
Model-based Concerns Mashups for Mobile Hypermedia*

Cecilia Challiol 1,2

Calle 50 y 115, La Plata,
Buenos Aires, Argentina.

+54 221 422-8252

ceciliac@lifia.info.unlp.edu.ar

Andrés Fortier 1,2,3

Calle 50 y 115, La Plata,
Buenos Aires, Argentina.

+54 221 422-8252

andres@lifia.info.unlp.edu.ar

Gustavo Rossi 1,2

Calle 50 y 115, La Plata,
Buenos Aires, Argentina.

+54 221 422-8252

gustavo@lifia.info.unlp.edu.ar

Silvia E. Gordillo 1,4

Calle 50 y 115, La Plata,
Buenos Aires, Argentina.

+54 221 422-8252

gordillo@lifia.info.unlp.edu.ar

ABSTRACT
Mobile (or Physical) Hypermedia combines the navigational style
typical of Web applications with the functionality of location and
context-aware software. Users explore digital and physical
relationships while accessing to information about their actual
location, e.g. the object in front of them. Similar to
“conventional” Web applications one might suffer usability
problems when dealing with multiple informational concerns, but
the situation gets worse because of screen size issues, the need to
avoid user distraction, etc. In this paper we outline our model-
based approach for building mobile hypermedia applications by
combining (“mashing up”) information corresponding to multiple
concerns in a modular, usable way. Architectural issues are
discussed and a simple example is presented together with its
implementation.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures.

General Terms
Design

Keywords
Architectures, Mobile Hypermedia, Context-Aware Applications,
Mobile Computing.

1. INTRODUCTION
Physical Hypermedia (PH) [16] introduces the well-known and
intuitive navigation-by-links style of Web software into mobile
and ubiquitous systems. In a PH application, the mobile user
access to information items both physically and digitally. When
facing an application-aware real-world object or place,
information about that object is presented in the user’s device; this
information may also encompass services corresponding to the
actual place and links to other related objects (digital and
physical). Both types of links connect corresponding nodes in the
same way that a hypermedia network does. However two
important differences can be noted:

• Some hypermedia nodes are “activated” by the user’s
presence. When the user stands in front of a recognized
physical object, the digital information about it is displayed.

• Navigating to a physical node is not an atomic operation.
Different from the Web, where traversing a link implies
opening the target node, a physical link implies traversing a
physical area to reach the target. This creates new scenarios,
where the user for example may not reach the target because
he got lost or changed his mind while walking.

As an example, consider a user visiting a city with the aid of a
digital tour guide: when he stands in front of a point of interest
(e.g. the Cathedral) the page on his web browser is updated to
show information related to it. This means that a digital
navigation has been automatically performed by standing in front
of a physical object that is known by the application1. While
standing in front of the Cathedral, the user can navigate through a
digital information space as in a “standard” hypermedia
application. Besides, a PH application may also display anchors
for physical links; when the user clicks on the anchor, he
expresses his intention to walk to the link target, which is also a
physical object. As a result he may get a map showing his current
location, the target’s location and a path connecting both places.

1 This can be achieved in many ways by using different sensing
devices (e.g. GPS, Bluetooth Beacons, WiFi access points, etc).
However, describing these techniques is out the scope of this
paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MoMM 2008, November 24–26, 2008, Linz, Austria.
(c) 2008 ACM 978-1-60558-269-6/08/0011 $5.00.

1 LIFIA. Facultad de Informática, UNLP, Argentina.
2 CONICET, Argentina.
3 DSIC. Universidad Politécnica de Valencia, Valencia, España.
4 CICPBA, Argentina.
* This paper has been partially supported by the SeCyT under the
project PICT-2005, Nro 32536.

Proceedings of MoMM2008 MoMM 2008

170

In Figure 1 we illustrate this example. In the upper part of the web
page we show digital information and in the lower sector the
“spatial” information. Figure 1.a shows the information exhibited
when the user is standing in front of the Cathedral. In Figure 1.b
the user navigates digitally, while still standing in the same place
(notice that the spatial information did not change). Finally in
Figure 1.c the user decides to walk to Dardo Rocha Museum,
which makes the system react by showing a map.

Figure 1. A PH application in action.

The concept of PH was initially defined in [16], and extended in
[18]. In [14] we presented a modelling approach for designing PH
applications; in [7] we outlined an implementation using a
standard Web architecture. In [5] we show how to map PH
concepts onto a context-aware architecture and in [6] we
discussed the impact of mobility on browsing semantics. Finally,
in [4] and following the guidelines given by [19] and [27] we
showed how to assign different roles to real-world objects to
enrich their behaviours according to the actual user’s needs.

In this paper we address the problem of dealing with multiple
application concerns in PH. While the software engineering
community promotes a clear separation of application concerns
from requirements to design and programming to achieve
modularity, the impact of separation of concerns in application
usability has not been researched so far. In [22] an approach for
enriching the navigation experience according to the actual
concern has been described. In this paper we show that by clearly
identifying and separating application concerns, we can improve
the mobile user experience by partitioning the information and
services space according to those concerns.

The concrete contributions of the paper are: a modelling and
design approach for separating concerns in PH applications
during design (and eventually weaving them during application
usage), an extensible and scalable support architecture for PH
and, as part of the proof of concept, a possible look and feel for
PH applications built as concerns mashups.

The structure of the paper is as follows: In Section 2 we briefly
enumerate the requirements posed by PH applications which deal
with multiple concerns. In Section 3 we outline our approach
discussing modelling and architectural issues; a simple example is
included at the end of Section 3 as a proof of concept. Section 4
analyzes some related work and in Section 5 we conclude and
present our further work in the subject.

2. DEALING WITH MULTIPLE
CONCERNS IN MOBILE HYPERMEDIA
According to [26] a concern is a “matter of consideration in a
software system”. Concerns may be functional or non-functional;
functional concerns might encompass sets of coherent
requirements referring to the same “theme”, such as guidance in a
mobile system, topic areas such as architecture or history in the
example of Figure 1, etc. Concerns may be fully defined by
developers (e.g. E-government services), or might be defined in
an abstract way (e.g. tagging), leaving the definition of concrete
concerns to users (e.g. specific tags, as in Flickr). In this paper we
are interested in those concerns which are relevant in the
navigational structure of the application, i.e. in the exhibited
contents, links and services: we call them navigational concerns.
For the sake of understanding, we ignore those concerns (e.g.
persistence, security, etc.) that do not affect navigation.

Even simple applications, like the one in Figure 1, comprise many
different and sometimes unrelated concerns. Some of these
concerns are specific of the application and others are typical in
all mobile hypermedia software, such as map management, user
guidance and assistance, etc. While in the “old” Web it might be
possible to combine different concerns in a single page (e.g. in
Amazon.com one can find information and operations related to
many different concerns in the same product page), the screen size
of mobile devices prevents us for doing that, and claims for a
strategy to modularize concerns, not only for extensibility and
maintenance but also for usability.

As a concrete case of study, consider the example presented in
Figure 1: suppose that we can show historical, architectural and
religious information about the Cathedral, each one with its own
links. How do we manage these three different concerns together
with the omnipresent physical concern? Should we mashup
information and links from the three concerns onto a single
hypermedia? Additionally, how do we combine this information
space with the spatial information and links? One possible
solution for our example would be to adapt the hypermedia
contents and links to the user profile or preferences, like in
ubiquitous [20] or context-aware [3] Web software. This strategy
might work well when we can determine that some concerns (e.g.
the religious one) are not relevant in a particular context (e.g.
while analyzing the architecture of a Cathedral) or for some
particular user (e.g. an agnostic one); however in the general case
we are still faced to the problem of dealing with more than one
concern at the same time.

Managing different concerns increases the complexity of the
application, since each concern may evolve in an independent
fashion. In our previous example, the physical concern not only
encompasses managing geometric models, path finding techniques
and interaction with third party APIs (e.g. google maps), but also
hardware problems related to sensing location and tagging

MoMM 2008 Proceedings of MoMM2008

171

physical objects. On the other hand, modelling a tourist
information system focuses on other issues (such as providing
timely information of events, suggesting interesting places, etc),
which are orthogonal to those in the physical concern. Thus, to
successfully build this kind of applications we need a modelling
and architectural approach that allows each concern to evolve
independently, while letting the application establish the relations
among them and present them in a uniform way.

The key in our approach is to identify and separate the concerns at
the application model level. From this model, we derive a
navigation model in which information corresponding to different
concerns is allocated in separated parts of hypermedia nodes, each
one of them holding both attributes and links pertaining to the
corresponding concern. From this navigational model we can
derive different GUI according to the user’s device, the
application’s needs, etc.

3. AN OUTLINE OF OUR APPROACH
The basis of our approach consists in identifying and separating
navigational concerns early in requirements e.g. by using
separated User Interaction Diagrams (UIDs), a variant of Use
Cases for defining interaction sequences [17], and use the
information collected during the OOHDM conceptual modelling
stage [25] to build a navigational model in which concerns are
clearly decoupled. Two of these concerns are treated especially,
the “core” concern (in our example the Tourist one), that contains
elements which hold in every other concern (basic attributes,
services, etc), and the physical concern as it holds relationships,
functionality and services which are in the basis of every mobile
application.

Information collected from the conceptual and navigational
models is then mapped onto a software architecture which
provides computational support for executing context (particularly
location)-aware services. A Web-compliant interface can then be
built by making the browser aware of physical actions, such as the
user movement through real-world objects. In our proof of
concept, we show how we profit from a clear separation of
concerns, by further separating spatial information (like maps for
guidance and physical links) from the rest of, say, informational
concerns. However, concern information can be mashed up in
different ways according to the specific application’s needs. As an
example consider the core concern to be a university information
system. In this scenario, timetable information can be mixed with
the physical concern to provide a map showing the rooms the
student will have to visit during the day, helping newcomers to
organize themselves. On the other hand, the list of the students
registered in a course can be mashed up with social networks (like
Flickr or del.icio.us) to look for similar interests. In the following
sub-sections we detail each stage of our approach.

3.1 Modelling Issues
Our approach is a light extension to the OOHDM modelling
armoury; instead of building a unique conceptual model, we
create a new conceptual model for each relevant navigational
concern C, with two distinguished ones: the core and the physical.
For the sake of conciseness we avoid explaining requirement
specification issues which have been partially discussed in [13,
22]; we also disregard in this explanation non-navigational
concerns (such as security or persistence) as their mapping to

running applications has been widely described in the aspect-
oriented software literature [11].

In Figure 2 we show a conceptual model of the tourist application
in which we have identified the following concerns: Core
(Tourist), Physical and Architectural. In each concern we
represent those attributes, relationships and behaviours which
make sense in that context. For example, the relationship among
Cathedral and Museum in the physical concern indicates that
there is a geographical relationship (e.g. being near) which is
meaningful in that concern.

Figure 2. Conceptual model of the tourist application with
different concerns.

As it is evident in the example, a class A in the core concern might
also appear in other concern(s) Ci, representing the specific view
of A in Ci, comprising concern-specific attributes, behaviour and
relationships. Meanwhile, some classes will only make sense in a
particular concern, for example those used to manage locations
(such as the Location interface and the classes implementing that
interface). For example, those objects that will be explored
physically by the user must be specified in the physical concern.
Additionally, in the physical concern we represent those roles
which physical objects play for helping or guiding the user when
necessary (not specified in Figure 2 for the sake of simplicity). By
weaving the concerns using role objects [1] we are able to derive
a unique conceptual model (see Figure 3). To do so the main
concern is taken as the “base” conceptual model and extended
with the abstractions in the other models. Each class A belonging
to a concern Ci is mapped onto a role of the corresponding core
class A’ when it exists, or as independent class if it does not. In
Figure 3 we show the conceptual model once roles have been
applied (each role is tagged with the concern it originally belongs
to). Notice that no new relations have been added or removed
with respect to the ones shown in Figure 2.

Proceedings of MoMM2008 MoMM 2008

172

Figure 3. A unique conceptual model.

3.2 Navigational Specification
As in OOHDM and other related approaches, during navigational
design we specify the structure of nodes and define corresponding
links. The contents (nodes’ attributes) are defined by a viewing
mechanism from conceptual classes attributes. In our approach,
nodes also comprise a core and concern related parts. The core
will contain attributes which we want to exhibit regardless the
actual concern, and each concern part comprises both attributes
and links which are meaningful only when the node is reached in
the corresponding concern. The basis for building a navigation
model is clearly the conceptual model depicted in Figure 3.
However, at this stage the designer can choose to add new
navigational links (with respect to the existing relationships
among classes and roles) or to exclude a certain relation as a
navigational link. Figure 4 shows a representation of the tourist
guide example, with concerns represented as roles (using the
notation defined in [23]). Links from the Cathedral to the Theatre,
the Museum and the Government House were explicitly added by
the application designer. On the other hand, the bidirectional
relationship (culturalAttractions) between the Theatre and the
Museum was converted into a one way link. Notice that other
relationships present in the conceptual model have not been
included as navigational links and that new navigational links
have been added, even though there is no corresponding
relationship in the conceptual model. Also, notice that concern-
related links use the roles as source and target. Figure 5 shows a
detailed view of the Cathedral node instance with its roles.

Figure 4. Navigational model.

Figure 5. Detailed view of the Cathedral node.

In our approach we identify two kinds of links: digital links,
which are derived from relationships in the conceptual model and
whose navigational semantics are similar to conventional Web
links. These links may be defined either in the core part of a node
or in one of its concerns. On the other hand, physical links are
intended to be walked by the user and should be defined among
physical node concerns. The existence of a physical link implies
that both the source and the target are physical objects and these
objects are “recognized” by the system (i.e. the user can be sensed
to be in front of them). Physical links can be defined explicitly or
implicitly. Explicit links are specified in the navigation model and
derived from conceptual relationships between conceptual objects
which possess a physical concern; these relationships might hold
between any of the object’s concerns (including the core) and the
corresponding physical link represents their counterpart in
navigation (in this case walking navigation). On the other hand,
implicit links are computed dynamically and derived from the
current navigation context. As an example, suppose that the user
is navigating in the Physical concern, where the Cathedral has no
relationship with the Government House. However the main
concern (i.e. the tourist concern) does have a link between the
Cathedral and the Government House, thus we can derive a new
physical link based on the information of other concerns. In the
most general case, if a user is navigating in a digital concern Ck,
the physical concern can be enriched to show implicit physical
links from Ck. Since this derivation process is domain and even
application dependent, it is modelled as a function which can be
configured by the developer. Thus, the implicit physical links for
a node M are represented by a function fM(Core, C, Nc), where
Core is the core application model, C is the concern that the user
is currently navigating and Nc is the current node in the navigation
of the C concern.

As a result of having this function, implicit physical links can be
derived in many ways. In order to show different example
functions let’s assume that Nc is the current node in the digital
navigation of the concern C and that Lc1...Lck are the digital links
whose source is Nc and whose targets are Nc1...Nck (notice that
some Nci may have an associated physical concern while others
not). In this scenario, the simplest case for this function is to
return all physical links derived from Lc1...Lck, where Nci has a
physical representation. However, based on the transport medium
of the user, we may apply a distance restriction (for example,
those nodes that are at least 5km away from Nc). Another possible
variation would be to show only those nodes that match the user’s
preferences.

3.3 Navigational Semantics
As we previously stated, PH applications use two different kinds
of links: physical and digital. On top of that, the user must be able

MoMM 2008 Proceedings of MoMM2008

173

to navigate according to his actual concern of interest (e.g. tourist,
architecture, history, e-government) in a homogeneous fashion.
For example at the GUI level, when a user is browsing a specific
node, a list of all those concerns where that node has a counterpart
may be shown. As a result the user can switch between different
points of view of the same (physical or digital) node without
loosing context. At the more conceptual level, this means that the
user is “jumping” between different information domains, having
a different perception of the same underlying model (i.e. the core
model). As we will show, the implementation of this feature is
pretty straightforward, since for each object in the core model we
can determine the roles it can play and thus the concerns where it
has a counterpart. With this scenario the user can be physically
standing in front of one object (the “physical” concern) while
digitally navigating other concern (e.g. the Architectural one).
Notice that we can find the case where the user ends up in a
digital node that has no relationship with the core model or that
may not have a physical counterpart. Since digital and physical
navigation are treated in an independent way this is not a problem
in our model as shown in the example.

3.4 Architectural Aspects
To support the previously described functionality we have
combined two of our previous achievements in context-aware
architecture. On one hand we see the Web browser as a view, in
the MVC [21] sense. This means that we use a Web browser as a
platform-independent renderer of the html derived from an
underlying model. The controller role of the MVC is decoupled
from the web browser by redirecting actions (e.g. user clicks on
anchors, service activation, etc.) to the MVC model. Finally, the
navigational model is represented by the IBrowserModel
interface. This interface defines a simple protocol that any object
that wants to be displayed in a Web browser has to implement.
Also, this object is in charge of defining the browsing semantics,
i.e. deciding how to react to an anchor click, and how the
browser’s history is managed (for example what is the meaning of
the back, next and home buttons). In Figure 6 we present a
simplified class diagram, of this re-interpretation of the Web
browser in the spirit of the MVC paradigm (the interested reader
can refer to [6] for more details on this subject).

Figure 6. Class diagram of the decoupled browser model.

Using this basic model we can derive a concrete mapping of
different navigation concerns, each one with its own set of nodes
and navigation semantics. Each navigation model can define its

own classes to represent nodes, as long as they comply with the
IBrowserNode interface. Thus, a very straightforward mapping
can be achieved from the navigational model to the actual
implementation. Also, since the navigation is performed by node
descriptions (see the navigateTo message in Figure 6), each
navigation model can decide how to encode a reference to its own
nodes (notice that in the standard Web case a node description is
just its url).

In order to deal with many different navigation models
simultaneously we define a main browser model that encompasses
all the others and keeps track of the browser model that is
currently being displayed. All requests arriving to this browser
model are redirected to the current one (see Figure 7). Also, notice
that the PhysicalBrowserModel class has a reference to a second
browser model. This reference is used to get the current node of
that model and use it to calculate the function that returns the
implicit physical links. In the most general case, each node may
define its own function to calculate its implicit links. For this
reason the functions are decoupled from the nodes using the
Strategy pattern [12].

Figure 7. A browser model with multiple concerns.

The next step to support PH functionality is to manage the
context-dependent behaviour. For this purpose we use some
architectural abstractions that we developed previously [5, 24];
the most important principle is that any application object can be
“extended” to manage its context, by defining an aware abject.
An aware object acts like a dynamic wrapper, enhancing the
application model object (its target) with the facilities to
manipulate its context. Unless explicitly stated, all the “original”
messages of the target are forwarded to it.

In our approach the context is not treated as a whole entity, but it
is separated in a collection of context features, each one
representing a particular aspect of the context we want to manage.
In our application example, the user object is extended with an
aware object to keep track of his location. To do so, a new context
feature (the location feature) is created and added to the aware
object, so that each time the user’s location changes an event will
be triggered (for the sake of conciseness, we do not discuss

Proceedings of MoMM2008 MoMM 2008

174

sensing-related aspects of context-aware applications in this
paper. The interested reader can consult [15] for our approach to
context sensing).

In Figure 8 we show an instance diagram of a typical situation in
the PH application. The user (an aware object) is currently
standing in front of the Dardo Rocha Museum (the location
feature is the only context information we use for the example).
The user is currently navigating the Architectural concern (see the
currentModel relationship in the concern-based browser model)
and has navigated to the Cathedral node. When the user moves,
his location feature triggers an event, which results in the
navigation model being updated as previously described.

Figure 8. An instance diagram depicting the application state.

The context-dependent behaviour is materialized in the PH
environment, which is configured to receive the change events of
the user’s location feature. These events will be captured by a
handler, which maps the user’s location to a physical object. In
case it succeeds (and if the physical object is not the current node
in the physical browser model), the handler reacts by finding the
corresponding core object (CoreCurrent) and performing the
following changes:

• If the current browser model is the physical one, it is
switched to the core model and the current node is updated to
show the core information about CoreCurrent.

• If the user is navigating in a digital concern (e.g. the
Architectural) a role corresponding to CoreCurrent in that
concern is searched. If it is found, the current node is
updated. In case it is not, the current model is switched to the
core model and its current node is set to CoreCurrent

As a result, by following good software engineering practices
(such as clear separation of concerns) we are able to build
different layers and combine them to give the user a better final
application. In particular we are able to create different
application concerns, deriving navigation models for each of
them, even with their own navigational semantics. On top of that
we can improve the user experience by adapting the content
displayed in the browser based on the user’s context.

3.5 An Example
To show a practical application of our approach, we elaborate our
previous example. The core of the application (the tourist domain)
is enhanced with two concerns:

• Physical, in which we allocate functionality for locating
objects and providing services like finding paths between
two locations.

• Architectural, which contains information about the
architectural style of buildings, urban planning or building
plans. Other concerns such as History or E-government
which crosscut several classes can be easily added by just
defining corresponding diagrams and architectural mappings.

The Web interface should be designed to weave these concerns in
a way that results intuitive to the user. We next show a set of
screenshots of an experimental prototype for the proposed system
(see Figures 9 and 10). There are two GUI layouts, one text-based
and the other map-based. The physical concern is displayed using
the map view including the physical links, while the other
concerns (e.g. the tourist one) is displayed using the text-based
view, including information and links. In Figure 9 the user is
standing in front of the Cathedral and has chosen the Tourist
view, which results in a description of the Cathedral from a
tourist point of view and a set of links of places that are related to
the Cathedral in the tourist navigational model.

Figure 9. Tourist view of the Cathedral.

When the user selects the button at the bottom right side, he can
see a map with his actual location and two options (Planned
routes and Suggestions). The Planned routes display the links
which are specified in the navigational model of the physical
concern (marked with balloons in the map). Suggestions displays
dynamically generated links which are derived from the view that
the user has chosen (marked with a star in the map). The function
used in this GUI is to list the targets of those links when the user
selects the option Suggestion that have a physical concern and
that are not already shown as planned routes. In Figure 9, the
Tourist view provides three links: Government House, Dardo
Rocha Museum and Argentino Theatre. Argentino Theatre does
not have a physical representation, thus it can not be located in the
map nor added as a suggested physical link. The Dardo Rocha
Museum has a physical representation, but since it is already part
of the navigation model for the physical concern it is not repeated
in the Suggestions option. Finally the Government House has a
physical representation and is not part of the physical navigational

MoMM 2008 Proceedings of MoMM2008

175

model. Thus, the system creates this physical link on the fly and
adds it to the suggested paths.

In Figure 10.a and 10.b the user is still standing in front of the
Cathedral, but has switched to the architectural concern. When
switching to the physical concern the Suggestion option is
updated. The star marking the Government House has been
removed from the map and has been added a new star marking the
Natural Science Museum (which has a physical representation and
is not part of the physical navigational model). Neo Gothic Style
clearly does not have a physical representation and thus has not
been included in the suggestion options. In Figure 10.c and 10.d
the user has selected the digital link to the Natural Science
Museum. The browser displays information about the Natural
Science Museum from an architectural point of view and a link to
the Art Museum. The Art Museum has a physical representation
and is not part of the physical navigational model. Thus, the
system creates this physical link on the fly and adds it to the
suggested paths (see the new star in Figure 10.d).

Figure 10. Architectural view of the Cathedral and the
Natural Science Museum.

4. RELATED WORK
In [3] the authors present a conceptual framework to generate
context-triggered adaptation actions and a model-driven approach
to create Web applications. This approach is based on WebML
which enables the automatic generation of adaptive applications
by means of a CASE tool. Our work is similar as it supports
building mobile and context-aware hypermedia software; it
supports also a clear separation of applicative concerns (besides
the typical conceptual, navigational and presentation). In contrast
we still do not have a full model-driven transformational approach
to derive the final application.

In [9] the authors present “mashup personalization”, which
consists on applying mashup techniques to combine context
information with an existing web application, to enhance the
original application. The authors present a tool called
MARGMASH to provide this mechanism which collaborates with
Yahoo’s pipes to perform the actual mashup. In [8] the authors
present a component-based approach to build adaptive web
applications. In particular the authors focus on adapting to context
by using client-side context information (both from local and
remote sensors) and context data found in the server. Each UI
component is defined by an XML file (the UISDL descriptor),
stating the properties of the component and the events it can
trigger. The authors propose an event-based communication
between components, managing their connection through
listeners, which are configured in another XML document (the
XPIL file). It is worth noting that the page processing is done in
the client side, by parsing the XPIL file and instantiating the
required components. Also in the mashup area, similar to our
example application, the authors of [2] present a mashup platform
called Telar. The authors implement the mashup client using the
Google Web Toolkit, by retrieving the points of interest from the
map and looking for them in their mashup up services. To manage
different sources of information the mashup server wraps each
data provider so that they all conform to the same protocol. Both
works share with ours the idea of combining multiple sources of
information and services to give the user a better experience.
However, these approaches focus on architectural support for
connecting already existing components; our project, is more
focused on a design approach for conceiving new applications,
even though some “legacy” or external ones might be also used.
Additionally we stress in this paper the need to clearly separate
information and services pertaining to different application
concerns to improve usability. Finally, it should be noticed that a
full comparison of the complexity of our approach in contrast with
other developments is outside the scope of the paper. We plan to
make such a comparison in a future publication.

5. CONCLUSIONS AND FURTHER WORK
In this paper, we have shown how to build physical hypermedia
applications by combining multiple concerns, including the
physical concern which represents real-world objects explored by
the user. Our approach is based on clearly identifying each
concern at design time, so that they can be engineered in an
independent way, allowing them to evolve without impacting on
the other concerns. Also, in every application we identify a core
concern, which provides the main functionality of the application.

Our approach also follows well known Web engineering practices,
emphasizing a clear separation of application, navigation and
view models. In the navigation model, links are derived from the
relationships found in the application model, to establish
connections between nodes. In the case of the physical concern
we define two kinds of links: the explicit ones, that are expressed
as the other digital links and the implicit ones, which are derived
from a function that takes into an account what other concern the
user is navigating.

Finally we have shown how to improve the user’s navigation by
combining the Web browser (treated as a view in the MVC sense)
with multiple navigational concerns and context-dependent

Proceedings of MoMM2008 MoMM 2008

176

behaviour. To our knowledge this is the first systematic approach
that allows to deal modularly with multiple concerns, mashing
them together in the context of a browser and to integrate this
kind of web functionality with context-aware behaviours.

Our work in the Web browser model is based on template
mechanisms, using a custom evaluation engine. Our next step is to
adapt these mechanisms to Web frameworks that are not template
based, such as Seaside [10]. In these frameworks the content is
generated in the same programming language, giving the
developer grater flexibility than using templates. Finally we still
need to conduct experiences with final users, since our tests so far
have been made by the same developers of the project.

6. REFERENCES
[1] Bäumer, D., Riehle, D., Siberski, W. and Wulf, M.: The Role

Object Pattern. In Proc. of Pattern Languages of Program
Design (PloP), 1997.

[2] Brodt, A., Nicklas, D., Sathish, S. and Mitschang, B.:
Context-aware Mashups for Mobile Devices. In Proc. of
WISE 2008 LNCS (forthcoming).

[3] Ceri, S., Daniel, F., Matera, M., and Facca, F. M.: Model-
driven development of context-aware Web applications.
Journal of ACM Trans. Internet Technol, 2007, Vol. 7, Issue
1, Article 2.

[4] Challiol, C., Gordillo, S., Rossi, G. and Laurini, R.:
Designing Pervasive Services for Physical Hypermedia
Applications. In Proc. of the IEEE International Conference
on Pervasive Services, 2006, pp. 265-268.

[5] Challiol, C., Fortier, A., Gordillo, S. and Rossi, G.: A
Flexible Architecture for Context-Aware Physical
Hypermedia. In Proc. of UWSI 2007, IEEE Computer
Society, 2007, pp. 590-594.

[6] Challiol, C., Muñoz, A., Rossi, G., Gordillo, S.E., Fortier, A.
and Laurini, R.: Browsing Semantics in Context-Aware
Mobile Hypermedia. In Proc. of CAMS, Sprinver Verlag
LNCS, 2007, pp. 211-221.

[7] Challiol C., Rossi,G., Gordillo, S.E. and De Cristófolo, V.:
Systematic Development of Physical Hypermedia
Applications (IJWIS), 2006, Vol. 2. Issue 3/4, pp. 232-246.

[8] Daniel, F. and Matera, M.: Mashing Up Context-aware Web
Applications: A Component-based Development Approach.
In Proc. of WISE 2008 LNCS (forthcoming).

[9] Díaz, O., Pérez, S. and Paz I.: Providing Personalized
Mashups Within the Context of Existing Web Applications.
In Proc. of WISE 2007, pp. 493-502.

[10] Ducasse, S., Lienhard, A. and Renggli, L.: Seaside: A
Flexible Environment for Building Dynamic Web
Applications. IEEE Software, 2007 Vol. 24, Issue 5, pp. 56-
63.

[11] Filman, R., Elrad, T., Clarke, S. and Aksit, M.: Aspect
Oriented Software Development. Addison Wesley, 2004.

[12] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design
Patterns. Addison-Wesley Professional, 1995.

[13] Gordillo, S., Rossi, G., Araujo, J., Moreira, A., Vairetti, C.
and Urbieta, M.: Modeling and Composing Navigational

Concerns in Web Applications. Requeriments and Design
Issues. In Proc. of LA-Web 2006, IEEE Computer Society
Press, 2006, pp. 25-31.

[14] Gordillo, S., Rossi, G. and Schwabe, D.: Separation of
Structural Concerns in Physical Hypermedia Models. In
Proc. of the CAiSE 2005, Springer-Verlag Berlin
Heidelberg, 2005, Vol. 3520, pp. 446-459.

[15] Grigera, J., Fortier, A., Rossi, G. and Gordillo S.: A Modular
Architecture for Context Sensing. In Proc. of PCAC 2007,
IEEE Computer Society, 2007, pp. 147-152.

[16] Gronbaek, K., Kristensen, J. and Eriksen, M.: Physical
Hypermedia: Organizing Collections of Mixed Physical and
Digital Material. In Proc. of the Hypertext 2003, ACM Press,
2003, pp. 10-19.

[17] Guell, N., Schwabe, D. and Vilian, P.: Modeling Interactions
and Navigation in Web Applications. In Proc. of ER’00
(Workshops), LNCS, 2000, pp. 115-127.

[18] Hansen, F., Bouvin, N., Christensen, B., Gronbaek, K.,
Pedersen, T. and Gagach, J.: Integrating the Web and the
World: Contextual Trails on the Move. In Proc. of the
Hypertext 2004, pp. 98-107.

[19] Harper, S., Goble, C. and Pettitt, S.: proximity: Walking the
Link. Journal of Digital Information (JODI), British
Computer Society and Oxford University Press, 2004, Vol.
5, No 1.

[20] Kappel, G., Pröll, B., Retschitzegger W. and Schwinger, W.:
Modeling Ubiquitous Web Applications - The WUML
Approach. In Proc. of DASWIS 2001, LNCS, Vol. 2465, pp.
183-197

[21] Krasner, G. and Pope S.: A Cookbook for Using Model-
View-Controller User Interface Paradigm in Smalltalk-80. In
Journal of Object Oriented Programming, 1988, pp. 26-49.

[22] Nanard, J., Rossi, G., Nanard, M., Gordillo, S. and Perez, L.:
Concern-Sensitive Navigation: Improving Navigation in
Web Software through Separation of Concerns. In Proc. of
CAiSE 2008, LNCS, 2008, pp. 420-434.

[23] Rossi, G., Nanard, J., Nanard, M. and Koch, N.: Engineering
Web Applications using Roles. Journal of Web Engineering,
2007, Vol. 6, No 1, pp. 19-48.

[24] Rossi, G., Gordillo, S.E. and Fortier, A.: Seamless
Engineering of Location-Aware Services. In Proc. of OTM
Workshops 2005, pp. 176-185.

[25] Schwabe, D. and Rossi, G.: An object-oriented approach to
web-based application design. Theory and Practice of Object
Systems (TAPOS), Special Issue on the Internet, 1998, Vol.
4, pp. 207-225.

[26] Sutton, S. and Rouvellou, I.: Modeling of Software Concerns
in Cosmos. In Proc. of ACM Conf. AOSD 2002, ACM
Press, 2002, pp. 127–133.

[27] Yesilada, Y., Stevens, R. and Goble, C.: A foundation for
tool based mobility support for visually impaired web users.
In Proc. of the Twelfth International Conference on World
Wide Web, 2003, pp. 422–430.

MoMM 2008 Proceedings of MoMM2008

177

