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Hardware performance monitoring counters (PMCs) have proven effective in characterizing appli-
cation performance. Because PMCs can only be accessed directly at the OS privilege level, kernel-
level tools must be developed to enable the end-user and userspace programs to access PMCs. A
large body of work has demonstrated that the OS can perform effective runtime optimizations in
multicore systems by leveraging performance-counter data. Special attention has been paid to opti-
mizations in the OS scheduler. While existing performance monitoring tools greatly simplify the
collection of PMC application data from userspace, they do not provide an architecture-agnostic
kernel-level mechanism that is capable of exposing high-level PMC metrics to OS components,
such as the scheduler. As a result, the implementation of PMC-based OS scheduling schemes is
typically tied to specific processor models. To address this shortcoming we present PMCTrack, a
novel tool for the Linux kernel that provides a simple architecture-independent mechanism that
makes it possible for the OS scheduler to access per-thread PMC data. Despite being an OS-
oriented tool, PMCTrack still allows the gathering of monitoring data from userspace, enabling
kernel developers to carry out the necessary offline analysis and debugging to assist them during
the scheduler design process. In addition, the tool provides both the OS and the user-space
PMCTrack components with other insightful metrics available in modern processors and which
are not directly exposed as PMCs, such as cache occupancy or energy consumption. This informa-
tion is also of great value when it comes to analyzing the potential benefits of novel scheduling pol-
icies on real systems. In this paper, we analyze different case studies that demonstrate the
flexibility, simplicity and powerful features of PMCTrack.

Keywords: performance monitoring counters; PMCTrack; OS scheduling; Linux kernel;
asymmetric multicore; energy efficiency; cache monitoring; Intel CMT

Received 5 December 2015; revised 4 July 2016
Handling editor: Javier Barria

INTRODUCTION

Most modern complex computing systems are equipped with
hardware Performance Monitoring Counters (PMCs) that
enable users to collect an application’s performance metrics,
such as the number of instructions per cycle (IPC) or the
Last-Level Cache (LLC) miss rate. These PMC-related
metrics aid in identifying possible performance bottlenecks,
thus providing valuable clues to programmers and computer
architects. It should be noted that direct access to PMCs is
typically restricted to code running at the OS privilege level.

Thus, a kernel-level tool, implemented in the OS itself or as a
driver, is usually in charge of providing userspace tools with
a high-level interface that enables access to performance
counters [1-3].

Previous work has demonstrated that the OS can also
benefit from PMC data by making it possible to perform
sophisticated and effective runtime optimizations on multi-
core systems [4—12]. Special attention has been paid to opti-
mizations in the OS scheduler. Notably, many of the
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proposed PMC-based OS scheduling schemes rely on per-
thread high-level metrics that are estimated by means of
platform-specific prediction models [9-14]. In this scenario,
determining the necessary per-thread high-level metrics (e.g.
energy efficiency or performance ratios across cores) at run
time entails monitoring a specific set of hardware PMC
events that may differ substantially across processor models
and architectures [9, 10]. Unfortunately, public-domain
PMC monitoring tools, which are largely userspace oriented,
do not provide an architecture-independent mechanism that
enables feeding PMC-based OS scheduling schemes with
the necessary high-level monitoring information they require
to function. Due to the limited support for in-kernel moni-
toring in public-domain PMC tools, some researchers have
employed architecture-specific ad-hoc code to access per-
formance counters in the scheduler implementation [4, 9,
10]. However, this approach still leads the scheduler to be
tied to certain processor models. Other researchers have
resorted to evaluating their proposals by means of simplistic
userspace scheduling prototypes [6, 8, 11, 14] that rely on
existing userspace-oriented PMC tools.

To overcome these limitations, we propose PMCTrack, an
OS-oriented PMC tool for the Linux kernel. PMCTrack’s
novelty lies in the monitoring module abstraction, a platform-
specific component that is responsible for collecting the neces-
sary high-level metrics that a given OS scheduling algorithm
requires to function. This abstraction makes it possible to cre-
ate architecture-independent implementations of OS scheduling
algorithms that leverage PMC data. Figure 1 illustrates the
interaction between the scheduler and PMCTrack’s monitoring
modules. Essentially, the scheduler does not access or deals
with performance counters or hardware events directly, but
instead uses the PMCTrack kernel API to retrieve the neces-
sary per-thread or per-application performance metrics from
the underlying monitoring module. In this way, ensuring that a
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FIGURE 1. Interaction between the OS scheduler and PMCTrack’s
monitoring modules.

PMC-based thread scheduler works on a new processor model
or architecture comes down to developing the associated
platform-specific monitoring module in a loadable kernel mod-
ule. More importantly, the monitoring module developer does
not have to deal with the low-level code to access PMCs dir-
ectly on a given architecture, since PMCTrack offers an
architecture-independent interface to easily configure events
and gather PMC data, which greatly simplifies the implementa-
tion. Furthermore, due to the flexibility of PMCTrack’s moni-
toring modules, any kind of insightful monitoring information
provided by modern hardware but not modeled directly via
performance counters, such as power consumption or an appli-
cation’s cache footprint, can also be exposed to the OS via the
PMCTrack kernel API and to wuser applications via
PMCTrack’s virtual counters.

Despite being an OS-oriented tool, PMCTrack is also
equipped with a set of command-line tools and userspace
components to assist OS-scheduler designers during the entire
development process. These userspace tools complement
existing kernel-level debugging tools with PMC-related off-
line analysis and tracing support. As shown in this paper,
these tools can be of great value to researchers when it comes
to assessing the potential benefits of novel OS scheduling pol-
icies. Although the main focus of this paper is on illustrating
how PMCTrack can aid the OS scheduler, the tool could
potentially be used to perform PMC-based optimizations in
other OS components as well (e.g. memory management).

To demonstrate the effectiveness and flexibility of
PMCTrack we analyze three case studies on real multicore
hardware. In doing so, we make the following contributions:

e We perform an experimental analysis of the through-
put and fairness of state-of-the-art thread schedulers
for asymmetric single-ISA multicore systems [9,12,
15-17] implemented in a real operating system. Most
of these algorithms require the collection of different
sets of hardware events across platforms to determine
the high-level metrics necessary to drive scheduling
decisions. PMCTrack enabled us to create platform-
independent implementations of these schemes.
Notably, some of the schemes studied were evaluated
before using emulated asymmetric hardware [16] or
simulators [17]. Instead, we performed an extensive
evaluation on real asymmetric hardware, which
enabled us to detect important benefits and drawbacks
of the various schemes.

e We also showcase the ability of PMCTrack to sample
performance counters and energy-consumption regis-
ters/sensors in a fully coordinated fashion on differ-
ent architectures. Notably, this functionality is
missing in standard Linux monitoring tools [18, 19]
on some platforms, as discussed in Section 2.
PMCTrack fills this gap, thus making it possible to
measure insightful high-level metrics that factor in
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information on performance counters and energy con-
sumption. By using this feature, we explore the
potential reduction in the energy-delay product
(EDP) that can be achieved by using an energy-aware
scheduling scheme on a system featuring an ARM
big.LITTLE processor.

e Finally, we propose a technique for building the
Miss-Rate Curve (MRC) of an application on a
real system. This technique relies on PMCTrack’s
support for cache-usage monitoring on systems
equipped with Intel’s Cache Monitoring Technology
(CMT) [20].

The rest of the paper is organized as follows. Section 2
discusses the background and related work. Section 3 out-
lines the design of PMCTrack. Section 4 presents the
case studies to evaluate our design and, finally, Section 5
concludes.

2. BACKGROUND AND RELATED WORK

Hardware PMCs are usually exposed to the software as a set
of privileged registers. For example, in x86 processors, PMCs
can be accessed from the system software via Model-Specific
Registers (MSRs) [21]. Other processor architectures, such as
ARM, give more freedom to the processor implementer on
how these counters are exposed to the OS [22].

Several userspace-oriented tools have been created for the
Linux kernel in the last few years [2, 3, 18, 23-25]. These
tools hide the diversity of the various hardware interfaces to
end users and provide them with convenient access to PMCs.
Overall, they can be divided into two broad categories. The
first group encompasses tools such as OProfile [3], perfmon2
[2] or perf [18], which expose performance counters to the
user via a reduced set of command-line tools. These tools do
not require modification of the source code of the application
being monitored; instead, they act as external processes with
the ability to receive the PMC data of another application.
The second group of tools provides the user with libraries to
access counters from an application’s source code, thus con-
stituting a fine-grained interface with PMCs. The libpfm [2]
and PAPI [23] libraries follow this approach.

The perf [18] tool, which relies on the Linux kernel’s
Perf Events [1] subsystem, is possibly the most comprehen-
sive tool available in the first category at the time of writ-
ing. Not only does perf support a wide range of processor
architectures, but it also empowers users with striking soft-
ware tracing capabilities, enabling them to keep track of a
process’s system calls or scheduler-related activity, or vari-
ous network/file-related operations executed on behalf of
an application.

Despite the potential of perf events and the other afore-
mentioned tools, none of them implement a kernel-level
mechanism that is specifically tailored to create architecture-
independent implementations of scheduling schemes that
leverage PMC data for its internal decisions. In particular,
the perf events subsystem includes a kernel API which has
been designed primarily to build userspace-oriented moni-
toring tools on top of it. Currently, the API is being used to
provide the support necessary for the perf command-line
tool as well as for OProfile [3]. Because none of the sched-
uling algorithms implemented in the mainstream Linux ker-
nel requires performance counters to function, this API is
not being used from the scheduler. Although a reduced set
of functions in perf event’s API enable access to perform-
ance counters within the kernel, the mechanism required to
indicate the set of hardware events to monitor is largely plat-
form specific (i.e. hardware events are assigned different
IDs in different processor models). Therefore, if that API
were used from the scheduler implementation directly, dif-
ferent code paths would be necessary to deal with hardware
PMC events on every single architecture/processor family
supported by the hypothetical scheduler implementation.
The complexity of the implementation with such an API
would increase further for PMC-based scheduling schemes
that rely on platform-specific estimation models [9-14],
since a different set of hardware events (possibly unrelated
across platforms) must be monitored in different processor
models. PMCTrack makes it possible to solve this problem,
by feeding the scheduler with the PMC-related high-level
metrics it requires to function.

Notably, our proposed tool does not rely on the perf
events subsystem to access hardware counters. This makes it
possible for PMCTrack’s monitoring modules to have a
finer-grained control with regards to in-kernel event multi-
plexing. Specifically, when the number of hardware events
to be monitored exceeds the number of performance coun-
ters available in a processor core, time multiplexing must be
used; in other words, different subsets of events must be
monitored in a round-robin (RR) fashion (different sampling
intervals). In this scenario, perf event’s kernel API manages
multiplexing implicitly, and so, the kernel programmer is
not notified at the end of every sampling interval associated
with different event sets. Instead, this API provides a
(scaled) estimate of each event count to approximate the
value of the event as if no time multiplexing were used.
This behavior is suitable for user-space monitoring; how-
ever, it prevents kernel developers from implementing
mechanisms that rely on managing event multiplexing expli-
citly, such as those required by the phase-aware estimation
models presented in Sections 4.1.2 and 4.2.2. PMCTrack
makes it possible to overcome this limitation, and also
enables the monitoring of separate sets of hardware events
in different core types of the system.
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PMCTrack is also equipped with key features missing in the
perf events subsystem. In particular, perf events lacks support
for accessing special registers and sensors for measuring energy
and power consumption on many embedded boards featuring
ARM processors that are extensively used for research today,
such as the ARM CoreTile Express TC2 board [26] and the
ARM Juno Development Board [27]. These registers and sen-
sors are not exposed as regular performance counters to the sys-
tem software. Notably, the support necessary to access them on
Linux is being implemented' as part of the hwmon kernel sub-
system, on which the Im-sensors userspace tool [19] relies.
Because perf events and hwmon are two separate kernel sub-
systems, and employ very different mechanisms to expose hard-
ware monitoring facilities to the user, gathering insightful high-
level metrics over time that combine information on perform-
ance counters and energy consumption (e.g. the energy con-
sumption per instruction over time) becomes very challenging
and unreliable in these systems, as separate tools must be used
to obtain them. By contrast, PMCTrack makes it possible to
obtain these high-level metrics in a seamless way from both
user space and kernel space, as performance counters and
energy-consumption registers (exposed to the user as virtual
counters) are sampled in a fully coordinated fashion. The ana-
lysis we carry out in Section 4.2.2 showcases the potential of
this feature.

We should also highlight that, unlike PMCTrack, the perf
events subsystem is implemented entirely inside the Linux ker-
nel rather than as a loadable kernel module. Therefore, signifi-
cant extensions or bug fixes for this subsystem require going
through the typical development cycle in the kernel: build the
kernel, install it and restart the machine. Although PMCTrack
requires minimal changes to the Linux kernel, the vast majority
of its functionality is encapsulated in a loadable kernel module,
as described in the next section. Thus, providing additional
support to gather PMC or non-PMC related data (such as LLC
occupancy) can be performed without rebooting the system.
This fact greatly simplified the development and maintenance
of PMCTrack. Moreover, in some cases, adding the support
necessary to access new hardware monitoring facilities leads to
a simpler implementation to that of the perf event subsystem.
We elaborate on this aspect in Section 4.3.

3. DESIGN

This section outlines PMCTrack’s internal architecture as
well as the various supported usage modes.

3.1. Architecture

Figure 2 depicts PMCTrack internal architecture. The tool
consists of a set of user and kernel space components. At a
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FIGURE 2. PMCTrack architecture.

high level, the end user interacts with PMCTrack using
the available command-line tools or PMCTrack-GUI (a
graphical frontend). Alternatively, applications may access
PMCTrack’s functionality directly via the libpmctrack user
space library (see Section 3.2.2). These components commu-
nicate with PMCTrack’s kernel module by means of a set of
Linux /proc entries exported by the module.

The kernel module implements the vast majority of
PMCTrack’s functionality. To gather per-thread performance
counter data, the module needs to be fully aware of thread
scheduling events (e.g. context switches, thread creation /ter-
mination). In addition to exposing an application’s perform-
ance counter data to the userland tools, the module
implements a simple mechanism to feed with per-thread mon-
itoring data to any scheduling policy (class) that requires
performance-counter information to function; such a mechan-
ism is described in Section 3.2.1. Because both the core
Linux Scheduler and scheduling classes are implemented
entirely in the kernel, making PMCTrack’s kernel module
aware of thread-related events and requests from the OS
scheduler requires some minor modifications to the Linux
kernel itself. These modifications, referred to as PMCTrack
kernel API in Fig. 2, comprise a set of notifications issued
from the core scheduler to the module. To receive key
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notifications, PMCTrack’s kernel module implements the fol-
lowing interface:

typedef struct pmc_ops{
/* invoked when a new thread is created */
void* (*pmcs_alloc_per_thread_data) (unsigned long,
struct task_struct¥) ;
/* invoked when a thread leaves the CPU */
void (*pmcs_save_callback) (void*, int) ;
/* invoked when a thread enters the CPU */
void (*pmcs_restore_callback) (void*, int) ;
/* invoked every clock tick on a per-thread basis */
void (*pmcs_tbs_tick) (void*, int) ;
/* invoked when a process invokes exec () */
void (*pmcs_exec_thread) (struct task_struct*) ;
/* invoked when a thread exits the system */
void (*pmcs_exit_thread) (struct task_struct¥) ;
/* invoked when a thread’s descriptor is freed up */
void (*pmcs_free_per_thread_data) (struct
task_struct*) ;
/* invoked when the scheduler requests per-thread
monitoring information */
int (*pmcs_get_current_metric_value) (struct
task_struct* task, int key, uint64_t* value) ;
} pmc_ops_t;

Most of these notifications are engaged only when
PMCTrack’s kernel module is loaded and the user or the
scheduler itself is using the tool to monitor the performance
of a specific application.

As shown in Fig. 2, PMCTrack’s kernel module consists of
various components. The architecture-independent core,
implements the pmc_ops_t interface and interacts with
PMCTrack userspace components via the Linux proc file sys-
tem. PMCTrack’s kernel module also provides an API to
build monitoring modules. As stated above, the primary pur-
pose of a monitoring module is to provide a scheduling algo-
rithm that is implemented in the kernel with high-level
performance metrics or other insightful runtime information
that is potentially exposed by the hardware (via PMCs or by
other means), such as power/energy consumption or a pro-
cess’s LLC occupancy. In addition, a monitoring module may
expose this information to PMCTrack’s userspace compo-
nents by means of virtual counters. Notably, both the kernel
module’s upper layer and the monitoring modules rely on the
architecture-agnostic PMC access layer to perform low-level
access to performance counters, as well as to translate PMC
configuration strings into internal data structures for the plat-
form in question. In turn, the platform-specific support is
encapsulated in a set of Performance Monitoring Unit
Backends (PMU BEs). At the time of writing, PMCTrack
provides four BEs with the necessary support for most mod-
ern Intel and AMD processors, for some ARM Cortex proces-
sor models and for the Intel Xeon Phi Coprocessor.

Augmenting the Linux kernel to support PMCTrack entails
adding two new source files to the kernel tree
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FIGURE 3. PMCTrack monitoring modules.

(implementation of the kernel API), and adding <20 lines” of
code to the core scheduler sources. Thus, the changes
required by PMCTrack can be easily applied to different ker-
nel versions.

3.2. Usage modes

PMCTrack can be used to gather performance counter data
from the OS scheduler using an in-kernel interface, (scheduler
mode) and from userspace in various ways.

3.2.1. Scheduler mode

This mode enables any scheduling algorithm in the kernel
(i.e. scheduling class) to collect per-thread monitoring data,
thus making it possible to drive scheduling decisions based
on tasks’ memory behavior or other runtime properties.
Turning on this mode for a particular thread from the schedu-
ler’s code simply involves activating a flag in the thread’s
descriptor. A scheduling algorithm relying on PMCTrack typ-
ically enables in-kernel monitoring for all threads belonging
to its scheduling class.

To ensure that the implementation of the scheduling algo-
rithm that benefits from this feature remains architecture inde-
pendent, the scheduler itself (implemented in the kernel) does
not deal with performance counters or hardware events dir-
ectly, but instead requests the necessary per-thread high-level
performance monitoring metrics from a platform-specific
monitoring module. As shown in Fig. 3, PMCTrack may
include several monitoring modules that are compatible with
a given platform. However, only one can be enabled at a
time: the one that provides the scheduler with the PMC-
related information it requires to function. In the event that
several compatible monitoring modules are available, the sys-
tem administrator may tell the system which one to use by
writing in the /proc/pmc/mmon_manager file. (In

The line count corresponds to the necessary changes in the Linux kernel
v2.6.38 and above. In this paper, we have experimented with different Linux
versions: 3.2, 3.10 and 4.1.
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Section 4.1, we consider the scenario of having different
monitoring modules for various scheduling algorithms.) The
scheduler can communicate with the active monitoring mod-
ule to obtain per-thread data via the following function from
PMCTrack’s kernel API:

int pmcs_get_current_metric_value (struct task_struct*
task, int metric_id, uinté4_t* value) ;

For simplicity, each metric is assigned a numerical ID,
which is known by the scheduler and the monitoring module.
To obtain up-to-date metrics, the aforementioned function
may be invoked from the tick processing function in the
scheduler.

Monitoring modules make it possible for a scheduling pol-
icy relying on performance counters to be seamlessly
extended to new architectures or processor models as long as
the hardware enables the collection of necessary performance
data. All that needs to be done is to build a monitoring mod-
ule or adapt an existing one to the platform in question. From
the programmer’s standpoint, creating a monitoring module
entails implementing the monitoring module_t inter-
face, which features very similar notifications to those found
in pmc_ops_t. Specifically, it consists of several callback
functions that make it possible to notify the module on activa-
tions /deactivations requested by the system administrator, on
threads’ context switches, every time a thread enters/exits the
system, whenever the scheduler requests the value of a per-
thread PMC-related metric, etc. Nevertheless, the programmer
typically implements the subset of callbacks required to car-
ry out the necessary internal processing. Notably, in doing
so, the developer does not have to deal with performance-
counter registers directly. Specifically, when a thread enters
the system the monitoring module can impose the set(s)
of performance events to be monitored by using the
configure_performance_counters_set () function,
which accepts an argument that encodes the desired counter
configuration in a string. (The associated format is discussed
in Section 3.2.2.) Whenever new PMC samples are collected
for a thread (i.e. the sampling period expires), a callback
function of the monitoring module is invoked, passing the
samples as a parameter. Due to this feature, a monitoring
module will only access monitoring-related registers (or sen-
sors) in the event that it is responsible for providing the OS
or the end user with other hardware monitoring information
not modeled as PMCs, such as energy consumption
readings.

3.2.2.  Using PMCTrack from user space

In addition to the in-kernel mechanism presented above,
PMCTrack also enables the gathering of PMC data from user
space by using the pmctrack command-line tool, the
PMCTrack-GUI application, and 1ibpmctrack.

To support user-oriented monitoring, PMCTrack’s kernel
module stores performance and virtual counter values using
ring buffers. Userspace tools retrieve samples from ring buf-
fers by reading from a/proc file that blocks the monitor pro-
cess till new samples are generated or the monitored
application terminates.

A) The pmctrack command-line tool. This tool allows the
user to gather an application’s performance data at regular
time intervals (a.k.a., time-based sampling — TBS) or when
a certain event count reaches a specified threshold (a.k.a.,
event-based sampling — EBS). Notably, both modes support
monitoring multithreaded and single-threaded applications
and provide information on performance counters as well as
on any monitoring information exposed by the active moni-
toring module as a virtual counter, such as energy consump-
tion readings.

More recently, we augmented the pmctrack tool with a
system-wide TBS mode enabling the gathering of monitoring
information on a per-CPU basis rather than on a per-
application basis. A full description of the various command-
line options supported by the pmctrack tool, as well as
several usage examples, can be found on PMCTrack’s official
website [28].

To illustrate how the pmctrack tool works, let us con-
sider the following sample command for the TBS (default)
mode:

$ pmctrack -c instr,llc_misses ./mcf06
[Event-to-counter mappings]
pmcO=instr

pmc3=1llc_misses

[Event counts]

nsample pid event pmcO pmc3
1 7008 tick 1961001132 110634
2 7008 tick 1247853112 8323
3 7008 tick 1230836405 3859
4 7008 tick 1358134323 409386
5 7008 tick 1280630906 1199270
6 7008 tick 1231578609 15488307

This command provides the user with the number of
instructions retired and LLC misses every second (default set-
ting for the configurable sampling period) on a system featur-
ing a quad-core Intel Xeon Haswell processor. To indicate
the sets of hardware events to monitor, the -c option must be
used. As is evident, the command-line tool makes it possible
to specify counter and event configurations using mnemonics
in much the same way as other userspace-oriented tools
[2,3,18]. The beginning of the command output shows the
event-to-counter mapping for the various hardware events.
The ‘Event counts’ section in the output displays a table with
the raw counts for the various events; each sample (one per
second) is represented by a different row. At the end of the
line, we specify the command to run the associated applica-
tion we wish to monitor (e.g. ./mcf06).
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FIGURE 4. Average IPC (left) and LLCMR (right) for a subset of SPEC benchmarks collected with perf and PMCTrack.

Clearly, using mnemonics to indicate the sets of hardware
events to be monitored, as in the example above, may prove
suitable for inexperienced users, as the low-level event codes
and the event-to-physical-counter mappings do not have to be
specified. Despite the simplicity of this format, using mnemo-
nics is not well suited to in-kernel event monitoring as trans-
lating mnemonics into the actual hex values written in PMC
registers may involve traversing rather long event tables.’ To
avoid the associated overhead, monitoring module developers
must specify event configurations using a lower-level string
format, referred to as the raw format. (For example, the raw
string pmc0, pmc3=0x2e,umask3=0x41 would make it
possible to gather the same hardware events as in the example
above on a modern Intel processor.) Nevertheless, monitoring
module developers may turn to PMCTrack’s pmc-events
helper command to obtain raw configurations strings from
mnemonic-based representations and to retrieve low-level
PMU parameters and event listings.

To assess the accuracy of the performance metrics gathered
via the pmctrack command-line tool, we collected the TPC
and LLC miss rate (LLCMR) for the entire execution of
diverse memory-intensive programs from the SPEC
CPU2006 and CPU2000 suites using both PMCTrack and
perf [18]. For the experiment we employed TBS as perf is
also equipped with this capability. Figure 4 shows the values
for the different metrics obtained on an Intel ‘Haswell’ Xeon
E3-1225 v3 processor by means of PMCTrack and perf. As
is evident, the results illustrate that both tools report very
similar values for the metrics. We also measured the overhead
from TBS using sampling periods ranging from 100 ms to 1s
and found that both PMCTrack and perf yield similar and
almost negligible overheads in our setting (up to 1% when
using the smallest value).

Note that in the scenarios considered in Sections 4.1.2 and
422 we make extensive use of the EBS feature of

3In some userspace-oriented tools such as perf [18], event tables for every
supported processor model are hard-coded in the kernel. To avoid the need
for rebuilding the entire OS kernel every time a new event is added to a table,
PMCTrack conveniently stores the tables in files manipulated in userspace.
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FIGURE 5. PMCTrack-GUI.

PMCTrack, which makes it possible to collect application
monitoring information for individual instruction windows.
This information makes it possible to compare the perform-
ance and energy efficiency of individual program phases in
an application when it runs on different core types of an
asymmetric single-ISA multicore system.

B) PMCTrack-GUI. To complement the pmctrack
command-line tool with real-time visualization of high-level
performance metrics (such as the IPC or the LLCMR) we also
created PMCTrack-GUI, a Python front-end for pmctrack.
Figure 5 shows a screenshot of PMCTrack-GUI. This applica-
tion extends the capabilities of the PMCTrack stack with other
relevant features, such as an SSH-based remote monitoring
mode or the ability to plot user-defined performance metrics.

C) Libpmctrack. This userspace library enables the charac-
terization of the performance of code fragments via PMCs in
sequential and multithreaded programs. To this end, libpmc-
track’s API offers a set of calls to indicate the desired PMC
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configuration to the kernel module at any point in the applica-
tion’s code. The programmer may then retrieve the associated
event counts for any code snippet (either via TBS or EBS)
simply by enclosing the code between invocations to the
pmctrack_start_counters () and pmctrack_stop_
counters () functions. Overall, libpmctrack provides a
similar functionality to that of PAPI-C [29]. The main advan-
tage over PAPI-C is that libpmctrack’s API also makes it pos-
sible to retrieve virtual counter values associated with code
fragments. More importantly, due to the simple mechanism
employed by libpmctrack’s API to access virtual counters,
libpmctrack requires no modifications to benefit from new
hardware monitoring support. Specifically, a kernel-level
monitoring module is in charge of implementing the asso-
ciated support and exposing the new features to the library.

In Section 4.1 we demonstrate the benefits of PMCTrack’s
scheduler mode in the context of single-ISA asymmetric
multicore systems. In this scenario, the OS scheduler can
effectively use per-thread PMC-related information to drive
scheduling decisions. For multithreaded applications, optimi-
zations at the OS level can also be complemented with sched-
uling decisions at the runtime level, such as asymmetry-aware
load balancing among worker threads [30]. Because libpmc-
track can be used at the runtime level (user space) to access
per-thread PMC and virtual-counter data, PMC-related online
optimizations could be performed in the context of runtime
systems of parallel programming models such as Cilk or
OpenMP. Exploring these optimizations constitutes an inter-
esting avenue for future work.

4. CASE STUDIES

We now demonstrate the potential of PMCTrack in three dif-
ferent scenarios: OS scheduling for asymmetric single-ISA
multicore systems, energy/power consumption monitoring
and cache-usage monitoring.

4.1. Scheduling on asymmetric single-ISA multicore
systems

Previous research has highlighted that asymmetric single-ISA
multicore (AMP) processors, which couple same-ISA complex
high-performance big cores with power-efficient small cores on
the same chip, have been shown to significantly improve upon
the energy and power efficiency of their symmetric counterparts
[31]. The ARM big.LITTLE processor [32] and the Intel
Quick-IA prototype [33] demonstrate that AMP designs have
drawn the attention of major hardware players.

Despite their benefits, AMPs pose significant challenges to
the OS scheduler. One of the main challenges is how to
effectively distribute big-core cycles among the various appli-
cations running on the system. Most existing scheduling

schemes have focused on maximizing the system throughput
for multi-application workloads [9, 10, 15, 34, 35, 31]. To
this end, the scheduler must follow the HSP (High-SPeedup)
approach, meaning it must preferentially use big cores for
those applications that derive a greater benefit (speedup) from
running on big cores. Note that for a single-threaded (ST)
program, the speedup matches the speedup factor (SF) of its

PSpie

single runnable thread, defined as , where IPSy;, and

small

IPS¢man are the thread’s instructions per second ratios
achieved on big and small cores, respectively. The SF, how-
ever, does not approximate the overall speedup that a multi-
threaded application as a whole derives from using the big
cores in an AMP [15, 36, 37]. Previous research [10, 38] has
derived analytical formulas to approximate the speedup for
several types of multithreaded applications based on the run-
nable thread count (a proxy for the amount of thread-level
parallelism (TLP) in the application), the SF of the applica-
tion threads, and the number of big cores in the AMP.

Schedulers that aim to maximize throughput alone, how-
ever, are known to be subject to QoS-related issues [17, 38].
For example, equal-priority applications may not experience
the same performance penalty (slowdown) when running
together relative to their performance when running alone on
the AMP. This one and other related issues can be addressed
via fairness-aware scheduling [12, 16, 17, 38]. Notably,
fairness-aware schedulers also need to take per-thread SFs
into account to ensure acceptable system throughput [12, 17].
This fact underscores that the ability to gather accurate SFs
online plays an important role in the effectiveness of the
asymmetry-aware scheduler regardless of its target objective.

Three different schemes have been explored to determine
per-thread SFs online. The first approach basically consists in
measuring SFs directly [17, 35, 31], which entails running
each thread on big and small cores to track the IPC on both
core types. Previous work has demonstrated that this
approach, known as IPC sampling, is subject to significant
inaccuracies in SF estimation associated with program-phase
changes [34]. The second approach relies on estimating a
thread’s SF using its runtime properties collected on any core
type at run time using performance counters [9, 10, 15].
Because this technique enables prediction of the SF from the
current core type on which the thread is running, the mechan-
ism does not suffer from the same program-phase related
issues as IPC sampling. Unfortunately, estimating SFs via
hardware counters requires derivation of an estimation model
that is specifically tailored to the platform in question [9, 10].
The third technique is PIE (Performance Impact Estimation)
[39], a hardware-aided mechanism enabling accurate SF esti-
mation from any core type. It should be noted that, the
required hardware support for PIE has not yet been adopted
in commercial systems, and so scheduler implementations on
existing asymmetric hardware, such as the ones we
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considered in this work, cannot benefit from this approach. In
addition, recent research has highlighted that PIE poses sev-
eral problems that make it difficult to deploy on actual hard-
ware [40].

To evaluate the effectiveness of different scheduling algo-
rithms for AMPs, we built different PMCTrack monitoring
modules capable of feeding the scheduler with per-thread SFs
at run time. The modules rely on either IPC-sampling or
employ a platform-specific estimation model to determine SFs
as threads go through different program phases. Relying on
monitoring modules to feed the scheduler implementation with
per-thread SFs provides three important benefits. First, the
scheduler implementation remains fully architecture independ-
ent. Second, because the scheduler obtains a thread’s SF from
the monitoring module in question via PMCTrack’s kernel
API, monitoring modules constitute fully replaceable compo-
nents. This makes it possible to explore the effectiveness of
various SF-enabled monitoring modules for the same scheduler
implementation without rebooting the system. Third, since the
SF can be seamlessly exposed as a virtual counter to
PMCTrack’s command-line tools, per-thread SF and PMC
traces can be gathered from userspace for debugging purposes.

4.1.1.  Scheduling algorithms

For our study, we considered several state-of-the-art schedu-
lers for AMPs: HSP [9, 10], RR [41, 35], A-DWRR [16],
EQual-Progress (EQP) [17] and ACFS* [12]. We implemen-
ted all the scheduling algorithms as a separate scheduling
class in the Linux kernel 3.2.

As stated above, the HSP scheduler optimizes throughput
by dedicating big cores to the execution of those application
threads in the workload that obtain the greatest benefits from
using big cores in the AMP. The main difference between the
available variants of the HSP scheduler [9, 10, 15, 34, 35, 31]
lies primarily in the mechanism employed to obtain the
threads’ SFs online. In our analysis, we found that using the
monitoring module that estimates SFs via a platform-specific
performance model provides better system throughput than
using the one based on IPC sampling. Therefore, we opted to
use SF estimation for HSP. To approximate the overall
speedup for different types of multithreaded applications in
HSP’s implementation we used the formulas derived in previ-
ous work [15, 38], which factor in the amount of TLP of the
application as well as the SF of its threads to approximate the
overall speedup. By using such speedup approximations, HSP
may map high-SF sequential parts of parallel applications to
big cores and relegates high-TLP phases to small cores, which
makes it possible to improve throughput [36, 42].

The first approach to fairness-aware scheduling on AMPs
was an asymmetry-aware Round-Robin (RR) scheduler that
simply fair-shares big cores among applications by performing
periodic thread migrations [35]. Fair-sharing big cores has

“ACFS stands for Asymmetry-aware Completely Fair Scheduler.

been shown to provide better performance on AMPs than
default schedulers in general purpose OSes, which are largely
asymmetry agnostic, and also provides more repeatable com-
pletion times across runs [16]. For this reason, RR has been
widely used as a baseline for comparison [35, 41, 43]. In our
experiments, we observed that RR does ensure repeatable
completion time across runs for CPU-bound workloads (such
as the ones we used). This is not the case of the default sched-
uler of the Linux mainstream kernel (Completely Fair
Scheduler — CFS), which can map the same application to dif-
ferent core types in different runs of the same CPU-bound
multi-program workload. These random thread-to-core map-
pings lead to unrepeatable fairness and throughput results
across a series of runs for the same workload. As unrepeatable
results may lead to misleading conclusions, we opted not to
display the results associated with the default Linux scheduler
in our experimental analysis (Section 4.1.3).

A-DWRR [16] aims to deliver fairness on AMPs by fac-
toring in the computational power of the various cores when
performing per-thread CPU accounting. To that end, it relies
on an extended concept of CPU time for AMPs: scaled CPU
time. Using scaled CPU time, the CPU cycles consumed on a
big core are worth more than on a small one. To ensure fair-
ness, A-DWRR evens out the scaled CPU time consumed
across threads in accordance to their priorities. Like RR,
A-DWRR does not take into account the fact that applications
usually derive different (and possibly time-varying) speedups
when using big cores on the platform. As our experimental
results reveal, this leads both RR and A-DWRR to degrading
both fairness and throughput.

Finally, the EQP [17] and ACFS [12] schedulers seek to
optimize fairness on AMPs. Both schedulers leverage per-
thread SF values to continuously track the slowdown that each
thread in the workload experiences at run time and try to
enforce fairness by evening out observed slowdowns. EQP and
ACEFS exhibit important differences. First, when determining a
thread’s slowdown, EQP does not factor in the past speedup
phases that the thread underwent. Instead, the slowdown is
approximated by taking into account the total number of cycles
that the thread has consumed on each core type thus far, and
the current SF. ACFS, on the contrary, maintains a per-thread
counter that accumulates the thread’s total progress based on
the current and the past speedup application phases. Second,
EQP relies on either IPC sampling or PIE [39] to estimate SFs,
whereas ACFS relies on SF estimation using platform-specific
models. Since PIE is not available on existing asymmetric
hardware, in this work we evaluated the IPC-sampling variant
of EQP. Third, EQP was designed to achieve equal slowdown
across threads, and so it only takes into account the SF of indi-
vidual threads when computing slowdowns. ACFS, by con-
trast, takes into account the application-wide speedup to
guarantee equal slowdowns among applications. This feature
makes it possible for ACFS to provide a better support when
multithreaded applications are included in the workload.
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Fourth, the ACFS scheduler supports user-defined priorities,
whereas the EQP scheduler does not.

4.1.2. Experimental setup and determining SFs online

For the evaluation we used the Intel QuickIA prototype sys-
tem [33]. This platform consists of a dual socket UMA sys-
tem featuring a quad-core Intel Xeon E5450 processor and a
dual-core Intel Atom N330 processor. To reduce shared
resource contention effects for the experiments, we disabled
one core on each die in the Xeon processor. This setting gives
us a pairing of two high-performance big cores (E5450) with
two low power small ones (N330). We will refer to this
asymmetric configuration as 2B-2S.

To run workloads that include multithreaded applications
we opted to use an AMP configuration with a greater core
count than that of 2B-2S. To this end, we also experimented
with a NUMA multicore server that integrates two AMD
Opteron 2425 hex-core processors. On this platform we emu-
lated an AMP system consisting of 2 big cores and 10 small
ones (2B-10S) by reducing the processor frequency on some
cores; specifically, ‘big’ cores on 2B-10S operate at 2.1 GHz
whereas ‘small’ cores run at 800 MHz.

To feed the various schedulers with per-thread SFs we
implemented three PMCTrack monitoring modules, which
sample performance counters every 200 ms.” The first moni-
toring module provides the EQP scheduler with SFs approxi-
mated via the IPC sampling approach on both multicore
servers. The other two monitoring modules, used by both
HSP and ACFS, rely on platform-specific models to estimate
SFs on the AMD and the Intel system, respectively.

To aid in the construction of such platform-specific SF esti-
mation models in this work, we used a variant of the technique
detailed in [10]. This technique requires certain offline process-
ing, which can be summarized as follows. We first pick a repre-
sentative set of single-threaded benchmarks (e.g. a subset of
SPEC CPU benchmarks) and a comprehensive set of perform-
ance metrics that allow characterization of the microarchitectural
and memory behavior of the various applications. We then run
these benchmarks on big and small cores to monitor the afore-
mentioned metrics via PMCs using fixed instruction windows;
we used PMCTrack’s EBS feature to do so. Using the informa-
tion collected with PMCs, we identify coarse-grained program
SF phases by matching the various PMC samples collected on
both core types for contiguous instruction windows of the same
application. (The SF of a certain application’s instruction win-
dow can be obtained from the IPC values collected on both core
types for that instruction window.) Finally, we use the per-
application SF-phase data obtained in the previous step as input
to the additive-regression estimation engine provided by the
WEKA machine-learning package [44]. This engine enables us
to generate two estimation models: one enabling the estimation

SWe observed that the overhead associated with PMC sampling and deter-
mining the SF becomes negligible at this rate.

of SFs from big-core metrics, and the other allowing approxima-
tion of SF values from small-core metrics. Notably, the additive-
regression prediction engine automatically identifies irrelevant
performance metrics for the model (low regression coefficients)
and so these metrics can be discarded from the final estimation
models. This significantly reduces the number of metrics col-
lected online by PMCTrack’s monitoring modules.

On the AMD platform, the methodology described above
makes it possible to derive accurate estimation models that
rely on a reduced set of performance metrics. In addition,
these metrics can be monitored simultaneously using the four
per-core general-purpose performance counters available on
the platform, which greatly simplifies the implementation of
the associated monitoring module in PMCTrack. The simpli-
city of the models obtained stems from the fact that cores in
this AMP setting differ only in processor frequency; in this
scenario cache and memory-related metrics such as the LLC
miss or the LLC access rates are known to show a negative
correlation with the SF [9, 15], as Fig. 6(a) reveals. Models
for the AMD system achieve correlation coefficients of 0.97
and 0.96 when predicting the speedup for the SPEC CPU
benchmarks on the faster and the slower core, respectively.

On the QuickIA prototype, the cores exhibit more profound
differences (microarchitecture, cache sizes and processor fre-
quency, among others) which lead to complex SF estimation
models. Figure 6(b) shows that the LLCMR alone does not
exhibit any correlation with the SF, as opposed to what can be
observed when cores differ in processor frequency only. On the
QuickIA platform, estimation models with acceptable accuracy
that can be obtained via the described methodology require the
monitoring of a higher number of hardware events than that of
AMD models. Table 1 displays the set of performance metrics
and associated hardware events that must be monitored on each
core type by the PMCTrack monitoring module implementing
the most accurate SF estimation modules we could obtain for
this platform. These models achieve associated correlation coef-
ficients of 0.95 (big core) and 0.94 (small core), respectively.

The higher complexity of the estimation models for the
QuickIA platform coupled with the reduced set of per-core
general-purpose performance counters on this system make it
harder to implement the associated PMCTrack monitoring
module. Specifically, on the Intel QuickIA, only three insight-
ful performance metrics can be monitored simultaneously on
any core type: the IPC, using the available fixed-function
PMCs, and two other high-level metrics using general-
purpose PMCs. Since the estimation models depend on more
than three performance metrics, we need to use event multi-
plexing in the kernel to obtain SFs online. Thus, the asso-
ciated PMCTrack monitoring module continuously monitors
different sets of hardware events in a RR fashion.
Specifically, to gather the necessary metrics on the QuickIA
prototype, two PMC sampling periods are required for the
big-core model and three for the small-core model. Once all
the required performance metrics have been gathered on a
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FIGURE 6. SF vs. big-core LLCMR for SPEC CPU 2006 benchmarks observed on the (a) AMD system and (b) on the Intel platform.

TABLE 1. Performance metrics and associated hardware events used to predict the SF on the Intel QuickIA prototype.

Core Hardware Events Performance metrics
Big Instructions retired, Instructions per cycle,
processor cycles, L1 data cache misses per 1K instr.,
L2 cache accesses, L1 data TLB misses per 1M instr.,
L2 (last-level) cache misses, Mispredicted branches per 1K instr.,
Branch instructions retired L2 (last-level) cache access per 1K instr.,
L2 (last-level) cache misses per 1K instr.,
Branch instructions retired per 1K instr.
Instructions per cycle,
Small Instructions retired, L1 data cache misses per 1K instr.,

processor cycles,

L2 cache accesses,

L2 (last-level) cache misses,
Branch instructions retired
Mispredicted branches,
ITLB misses,

DTLB misses

L1 data TLB misses per 1M instr.,
Mispredicted branches per 1K instr.,

L2 (last-level) cache access per 1K instr.,
L2 (last-level) cache misses per 1K instr.,
Branch instructions retired per 1K instr.
Mispredicted branches per 1K instr.
ITLB misses per 1M instr.

DTLB misses per 1M instr

certain core type using the necessary sampling periods, the
metric values are used to predict the thread’s SF. This process
is repeated continuously throughout the thread’s execution to
feed the scheduler with up-to-date SF estimates.

We found that an important issue becomes apparent when
implementing such a scheme. Performance metrics monitored
in subsequent PMC sampling periods on a given core may
not belong to the same program phase. Notably, using event
metric values from different phases leads to inaccurate SF
predictions. To overcome this issue, we augmented the pre-
diction scheme with a heuristic to detect transitions between
program phases. This heuristic is similar to that proposed in
[35], which was evaluated in a simulation environment. At a
high level, the heuristic works as follows. For each thread,

we maintain a running average of the IPC. To make this pos-
sible, we always monitor the number of IPC together with the
other metrics in a particular event set. If a sudden variation of
the IPC is detected in the last sample (with respect to the run-
ning average of the IPC), we assume that the sample belongs
to a new program phase. If a sample for a different program
phase is detected, previously collected samples from the same
sampling round are discarded when estimating the SF, and a
new sampling round is started. By contrast, if an entire sam-
pling round is completed without detecting phase transitions,
then collected samples are used to generate an up-to-date SF
value with the associated estimation model. For the sake of
clarity, Fig. 7 depicts how this mechanism works in a hypo-
thetical scenario where three different performance metric
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sets (three sampling periods) are required to obtain the sam-
ples necessary to estimate the SF. We observed that this heur-
istic proves effective in detecting phase transitions, and, in
turn, leads to more accurate SF estimates over time. Note that
implementing this scheme requires to control event multiplex-
ing in an explicit way from the PMCTrack monitoring mod-
ule. To make that happen the monitoring module developer
has to employ a function of PMCTrack’s API to specify the
set of events to be monitored for a complete sampling round
for each thread on each core type (the event sets may differ).
When a sampling period completes, PMCTrack invokes a
callback of the monitoring module, passing the samples
obtained as a parameter. As stated in Section 2, the perf
events Linux subsystem is not equipped with similar explicit
in-kernel event-multiplexing support, thus making it impos-
sible to implement this kind of scheme.

To conclude the discussion, it is worth noting that the off-
line analysis required to derive the SF estimation models has
to be performed just once on a given asymmetric platform.
Thus, to deploy the mechanism transparently in a production
system, the associated experiments could be automatically
launched by the OS when it boots for the first time.
Alternatively, estimation models can be automatically rebuilt
periodically by leveraging idle system periods to collect new
performance samples for additional applications. In our
experiments, we carried out a full execution of SPEC CPU
benchmarks on the different core types of the system, in order
to perform a comprehensive characterization of the perform-
ance of these benchmarks on each evaluated AMP configur-
ation. However, running the entire SPEC CPU benchmark
suite can be a time-consuming process on some slow cores
(Intel Atom), so it may not constitute a good approach to be
performed upon the first OS boot. Nevertheless, our analysis
reveals that a complete execution of the SPEC CPU bench-
marks is not really necessary to build the SF estimation mod-
els. Specifically, the vast majority of the representative
program phases for most long-running benchmarks become
apparent at the beginning of the execution (such as for 1bm).
Conversely, information from multiple sample phases to build
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FIGURE 7. Dealing with program phase changes when using event
multiplexing.

round-robin fashion)

the models can be collected by running a few short phased
benchmarks, such as soplex or astar. Hence, collecting
information for just a small number of instruction windows
for a few selected benchmarks would suffice to obtain similar
models, thus constituting a more convenient option. Finally,
it is worth highlighting that in the experimental evaluation
shown in the next section we used additional applications
(from SPEC CPU and other benchmarks suites) that are dif-
ferent from those used to generate the estimation models.

4.1.3. Experimental evaluation
Our evaluation targets multi-application workloads consist-
ing of benchmarks from diverse suites (SPEC CPU2006,
SPEC OMP, PARSEC and Minebench). We also experimen-
ted with BLAST—a bioinformatics benchmark, and
FFTW3D—a program performing the FFT. In all the experi-
ments, the total thread count in the workload was set to match
the number of cores on the platform, since this is how runtime
systems typically set the number of threads for CPU-bound
workloads [45], such as the ones we used. In multi-application
experiments, we ensure that all applications are started simul-
taneously, and when an application terminates it is restarted
repeatedly until the longest application in the set completes
three times. We then obtain the aggregate speedup and unfair-
ness for the scheduler in question, by using the geometric
mean of the completion times for each program.

To quantify throughput under the various schedulers we
used the Aggregate SPeedup (ASP) metric, employed in pre-
vious work [12, 38]:

ASP = an[—CT‘“'W’i — 1] (1)

i=1 sched,i

where n is the number of applications in the workload,
CTijow,; 1s the completion time of application i when it runs
alone in the AMP and uses small cores only, and CTypeq,; iS
the completion time of application i under a given scheduler.
The ASP metric captures the overall efficiency that a work-
load derives from the various cores in an AMP under a par-
ticular scheduler.

Regarding fairness, we employ the notion, widely used in
the context of CMPs [46-48] and more recently in that of
AMPs [17,38], that a scheme is fair if equal priority applica-
tions suffer the same slowdown due to sharing the system
with respect to the situation in which the whole system is
available to each application. To cope with this notion of fair-
ness, we used the lower-is-better unfairness metric [48]:

MAX (Slowdowny, ..
MIN (Slowdowny, ..

. Sl d n
Unfairness = owdown,,)

(2)

., Slowdown,,)

where Slowdown; = CTicped.i/ CThagt.i» and CThg; is the com-
pletion time of application i when running alone in the AMP
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(with all the big cores available). As opposed to other metrics,
the unfairness metric can be easily extended to factor in appli-
cation priorities or weights by replacing an application slow-
down with its weighted counterpart [12, 48].

In creating the multiprogram workloads for our study, we
categorized applications into three groups relating to their
parallelism: highly parallel (HP), partially sequential (PS)—
parallel programs with a serial component of over 25% of the
total execution time—and ST. We further divided these three
application groups into three subclasses based on their SFs—
high (H), medium (M) and low (L). The 16 selected program
mixes, shown in Tables 2 and 3, mimic scenarios with differ-
ent SF ranges and varying degrees of competition for the
scarce big cores in the AMP. Note that the workload name
encodes the category of each application. For example, in
2PSH-1HPM, BLAST and semphy are PSH applications and
wupwise_m is an HPM program. Note that the application
categories specified in the table match those observed on the
AMP system on which we ran the workload. Workloads in
Table 2 are evaluated on the 2B-2S system; workloads in
Table 3 were run on 2B-10S. For multithreaded applications,
the number in parentheses by each program’s name is the
number of threads it runs with.

We begin by analyzing the effectiveness of the various
schedulers for workloads consisting of multiple ST

TABLE 2. Multi-application workloads consisting of single-
threaded applications.

applications (Table 2) running on 2B-2S (Intel QuickIA). The
results are shown in Fig. 8. In creating these workloads we
opted to explore diverse program mixes with a different com-
bination of application SF classes (H, M and L). Workloads
are displayed in descending order according to the number of
HSP applications. Note that workloads in the middle of the
graph exhibit a higher diversity of speedup factors; these
workloads constitute favorable scenarios for throughput-
optimized scheduling (HSP), as pointed out in [34], as such
fairness-aware schedulers may be subject to higher through-
put degradation in these scenarios.

Overall, the scheduler that optimizes throughput (HSP)
effectively obtains the best ASP across the board, but that
comes at the expense of delivering the worst unfairness num-
bers (the higher, the worse). Previous work has analytically
demonstrated that fairness and system throughput constitute
conflicting objectives on AMPs [38], and our experimental
results clearly exhibit this trend.

The results also exhibit very different throughput and fair-
ness figures for fairness-aware schedulers. For example, both
RR and A-DWRR fair-share big cores among threads in this
scenario without taking into account their SFs, so these
schemes perform similarly in most cases. Fair-sharing big
cores makes it possible to reduce unfairness while achieving
acceptable throughput for some SF-homogeneous workloads
(e.g. 4STH, 3STH-1STM and 2STH-2STM). However, for
workloads exhibiting a wide range of big-small speedups
(e.g. 3STH-1STL and 2STH-2STL) A-DWRR and RR are
subject to throughput and fairness degradation. This fact
underscores the importance of factoring in the SF when mak-
ing scheduling decisions on AMPs.

ACFS and EQP aim to optimize fairness by evening out the
progress made by the various threads in this scenario. To
make this happen, both schedulers take the threads’s SF into
consideration. Note that the results demonstrate that ACFS
achieves the best unfairness figures across the board while
yielding better system throughput than EQP for most work-
loads. We found that these throughput and fairness differences
stem from: (i) the different mechanism employed by the two
schedulers to keep track of the threads’ slowdowns; and (ii)
the fact that they rely on different schemes to determine the

TABLE 3. Workloads consisting of single-threaded and multithreaded applications.

Workload Benchmarks

4STH calculix, gamess, GemsFDTD, bzip2

3STH-1STM calculix, GemsFDTD, bzip2,
h264ref

3STH-1STL gamess, GemsFDTD, bzip2, sjeng

3STH-1STLg calculix, gamess, sphinx3, sjeng

2STH-2STM gamess, soplex, povray, h264ref

2STH-2STL mcf, calculix, sjeng, gobmk

ISTH-1STM- mcf, h264ref, sjeng, gobmk

2STL

2STM-2STL namd, h264ref, gobmk, libquantum

Workload

Benchmarks

2STH-1HPH-1HPM
3STH-1HPH
3ST{H,M,L}-1PSH
1STH-1PSH-1PSL
2PSH-1PSL
1PSH-1PSL
2PSH-1HPM
1PSH-1HPH

gamess, hmmer, fma3d_m(5), wupwise_m (5)
hmmer, gobmk, h264ref, fma3d_m(9)
gamess, astar, soplex, blackscholes(9)
gobmk, BLAST(6), FFTW3D(5)

BLAST(4), semphy(4), FFTW3D(4)

semphy(6), FFTW3D(6)

BLAST(4), semphy(4), wupwise_m(4)

BLAST(6), fma3d_m(6)
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FIGURE 9. Fairness and throughput on 2B-10S (AMD platform).

threads’ SFs at run time. Specifically, EQP relies on IPC sam-
pling to determine threads SFs on off-the-shelf AMPs. IPC
sampling, however, has been shown to lead to inaccurate SFs,
since IPC values collected on both core types may belong to
different program phases [34]. As a result, the IPS ratio used
to approximate the SF may not always reflect an accurate
value. We observed that these inaccuracies become apparent
especially in the first five workloads, thus leading to frequent
suboptimal thread-to-core assignments. In contrast, the ACFS
scheduler is not subject to the aforementioned program-phase
issues, since it is fed with predicted per-thread SF values
obtained by a PMCTrack monitoring module that relies on
estimation models. These models rely on performance metrics
collected on the current core type. The results reveal that, des-
pite the existing imperfections in the SF model, ACFS is able
to obtain the best unfairness figures across the board. On aver-
age it reduces unfairness by 10% compared to RR and A-
DWRR, and by 13% compared to EQP, while ensuring better
system throughput than these schemes.

Now we look at the results for workloads in Table 3
(shown in Fig. 9), which include parallel and sequential appli-
cations running on 2B-10S (AMD platform). In selecting the
workloads we chose program mixes with different speedup
ranges and with varying degrees of competition for the two
big cores in this AMP. Note that in this scenario there is a
wide big-to-small speedup range across applications since
some workloads combine parallel applications that derive
almost no speedup from using the scarce big cores (such as
HPL or HPM applications) with other applications that
experience significant performance gains from these cores
(such as ST applications). Therefore, mapping applications
with a higher sequential component to a big core and dedicat-
ing big cores to running parallel (high-TLP) phases in the
application leads to improved throughput [36]. Clearly, the
application-wide speedup (as opposed to the per-thread SF)
must be taken into consideration when it comes to optimizing
throughput in this context. Note also that applications that
exibit both parallel phases and non-negligible serial execution
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phases (PS applications) play an important role in this scen-
ario, as the speedup of these applications varies significantly
over time with changes in the number of active threads [10,
36]. For this reason, we opted to include these applications in
the workloads.

For HSP and ACFS, the results in Fig. 9 show similar
trends to those of workloads on 2B-2S: ACFS achieves the
best fairness figures across the board while HSP obtains better
throughput than ACFS at the expense of significant fairness
degradation. In this scenario, both schedulers make schedul-
ing decisions by taking into account the speedup that the
application as a whole derives from using the big cores avail-
able on the AMP. Thus, applications with a higher sequential
component usually receive a higher big-core share under
these schedulers.

We also observe that HSP does not always yield the worst
unfairness numbers. For example, RR yields higher unfair-
ness than HSP for the 2STH-1HPH-1HPM workload. We
found that this is primarily due to the enormous difference in
big-to-small speedups among applications present in this
workload; both HP applications derive almost no benefit from
utilizing the two big cores available, whereas the sequential
applications exhibit the maximum overall big-to-small
speedup attainable on this platform. Similarly, applications in
the 1STH-1PSH-1PSL and the 1PSH-1HPH workloads exhibit
program phases with such a high diversity in speedups. Under
these circumstances, fair-sharing big-cores among applications
(RR) leads to produce higher unfairness and lower throughput
than that resulting from mapping high-speedup applications to
big cores (HSP). Similarly, the A-DWRR and EQP algorithms,
which make scheduling decisions on a per-thread basis, obtain
higher unfairness than HSP in the aforementioned cases due to
failing to allot a higher big-core share to applications in the
workload with a higher sequential component.

We now focus on the EQP/ACFS comparison. Unlike
ACFS, EQP does not take into account the application-wide
speedup. Specifically, EQP aims to enforce equal slowdown
across threads by considering the SF of individual threads
only. Nevertheless, ensuring that each thread in the system
experiences a similar slowdown does not ensure equal
slowdowns among applications when multithreaded pro-
grams are included in the workload. Failing to consider the
application-wide speedup leads EQP to higher fairness deg-
radation than ACFS. In this scenario, ACFS achieves a 24%
average reduction in unfairness relative to EQP, and yields a
higher throughput than this scheme.

Finally, we look at the results of A-DWRR and RR on 2B-
10S. A-DWRR ensures that each thread in the workload
receives the same AMP-scaled CPU time, regardless of the
application it belongs to; therefore, programs with a high
thread count receive a high big-core share. RR, by contrast,
fair-shares big cores among applications. Because applica-
tions with a high thread count usually derive low speedup
from the scarce big cores, A-DWRR yields higher throughput

and greater fairness degradation than RR. However, the RR
scheduler exhibits worse fairness and throughput figures than
ACEFS in this scenario; ACFS improves fairness by 19% on
average with respect to RR.

4.2. Measuring power and energy consumption

In this section we begin by illustrating the ability of
PMCTrack to provide power and energy consumption read-
ings on different processor models and architectures. Then,
we explore the potential benefits of an energy-aware schedul-
ing scheme for asymmetric multicores by leveraging com-
bined information from performance counters and energy
consumption registers gathered with PMCTrack.

4.2.1. Power consumption on different processor models
PMCTrack has the ability to interact with power and energy
measurement facilities available on modern high-performance
Intel processors [21] and on systems integrating low-power
ARM big.LITTLE processors [32]. The necessary support is
provided by a set of monitoring modules.

On Intel systems, PMCTrack relies on the Running
Average Power Limit (RAPL) support [21]. RAPL employs a
software power model based on hardware monitoring to
approximate energy usage. This feature enables the system
software to obtain energy consumption readings for different
power domains (core-level, processor package/uncore and
DRAM). Intel processors expose the RAPL facilities to the
system software via a set of MSRs [21]. Because the Intel
QuickIA system [33] used in the previous case study does not
feature RAPL capabilities, we opted to experiment with a 14-
core Intel Xeon ES ‘Haswell’ 2695 v3 processor. This proces-
sor supports energy consumption readings for the processor
package (or core cluster) level as well as for the DRAM level.

Currently, PMCTrack also provides support for measuring
energy consumption on various ARM boards featuring 32-bit
and 64-bit ARM big.LITTLE processors, such as the ARM
CoreTile Express TC2 board [26] and the ARM Juno
Development board [27]. The main features of both systems
are summarized in Table 4. The ARM CoreTile Express TC2
system is equipped with a daughter board that provides the
system software with access to sensors to measure voltage,
current, power and energy consumption for each cluster of
cores of the same type (either Cortex A15 big cores or Cortex
AT little cores). On the Juno board, an FPGA (referred to as
IOFPGA) provides the system software with a set of energy
registers to retrieve the instantaneous current consumption,
instantaneous power consumption and cumulative energy
consumption for both clusters of Cortex AS57 (big) and
Cortex AS3 (little) cores. Moreover, additional registers exist
to provide similar measurements for the GPU and the rest of
the Juno SoC fabric—referred to as SYS—, which includes
the DRAM controller, among other components. Note that
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TABLE 4. Features of evaluated platforms.

Platform

Processor model(s)

Core count LLC Main memory

Superserver SYS-6018R-MTR Supermicro

Intel Xeon E5-2695 v3 @ 2.3 GHz 14

35MB (L3) 32GB DDR4 @ 2133 MHz

ARM CoreTile Express TC2 Development board ARM Cortex A15 @ 1 GHz 1MB (L2) 2GB DDR2 @ 400 MHz
ARM Cortex A7 @ 800 MHz 3 512KB (L2)

ARM Juno Development board ARM Cortex A57 @ 1.10 GHz 2 2MB (L2) 8 GB DDR3 @ 800 MHz
ARM Cortex A53 @ 850 MHz 4 1MB (L2)

accessing energy measurement facilities on these systems
from the OS kernel is completely board-specific as the hard-
ware exposes these facilities to the system software in very
different ways.

To demonstrate the capabilities for accessing energy meas-
urement facilities on different platforms, we collected the
average power consumption for benchmarks in the
SPECCPU 2006 suite running on five different processor
models: Intel Xeon ES ‘Haswell’ 2695 v3, ARM Cortex Al5,
Cortex A7, Cortex A57 and Cortex AS3. Figure 10(a)—(e) dis-
play the results. In all cases, we collected the package (or
core cluster) average power consumption observed for the
entire execution of each benchmark running alone on the sys-
tem. In addition, for those platforms that make it possible to
obtain DRAM power consumption measurements, we also
display the associated values together with the cluster power
measurements. Note, however, that on the ARM Juno
Development board (Cortex A57 and AS53) there is no separ-
ate energy register to measure the DRAM power consumption
alone. So, in this case we approximated the net DRAM
energy consumption by substracting the observed idle power
consumption (0.81W) of the Juno SoC fabric from the power
measurement provided by the SYS energy register.

The results reveal that big ARM Cortex out-of-order A15
cores yield up to 4.9x the power consumption of small ARM
Cortex A7 in-order cores. Despite the fact that big cores on
both ARM platforms run at a similar frequency in our experi-
ments, Cortex Al5 cores consume roughly three times the
power of Cortex AS57 cores. As for the small in-order cores in
both development boards, we observe that Cortex A7 cores
consume up to 2.5x the power of Cortex AS53 cores. We
hypothesized that these big differences in power consumption
are due to the different manufacturing technologies (lithog-
raphy) employed on both development boards. Nevertheless,
to the best of our knowledge this information is not publicly
available. In any case, ARM cores exhibit significantly lower
package-level power consumption for the same benchmarks
compared to that of the high-performance Intel processor we
used (Fig. 10(a)).

To validate the results shown in Fig. 10, we measured
power consumption using perf [18] and Im-sensors [19] on
the Intel and the ARM systems, respectively. (Unlike
PMCTrack, neither of these tools enables the monitoring of

energy consumption on both platforms.) We observed simi-
lar measurements to those reported by PMCTrack (devia-
tions no >1%).

4.2.2.  Reducing the EDP on asymmetric multicore systems
As shown in Section 4.1, throughput on asymmetric single-
ISA multicore systems can be maximized by mapping to big
cores those applications in the workload with the highest big-
to-small speedup (a.k.a., the HSP approach). However, Zhang
et al. [49] have highlighted that this approach does not
always result in a good performance-energy consumption
tradeoff. To address this problem, they proposed PRIM, a
rule-set-guided scheduling algorithm to reduce energy con-
sumption on AMPs. At a high level, the proposed scheme
works as follows. Initially, when a thread is created, it is
mapped to a random core type in the system in order to pre-
serve load balance. Every so often, the scheduler randomly
selects a certain number of thread pairs consisting of a thread
running on a big core (T) and another thread running on a
small core (Tg). For each randomly-selected pair, the sched-
uler estimates whether swapping Tz with Ty would result in
energy savings by means of a set of platform-specific rules; if
that is the case, the two threads will be swapped. Evaluating
these platform-specific rules at run time requires collecting
threads’ high-level performance metrics (such as the IPC or
the LLCMR) by means of hardware performance counters.
Thus, a platform-independent real-world implementation® of
this scheduling algorithm in the Linux kernel could be created
by relying on a PMCTrack monitoring module that encapsu-
lates platform-specific rules to be evaluated at run time.

Nevertheless, PRIM platform-specific rules do not quantify
the actual energy savings resulting from a thread swap, but
instead indicate whether a specific thread swap would be
beneficial or not in terms of energy consumption. Therefore,
the PRIM scheduler cannot tell whether there is a better can-
didate thread running on a small core T, such that swapping
Tp with Tg, would result in higher energy savings than those
resulting from swapping Tz with 7. This issue, coupled with
the fact that thread pairs are selected randomly by PRIM,
may cause this approach to perform suboptimal thread-to-
core mappings.

SIn the original work [49], the PRIM algorithm was simulated.
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FIGURE 10. Average power consumption gathered for SPEC CPU benchmarks running on different processor models.

To overcome this limitation we propose guiding thread-
to-core mappings on AMPs by taking into account an appli-
cation’s efficiency factor (EF). We define an application’s
EF as the ratio of the EDP observed when running this
application alone on a small core relative to running it on a
big core:

EDRan
= St ()
EDPy
In turn, the EDP [50, 51] is defined as follows:

Energy_Consumed
IPS

EDP =

(4)

_ Energy_Consumed*CompletionTime

(5)

Total_retired_instructions

where the IPS denotes the number of instructions per second.

Because the EDP is a lower-is-better metric, EF values >1
would indicate that mapping the application to a big core
would lead to a better (lower) EDP value than mapping the
application to a small core. In other words, the higher the EF,
the more suitable an application is for being mapped to a big
core in terms of energy efficiency. Unlike the rules in the
PRIM scheme, the applications’ EFs would enable the OS
scheduler to quantify the effect on energy savings (EDP
reduction) resulting from different threads swaps.
Specifically, given a thread Tz mapped to a big core, the best
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candidate thread Ty (mapped to a small core) to swap with Ty
in terms of energy savings is the thread with the highest EF
running on a small core (provided that EFy > EFy,). This
observation suggests that the scheduler could obtain a signifi-
cant reduction in the EDP by mapping those applications in
the workload with the highest EF to big cores, and relegating
the remaining applications to small cores. Henceforth, we
will refer to this scheduling scheme as EF-Driven.

Note that the EF can also be expressed in terms of the big-
to-small speedup of a ST application, also referred to as the
SF, and defined as the ratio of instructions per second

IPSpig ]

small

achieved the application on big and small cores [
Thus, we can derive the following formula:

F = EDP%mall
EDPy;q

B Energy_Consumedgma *IPSpig

B Energy_Consumedpig *IPS¢mail

__ Energy_Consumeda *SF

(6)

Energy_Consumedpg

= S—F (7)

Energy_Ratio

Equation (7) highlights that the EF metric combines infor-
mation on both the energy consumption and performance of
the application when running on a big core relative to a
small core.

To evaluate the effectiveness of using the EF to perform
thread-to-core mappings on an AMP system we experimented
with the ARM Juno Development board, which features a
64-bit ARM big.LITTLE processor consisting of two big cores
and four small cores. Further information about this system

5.5

can be found in Table 4. Figure 11 shows the average SF and
average EF for applications in the SPEC CPU2000 and
CPU2006 benchmarks suites. As in [49], we opted to experi-
ment with benchmarks from both suites, but we carried out our
experiments on a real system rather than on a simulator. To
obtain the average EF, we ran each benchmark on both core
types and measured the total energy consumption in each case
(core cluster plus DRAM consumption) with PMCTrack.

As is evident, every application experiences performance
benefits from running on a big core relative to a small one on
this platform (SF > 1 for all benchmarks). In addition, from
the EDP standpoint, running an application on the big core
yields to energy savings with respect to running it on a small
core (as the EF is >1 across the board). We also observe a
wide diversity of SFs and EFs across applications. As a result,
when running multi-application workloads consisting of SPEC
benchmarks on this platform, the thread-to-core assignments
performed by an asymmetry-aware scheduler will have an
important impact on throughput and energy consumption.
Specifically, the HSP scheduler, which aims to optimize
throughput (see Section 4.1), would perform very different
thread-to-core assignments to those of an EF-driven scheduler.
For example, for a hypothetical workload consisting of art,
soplex, hmmer and wupwise running on the ARM big.
LITTLE processor considered, the HSP scheduler would map
the hmmer and wupwise applications to the big cores on the
Juno board, and would relegate the other two applications to
small cores; an EF-driven scheduler, by contrast, would per-
form the opposite mapping to reduce the EDP.

To assess the impact on throughput and energy consump-
tion resulting from an EF-Driven scheduling policy, we built
40 multi-program workloads, consisting of six SPEC CPU
applications each (one per core on the ARM Juno board) and
ran them using two different static thread-to-core assign-
ments: HSP and EF-Driven. In the HSP assignment, threads
are mapped to cores in such a way as to maximize the system
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throughput, so threads with the highest overall SFs in the
workload are mapped to the big cores and the remaining
applications are relegated to small ones. In the EF-Driven
assignment, by contrast, big cores are dedicated to running
threads with the highest overall EF in the workload. In select-
ing the workloads, we picked 19 SPEC CPU benchmarks
with different EF and SF values. By using these benchmarks
we created multiple program mixes consisting of six different
applications. In turn, from these program mixes we selected
40 workloads such that the associated HSP and EF-Driven
assignments led to different thread-to-core mappings. Since
the applications in each workload have a different completion
time, we launched the multi-program workloads using the
same mechanism as that described in Section 4.1.3.

Figure 12 shows the reduction in the EDP and throughput
resulting from the EF-Driven assignment relative to HSP for
the multi-program workloads evaluated. To measure the EDP
(as defined in Equation (5)) for each workload and thread-to-
core mapping, we created a PMCTrack monitoring module
that keeps track of the total number of retired instructions and
the total energy consumption during the entire execution of
each multi-program workload. To make this possible, the
monitoring module accesses both the per-core performance
counters and system-wide energy registers present in the sys-
tem. To quantify the system throughput in each case, we use
the ASP metric, as defined in Section 4.1.3.

The results reveal that driving thread-to-core assignments
based on the EF yields significant energy savings in some
cases (EDP reductions ranging from 20% to 60%). Note that
in these scenarios throughput degradation over the
throughput-optimized static assignment is no >7.6%. Despite
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FIGURE 12. EDP and throughput reduction resulting from the EF-
Driven assignment relative to HSP.

the fact that the EF-Driven policy always leads to improved
EDP over HSP, we observe that the throughput degradation,
though small in most cases, largely depends on the diversity
in energy ratios (i.e. SF/EF) among applications in the work-
load. Specifically, we found that workloads experiencing
modest EDP reductions under EF-Driven match those includ-
ing many applications with very similar energy ratios. In
these scenarios, the HSP assignment already achieves an
acceptable EDP value, thus providing a better throughput-
energy tradeoff. This fact suggests that under these circum-
stances the SF should be taken into consideration by the
scheduler when performing thread-to-core mappings. For
the sake of the reproducibility of our results, Fig. 13 shows
the normalized EDP and throughput associated with 10
selected workloads (listed in Table 5) from the full set. These
workloads cover very different points in Fig. 12.

Clearly, static thread-to-core assignments, such as those con-
sidered thus far, may lead to suboptimal results in the event
that applications go through diverse program-phases with dif-
ferent EF values over time. To examine this aspect, we ana-
lyzed the phased behavior of the SPEC CPU benchmarks
concerning energy efficiency using PMCTrack. To this end,
we obtained an application’s EF over time by gathering the
IPC and the energy consumption every 400 million instructions
retired on both core types for the whole execution. (We
observed that using this instruction window makes it possible
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FIGURE 13. EDP (top) and throughput (bottom) normalized with
respect to HSP.
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TABLE 5. Multi-application workloads.

Workload Applications

W1 gamess, wupwise, soplex,bzip2,h264ref, gobmk
W2 hmmer, wupwise, soplex, vortex, h264ref, gobmk
w3 hmmer, wupwise, soplex,h264ref, gobmk, facerec
w4 gamess, wupwise, soplex, sixtrack, h264ref, gobmk
W5 swim, sixtrack, perlbmk, h264ref, gobmk, facerec
W6 gamess, swim, sixtrack,gap,bzip2,h264ref

W7 soplex,gamess, hmmer, vortex, sixtrack,h264ref
W8 art,gamess, wupwise,mesa,crafty,h264ref

W9 hmmer, mcf, gap, perlbench,bzip2,h264ref

W10 gamess,mcf,gap, crafty, perlbench, h264ref

to effectively capture coarse-grained program phases and filter
out many EF spikes.) Note that the EF of a particular instruc-
tion window can be obtained from the samples collected on
both core types (see Equation (6)) for that instruction window.
This analysis is possible thanks to PMCTrack’s unique ability
to read performance counters and energy registers in a fully
coordinated fashion. Specifically, in this context both perform-
ance and energy values are read at the PMC overflow interrupt
handler by using the EBS mode of PMCTrack.

Our analysis reveals that many SPEC applications actually
exhibit distinct EF phases. As an illustrative example, Fig. 14
shows the EF over time for the gap and soplex bench-
marks, which are used in the multi-program workloads con-
sidered. Because these benchmarks go through different EF
phases, a dynamic scheduling policy with the ability to
readjust thread-to-core mappings at run time in response to
those changes is likely to obtain further reductions in the
EDP compared to a static assignment. Nevertheless, to imple-
ment such a scheduling policy, the OS should be equipped
with a mechanism to obtain a thread’s EF over time.
Designing such a mechanism is a challenging task. Note that
direct measurement of the EF at run time (collecting EDP
measures on both core types) is not possible because energy
registers integrated in most platforms do not provide per-
thread or per-application measurements but instead system-
wide measurements. Thus, the OS scheduler cannot isolate
the DRAM and core cluster energy consumption of individual
applications in a multi-program workload.

A viable method to determine a thread’s EF at run time
would be by means of an estimation model relying on high-
level performance metrics collected online using performance
counters sampled on the current core type. Note that on sys-
tems where cores have identical microarchitectures (clearly
not the case here), several researchers [5, 13, 14, 52] have
used performance counters to estimate energy and power con-
sumption. Because these models are largely processor spe-
cific, two separate estimation models should be derived for a
big.LITTLE-based asymmetric multicore system: one to pre-
dict the EF when a thread runs on the big core and another to
predict the EF on a small core. To derive such estimation
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Efficiency Factor
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FIGURE 14. EF over time for the gap (top) and soplex (bottom)
applications.

models we used a similar approach to the one used to esti-
mate the SF on the Intel QuickIA platform (described in
Section 4.1.2). Specifically, using the EBS mode of
PMCTrack we collected a wide range of high-level perform-
ance metrics on both core types for all benchmarks in the
SPEC CPU2006 and CPU2000 suites. In addition, from
the information collected we identified coarse EF phases in
the various benchmarks. To obtain an estimation model for
each core type, we employed additive regression [53] using
the performance and energy data collected.

Figure 15 shows the EFs predicted by the derived estima-
tion models on both core types of the ARM Juno develop-
ment board. In generating the models, we used performance
and energy data from 900 EF-phases from the SPEC CPU
benchmarks. Note that to improve the robustness of the mod-
els, we employed cross-validation; thus, each model was
repeatedly generated using part of the program phase data for
training and the other part for testing. The correlation coeffi-
cients for the estimation on the big and the small cores are
0.96 and 0.95, respectively. Note that the additive-regression
prediction engine we used [44] aids in identifying irrelevant
performance metrics for the model (low regression coeffi-
cients) and so some metrics could be discarded from the final
estimation models, thus reducing the complexity. Table 6
enumerates the set of performance metrics and associated
hardware events that the models depend upon.
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FIGURE 15. EF prediction on the big (left) and the small (right) core on the ARM Juno development board. Perfectly accurate estimations

have all points on the diagonal line.

TABLE 6. Performance metrics and associated hardware events used to predict the EF on the ARM Juno development board.

Core Hardware Events

Performance metrics

Big Instructions retired, processor cycles, L1 instruction TLB misses

Mispredicted branches speculatively executed
L2 Data cache accesses, L2 Data cache misses,
Data memory access

Instructions per cycle,

L1 instruction TLB misses per 1M instr.,
Mispredicted branches per 1K instr.,

L2 (last-level) cache accesses per 1K instr.,
L2 (last-level) cache misses per 1K instr.,
Data memory accesses per 1K retired instr.

Small
Mispredicted branches speculatively executed,
L2 Data cache misses, L2 Data cache accesses,
Conditional branches executed,

STALLS_1: Data Write operations that stall the pipeline because

the store buffer is full,

STALLS_2: Counts every cycle there is an interlock that is not
because of an Advanced SIMD or Floating-point instruction, and not
because of a load/store instruction waiting for data to calculate

the address in the AGU

Instructions retired, processor cycles, L1 data cache misses,

Instructions per cycle,

L1 data cache misses per 1K instr.,
Mispredicted branches per 1K instr.,

L2 (last-level) cache accesses per 1K instr.,
L2 (last-level) data cache misses per 1K instr.
Conditional branches executed per 1K instr.
STALLS_1 per 1K instr.,

STALLS_2 per 1K cycles

We have implemented both estimation models by means of
a PMCTrack monitoring module. Because the number of
hardware events the models depend upon exceeds the number
of hardware counters available on big and small cores (six
per-core general-purpose PMCs) of this asymmetric multicore
system, PMCTrack’s implementation needs to use event mul-
tiplexing to estimate the EF online. Because the same phase-
related issues described in Section 4.1.2 become apparent in
this context as well, we follow the same approach as that
used when estimating the SF on the QuickIA. Currently, we
are porting our kernel-level asymmetry-aware scheduling

framework (which consists of 25K lines of code, in Linux
v3.2) to a version of the Linux kernel supported by the ARM
Juno board (Linux linaro v3.10 and higher). Therefore, we
leave for future work the Linux kernel implementation of the
dynamic EF-Driven and PRIM algorithms, as well as their
evaluation on a real asymmetric system.

4.3. Cache monitoring

Intel’s CMT [20, 54] is a new feature introduced in the Intel
Xeon E5 2600 v3 product family. This feature allows an
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operating system or a Hypervisor/Virtual Machine Monitor
(VMM) to determine the current LL.C usage of the various
applications running on the platform.

At a high level, CMT works as follows. The OS or VMM
assigns a certain ID to each application/VM; this ID is
referred to as the Resource Monitoring ID (RMID). Cache
occupancy is monitored by CMT-enabled hardware on a per-
RMID basis, so the OS or the VMM can read LLC occu-
pancy for a given application/VM at any time. To make it
possible to track LLC occupancy on a per-application basis,
the processor needs to be aware of the RMID of every thread
(or virtual CPU) currently running on the system. To this
end, the hardware exposes a per-core privileged register to
store the RMID associated with the thread currently running
on it. The OS is in charge of updating per-core RMID regis-
ters when context switches take place.

Because the number of RMIDs available is limited by the
hardware implementation (56 on our experimental platform),
the OS must be equipped with a carefully crafted RMID
allocation policy. Specifically, the OS must avoid assigning
any RMID freed up by a recently terminated application to a
new application, since stale cache lines belonging to the for-
mer could still remain in the LLC and therefore be
accounted to the occupancy of the incoming application. We
implemented the necessary OS support for Intel CMT using
a PMCTrack monitoring module. In our implementation, we
explored three different RMID-allocation policies: FIFO,
LIFO and random. Clearly, the FIFO policy constitutes the
best choice; the other two (especially LIFO) are subject to
the aforementioned issue.

The perf events subsystem has been recently augmented to
support Intel-CMT. Notably, the PMCTrack’s implementation
exhibits some important advantages over perf’s implementa-
tion. First, it uses <500 lines of code against the 1500 lines
used by the perf patch for the Linux kernel [55]. More
importantly, perf event’s implementation entails making
changes to seven different source files from the Linux kernel,
whereas our implementation requires adding a new file to
PMCTrack’s sources, and changing another source file to
register the new monitoring module. Second, our implementa-
tion is in a kernel loadable module rather than in the kernel
itself, which greatly simplified the development process.
Third, because Intel-CMT support is encapsulated in a moni-
toring module, any shared-resource contention-aware schedul-
ing policy implemented in the Linux kernel could easily
retrieve an application’s LLC usage (via PMCTrack’s kernel
API) and perform effective thread-to-core mappings [54]. At
the same time, the monitoring module exposes the LLC usage
as a virtual counter, so the user can also collect LLC utiliza-
tion via PMCTrack’s userland tools.

To validate PMCTrack’s support for Intel-CMT, we col-
lected the LLC occupancy of several multiprogram workloads
using both PMCTrack and perf. In order to do so, we used a
very recent version of the Linux kernel (v4.1.5) equipped

TABLE 7. Multi-application workloads.

Workload Benchmarks

mix 1 ilbdc(4), swim(4)

mix2 applu331(4), swim(4)

mix3 applu331(4), ilbdc(4)

mix4 raytrace(4), streamcluster(4)
mix5 raytrace(4), x264(4)

mix6 streamcluster(4), x264(4)

mix7 swim(4), x264(4)

mix8 applu331(4), streamcluster(4)
mix9 ilbdc(4), streamcluster(4)
mix10 swim(4), 1bm, mcf

mix11 ilbdc(4), 1bm, mcf

mix12 applu331(4), lbm, mcf

with the Intel-CMT patch for perf.’ In our validation analysis,
we built several multiprogram workloads consisting of paral-
lel and sequential programs from the SPEC CPU2006, SPEC
OMP and PARSEC suites. Table 7 shows the 12 multi-
programmed workloads used for the analysis. For multi-
threaded applications, the number in parentheses by each
program’s name represents the number of threads it runs
with. To carry out the experiments, we employed a 14-core
‘Haswell-EP* Xeon ES5-2695 v3 processor operating at
2.3 GHz, and featuring a 35 MB last-level (L3) cache.

Figure 16 shows the per-application average LLC occu-
pancy for the various workloads. For each mix we illustrate
the results reported using both PMCTrack’s implementation
and perf’s implementation. Clearly, the figure reveals that
both tools report almost exactly the same LLC occupancy
values across the board. As is evident, some applications,
such as the swim SPEC OMP parallel program, use a great
portion of the LLC (65-95%) when running concurrently
with sequential applications or with another multithreaded
SPEC OMP or PARSEC programs. Conversely, other parallel
programs, such as ilbdc from the SPEC OMP suite, typically
occupy a much smaller portion of the L3 cache regardless of
the co-runner application.

We should also highlight that the TBS feature of
PMCTrack makes it possible to monitor the cache occupancy
over time for the various applications in the workload.
Figure 17 shows the per-application LLC usage for a work-
load featuring two SPEC CPU2006 (sequential) applications
and a multithreaded program from the SPEC OMP suite. As
is evident, varying cache distributions can be observed as
applications go through different program phases.

4.3.1. MRCs online generation
As an interesting application of PMCTrack and CMT, we
now introduce a technique to generate MRCs online. The

"This support was first introduced in the Linux kernel v4.1.
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MRC reports an application’s cache occupancy on a given

cache level (usually the LLC) vs. a certain related perform-

ance metric, such as the number of Misses Per Kilo

Instructions (MPKI). MRCs can be employed for different

purposes, such as to efficiently distribute a shared cache
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among threads [56,57] or to adapt the cache size to reduce
energy consumption [58]. Several mechanisms have been
proposed for building these curves [56,57,59,60], but they all
pose different limitations, such as requiring hardware support
or relying on code instrumentation.

As a case study of PMCTrack, we propose an online tech-
nique that leverages Intel’s CMT to generate the MRCs of
co-running applications. It is inspired by a previous mechan-
ism introduced in [61]. Overall, the technique works as fol-
lows. By using PMCTrack we periodically gather the MPKI
and the LLC occupancy of the co-running applications, thus
obtaining different discrete MRC points. Then, when
enough points have been collected, we apply regression ana-
lysis to obtain the whole MRCs for the applications. Note,
however, that when several applications share a cache, they
usually reach an equilibrium state in the distribution of the
cache. To obtain points in the whole range of cache sizes,
we slow down co-runner applications by applying duty-
cycle modulation techniques to the cores where they run.
This allows other applications to increase their occupancy,
which in turn, makes it possible for us to explore different
MPKI values for the whole cache size range. Figure 18 illus-
trates two examples of curves obtained with this technique.
The MRC for the Ibm application shows a steep MPKI fall
for small cache occupancy values and then it saturates from
a certain cache size point on. The MRC for the omnetpp pro-
gram, in contrast, shows a linear MPKI drop for the whole
range of cache sizes.

As future work we plan to evaluate our MRC generation
mechanism in the context of asymmetric multicore systems.
In this scenario, perturbations of the equilibrium state occur
naturally; when a thread is mapped to a big core it usually
makes faster progress and increases its cache access rate. This
leads to increased pressure on the LLC, thus affecting the
LLC occupancy. Furthermore, to aid in generating MRCs, we
plan to use another feature recently introduced on Intel pro-
cessors and related to CMT, namely Cache Allocation
Technology [21]. This feature allows the OS to dynamically
specify the amount of cache space into which an application
can fill. The system software could periodically vary the

15
10
5
0 '
0 10 20 30
Cache Occupancy (MB)

FIGURE 18. MRCs for Ibm (a) and omnetpp (b) applications.
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per-application maximum LLC allocation to monitor the
MPKI for different cache size configurations. This would
allow us to obtain MRC points over the whole cache size
range for the co-running applications.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed PMCTrack, a tool that
enables the OS scheduler to leverage PMC information in
decision making. By using PMCTrack’s monitoring module
abstraction, the implementation of any scheduling policy
that relies on per-thread PMC data to function remains fully
platform independent. Not only do monitoring modules pro-
vide the OS scheduler with PMC-related metrics but they
also have the ability to feed it with virtually any insightful
information exposed by modern hardware and not necessar-
ily provided via PMCs, such as the LLC occupancy or the
energy /power consumption. Despite being designed specif-
ically to aid the OS kernel in runtime optimizations,
PMCTrack is also equipped with a set of userland tools that
enable the gathering of hardware performance monitoring
information from userspace in various ways. These tools
may also assist kernel developers during the scheduler’s
development process (as demonstrated in Section 4.1.2) and
provide valuable information to researchers when it comes
to analyzing the potential benefits of novel scheduling pol-
icies (as shown in Section 4.2.2).

We have illustrated the effectiveness and flexibility of
PMCTrack on a wide range of processor models and architec-
tures by means of three case studies. The first case study
showcases the potential of PMCTrack’s monitoring modules
in assisting scheduling algorithms for asymmetric single-ISA
multicore systems (AMPs) implemented in the Linux kernel.
Notably, PMCTrack’s monitoring modules enabled us to
extensively evaluate (on real asymmetric hardware) PMC-
based asymmetry-aware schedulers that were evaluated before
using simulators [17] or using emulated asymmetric hardware
[10]. More importantly, the implementation of these modules
heavily relies on PMCTrack’s in-kernel explicit event-
multiplexing capabilities, which are not available in
userspace-oriented PMC tools, such as perf [18]. This cap-
ability is also leveraged in the second case study (EF estima-
tion), which focuses on power and energy consumption
measurement on high-performance multicore systems and
embedded boards featuring ARM big.LITTLE processors.
Finally, the third case study showcases our proposed scheme
for building application MRCs on a real system by leveraging
the cache-usage monitoring support available in modern Intel
processors [20].

PMCTrack’s source code has been released [62] under
GPLv2. Additional information on PMCTrack can be found
on PMCTrack’s official website [28]. We are currently work-
ing on a port of PMCTrack for the Android OS, and have

plans to augment the tool with support for additional CPU
architectures. As for future work, we plan to extensively
evaluate resource-contention-aware and energy-cognizant OS
scheduling algorithms that leverage PMCTrack information
on cache occupancy or power consumption.

ACKNOWLEDGEMENTS

We would like to thank David Koufaty (Circuits and Systems
Research Lab at Intel) and Alexandra Fedorova (Simon
Fraser University) for enabling us to experiment with the
QuickIA prototype system.

FUNDING

EU (FEDER) and the Spanish MINECO (grants TIN2012-
32180, TIN 2015-65277-R); HIPEAC-4 European Network
of Excellence; University of Costa Rica and the Costa Rican
Ministry of Science and Technology MICIT and CONICIT.

REFERENCES

[1] Weaver, V. (2013) Linux Perfevents Features and Overhead. In
Proceeding of Int. Workshop on Performance Analysis of
Workload Optimized Systems, Austin, TX, 21 April, pp. 80-80.
IEEE Computer Society Press, Los Alamitos, CA.

[2] Jarp, S., Jurga, R. and Nowak, A. (2008) Perfmon2: a leap for-
ward in performance monitoring. J. Phys.: Conf. Ser., 119,
042017.

[3] Cohen, W. (2004) Tuning programs with oprofile. Wide Open
Mag., 1, 53-62.

[4] Knauerhase, R., Brett, P., Hohlt, B., Li, T. and Hahn, S. (2008)

Using OS observations to improve performance in multicore

systems. IEEE Micro, 28, 54-66.

Spiliopoulos, V., Kaxiras, S. and Keramidas, G. (2011) Green

Governors: A Framework for Continuously Adaptive DVFS. In

Proc. IGCC 11, Orlando, FL, July 25-28, pp. 1-8. IEEE

Computer Society Press, Los Alamitos, CA.

Zhuravlev, S., Blagodurov, S. and Fedorova, A. (2010)

Addressing Cache Contention in Multicore Processors Via

Scheduling. In Proc. ASPLOS 10, Pittsbourgh, PA, March 13—

17, pp. 129-142. ACM, New York.

Merkel, A., Stoess, J. and Bellosa, F. (2010) Resource-

Conscious Scheduling for Energy Efficiency on Multicore

Processors. In Proc. EuroSys 10, Paris, France, April 13-16,

pp- 153-166. ACM, New York.

Zhuravlev, S., Blagodurov, S. and Fedorova, A. (2010) Akula:

A Toolset for Experimenting and Developing Thread

Placement Algorithms on Multicore Systems. In Proc. PACT

10, Vienna, Austria, September 11-15, pp. 249-260. ACM,

New York.

Koufaty, D., Reddy, D. and Hahn, S. (2010) Bias Schedu-

ling in Heterogeneous Multi-core Architectures. In Proc.

[5

—

[6

—

[7

—

[8

—_—

9

—

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COoMPUTER JOURNAL, VoL. 60 No. 1, 2017




84 J. C. SAEZ et al.

Eurosys 10, Paris, France, April 13-16, pp. 125-138. ACM,
New York.

[10] Saez, J.C., Fedorova, A., Koufaty, D. and Prieto, M. (2012)
Leveraging core specialization via OS scheduling to improve
performance on asymmetric multicore systems. ACM Trans.
Comput. Syst., 30, 6:1-6:38.

[11] Petrucci, V., Loques, O., Mossé, D., Melhem, R., Gazala, N.
A. and Gobriel, S. (2015) Energy-efficient thread assignment
optimization for heterogeneous multicore systems. ACM Trans.
Embed. Comput. Syst., 14, 15:1-15:26.

[12] Saez, J.C., Pousa, A., Castro, F., Chaver, D. and Prieto-Matias,
M. (2015) ACFS: A Completely Fair Scheduler for
Asymmetric Single-ISA Multicore Systems. In Proc. ACM
SAC 15, Salamanca, Spain, April 13-17, pp. 2027-2032.
ACM, New York.

[13] Ghiasi, S., Keller, T., and Rawson, F. (2005) Scheduling for
Heterogeneous Processors in Server Systems. In Proc. Comput.
Frontiers 05, Como, Italy, May 16-18, pp. 199-210. ACM,
New York.

[14] Singh, K., Bhadauria, M. and McKee, S.A. (2009) Real time
power estimation and thread scheduling via performance coun-
ters. SSIGARCH Comput. Archit. News, 37, 46-55.

[15] Saez, J.C., Prieto, M., Fedorova, A., and Blagodurov, S. (2010)
A Comprehensive Scheduler for Asymmetric Multicore
Systems. In Proc. Eurosys 10, Paris, France, April 13-16, pp.
139-152. ACM, New York.

[16] Li, T., Brett, P., Knauerhase, R. and Koufaty, D. (2010)
Operating System Support for Overlapping-ISA Heterogeneous
Multi-Core Architectures. In Proc. HPCA 10, Bangalore, India,
January 9-14, pp. 1-12. IEEE Computer Society Press, Los
Alamitos, CA.

[17] Van Craeynest, K., Akram, S., Heirman, W., Jaleel, A. and
Eeckhout, L. (2013) Fairness-Aware Scheduling on Single-ISA
Heterogeneous Multi-Cores. In Proc. PACT 13, Edinburgh,
Scotland, September 7-11, pp. 177-187. ACM, New York.

[18] Perf (2015) Perf wiki tutorial on perf. https://perf.wiki.kernel.
org/index.php (accessed January 20, 2015).

[19] Lm-sensors (2015) Hardware monitoring by Im-sensors.
http: //www.Im-sensors.org/ (accessed March 02, 2015).

[20] Nguyen, K. (2014) Intel’s cache monitoring technology
software-visible interfaces. https://software.intel.com/en-us/
blogs/2014/12/11 /intel-s-cache-monitoring-technology-software-
visible-interfaces (accessed February 10, 2015).

[21] Intel. Intel ® 64 and IA-32 architectures software developer’s
manual volumes 3A and 3B: system programming guide.
http: / /www.intel.com/products/processor/manuals (accessed
January 15, 2015).

[22] ARM. ARM architecture reference manual. armv7-a and
armv7-r edition. http://infocenter.arm.com/ (accessed January
15, 2015).

[23] Browne, S., Dongarra, J., Garner, N., Ho, G. and Mucci, P.
(2000) A portable programming interface for performance
evaluation on modern processors. Int. J. High Perform.
Comput. Appl., 14, 189-204.

[24] Treibig, J., Hager, G., and Wellein, G. (2010) LIKWID: A
Lightweight Performance-Oriented Tool Suite for x86

Multicore Environments. In Proc. ICPPW 10, San Diego, CA,
September 13-16, pp. 207-216. IEEE Computer Society,
Washington, DC, USA.

[25] Tanica, L., Ilic, A., Tomas, P. and Sosusa, L. (2014)
Schedmon: A Performance and Energy Monitoring Tool for
Modern Multi-Cores. In Proc. Euro-Par 14: Paral. Process.
Workshops, Porto, Portugal, August 25-26, pp. 230-241.
Springer, Berlin.

[26] ARM (2014). CoreTile express development board. http://
www.arm.com/products/tools /development-boards / versatile-
express /coretile-express.php (accessed March 02, 2015).

[27] ARM (2014) ARM Juno development board. http://www.arm.
com/products/tools /development-boards /versatile-express /juno-
arm-development-platform.php (accessed November 16, 2015).

[28] PMCTrack. Project official website. http://pmctrack.dacya.
ucm.es/.

[29] PAPL PAPI-C overview. http://icl.cs.utk.edu/projects/papi/
wiki/PAPIC:Overview (accessed January 30, 2015).

[30] Chen, Q. and Guo, M. (2014) Adaptive workload-aware task
scheduling for single-ISA asymmetric multicore architectures.
ACM Trans. Archit. Code Optim., 11, 8:1-8:25.

[31] Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., and
Farkas, K.I. (2004) Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance. In
Proc. ISCA 04, Munich, Germany, June 19-23, pp. 64-75.
IEEE Computer Society, Washington, DC, USA.

[32] ARM. Benefits of the big.LITTLE Architecture. http://www.
arm.com/files/downloads/Benefits_of_the_big. LITTLE
architecture.pdf (accessed January 10, 2015).

[33] Chitlur, N. er al (2012) QuickIA: Exploring Heterogeneous
Architectures on Real Prototypes. In Proc. HPCA 12, New
Orleans, LA, February 25-29, pp. 1-8. IEEE Computer
Society, Washington, DC, USA.

[34] Shelepov, D., Saez, J.C., Jeffery, S., Fedorova, A., Perez, N.,
Huang, Z.F., Blagodurov, S. and Kumar, V. (2009) HASS: a
scheduler for heterogeneous multicore systems. ACM Oper.
Syst. Rev., 43, 66-75.

[35] Becchi, M. and Crowley, P. (2006) Dynamic Thread Assignment
on Heterogeneous Multiprocessor Architectures. In Proc. CF 06,
Ischia, Italy, May 2-5, pp. 29-40. ACM, New York.

[36] Annavaram, M., Grochowski, E. and Shen, J. (2005)
Mitigating Amdahl’s Law through EPI Throttling. In Proc.
ISCA 05, Wisconsin, USA, June 4-8, pp. 298-309. IEEE
Computer Society, Washington, DC, USA.

[37] Hill, M.D. and Marty, M.R. (2008) Amdahl’s Law in the
Multicore Era. IEEE Comput., 41, 33-38.

[38] Saez, J.C., Pousa, A., Castro, F., Chaver, D. and Prieto-Matias,
M. (2014) Exploring the throughput-fairness trade-off on asym-
metric multicore systems. In Proc. Euro-Par 14: Parall.
Process. Workshops, Porto, Portugal, August 25-26, pp. 326—
337. Springer, Berlin.

[39] Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P. and
Emer, J. (2012) Scheduling Heterogeneous Multi-Cores
Through Performance Impact Estimation (PIE). In Proc. ISCA
12, Portland, OR, June 9-13, pp. 213-224. IEEE Computer
Society Washington, DC, USA.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE CoMPUTER JOURNAL, VoL. 60 No. 1, 2017



https://perf.wiki.kernel.org/index.php
https://perf.wiki.kernel.org/index.php
http://www.lm-sensors.org/
https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software-visible-interfaces
https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software-visible-interfaces
https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software-visible-interfaces
http://www.intel.com/products/processor/manuals
http://infocenter.arm.com/
http://www.arm.com/products/tools/development-boards/versatile-express/coretile-express.php
http://www.arm.com/products/tools/development-boards/versatile-express/coretile-express.php
http://www.arm.com/products/tools/development-boards/versatile-express/coretile-express.php
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://pmctrack.dacya.ucm.es/
http://pmctrack.dacya.ucm.es/
http://icl.cs.utk.edu/projects/papi/wiki/PAPIC:Overview
http://icl.cs.utk.edu/projects/papi/wiki/PAPIC:Overview
http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architecture.pdf
http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architecture.pdf
http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architecture.pdf

PMCTRACK: DELIVERING PERFORMANCE MONITORING COUNTER SUPPORT TO THE OS SCHEDULER 85

[40] Pricopi, M., Muthukaruppan, T.S., Venkataramani, V., Mitra,
T. and Vishin, S. (2013) Power-Performance Modeling on
Asymmetric Multi-Cores. In Proc. CASES 13, Montreal,
Canada, September 29-October 4, pp. 15:1-15:10. IEEE Press
Piscataway, NJ, USA.

[41] Saez, J.C., Shelepov, D., Fedorova, A. and Prieto, M. (2011)
Leveraging workload diversity through OS scheduling to maxi-
mize performance on single-ISA heterogeneous multicore sys-
tems. J. Parallel Distrib. Comput., 71, 114-131.

[42] Joao, J.A., Suleman, M.A., Mutlu, O., and Patt, Y.N. (2013)
Utility-Based Acceleration of Multithreaded Applications on
Asymmetric CMPs. In Proc. ISCA 13, Tel-Aviv, Israel, June
23-27, pp. 154-165. ACM, New York.

[43] Petrucci, V., Loques, O. and Mossé, D. (2012) Lucky
Scheduling for Energy-Efficient Heterogeneous Multi-Core
Systems. In Proc. USENIX HotPower 12, Hollywood, CA,
October 7, pp. 7-7. USENIX Association Berkeley, CA, USA.

[44] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.
and Witten, L.H. (2009) The WEKA data mining software: an
update. SIGKDD Explor. Newsl., 11, 10-18.

[45] Van der Pas, R. (2005) The OMPlab on Sun Systems. In Proc.
IWOMP’05, Eugene, OR, (accessed 1-4 June).

[46] Gabor, R., Weiss, S. and Mendelson, A. (2006) Fairness and
Throughput in Switch on Event Multithreading. In Proc.
MICRO 06, Orlando, FL, December 9-13, pp. 149-160. IEEE
Computer Society Washington, DC, USA.

[47] Mutlu, O. and Moscibroda, T. (2007) Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors. In Proc. MICRO
‘07, Chicago, IL, December 1-5, pp. 146-160. IEEE Computer
Society Washington, DC, USA.

[48] Ebrahimi, E., Lee, C.J., Mutlu, O. and Patt, Y.N. (2010)
Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems. In Proc. ASPLOS 10, Pittsburgh, PA, March 13-17,
pp. 335-346. ACM, New York.

[49] Zhang, Y., Duan, L., Li, B., Peng, L. and Sadagopan, S. (2015)
Cross-architecture prediction based scheduling for energy effi-
cient execution on single-ISA  heterogeneous chip-
multiprocessors. Microprocess. Microsyst., 39, 271-285.

[50] Horowitz, M., Indermaur, T. and Gonzalez, R. (1994) Low-
Power Digital Design. In Proc. IEEE Symposium on Low
Power Electronics, San Diego, CA, October 10-12, pp. 8-11.

[51] Gonzalez, R. and Horowitz, M. (1996) Energy dissipation in
general purpose microprocessors. IEEE J. Solid-State Circuit.,
31, 1277-1284.

[52] Isci, C. and Martonosi, M. (2003) Runtime Power Monitoring
in High-End Processors: Methodology and Empirical Data. In
Proc. MICRO 03, San Diego, CA, December 3-5, pp. 93—104.
IEEE Computer Society Washington, DC, USA.

[53] Friedman, J.H. (2002) Stochastic gradient boosting. Comput.
Stat. Data Anal., 38, 367-378.

[54] Nguyen, K. (2014) Benefits of Intel(R) cache monitoring tech-
nology in the Intel(R) Xeon(TM) processor E5 v3 family.
https:/ /software.intel.com/en-us/blogs /2014 /06 /18 /benefit-
of-cache-monitoring (accessed February 10, 2015).

[55] Flemming, M. (2014) perf: Intel cache QoS monitoring support.
https://lkml.org/lkml/2015/1/23 /590 (accessed February 05,
2015).

[56] Qureshi, M.K. and Patt, Y.N. (2006) Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches. In Proc. MICRO 06,
Orlando, FL, December 9-13, pp. 423—432. IEEE Computer
Society Washington, DC, USA.

[57] Tam, D.K., Azimi, R., Soares, L.B., and Stumm, M. (2009)
RapidMRC: Approximating L2 Miss Rate Curves on
Commodity Systems for Online Optimizations. Proc.
ASPLOS 09, Washington, DC, March 7-11, pp. 121-132.
ACM, New York.

[58] Sen, R. and Wood, D.A. (2013) Reuse-Based Online Models
for Caches. In Proc. SIGMETRICS 13, Pittsburgh, PA, June
17-21, pp. 279-292. ACM, New York.

[59] Berg, E. and Hagersten, E. (2004) Statcache: A Probabilistic
Approach to Efficient and Accurate Data Locality Anpalysis.
In Proc. ISPASS 04, Austin, TX, March 10-12, pp. 20-27.
IEEE Computer Society, Washington, DC, USA.

[60] Guo, F. and Solihin, Y. (2006) An Analytical Model for
Cache Replacement Policy Performance. In Proc. SIG-
METRICS 06, Saint Malo, France, June 26-30, pp. 228-239.
ACM, New York.

[61] West, R., Zaroo, P., Waldspurger, C.A. and Zhang, X. (2010)
Online cache modeling for commodity multicore processors.
SIGOPS Oper. Syst. Rev., 44, 19-29.

[62] PMCTrack (2015) Source code repository at Github. https://
github.com/jcsaezal /pmetrack (accessed December 10, 2015).

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COoMPUTER JOURNAL, VoL. 60 No. 1, 2017



https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://lkml.org/lkml/2015/1/23/590
https://github.com/jcsaezal/pmctrack
https://github.com/jcsaezal/pmctrack

	PMCTrack: Delivering Performance Monitoring Counter Support to the OS Scheduler
	1. Introduction
	2. Background and Related work
	3. Design
	3.1. Architecture
	3.2. Usage modes
	3.2.1. Scheduler mode
	3.2.2. Using PMCTrack from user space


	4. Case Studies
	4.1. Scheduling on asymmetric single-ISA multicore systems
	4.1.1. Scheduling algorithms
	4.1.2. Experimental setup and determining SFs online
	4.1.3. Experimental evaluation

	4.2. Measuring power and energy consumption
	4.2.1. Power consumption on different processor models
	4.2.2. Reducing the EDP on asymmetric multicore systems

	4.3. Cache monitoring
	4.3.1. MRCs online generation


	5. Conclusions and Future Work
	Acknowledgements
	Funding
	References


