2017 International Conference on Computational Science and Computational Intelligence

Evolution of Handling Web Applications Up to the
Current DevOps Tools

Christian A. Rodriguez, Lia Molinari, Fernando G. Tinetti
LINTIL HI-LIDI, Facultad de Informatica
Universidad Nacional de La Plata, CIC Provincia de Bs. As.
La Plata, Argentina
{lmolinari, car, fernando}@info.unlp.edu.ar

Abstract—In this paper, we show the way in which many
standard web applications have evolved. Most of them started with
a complete independence among software development and its
architecture, deployment and infrastructure design. Now, the
current usage of DevOps (for Development and Operations)
emerging tools are used in the context of new methodologies. We
use a specific application and its own evolution as an example.
Most of the development cycle, application architecture, and
environments for development, testing, and QA (Quality
Assurance) has changed in the last years. From 2006 to date, we
have taken advantage of many new technologies as soon as they
were available, each one providing some aid to (some) web
development task. We also define a preliminary characterization
for web applications evolution in order to analyze pros and cons
of the current DevOps methodologies.

Keywords—DevOps, Continuous Delivery, Continuous Deploy,
Infrastructure Management

L.

Transactional web applications consume resources as user
concurrency increases. Proportional resource consumption per
connection or user access is a recurrent pattern regardless of the
language or framework in which the web application is
implemented. Several approaches to avoid running out of
resources have been used, such as: a) increase hardware and
infrastructure resources (aka scale up), in either vertical or
horizontal scalability [41], and b) assigning specific or
independent resources to specific (overloaded) subsystems or
components, such as databases.

INTRODUCTION

We will use a CMS (Content Management System)
developed in 2006 as an example for our study. The CMS is a
now classical PHP-MySQL application, that began being the
solution to a specific web site, and it was reused in/adapted to
other several different web sites and web portals. This product
was developed using Symfony [33] [35], and although we will
take it as an example the same analysis could be applied to
portals based on Wordpress [19] [42], Drupal [10] [13], or
Refinery CMS [30], among others. The functionality of this type
of application is based on two specific sub-systems, as shown in
Fig. 1: one of public (generally massive) access, and another for
content management, available for a few users in charge of
editing articles, images, and define its visual style.

Currently, the business of many companies goes through the

978-1-5386-2652-8/17 $31.00 © 2017 IEEE
DOI 10.1109/CSCI.2017.170

987

web processing such as CMS, customer services, or e-commerce
[20]. This shift from business to e-business has imposed strong
requirements on code development and availability of services,
especially via in-production web sites and web applications, and
web services. Enhancing service and functionality availability
has been achieved by agile application development, semantic
versioning of each candidate for production, application
deployment, and web platform updates [2] [38]. While agile
software development methodologies are now well established,
the service downtime is minimized through practices provided
by conventions, tools and, above all, communication among
development and operations areas. Thus, the new term DevOps
(as a combination of Development and Operations) has been
coined [18]. DevOps tools are specifically required in
environments involving replication where the same updating
steps are required in several similar instances.

Y

N

I
]
1
1
Public | Frontend application
access -
L}
1 1
1 1
@
- 1 1
Restricted Backend application
access ' :

~ ’

Fig. 1. Schematic View of a CMS Web Application.

As a monolithic application evolves to a composition of
interacting services with high availability requirements, a
project handling methodology becomes imperative. Then, the
risk of introducing errors in production is minimized by
strategies that involve development practices in terms of
semantic versioning, testing, and continuous integration. In the
operations area, concepts such as delivery and continuous
deployment are fundamental to promote product versions in
times consistent with agile development. In turn, specific
infrastructure management strategies are needed, ranging from
the deployment of web applications, configuration of servers
using infrastructure tools such as those for configuration,

containers, and even the management of data centers as code.

II. APPLICATION EVOLUTION

The main initial problem of the CMS was the number of
concurrent users, which steadily grew through the years as
shown in Fig. 2 (2017 contains only the first half). Fig. 3 also
shows some well-defined peeks in two specific months every
year. The supporting infrastructure had to be scaled up mainly
due to two not necessarily independent growing factors: 1)
software architecture, which grew including functionality (and
some components were assigned specific exclusive resources),
and 2) concurrent users, as shown in Fig. 2 and Fig. 3.

3.0

25

20

(x10%)

1.5
1.07
0.57

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Fig.2. Web Accesses per Year Since 2006.

450.000

400.000

350.000

300.000

250.000

200.000 ~
150.000

100.000

50.000 —

0

—a— 2006 ——2009

—2012 —2013 —=2015 ——2016

Fig. 3. Web Accesses per Month Since 2006.

The initial software architecture and its corresponding
infrastructure allocation were monolithic, as shown in Fig. 4.

Frontend application

Backend application

Database

—
Monolithic
server

-—m = -

Fig. 4. CMS in a Monolithic Server.

988

The monolithic approach was not able to handle the growing
number of concurrent accesses, and specifically the resources
were not enough for the number of database connections. Three
improvements were designed and implemented: 1) Use a
database server, 2) Use FastCGI [24] for controlling and
optimizing resources required for PHP processing, through
PHP-FPM [26], and 3) Use lighter web servers to serve static
content not requiring PHP processing. The first approach is a
classical horizontal scale up, while the second and third are
related to resource optimization. Furthermore, the new setting
includes that concurrent accesses are rejected instead of letting
the whole site unstable or unavailable.

A. Isolated Database and Horizontal Scale Up

The first improvement to the architecture and infrastructure
shown in Fig. 4, is that of assigning a specific server for handling
the database. Fig. 5 shows the independent server assigned to the
database, thus unloading the server handling the public services,
which in the previous configuration handled everything.

&

-—— == mmy mem=--
1

Frontend application

Backend application

\
1

Application
Server M ot i o o 1

Public services

Fig. 5. Database Server with Exclusive Resources.

However, increasing the number of connections supported
by the database was not enough for the increasing concurrent
users’ growth.

B. Horizontal Scale Up

At least at the conceptual level, handling more concurrent
accesses by horizontal scale up is simple: clone or replicate
application server/s. However, cloning application server/s leads
to solving two new problems: a) sharing files that must be
available in each instance, and b) use a load balancer for
distributing workload among each replica. Fig. 6 schematically
shows the new architecture and infrastructure with replicated
application servers, file sharing, and a load balancer.

Maintaining web sessions was the next drawback related to
horizontal scaling. Several session management alternatives
were analyzed, such as: a) databases specifically devoted to
session handling, b) Redis [29], and c) Memcached [22]. The
latter was selected, and the system evolved to that shown in Fig.
7 (schematic view).

C. Further Improvements

Response times were significantly reduced by combining
two tools: a) The load balancer is replaced by a caching HTTP
reverse proxy, Varnish [16], and b) Use a CDN (content
Delivery Network) for decoupling static data [37], so that

application servers are involved only with dynamic content
processing.

1
'L’,‘\h
v
—

Load
balancer

Lo

Frontend applications

Application

ki lication
Backend applicatiol Sanee

sQL
——

]
. -

Public services

Database Shared Filesystem

Fig. 6. Replication and Workload Balance.

’ —_—
P

! 1
! 1
Load 1 .
——
1
" ! Memcached
1

balancer

Frontend applications

' I I
-
-8

y
Backend Apggssetlron .
LS == \Y/
s —
Public senvices

Database Shared Filesystem

Fig. 7. Session Management with Memcached.

The database could be replicated for data redundancy and
availability. Database replication environments usually range
from master-slave settings to full-fledged replicated databases
running on clusters. Considering security issues, a WAF (Web
Application Firewall) such as [39] is usually recommended.
Each improvement usually involves at least a) handling the
proper resources and b) define the interactions with the rest of
the (in-production) system.

III. THE INFRASTRUCTURE MANAGEMENT PROBLEM

Every web application architecture change/improvement
implies the corresponding infrastructure change or adaptation, at
least in terms of resource allocation. More specifically, the
single server configuration shown in Fig. 1 evolved to multiple
interconnected servers in a few years. The CMS example we
have used as an example (which is described in the previous
section) grew from a single server to three servers in less than a
year in production. And most of the web applications has grown

989

in some way or another from single to multiple computer
servers. Beyond standard and routine tasks for applications and
servers such as hardware maintenance, software and data
backups, etc. the infrastructure should cope with software
updates and new functionalities as produced by the development
team/ss. Thus, the operations team/s become more involved with
development teams in the daily work.

Virtualization has provided solutions to many well-known
infrastructure problems. Replication has been simplified by
copying virtual machines, and new servers are installed through
graphical interfaces without manipulating physical equipment.
In some environments, a backup is reduced to snapshot a server's
filesystem. However, new problems appear with virtualization.
The number of virtual machines that grows rapidly and it is
complex to distinguish those relevant virtual machines from
those that are not. On the other hand, the replication of virtual
machines simplifies a part of the work, but personalizing the
new instance continues being a manual work. Hand-made, non-
automatic configurations and/or tuning are prone to errors, even
following documentation guides. The scenario is even worse in
case of disaster recovery, where documentation is hard to find.

Virtualization does not solve the problem of updating an
application already in production. Handing source code or
software evolution has several well-known and established
tools, mostly via SCM (Software configuration Management)
tools. Similar tools are not so well-known and established for
solving the deployment problem/s. Deploying and updating web
systems varies depending on the programming language and the
requirements of the application. While software based on Java
and .Net require compilation and packing steps, those based in
interpreted languages (e.g. PHP, Ruby, Python) do not require
them. However, the risk of making a site unstable, unavailable,
or faulty is independent of those details. Deployment updates
clearly needs to be automated. Furthermore, the deployment
should be able to be verified/certified in methodological ways.

Capistrano [3] was one of the first tools for automating
update of PHP applications, such as that described in the
previous section. Capistrano simplifies deployment and version
control using a simple directory structure (releases - current -
shared). Even when Capistrano is a step towards deployment
automation by means of specific and well-defined conventions,
it does not handle or provide aids for problems such as
application software dependencies (e.g. libraries) or determining
hardware resources, also known as (server) provisioning.

There are several tools for the hardware/server provisioning
tasks, and all of them allow to manage the infrastructure as code
or IAC [17]. TAC allows to automate the installation of servers,
including specific configurations. Products such as Chef [4],
Puppet [27], Ansible [1], and SaltStack [34], among others,
provide IAC frameworks. Beyond provisioning, IAC allows to
apply software development methodologies (e.g. for debugging
and testing) to infrastructure management. Chef has been used
to configure each of the servers in our CMS (previous section),
and it has been also possible to test the infrastructure using
KitchenClI [7], ChefSpec [6] and ServerSpec [36]. Then, it is
possible to analyze the operation in different platforms like
Debian, Ubuntu, CentOS, etc.

Programming the infrastructure with Chef also simplified

handling similar environments for development, testing and QA
(Quality Assurance). These different but similarly built
environments allow both developers and stakeholders to
visualize changes in environments like those in production.
Furthermore, Chef provides a detailed infrastructure catalog,
whether virtual, physical or in-cloud computers, except those
not built/handled by Chef itself. The catalog is indexed using
Apache Solr [23], allowing queries about the infrastructure.
Even when Chef has proved to be very useful, several complex
scenarios may require much time to build and configure. Such
scenarios include those with large runtime setups such as non-
compatible operating systems and runtime environments (e.g.
Symfony 1.0 - PHP 5.x - Ubuntu LTS). Containers have been
proposed and are currently used as a more comprehensive
solution to several infrastructure problems [21], including the
aforementioned one. In particular, Docker [11] is an excellent
choice for handling environments as described above. Its
growing popularity in heterogeneous and complex environments
also offers an option for new developments, narrowing the gap
between development and production. Docker simplifies the
definition of complex architectures that are (at least partially)
shared for development and production or operations (DevOps)
environments through Docker Compose [12].

IV. CODE DEPLOYMENT

Code deployment, whether for a new application or an
update of an in-production one, can be done manually or using
the tools mentioned in the previous section. Table I shows
several advantages and disadvantages of the following tools:
Capistrano, Chef, and Docker.

TABLE L. CODE DEPLOYMENT TOOLS
Tool Pros Cons
Simple to use, it runs Shared settings must be
from a terminal and is | manually copied before
Capistra | able to update several | the first installation or
no sites in parallel from update. Infrastructure or
SCM tools. provisioning is not
handled.
Automation from Complex, steep learning
SCM. Installation of curve. Several complex
Chef services and packages. | environments are hard
Infrastructure handling | to handle and test for
and testing. correctness (e.g. PHP
compile in new OS).
Simple to use: the Conceptual change of
same configurations in | handling infrastructure,
all environments. monitoring, and
Allows packaging of management of logs
Docker | legacy applications. and statistics.
Rapid convergence of | Ifused in cluster mode,
infrastructure. it requires a container
Simplifies complex scheduler with complex
architectures. tuning.

Docker seems to be the “great winner” so far, providing
solutions for a problem that Chef handles only partially in

990

complex scenarios. In some way, Docker has capitalized and
taken advantage of the previous knowledge about code and
infrastructure management (provisioning, testing, etc.) for the
problem of deploying software, including the update of an in-
production web application. The conceptual change mentioned
in Table I above as a Docker disadvantage has introduced some
questions about performance, for example, which are now being
addressed from several points of view, such as in [14] [31].

A. Continuous Delivery and Continuous Deployment

Continuous delivery and continuous deployment [8] are
emerging concepts from agile methodologies used in
development. Depending on the application, it is possible that
several changes of a software product are generated in a single
day. Beyond that, the acceptance of versions must be decided as
soon as possible. Thus, the least human intervention and the
most automatic testing tend to reduce errors and minimize time-
to-market. The sequence for a new software version usually
follows several sequential steps: unit, functional, and integration
tests, a tagged version is then installed in an automatic testing
environment. Once all tests are successful, the application could
be made available to the operations area (i.e. continuous
delivery) for manual deployment, or automatically installed in
production (i.e. continuous deployment).

While SCM tools allow collaboration of development teams
through versioning of sources, other important details such as
whether to use semantic versioning or not are decided by
development teams. The suggestion is to have an explicit
correspondence between the version information and SCM tags.
Furthermore, the configurations and settings must be clearly
documented, at least specifically in development, testing, and
production environments. Also, the development flow usually
includes or even is based on TDD (Test Driven Development),
taking into account passing specific tests before each change or
added functionality in the code. Several SCM related tools such
as Gitlab, Github, and Bitbucket include code revision step/s as
part of the so-called push or merge code requests. Associating
the code requests with TDD would provide a more automated
and methodological way of application update. Another step
towards automated continuous delivery or even continuous
deployment would be the use of SCM hooks, which are specific
actions or tasks triggered at specific points in the SCM execution
(e.g. pre- or post-event/s). Thus, developers, testers, and the
operation team can set hooks for triggering specific tests.
Depending on the tests and automatized complexity, it would be
possible to have pre-defined QA rules and policies.

B. Infrastructure Automation

As mentioned before, virtualization plays a very important
role in defining (new) infrastructures for software applications.
There are numerous virtualization alternatives, the most popular
being VMWare VSphere [40], Citrix Xen Server [9], RedHat
Virtualization [28], Proxmox Virtual Environment [25], and
Microsoft Hyper-V [43], among others. In addition, there are
options such as PaaS (Platform as a Service), and IaaS
(Infrastructure as a Service) in cloud environments [32]. All of
them solve many network and infrastructure issues that must be
considered in virtualization environments.

Choosing a virtualization or cloud vendor solution has to be
analyzed from taking into account different technical issues:
integration with available hardware, storage solutions, networks,
application size and dynamic evolution. Also, non-technical
issues, such as administrative difficulties to contract cloud
services and implementation costs should be considered too.
Initially, Proxmox was initially used for virtualization in the web
application we presented above, and VMware vSphere was
institutionally adopted, and replaced Proxmox. Chef recipes
were used for defining the Proxmox infrastructure, so it was
rather simple to replace Proxmox by VMware virtualization.
However, each server has to be individually identified in the
recipes, and it makes almost impossible to automate the
complete programming of the infrastructure. At this point, new
tools are focused to document, define, and instantiate the
complete infrastructure. The virtualization technology can be
homogeneous, heterogeneous, and even include/handle nodes in
various providers in the cloud. These tools make extensive use
of the APIs provided by virtualization software as well as PaaS
and laaS providers.

New and specific tools for provisioning such as Terraform
[15] and Chef Provisioning [5] are based on handling IAC at
organization data centers. We have used Chef Provisioning to
automate the complete assembly and configuration of the
VMware vSphere-based infrastructure. We have been able to
code the creation, destruction, modification and scaling of the
complete infrastructure. And, as noted before, the infrastructure
currently handled in VMware can be migrated to another
virtualization technology or even manage vendor instances in
the cloud with similar (or the same) Chef recipes.

V. CONCLUSIONS AND FURTHER WORK

The web application development process has grown and
consolidated in recent years. This growth generates new ways of
work and interactions among development and operations teams
that traditionally were almost disjoint and independent of each
other. Besides, new services and configurations are now needed
to be defined at the infrastructure level. And infrastructure
definitions should be taken into account not only by the
operations team/s but also by source code development teamy/s.
Otherwise, the whole application is in risk of losing
functionality, availability, or performance. All of this modifies
the traditional organizational structure, where the separation of
functions among developers and operators was determined in
the context of other paradigms. The new work organizations are
based on dynamic and collaborative relationships where the
boundaries are not as clear as many years ago.

Continuous delivery and continuous deployment also imply
redefining many individual tasks, methodologies, and individual
decisions (e.g. on documentation or infrastructure) in terms of
the whole process. The high availability as well as in-production
application update requirements lead to strong testing of the
software as well as the interaction among software and the
underlying infrastructure. Virtualization has provided many
flexible ways of defining hardware infrastructure environments,
but applications usually impose other requirements libraries,
middleware, etc. which are beyond hardware. Thus, handling
IAC lets to test infrastructure with techniques similar to well-
known development methodologies, such as TDD.

991

The current DevOps tools aid in the continuous delivery and
deployment processes, but methodologies have still to be
adapted or defined and established. Furthermore, given the
current dynamic requirements (e.g. on high availability and in-
production application updates) more automatized ways for
verification, tests, and QA in general are needed. An (almost, at
least) automated integration of tests for source code, current
tools for source code management (SCM), and infrastructure as
code (IAC) is still to be defined and accepted by institutions and
the software industry. The so-called continuous integration
pipeline, ranging from source code to in-production application
update still has a long way to go.

REFERENCES

Ansible, Automation for anyone, https://www.ansible.com/ (Retr. 2017).
M. Babar, A. Brown, I. Mistrik, Agile Software Architecture. Aligning
Agile Processes and Software Architectures, Elsevier, 2013.

Capistrano, A remote server automation and deployment tool written in
Ruby, http://capistranorb.com/ (Retr. 2017).

Chef Software, Inc., Automate IT Infraestructure,
https://www.chef.io/chef/.

Chef Software, Inc., Chef Provisioning-Chef Docs, (Retr. 2017)
https://docs.chef.io/provisioning.html

Chef Software, Inc., ChefSpec, https://docs.chef.io/chefspec.html (Retr.
2017).

Chef Software, Inc., KitchenCI: Infrastructure Code Deserves Tests Too,
http://kitchen.ci/ (Retr. 2017).

L. Chen, Lianping, "Continuous Delivery: Huge Benefits, but Challenges
Too". IEEE Software. 32 (2): 50-54, 2015.

Citrix Systems, Inc., Optimized server virtualization for all your data
center workloads, https://www.citrix.com/products/xenserver/ (Retr.
2017)

S. Corlosquet, A. Byron, A. Berry, Using Drupal: Choosing and
Configuring Modules to Build Dynamic Websites, 3rd Ed., O'Reilly
Media, 2017.

Docker Inc., Build, ship and run any app, anywhere, (Retr. 2017)
https://www.docker.com/

(Retr. 2017)

[10]

[11]
[12] Docker Inc., Docker Compose: Compose is a tool for defining and
running multi-container Docker applications, (Retr. 2017)
https://docs.docker.com/compose/

Drupal, Open Source CMS, https://www.drupal.org/ (Retr. 2017).

W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An Updated Performance
Comparison of Virtual Machines and Linux Containers, IBM Research
Report, 2014.

HashiCorp Terraform, Write, Plan, and Create Infrastructure as Code,
https://www.terraform.io/ (Retr. 2017).

P.-H. Kamp, Varnish HTTP Cache, https:/varnish-cache.org/ (Retr.
2017).

M. Kief, Infraestructure as Code, O'Reilly Media, Inc., 2015.

G. Kim, J. Humble, P. Debois, J. Willis, The DevOps Handbook: How to
Create World-Class Agility, Reliability, and Security in Technology
Organizations, IT Revolution Press, 2016.

K. Krol, WordPress Complete, 5th Ed., Packt Publishing, 2017

K. C. Laudon, C. Guercio Traver, E-Commerce 2017, 13th Edition,
Pearson, 2017.

Linux Containers, A userspace interface for the Linux kernel containment
features, https://linuxcontainers.org/ (Retr. 2017).

[13]
[14]

[15]
[16]

[17]
[18]

[19]
[20]

[21]

[22] Memcached, A distributed memory object caching system: Free & open
source, high-performance, distributed memory object caching system,

https://memcached.org/ (Retr. 2017).

L. Moczar, Enterprise Lucene and Solr, Addison-Wesley Professional,
2017.

[24] Open Market, FastCGI (1996), Open Market FastCGI:

[23]

FastCGI

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]
[34]

Specification (Retr. 2017).
https://fastcgi-archives. github.io/FastCGI_Specification.html

Proxmox Server Solutions GmbH, Open-Source Virtualization Platform,
https://www.proxmox.com/en/proxmox-ve (Retr. 2017).

PHP-FPM: A simple and robust FastCGI Process Manager for PHP,
https://php-fpm.org/ (Retr. 2017).

Puppet, Open source configuration management tool, (Retr. 2017)
https://puppet.com/.

Red Hat Inc., Optimized server virtualization for all your data center
workloads, https://www.redhat.com/en/technologies/virtualization, (Retr.
2017).

RedisLabs, Redis, https://redis.io/ (Retr. 2017).

Refinery CMS, Ruby on Rails CMS, http://www.refinerycms.com/ (Retr.
2017).

H. Rosenberg, Performance of Web Applications in Docker Containers
on VMware vSphere 6.5, VMware Performance Study, 2017.

N. B. Ruparelia, Cloud Computing, The MIT Press, 2016.
S. Salehi, Mastering Symfony, Packt Publishing, 2016.

SaltStack, Intelligent orchestation for the software-defined data center,
https://saltstack.com/ (Retr. 2017).

992

[35]

[36]

[37]
[38]
[39]
[40]

[41]
[42]

[43]

Sensio Labs, Symfony, High Performance PHP Framework for Web
Development, https://symfony.com/legacy (Retr. 2017).

ServerSpec, RSpec tests for your servers configured by CFEngine,
Puppet, Ansible, Itamae or anything else, (Retr. 2017),
http://serverspec.org/.

S. Souders, S., High Performance Web Sites. Essential Knowledge for
Front-End Engineers, O'Reilly Media, 2007.

A. Stellman, J. Greene, Learning Agile: Understanding Scrum, XP, Lean,
and Kanban, O'Reilly Media, 2013.

Trustwave Holdings, Inc., ModSecurity: Open Source Web Application
Firewall, https://www.modsecurity.org/ (Retr. 2017).

VMware, Inc., Server Virtualization Software | vSphere | VMware,
https://www.vmware.com/products/vsphere.html (Retr. 2017).

B. Wilder, Cloud Architecture Patterns, O'Reilly Media, Inc., 2012.
WordPress, Blog Tool, Publishing Platform, and CMS — WordPress,
https://wordpress.org/ (Retr. 2017).

L. Yang, D. Zhu, J. Woolsey, S. Rajaram, Achieving over 1-Million IOPS
from Hyper-V VMs in a Scale-Out File Server Cluster using Windows
Server 2012 R2, Microsoft White Paper, 2014.

