
G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 217–222, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Formal Description for SaaS Undo

Hernán Merlino, Oscar Dieste, Patricia Pesado, and Ramón García-Martínez

PhD Program on Computer Sc. School of Computer Sc. National University of La Plata
Information Systems Research Group. Productive & Technologic Development Dept.

National University of Lanús
Instituto de Investigaciones en Informática LIDI. Facultad de Informática. UNLP - CIC
Empirical Software Eng. Group. School of Computer Sc. Madrid Polytechnic University

hmerlino@gmail.com, odieste@fi.upm.es,
ppesado@lidi.info.unlp.edu.ar, rgarcia@.unla.edu.ar

Abstract. This paper proposes a highly automated mechanism to build an undo
facility into a new or existing system easily encapsulated into a service. The use
of services strategy simplifies greatly the design of the undo process and
encapsulates most of the functionalities required. We present a formal
description when to use this service under alignments of software as a service.

Keywords: Undo, Services as a Service, and Usability component.

1 Introduction

Usability patterns were conceived with the aim of making usable software
development simpler and more predictable [1]; in general usability requirements are
included at an advanced stage of system development [2], when there is little time left
and the key design decisions have already been taken.

The goal of this paper is to provide a formal description to detect availability to
include software as a service (SaaS) [3] for undo usability patterns [4]. This provides
the functionality necessary to undo actions taken by system users. This team decided
to start with Undo pattern, because it is a common usability features in the literature
[5].

Several authors have proposed alternatives to undo pattern, these alternatives focus
on particular applications, notably document editors [6-7] although the underlying
concepts are easily exportable to other domains. However, these proposals are defined
at high level, without an implementation (or design) reusable in different types of
systems. These proposals, therefore, do not solve the problem of introduction of
usability features in software.

Undo has two alternatives of implementation in a system: (a) state operations. This
option is present in systems where Undo functionality is a core for application, e.g.
word editors, Applications without these functionality are not an option; (b) stateless
operation. In these applications Undo functionality is only a plus for application, e.g.
applications with forms to include and update data in a data base.

218 H. Merlino et al.

Our proposal detects a second subset of cases (stateless operations) in a highly
efficient manner. If formal description is aligned to application or section of
application, the architect can use SaaS for Undo [3]. The importance of having an
automated solution for those is that they are the most frequents operations that occur
in information systems.

The use of services for building applications is a very efficient way to reduce
complexity and development time, creating an Undo service is a valid alternative to
be taken into account by software engineering. We have implemented the framework
to use Software as a Service (SaaS). Beyond scope of this article, the research team is
working on the realization of a SOA model [8].

This article is structured as follows. Section 2 describes the state of the art
regarding the implementation of undo. Section 3 presents the undo infrastructure,
whereas, finally, Section 4 briefly discusses and presents the main contributions of
our work.

2 Background

Undo is a very widespread feature, and is prominent across the whole range of
graphical or textual editors, like, for example, word processors, spreadsheets, graphic
editors, etc. Not unnaturally a lot of the undo-related work to date has focused on one
or other of the above applications. For example, [6] Baker and Storisteanu [9] have
patented two methods for implementing undo in document editors within single-user
environments.

There are specific solutions for group text editors that support undo functionality,
such as in Sun [10] and Chen and Sun [11] and Yang [12]. The most likely reason for
the boom of work on undo in the context of document editors is its relative simplicity.

The problems of undo in multi-user environments have also attracted significant
attention. Abrams and Oppenheim [13] have proposed mechanisms for using undo in
distributed environments, and Abowd and Dix [4] proposed a formal framework for
this field. In distributed environments, the solution has to deal with the complexity of
updates to shared data (basically, a history file of changes) [14].

Several papers have provided insight on the internal aspects of undo, such as
Mancini [15], who attempted to describe the undo process features.

Another important aspect which has been worked out is the method of
representation of the actions performed by the users in Washizaki and Fukazawa [16],
where a dynamic structure of commands is presented that represents the history of
commands implemented.

Patents, like the method for building an undo and redo process into a system, have
been registered [17]. Interestingly, this paper presents the opposite of an undo
process, namely redo, which does again what the undo previously reverted. Other
authors address the complexities of undo/redo as well. Thus, for example, Nakajima
and Wash [18] define a mechanism for managing a multi-level undo/redo system.

The biggest problem with the above works is that, again, they are hard to adopt in
software development processes outside the document editor domain. The only

 Formal Description for SaaS Undo 219

noteworthy exception to this is a design-level mechanism called Memento [19]. Uses
of Services in the enterprise build architecture models that are directly dependent
upon the business strategy [20]. Service oriented architecture has the following
characteristics [21]: (a) services are self-contained and modular (b) services support
interoperability, (c) services are loosely coupled, (d) services are location-transparent,
(e) services are composite modules, comprised of components.

The solutions presented are optimized for particular cases and are difficult to apply
to other domains; on the other hand, it is necessary to include a lot of code associated
with Undo in the host application.

3 Theoretical Justification

This will be done in two steps; first we will describe how to undo operations that do
not depend on its state, the procedure to undo these operations consists in reinjection
input data at time t-1, second we prove that reinjection input always produces correct
results.

3.1 Initial Description

The most commonly used option for developing an undo process is to save the states
of objects that are liable to undergo an undo process before they are put through any
operation; this is the command that changes the value of any of their attributes. This
method has an evident advantage; the system can revert without having to enact a
special-purpose process; it is only necessary to remove and replace the current in-
memory objects with objects previously saved.

This approach is a simple mechanism for implementing the undo process, although
it has some weaknesses. On one hand, saving all the objects generates quite a heavy
system workload. On the other hand, developers need to create explicit commands for
all operations systems. Finally, the system interfaces (mainly the user interface) have
to be synchronized with the application objects to enact an undo process. This is by
no means easy to do in monolithic systems, but, in modern distributed computer
systems, where applications are composed of multiple components all running in
parallel (for example, J2EE technology-based EJB), the complications increase
exponentially.

There is a second option for implementing an undo process. This is to store the
operations performed by the system instead of the changes made to the objects by
these operations. In this case, the undo would execute the inverse operations in
reverse order. However, this strategy is seldom used for two reasons. On one hand,
except for a few exceptions like the above word processing or spreadsheet software,
applications are seldom designed as a set of operations. On the other hand, some
operations do not have a well-defined inverse (imagine calculating the square of a
table cell; the inverse square could be both a positive and a negative number).

The approach that we propose is based on this last strategy, albeit with a more
simplified complexity. The key is that, in any software system whatsoever, the only

220 H. Merlino et al.

commands processed that are relevant to the undo process are the ones that update the
model data (for example, a data entry in a field of a form that updates an object
attribute, the entry of a backspace character that deletes a letter of a document object,
etc.). In most cases, such updates are idempotent, that is, the effects of the entry do
not depend on the state history. This applies to the form in the above example (but
not, for example, to the word processor). When the updates are idempotent, neither
states of the objects in the model or executed operations has to be stored, and the list
of system inputs is only required.

3.2 Formal Description

The following definitions and propositions are used to prove (in an algebraic way)
that UNDO process (UNDO transformation) may be built under certain process
(transformation) domain constrains.

Definition 1. Let Ε = {εj
i / εj is a data structure} be the set of all data structures.

Definition 2. Let εj
i be the instance i of data structure εj belonging to Ε.

Definition 3. Let εj
C = { εj

i / εj
i is an instance i of the structure εj} be the set of all

the possible instances of data structure εj.

Definition 4. Let οτ
εj be a transformation which verifies οτ

εj : εj
C → εj

C and
οτ

εj
 (εj

i) = εj
i+1.

Definition 5. Let εj
Cr be a constraint of εj

C defined as εj
Cr ={ εj

i / εj
i is an instance i

of the data structure εj which verifies οτ
εj (εj

i-1) = εj
i}

Proposition 1. If οτ
εj : εj

C → εj
Cr then οτ

εj is bijective.
Proof: οτ

εj is injective by definition 4, οτ
εj is surjective by definition 5,

and then οτ
εj is bijective for being injective and surjective. QED.

Proposition 2. If οτ
εj : εj

C → εj
Cr then has inverse.

Proof: Let οτ
εj be bijective by proposition 1, then by usual algebraic

properties οτ
εj has inverse. QED.

Definition 6. Let οτ be the set of all transformations οτ
εj.

Definition 7. Let Φ be the operation of composition defined as usual composition of
algebraic transformations.

Definition 8. Let Σ be the service defined by structure < ΕΣ , οτ
Σ , Φ > where ΕΣ C Ε

and οτ
Σ C οτ.

Definition 9. Let Χ = οτ
εj1 Φ οτ

εj2 Φ ... Φ οτ
εjn be a composition of transformations

which verifies οτ
εji : εj

C → εj
Cr for all i:1...n. By algebraic construction

Χ : εj
C → εj

Cr.

Proposition 3. The composition of transformations X has inverse and is bijective.
Proof: Let be Χ = οτ

εj1 Φ οτ
εj2 Φ ... Φ οτ

εjn. For all i:1...n verifies οτ
εji

has inverse by proposition 2. Let [οτ
εji]-1 be the inverse transformation

of οτ
εji, by usual algebraic properties [οτ

εji]-1 is bijective. Then it is

 Formal Description for SaaS Undo 221

possible to compose a transformation X-1 = [οτ
εjn]-1 Φ [οτ

εjn-1]-1 Φ ...
Φ [οτ

εj1]-1. The transformation X-1 is bijective by being composition of
bijective transformations. Then transformation X-1 : εj

Cr →εj
C exists

and is the inverse of X. QED.

Definition 10. Let UNDO be the X-1 transformation of X.

3.3 Use Method

If the evaluated system is aligned with the formal description detailed above, architect
could use SaaS described in [4]; in another way, probably the architect needs to use
any of specific domain’s implementations of Undo detailed in section 2
(Background).

4 Conclusions

In this paper we have proposed a formal description to detect a sub set of Undo
functionality and an alternative to implement this usability functionality in a system.
The most salient feature of this framework is the type of information it stores to be
able to undo the user operations: input data instead of in-memory object states or
commands executed by the system. This lessens the impact of building the framework
into the target application a great deal.

Building an Undo Service has some significant advantages with respect to Undo
models presented. First of all the simplicity of inclusion in a host application under
construction or existing, can be seen in the proof of concept. Second, the
independence of service in relation to the host application allows the same
architectural model to provide answers to different applications in different domains.
Construction of a service allows Undo to be a complex application, with the
possibility of including analysis for process improvement, as described in the next
paragraph it is possible to detect patterns of invocation of Undo in different
applications.

Further work is going to bring: (a) creation of a pre-compiler, (b) automatic
detection of fields to store (c) extension of the framework to other platforms.

Acknowledgements. The research reported in this paper has been partially funded by
grants UNLa-SCyT-33A167 and UNLa-SCyT-33B112 of the National University of
Lanus (Argentine) and by grants TIN2008-00555 and HD2008-00046 of the Spanish
Ministry of Science and Innovation (Spain).

References

1. Ferre, X., Juristo, N., Moreno, A.: Framework for Integrating Usability Practices into the
Software Process. Madrid Polit. University (2004)

2. Ferre, X., Juristo, N., Moreno, A., Sanchez, I.: A Software Architectural View of Usability
Patterns. In: 2nd Workshop on Software and Usability Cross-Pollination (INTERACT
2003), Zurich, Switzerland (2003)

222 H. Merlino et al.

3. Merlino, H., Dieste, O., Pesado, P., García-Martínez, R.: Service Oriented Architecture for
Undo Functionality. In: Proceedings 6th International Conference on Research and
Practical Issues of Enterprise Information Systems (2012)

4. Merlino, H., Dieste, O., Pesado, H., García-Martínez, R.: Software as a Service: Undo. In:
Proceedings 24th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2012), pp. 328–332 (2012) ISBN 978-1-891706-31-8

5. Abowd, G., Dix, A.: Giving UNDO attention. University of York (1991)
6. Qin, X., Sun, C.: Efficient Recovery algorithm in Real-Time and Fault-Tolerant

Collaborative Editing Systems. School of computing and Information Technology Griffith
University Australia (2001)

7. Bates, C., Ryan, M.: Method and system for UNDOing edits with selected portion of
electronic documents. PN: 6.108.668 US (2000)

8. Merlino, H., Pesado, P., Dieste, O., García-Martínez, R.: Inclusion Process of
UNDO/REDO Service in Host Applications. In: Software Engineering, Methods,
Modeling and Teaching, Edited by Pontificia Universidad Católica de Peru. JIISIC 2012,
Lima, Peru, vol. II (2011)

9. Baker, B., Storisteanu, A.: Text edits system with enhanced UNDO user interface. PN:
6.185.591 US (2001)

10. Sun, C.: Undo any operation at time in group editors. School of Computing and
Information Technology, Griffith University Australia (2000)

11. Chen, D., Sun, C.: Undoing Any Operation in Collaborative Graphics Editing Systems.
School of Computing and Information Technology, Griffith University Australia (2001)

12. Yang, J., Gu, N., Wu, X.: A Documento mark Based Method Supporting Group Undo.
Department of Computing and Information Technology, Fudan University (2004)

13. Abrams, S., Oppenheim, D.: Method and apparatus for combining UNDO and redo
contexts in a distributed access environment. PN: 6.192.378 US (2001)

14. Berlage, T., Genau, A.: From Undo to Multi-User Applications. German National
Research Center for Computer Science (1993)

15. Mancini, R., Dix, A., Levialdi, S.: Reflections on UNDO. University of Rome (1996)
16. Washizaki, H., Fukazawa, Y.: Dynamic Hierarchical Undo Facility in a Fine-Grained

Component Environment. Department of Information and Computer Science. Waswda
University, Japan (2002)

17. Keane, P., Mitchell, K.: Method of and system for providing application programs with an
UNDO/redo function. PN:5.481.710 US (1996)

18. Nakajima, S., Wash, B.: Multiple levels UNDO/redo mechanism. PN: 5.659.747 US
(1997)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison- Wesley (1994)

20. Binildas, C.A., Malhar, B., Vincenzo, C.: Service Oriented Architecture with Java. Packt
Publishing, Birmingham – Mumbai (2008)

21. Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, L., Newling,
T.: Patterns: Service-Oriented Architecture and Web Services. IBM, Redbooks (2004)

