
J Supercomput
DOI 10.1007/s11227-015-1572-z

Synthetic aperture radar signal processing in parallel
using GPGPU

Mónica Denham1,2 · Javier Areta1,2 ·
Fernando G. Tinetti3,4

© Springer Science+Business Media New York 2015

Abstract In this work an efficient parallel implementation of the Chirp Scaling Algo-
rithm for Synthetic Aperture Radar processing is presented. The architecture selected
for the implementation is the general purpose graphic processing unit, as it is well
suited for scientific applications and real-time implementation of algorithms. The
analysis of a first implementation led to several improvements which resulted in an
important speed-up. Details of the issues found are explained, and the performance
improvement of their correction explicitly shown.
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1 Introduction

Synthetic aperture radar (SAR) [4,16,19,20] is a mature technology that combines
radar and signal processing to enable high-resolution imaging of the earth’s surface.
The principle of operation is based on the coherency of the different radar images
obtained during a known trajectory—usually linear and constant speed—and the fact
that the same ground point captured at different trajectory points contains different and
predictable Doppler shifts. This Doppler information is embedded in the phase, which
has to be properly processed to obtain a higher resolution image, which turns out to be
independent of the range and proportional to the antenna aperture. Measurements are
usually arranged in two-dimensional arrays, matrices, that contain the sampled echoes
of the signals emitted at a fixed point in space in columns while rows correspond to
sampled echoes taken at other points in space [4,9]. SAR signal memory is shown in
Fig. 1a while Fig. 1b shows the memory usage structure. Due to the time constants
involved, range echoes are sampled at a rate of millions per second (MHz) while
spatial—or azimuth—samples are taken in the order of seconds, usually referred to as
fast and slow time dimensions respectively.

The obtained datamatrix, usually deemed raw data, contains in the order ofmillions
of elements. Processing this data to obtain a focused image takes a considerable amount
of computing load and consequentlymaynot be suited for real-timeoperation under the
usual paradigm of sequential programming. Due to the nature of the problem it can be
implemented properly using a parallel scheme. In this regard, general purpose graphic
processing unit (GPGPU) [7,12] is a powerful platform that allows the implementation
of complex processing algorithms and is very well suited for this application [7,10].

One of the most important applications of SAR signal processing is the generation
of high-resolution images of the earth’s surface. These images are very useful for

Fig. 1 a SAR radar movement and two dimensional signal formation [4]. b Two-dimensional matrix (raw
data): each received echo is stored in a matrix row while matrix columns are formed by echoes samples [4]
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cartography, remote sensing, hydrology, agronomy, earth change detection, study of
ocean currents, etc. All these applications can benefit from real-time imaging.

There are several known algorithms for SAR image focusing, range Doppler
algorithm (RDA), chirp scaling algorithm (CSA),ω-k algorithm, back-projection algo-
rithm and others [4,9,20]. Since linearity is assumed in most of these models, the vast
majority use both frequency and spatial coordinates in the processing stages. The dis-
crete Fourier transform (DFT) is used for coordinate transformation since it has very
efficient parallel implementations [8].

SAR image formation from raw data involves application of parallelizable oper-
ations; thus processing can be done efficiently using this programming paradigm.
ProgrammableGPUhas evolved into a highly parallel,multi-thread,multi-core proces-
sorwith tremendous computational power and very highmemory bandwidth compared
to CPU [22], and is very well suited for this application.

In [22] three main high-resolution SAR processing algorithms are listed, RDA,
CSA and ω-k. Focus is made in CSA for real-time systems due to its characteristics,
less computation, easy parallelization and simple control flow, the main reason being
that CSA requires only two simple phasemultiplication operations to correct range cell
migration (RCMC) while RDA and ω-k need interpolation—a more computational
intensive operation—for this correction. The authors propose a real-time SAR imaging
system which processes SAR raw data on the fly for the case that the image does not
fit in GPU memory. Received data are thus divided into packets that fit the available
memory. Each packet is processed in GPU applying CSA; then the focused partial
image is spliced with previously focused packages in CPU involving a complex flow
control. In order to achieve good GPU performance they use the CUFFT library for
solving FFTs and IFFTs and perform transpose operations of the data matrix on shared
memory. No other optimization is proposed to improve performance; focus is made
in the sequential splicing process.

Thework ofKraja et al. [13] states that SAR image formation applications can profit
much more from the architecture and the capabilities of many-core GPUs than from
modern multi-core CPUs. The CPUs are bandwidth constrained, so it is more difficult
to extract all theoretical FLOPS from them. In turn, GPU FLOPS to bandwidth ratio is
much more favourable. This work proposes a space-based architecture where having
GPUs on-board would speed up applications which perform a significant number of
floating point operations and have regular access to memory. Limitation of GPUs are
memory transfers, due to limited bandwidth in the PCI express connection and the
limitation in GPU board memory. These issues become relevant for applications with
large data sets where data have to be partitioned to be processed one part at a time. To
compensate for low PCI express bandwidth the authors propose overlapping transfers
with computation. For benchmarking purposes they use a part of the scalable synthetic
complex application SSCA#3 benchmark, where SAR image reconstruction is part of
the benchmark. Theyworkwith large imageswhere data have to be partitioned. For this
purpose they use 2D tiles of 32×32 (due tomaximumblock size of 1024 threads). Each
data block is processed by a thread block. To exploit the fine grain parallelism on the
GPU having limited memory available they present different application approaches.
Using multiple GPUs, they try to distribute the work for the reconstruction of the same
image among two devices. In this caseGPUs communication is needed,which requires
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using the CPU, thus slowing down the overall processing. To avoid communication
overhead, they implemented a pipelined version, in which separate images are being
reconstructed on separate GPU-devices, that showed the best performance. This work
focuses on data partitioning in the case of raw data exceeding the GPU memory
capacity; code optimization is not their goal.

Bhaumik and Nagendra [3] present GPU implementations of RDA and CSA algo-
rithms. A coarse description of the implementations steps for their parallelization is
presented but the fine details are not mentioned. Code optimization is not considered.
In particular they do not tackle the fact that branch divergences may cause inactive
threads due to SIMD warp thread execution. Global and shared memory features and
use of registers are mentioned as optimization techniques, although they are mainly
direct consequences of GPU architecture.

Rubin et al. [17] demonstrate GPU acceleration of SAR/ISAR processing. Using
GPUs they greatly improve processing times of backprojection-based SAR/ISAR
imaging. This work exposes weakness and strengths of main algorithms for SAR raw
data focusing: RDA, CSA, backprojection algorithm (BPA), time domain correlation
(TDC), etc. CSA is recognized as computationally efficient, but can limit scene size
and image resolution. This work is based in the usage of a third party parallelization
tool, combiningMATLAB and Jacket. Jacket serves as nearly transparent middleware,
allowing execution ofMATLABcode onCUDA-capableNVIDIAGPUs directly from
the MATLAB development environment. The use of this proprietary library does not
allow for the fine tuning and optimization of the code. One can conclude that paral-
lelization is a valuable tool for this problem, but the question of whether there is more
room for improvement when tailor made code is used is not tackled.

In [5] an implementation of RDA for GPUs was proposed. Starting from a non opti-
mized parallel implementation of the original algorithm optimizations were proposed,
implemented and tested, based of detailed profiling and detection of penalties.

This related work encouraged us to pursue exhaustive and systematic parallel code
optimization of CSA for SAR image focusing. Our work is based on the application
of successive optimization steps, driven by performance/profiling metrics. An initial
naive parallel CSA implementation was proposed and profiling tools were used to
analyse algorithm efficiency and detecting bottlenecks. Once detected, optimization
schemes were proposed, implemented and tested. An exhaustive study of performance
ofCSAparallel solutions is done resulting in an efficient parallel implementation. CSA
implementation is carried out based on Moreira et al.’s [14] work.

The remainder of the paper is organized as follows: Section 2 is a review of CSA
and the main operations are presented. Section 3 shows a first implementation of CSA
in CUDA C. Sections 4 and 5 show the two proposed optimization phases and their
results. Section 6 shows a detailed performance evaluation using nvprof, metrics and
events. Section 7 shows additional tests which demonstrate application scalability
when different GPU are used. Finally, Sect. 8 presents the conclusions.

2 Parallel chirp scaling algorithm

Processing raw SAR data consists of coherently combining the information of all
received signals to form (focus) the image.
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Fig. 2 Block diagram of CSA

CSA is based on modulation properties of chirp (linear FM) signals [4]. Chirp
waveforms are frequently used by Radar systems as they can achieve high resolution.
Chirp-like signals also appear naturally in the azimuth direction due to the approxi-
mately linear Doppler modulation resulting from radar platform movement.

CSA performs signal compression and correction of range cell migration (RCM)
using matched filters and focuses the data over range and azimuth dimensions. These
matched filters are implemented using so-called phase functions [14]; these are pre-
calculated chirp functions based on the scenario parameters. In this algorithm, total
RCM is divided into two parts: a “bulk RCM” and a “differential RCM”. The bulk
RCM is the same for all targets and is modelled as a single tone. Differential RCM is
the remaining part, it is range dependent and smaller than bulk RCM; it is modelled
as a chirp function. Each part is then corrected by multiplying the phase function to
the signal [4,14]. Figure 2 shows the main steps of CSA.

Appropriate matched filters (phase functions) are used in different domains per-
forming range and azimuth compression aswell as RCMcorrections. In each operation
two-dimensional matrices are initialized with the corresponding phases, see [14] for
details. Considering that the data size is n, the phase function matrix initialization
requires n2 operations.

Table 1 depicts the main operations of the CSA presented in Fig. 2. The parallel
implementation of the algorithm focuses on (a) phase function generation, (b) basic
matrix operations and (c) Fourier transforms. The first implementation of the algorithm
will serve as a basis to find bottlenecks and propose performance improvements.

3 Initial implementation

A first, not fully optimized, version of the CSA was implemented based on an
own sequential implementation, taking into account several details that were a-priori
considered to be relevant to achieve good parallel performance. The sequential imple-
mentation was also carefully crafted although its full optimization was not the goal of
this work.

Synthetic raw data were used for testing the algorithms developed. Raw data were
obtained from a SAR simulator developed in [2]. The test platform used has the
characteristics shown in Table 2.

The radar parameters used for the simulations are exposure time of 3.4 s (the
objective was in the illuminated area for 3.4 s), 600 Hz Pulse Repetition Frequency
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Table 1 Chirp scaling algorithm

Function Functionality Pseudocode

Azimuth FFT Time → frequency azimuth
direction

A ← fftshift(A)

A ← transpose(A)

A ← fft(A)

A ← transpose(A)

A ← fftshift(A)

1st Phase function Differential range cell
migration correction

H1 ← matrix initialization

Ai, j ← Ai, j ∗ H1i, j

Range FFT Time → frequency range
direction

A ← fftshift(A)

A ← fft(A)

A ← fftshift(A)

2nd Phase function Range compression, SRC
and bulk RCM correction

H2 ← matrix initialization

Ai, j ← Ai, j ∗ H2i, j

Range IFFT Frequency → time range
direction

A ← fftshift(A)

A ← ifft(A)

A ← fftshift(A)

3th Phase function Extra phase compression H3 ← matrix initialization

Ai, j ← Ai, j ∗ H3i, j

4th Phase function Azimuth compression H4 ← matrix initialization

Ai, j ← Ai, j ∗ H4i, j

Azimuth IFFT Frequency → time azimuth
direction

A ← fftshift(A)

A ← transpose(A)

A ← ifft(A)

A ← transpose(A)

A ← fftshift(A)

Table 2 Hardware architecture
characteristics CPU Intel Core i5-2500K @ 3.30 GHz

OS Ubuntu 12.04LTS/LINUX

GPU NVIDIA GeForce GTX 570. 480 CUDA
Cores

Memory 1280 MB

Processing power 1504.4 GFLOPs (single precision)

CUDA Version 5.5 (CUDA compiler version V5.5.0)
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(PRF), sampling rate of 120MHz. Raw data are stored in matrices of 2000 rows (range
echoes) × 4000 columns (spatial samples).

Since this work is focused on achieving high-performance CSA for GPUs the
imaging quality is simply measured as the accumulated pixel difference between the
parallel implementation and the sequential implementation. Algorithms are imple-
mented using single precision data types. The use of double precision may improve
imaging quality but this study is not within the scope of this work.

In this initial parallel implementation of CSA several considerationswere taken into
account to obtain the highest efficiency we could, without feedback from profiling,
that is, considering good coding practices and taking into account both the kind of
operations involved and the GPU architecture. The following paragraphs describe
implementation details of our CUDA C parallel CSA.

CUDA C kernels are executed by threads in a Single Instruction Multiple Thread
way (SIMT). The programmer defines for each kernel a grid of parallel threads: threads
are arranged into blocks (1D, 2D or 3D array of threads) and blocks form a grid (1D,
2D or 3D array of blocks). The user defines the best thread configuration for each
kernel. This configuration is usually conditioned by the data structures used in the
application: thread configuration impacts GPUs core utilization and other resource
utilization. For kernels that solve matrix pointwise product, transpose, fftshifts, etc,
one thread per matrix cell is launched. For these kernels 2D thread blocks are used
and grids are configured by 2D array of blocks. Variants of optimized transpose and
fftshifts are used (these variants are presented in Sect. 5.2). Several block dimensions
were tested. At times it was seen that 1024 threads per block (maximum for current
GPUs) are not the best block size because threads consumes device resources and the
number of parallel active blocks may be reduced. For each kernel the best block size
was chosen (most of the times 512 and 1024 threads per block was used). Furthermore,
warp execution was taken into account for improving application performance. Warp
execution efficiency analysis is presented in Sect. 6.

Fast Fourier Transform (FFT) and inverse FFT (IFFT) operations are used to change
to range-Doppler domain, frequency domain or time domain. These are divide and
conquer algorithms for efficiently computing DFTs of complex or real data sets. In
this work the FFT and IFFT are solved using CUFFT library [15] and, since it is
highly optimized, there is very little room for improvement [1]. The usage of this
library implies the need to implement the fftshift operation before multiplication with
the phase functions. The fftshift function shifts the zero-frequency element of the
resulting vector to the center of the spectrum.

GPUs have a memory hierarchy that includes registers, local memory, shared mem-
ory, global, constant and texture memories. Each GPU memory has its own size,
bandwidth and latency. Optimal use of several of them depends on patterns in which
threads access application data. In order to maximize bandwidth and reduce latencies,
these memories were analysed in order to improve application performance.

Global memory was used for allocating the raw SAR signal, the focused final image
and partially processed data. That memory resides in device DRAM, for transfers
between the host and device as well as for the data input and output from kernels. It
can be accessed and modified from both the host and the device. Thread access pattern
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has to be aligned and coalesced for achieving low latencies and high bandwidth. This
will be analysed thoroughly in the following sections.

Shared memory is located on-chip; thus access is much faster than local and global
memory. Shared memory latency is roughly 100× lower than uncached global mem-
ory latency, if there are no bank conflicts between threads. Each GPU Streaming
Multiprocessor has its own shared memory. Due to shared memory dimension it is not
enough for allocating applicationmatrices. But thismemory is used for an optimization
presented later in Sect. 5.2.

Constant memory is small, just 64 KB in the device used. This memory space is
cached; as a result a read operation costs one memory read from device memory only
on a cachemiss; otherwise, it just costs one read from the constant cache (for all threads
of a half warp, reading from the constant cache is as fast as reading from a register).
This memory is read only for threads in a kernel and achieves best performance when
the accessed data are in constant cache and when all threads within a warp access
the same data. In this case the accessed data are broadcasted to every thread in the
warp, performing just one memory access. CSA raw data and processed data cannot
be allocated in constant memory due to the space limitation.

Texturememory is a cached read-onlymemory space for kernel threads. The texture
cache is optimized for 2D spatial locality, so threads of the same warp that read closely
located texture addresses will achieve best performance. This access pattern is not
present in CSA; thus this memory is not used.

Registers are the fastest memory present in GPUs, but there is a small number of
registers per kernel thread. Variables that do not fit in thread registers are allocated in
localmemory (thread privatememory). Localmemory is physically onglobalmemory;
thus there would be a penalization when trying to use excess registers.

The CSA requires operations with complex numbers. These are not implemented
in CUDA, so implementation of functions for performing these operations were made,
an issue also found in [13].

Since phase functions are constant once the operation parameters are defined, they
are initialized in CPU and transferred to device global memory. After initialization
and data transfer to GPU, the matrices are applied to the data as a point-wise product
(each phase function is applied at a specific time as is shown in Fig. 2). This is done
invoking a CUDA kernel that simply launches a thread for each matrix element, then
threadi, j calculates the element corresponding to row i and column j of the resulting
matrix

After considering these implementation details the first version (V1) of the code
was executed ten times with different data sets. The number of repetitions is low given
the low dispersion obtained, at about 1 %. The average runtime of these executions is
shown in Fig. 3. This figure also shows results of the sequential implementation and
the optimized versions. The black line shows algorithm runtime (data transfer time is
not included). Data transfer time (including raw data CPU toGPU transfer and focused
image GPU to CPU communication) is presented in red color. In order to gain clarity
y axis is logarithmic scaled.

Figure 4 is an example of the dataset used; it shows a typical image used for
generating raw data and the result of applying CSA to it.
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Fig. 3 Execution time for sequential and parallel algorithms. Y axis is logarithmically scaled

Fig. 4 CSA focused image of an airport

Runtime of V1 implementation is compared against the sequential implementation
as this is, temporarily, the only available benchmark. The improvement obtained is
definitely insufficient for such an a-priori parallelizable algorithm as CSA. This fact
leads to amore detailed analysis of the initial implementation. Table 3 shows execution
times for the main operations of CSA: FFT and IFFT of data and phase functions,
fftshift operation, matrix transpose and point-wise product.

All the functions perform faster in GPU, although speedup values are quite dis-
similar. In particular we note that both matrix transpose and fftshift operations take
more time than expected. Both routines are simple value swaps, with no operation
performed on the data (memory bound). As an extreme case, note that in the sequen-
tial implementation matrix fftshift is ten times faster than IFFT, while it is two times
slower in the parallel counterpart.
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Table 3 Execution time for
sequential and parallel
operations (in ms) and first
parallel version speedups

Operation Sequential Parallel Speedup

Matrix IFFT 299.88 2.23 134.47

Matrix FFT 217.6 2.41 90.29

Pointwise product 85.65 3.34 25.64

Matrix transpose 147.25 5.02 29.33

Matrix fftshift 28.78 4.54 6.33

Table 4 Matrix transpose
routines execution times

Algorithm Runtime (ms)

Sequential 147.25

cuBLAS 117.30

CUDA kernel 5.02

To improvematrix transpose operation performance, two functions were compared,
an own CUDA implementation and a CUBLAS library function for matrix transposi-
tion. Table 4 shows runtimes for these options.

CUBLAS is a CUDA library that implements Basic Linear Algebra Subprogram
(BLAS) operations; for each of its three levels of operations (vector–vector, vector–
matrix and matrix–matrix operations). cublasCgeam function was used for complex
data matrix transposition. This function is based on a static method of jcublas class (a
JAVA class). Transpose operation requires only data movement and is not considered
a computation operation. The low performance achieved when CUBLAS is used can
be traced to the initialization and communication required by the library. In [6] an
evaluation of JAVA operation in GPU is analysed with three representative operations
(matrix product, stencil2D and FFT), and it shows that CUDA kernels achieve better
performance (GFLOPs and runtime) thanCUBLAS.Thismay be due reliance on JAVA
routines (jcuda or arapi) which have an overhead of data movements between JAVA
and GPU. Also, when CUBLAS library is used, it requires the use of cublasCreate()
and cublasDestroy() operations, in order to allocate or release hardware resources on
the host and device. These functions implicitly call cublasDeviceSynchronize(). This
overhead becomes an important source of performance penalization that rules out this
implementation as an option.

The CUDA kernel implementation of this operation is a very simple kernel where
threads access a matrix cell and copy values to their cell destination. Different imple-
mentations of optimized matrix transpose in CUDA inspired on [18] are analysed in
the next section.

It should be mentioned that matrix fftshift is a necessary operation due to the way
CUFFT is implemented and the current implementation of phase function matrices
arrangement. Matrix data are organized in a way that fftshift operation is needed for
data consistency through the data processing chain.
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Table 5 Phase function
execution times (initializations
and point wise product)

Execution times are in ms

Phase function V1 V2 V3

First 765.6 128.13 10.53

Second 380.6 135.8 8.18

Third 1098.6 264.9 14.94

Fourth 836.8 213.43 8.11

4 First improvement phase

Since the first parallel version of CSA shows poor performance, a thorough analysis
of the algorithm was performed since the reason for such performance loss can be
multifactorial. The first issue identified after fixing the previously analysed matrix
operations was the unexpectedly high runtimes related to phase functions. Table 5
shows phase function application times. These times include phase function initial-
ization and pointwise product (this operation takes almost 3 ms as seen in Table 3).
The slowdown cause boiled down to the phase function (a constant matrix once the
scenario parameters are fixed) initialization being performed in CPU. This issue was
addressed in the next version of the parallel algorithm (V2) where phase functions are
initialized onGPU to exploit the parallel nature of this calculation. Each phase function
was allocated on a matrix and one thread per cell was launched to initialize its value.

Runtimes of this second version are also shown in Fig. 3 and Table 5 as Parallel V2.
An important reduction was achieved, which can be enhanced if we take into account
data structures. Since the phase corrections are the same for each row, these matrices
can be reduced to 1-dimensional arrays. This was implemented in version 3 of the par-
allel algorithm (Parallel V3 in Fig. 3; Table 5) greatly simplifying the kernels involved.
Table 5 shows a reduction of time for this optimized initialization scheme. Now an
important runtime reduction is observed for the phase function filter implementation.

It should be noted that both second- and fourth-phase functions took longer than the
first- and third-phase functions. The analysis of the slower phase function initialization
showed that the slowdown had to do with the use of a division operation in these phase
functions. Given there is no hardware support for floating point divisions (or integer
divisions) on the GPU, these operations are implemented as software subroutines
that require additional registers for temporary storage. This lack of resources can be
avoided by reducing the number of threads in the kernel launch.

To alleviate this, both second- and fourth-phase function initializations were exe-
cuted using grids of threads of different sizes. Initial executions launched 32×32 thread
blocks. This kernel was not able to execute because of lack of registers. Then, blocks
of 16×16 threads were used showing good performance. The latter configuration was
used for Parallel V3.

5 Second improvement phase

The previous section showed first-order runtime improvements. In the following,
second-order effects are analysed to further improve the performance. Two matrix
operations are to be re-analysed, fftshift and matrix transpose.
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5.1 CUDA FFTSHIFT

Two alternative implementations are considered.
The first is based in [21], where no data are moved but complex number properties

are used to make this operation more efficient. It consists of multiplying the vector to
be transformed by a sequence of 1 and −1 s which is equivalent to the multiplication
by e(− jnπ) and thus to a shift in π in the conjugate domain. This kernel must be
called before and after the application of the FFTs or IFFTs. It turned out that this
seemingly more complex sign exchange algorithm performed better than the explicit
fftshift operations, reducing runtime from 4.54 to 1.3 ms.

A different optimization, which embeds the fftshift operation in the phase function
initialization was also implemented. This removed the need for explicit fftshift func-
tion calls, which otherwise is called eight times during CSA processing for proper
frequency domain multiplication and reduces to almost zero the overhead for this
operation. Version 4 (V4) runtime using this optimization is shown in Fig. 3.

5.2 Matrix transpose optimized

When FFT or IFFT is applied to matrix columns, a transpose operation must be per-
formed since CUFFT is natively a row operation. In [18] four versions of matrix
transpose functions, naive transpose, coalesced transpose, bank conflict free and diag-
onal transpose are presented.

These versions were implemented for this problem and compared to the initial
transpose function, to use themost efficient version. Table 6 shows runtime for different
matrix transpose designs.

Our own parallel kernel is the initial approach used. Kernels with half the number
of cell threads were launched, where each thread simply swaps two matrix values.

The use of Coalesced transpose using shared memory showed memory bank con-
flicts due to several read or write operations accessing the same memory bank. To
overcome this the approachwasmaking half-warp access 16 different banks simultane-
ously, achieving maximummemory bandwidth when all threads in a half-warp access
different memory banks. This is done padding shared memory, adding a column to the
tile matrix. In this way shared memory access of 16 threads are all in different banks.

In addition to shared memory bank conflicts due to access pattern, global memory
has its own access conflicts. Global memory is divided into either 6 o 8 partitions
(it depends on GPU serie) of 256-byte width. To use the global memory effectively,
concurrent access to global memory by all active warps should be divided evenly

Table 6 Matrix transpose
routines execution times

Runtimes are in ms

Kernel Runtime

Parallel 4.05

Coalesced 3.54

Bank conflict free 3.6

Diagonal 5.02
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amongst partitions. Diagonal transpose was implemented for testing global memory
access pattern, but no improvement was achieved.

For this application none of the implementations showed a clear improvement over
the others. This is in agreement with [18] which states that the methods efficiency
depend on matrix size, GPGPU characteristics, etc.

6 Additional performance evaluation

Adetailed runtime profiling studywas done based on nvprof CUDA tool. This profiling
tool is available since CUDA 5.1. It collects timeline information from application’s
CPU and GPU activity, including kernel execution, memory transfers and CUDAAPI
calls [11].

Table 7 presents information collected by this profiling tool. It shows the most
important kernels developed for CSA algorithm, total execution time (the sum of all
calls of each function) and percentages of time that each operation represents. Both
of them are relative to the whole application. There are more kernels and CUDA API
calls, but this table shows only kernels that we implemented.

It is important to take into account that this table includes just kernel runtimes. No
initialization or other operations that each kernel needs to perform its work are taken
into account.

Total time is the amount of time that a kernel is executing, taking into account
all calls through the application. Percentages of each kernel is again, relative to all
application kernels.

Additional performance evaluationwas performed. Events andmetrics were used to
improve profiling data. Events are hardware counters observed during the execution
of an application. Metrics are calculated based on events and used to measure the
efficiency of different operations, like how well the application is using memory,
cores, etc. [11]. The following metrics were used: gld_efficiency, gst_efficiency and
warp_execution_efficiency. Table 8 shows these metrics for the main kernels.

gld_ and gst_efficiency are used to obtain the efficiency of global memory use (g
for global memory, st for store transactions and ld for load operations).

Optimally, for maximizing memory bandwidth, global memory access should be
coalesced and aligned. Any other pattern will result in a replay of memory request.

The metric gld_efficiency (gst_efficiency) is the ratio of requested global memory
load (store) throughput to actual global memory load (store) throughput. When gld_
gst_ efficiency is less than 100 % it means that some requests are replayed, indicating
that memory bandwidth is not optimally used. For example, an efficiency of 50 %

Table 7 Kernels analysis using
nvprof executed on GeForce
GTX 570 architecture

Runtimes and time percentages
are the sum of all calls of each
function

Kernel Calls Time Time (%)

Matrix transpose 4 5.94 8.92

Fftshift 8 7.43 11.19

Pointwise product 4 5.49 8.26

Phase function init 4 9.12 6.06
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Table 8 Kernels analysis using nvprof metrix executed on GeForce GTX 570 architecture

Kernel Invocations Metric name Average (%)

Matrix point wise product 4 gld_efficiency 100.00

gst_efficiency 100.00

warp_execution_efficiency 100.00

Init phase functions 1 gld_efficiency 100.00

gst_efficiency 100.00

warp_execution_efficiency 100.00

Matrix transpose parallel kernel 4 gld_efficiency 100.00

gst_efficiency 25.00

warp_execution_efficiency 100.00

Matrix transpose 3 optimizations 4 gld_efficiency 100.00

gst_efficiency 100.00

warp_execution_efficiency 100.00

FFT_shift 8 gld_efficiency 100.00

gst_efficiency 100.00

warp_execution_efficiency 100.00

FFT_shift optimized 8 gld_efficiency 100.00

gst_efficiency 100.00

warp_execution_efficiency 100.00

indicates that load (or store) memory requests are replayed once. This can happen due
to un-aligned memory access or not coalesced memory access. An efficiency of 100%
indicates that neither load nor store memory requests are replayed when processing
the kernel; thus each access is handled by a single memory transaction.

The warp execution efficiency (nvprof metric warp_execution_efficiency) is the
average percentage of active threads in a warp in each executed warp. Increasing warp
execution efficiency will increase utilization of GPU’s resources. Divergent branches
and predicated instructions provoke warp efficiency to less than 100 %.

Table 8 shows load and store global memory access efficiency of CSA main ker-
nels. When global memory efficiency is analysed, it can be seen that several of the
kernels achieve 100%memory efficiency for load or store operations. That means that
global memory accesses are aligned and coalesced (they start in a multiple of memory
granularity and accesses are contiguous within the warp). No replays are needed for
solving an access.

Whenphase functions are initialized a 100.00%memory store efficiency is obtained
as we use auxiliary variables instead of directly accessing the phase function arrays.
In Table 8 just one row is used for these initialization functions due to all of them
showing the same behaviour.

Matrix transpose with no optimization techniques (matrix transpose parallel kernel
in Table 8) achieves 25 % of store operation efficiency. This low memory access
efficiency is due to writing the resulting matrix by columns that implies not coalesced
writes (stores). Transpose matrix optimization avoids this not coalesced accesses,
using shared memory or diagonal transpose solution (as presented in Sect. 5.2).
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Table 9 Additional tests hardware architecture

Name C.C. CUDA
cores

Processing
powera

Memory
bandwidthb

Runtime
(ms)

1 Tesla C2070 2.0 448 1030 144 150.74

2 Tesla C2075 2.0 448 1000 144 151.07

3 GeForce GTX 480 2.0 480 1344 177.4 171.66

4 Tesla K20c 3.5 2496 3520 208 145.54

5 GeForce GTX 780 3.5 2304 3977 288 134.16

6 GeForce GTX Titan 3.5 2880 5121 288 137.87

a Single precision GFLOPs peak
b Maximum bandwidth (in GB/s)

Finally, warp execution efficiency was analysed to study warp thread executions
and GPU cores use. Implemented kernels show an efficiency of 100.00 % that means
that threads within a warp can execute in a SIMDway, avoiding inactive threads within
a warp. We can have divergences in different warps, but it does not cause thread inac-
tivity.

It can be concluded that the proposed implementation of the CSA is based on SIMD
operations and that the implemented kernels achieve high bandwidth memory use and
high GPU core utilization.

7 Performance in different platforms

After the algorithm refinements presented in the previous sections, the optimized CSA
was tested in different GPU architectures to analyse its scalability.

Table 9 shows the main features of the architectures used for these additional tests.
Compute capability (C.C.), CUDA cores and runtime are shown. The runtimes pre-
sented do not include I/O communication times between CPU and GPU (comparable
to black line in Fig. 3). Theoretical peak processing power for single precision and
maximum bandwidth for each architecture is included.

The implemented algorithm shows scalability for these architectures, showing vari-
able speedups as better processors do not necessarily show improvement over simpler
ones. It can be seen that runtimes are in accordance with memory bandwidth. This
is due to several CSA operators being memory bound. Fine tuning of block size and
memory usage is needed to take advantage of each architecture, and in general the
algorithm will require adaptation to the architecture in use to achieve the best possible
performance.

8 Conclusions and further work

This work presents the implementation and optimization of the parallelization of CSA
algorithm for CUDA C. The goal is to develop a high-performance CSA algorithm
with real-time requirements in mind.
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CSA turns out to be a highly parallelizable problem, and GPUs are very convenient
hardware architecture for this algorithm. CSA satisfies most of the requirements for
an application to be suitable for executing on GPUs: there is no data dependency,
no communication is needed and it operates with a great amount of data, performing
complex operations over the data.

As a main contribution of this work, a parallel version of the CSAwas implemented
and examined, comparing its performance to a direct implementation. This first par-
allel version allowed bottleneck detection. An important speedup has been achieved
after careful performance analysis and successive improvement of the parallel imple-
mentations.

Synthetic raw data were used for testing, with close to 106 pixels per image. The
optimized algorithm execution times show that it can operate at—practically—real
time, during the radar data acquisition process. For the proposed operational PRF, the
system should be able to operate in real time. That is, every 3 s the radar can acquire
and store a data matrix, and while the next matrix is collected, CSA processing is
done, taking about a sixth of this time.
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