processors. Newnes, 2013.

[21] Matt Zwolenski, Lee Weatherill, et al. The digital universe: Rich data
and the increasing value of the internet of things. Australian Journal of
Telecommunications and the Digital Economy, 2(3):47, 2014.

1355

