
J. Parallel Distrib. Comput. 102 (2017) 115–131
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Towards completely fair scheduling on asymmetric single-ISA
multicore processors
Juan Carlos Saez a,∗, Adrian Pousa b, Fernando Castro a, Daniel Chaver a,
Manuel Prieto-Matias a

a Complutense University of Madrid, Facultad de Informática, Ciudad Universitaria s/n, Madrid 28040, Spain
b III-LIDI, Facultad de Informática, UNLP, Calles 50 y 120 - La Plata - Bs. As., Argentina

h i g h l i g h t s

• Throughput and fairness are largely conflicting optimization goals on AMPs.
• Previous asymmetry-aware schedulers fail to effectively deal with user priorities.
• ACFS achieves an average 23% fairness improvement over state-of-the-art schemes.
• Predicting cross-core performance on current AMPs is one of the major challenges.

a r t i c l e i n f o

Article history:
Received 21 July 2015
Received in revised form
5 November 2016
Accepted 5 December 2016
Available online 19 December 2016

Keywords:
Asymmetric multicore
Scheduling
Operating systems
Fairness
CFS
Linux kernel

a b s t r a c t

Single-ISA asymmetric multicore processors (AMPs), which combine high-performance big cores with
low-power small cores, were shown to deliver higher performance per watt than symmetric CMPs (Chip
Multi-Processors). Previous work has highlighted that this potential of AMP systems can be realizable
via OS scheduling. To date, most existing scheduling schemes for AMPs have been designed to optimize
the system throughput, but they are inherently unfair. Although fairness-aware schedulers have been
also proposed, they fail to effectively deal with user priorities and do not always ensure that equal-
priority applications experience a similar slowdown. To overcome these limitations, we propose ACFS,
an asymmetry-aware completely fair scheduler that seeks to optimize fairness while ensuring acceptable
throughput. Our evaluation on real AMP hardware and using scheduler implementations in the Linux
kernel demonstrates that ACFS achieves an average 23% fairness improvement over two state-of-the-art
schemes, while providing higher system throughput.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Single-ISA asymmetric CMPs (AMPs) combine several core
types with the same instruction-set architecture but different mi-
croarchitectural features. Asymmetric designs have been shown
to significantly improve energy and power efficiency over sym-
metric CMPs [15]. Notably, combining just two core types (high-
performance big cores with low-power small ones) simplifies the
design and is enough to obtain most benefits from AMPs [15]. The
ARM big.LITTLE processor [2] and the Intel QuickIA prototype [4]

∗ Corresponding author.
E-mail addresses: jcsaezal@ucm.es (J.C. Saez), apousa@lidi.info.unlp.edu.ar

(A. Pousa), fcastror@ucm.es (F. Castro), dani02@ucm.es (D. Chaver),
mpmatias@ucm.es (M. Prieto-Matias).

http://dx.doi.org/10.1016/j.jpdc.2016.12.011
0743-7315/© 2016 Elsevier Inc. All rights reserved.
demonstrate that this design approach has drawn the attention of
major hardware players.

Despite the potential benefits of AMPs, effectively utilizing the
various cores types on the platform constitutes a significant chal-
lenge to the system software. This task can be accomplished by the
OS scheduler [31,13,27]. Most existing scheduling schemes have
focused on maximizing the system throughput [15,31,13,27]. To
this end, the scheduler needs to map to big cores those applica-
tions that derive a high performance improvement from running
on these cores relative to small ones [15]. Further throughput gains
can be achieved by using big cores to accelerate sequential phases
of parallel programs [11,27].

Maximizing throughput alone, however, may give rise to vari-
ous issues. First, an applicationmay experience very different com-
pletion time from run to run, since in one run it may be mapped to
a big core the whole time and relegated to a small one in another
depending on the co-running applications [17,31]. Second, the end

http://dx.doi.org/10.1016/j.jpdc.2016.12.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.011&domain=pdf
mailto:jcsaezal@ucm.es
mailto:apousa@lidi.info.unlp.edu.ar
mailto:fcastror@ucm.es
mailto:dani02@ucm.es
mailto:mpmatias@ucm.es
http://dx.doi.org/10.1016/j.jpdc.2016.12.011


116 J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131
user naturally expects that applications with equal priorities get
equal slowdowns as a result of sharing the platform [6]. This is not
usually the observed behavior on AMPs if the scheduler only seeks
tomaximize throughput [26]. Third, in scenarioswith imposedQoS
constraints trading throughput for fairness may be in order to im-
prove user experience.

Previous research has shown that some of these issues can
be mitigated via fairness-aware scheduling for AMPs [3,17,26,5].
In this work, we demonstrate that existing fairness schemes are
either subject to high throughput degradation or do not con-
stitute effective priority-based schemes. Notably, some of these
techniques [3,17] do not exploit the fact that applications in a
multi-program workload may derive a different benefit from us-
ing the big cores in the AMP. As a result, they fail to optimize fair-
ness [29].

To address these shortcomings, we propose an Asymmetry-
aware Completely Fair Scheduler (ACFS), which seeks to optimize
fairness while maintaining acceptable system throughput. We
implemented ACFS in the Linux kernel (on top of the asymmetry-
agnostic Completely Fair Scheduler) and evaluated it using real
asymmetric hardware. Our proposal effectively enforces user
priorities and does not require hardware support or changes in the
applications. A high-level description and reduced experimental
analysis of the ACFS scheduler was presented in [30]. We extend
that work with the following contributions:
• We carry out a theoretical study that illustrates the interre-

lationship between fairness and throughput on AMPs (Sec-
tion 2.1). The simulator we built for that study, which relies
on the theoretical model proposed in [29], was crucial for us
to guide the design process of ACFS.

• We augmented the description of ACFS by showcasing key
details necessary to reproduce our implementation of ACFS in
a real OS, and by including clarifying examples on the internal
workings of the scheduler.

• We propose a systematic methodology to build accurate es-
timation models enabling to approximate the relative perfor-
mance benefit that a thread experiences on a big core relative
to a small one (aka. speedup factor). ACFS and other schemes
[26,13] rely on these models (based on hardware counters)
to drive scheduling decisions. Existing methodologies to build
these estimation models either require embedding off-line col-
lected information in the application binary [32,24] or, as we
demonstrate in this work, turn out ineffective for highly asym-
metric systems [27], where cores exhibit profound microarchi-
tectural differences, such as on the Intel QuickIA platform [4].
Our proposal overcomes these limitations. Moreover, to the
best of our knowledge, our work is the first in deriving an accu-
rate model to predict the speedup factor on the Intel QuickIA.

• We performed a substantial extension of the experimental
analysis by including key sensitivity studies (as the ones
discussed in Sections 3.3 and 5.4) and by experimenting
with a much wider set of workloads under different state-of-
the-art schedulers considered for the evaluation [13,27,17,5].
Note that some of these previously-proposed schemes were
evaluated before using emulated asymmetric hardware [17] or
simulators [5]. Instead, we performed an extensive evaluation
on real asymmetric hardware, which enabled us to detect
important drawbacks of the various schemes. Our evaluation
reveals that ACFS reduces unfairness by 23% on average
compared to other fairness-aware schedulers [17,5] and, at
the same time, provides better system throughput than these
schemes.

The rest of the paper is organized as follows. Section 2 discusses
background and related work. Section 3 outlines the design
of the ACFS scheduler. Section 4 presents our methodology to
build speedup factor estimation models. Section 5 showcases our
experimental results and Section 6 concludes.
Table 1
Synthetic workloads.

Workload SF1 SF2 SF3 SF4

W1 4.7 4.7 1 1
W2 4.7 4.7 2.9 2.9
W3 4.3 4 4 1
W4 2.9 2.9 2.1 2.1
W5 4.7 4.7 3.6 3.6
W6 4.7 4.7 4.3 4.3
W7 3.2 2.5 1.7 1
W8 4 2.5 2.5 2.5
W9 4.7 4 3.2 2.5
W10 4 3.2 2.5 1

2. Background and related work

In this section we first analyze the interrelationship between
fairness and system throughput on AMPs and then proceed to
discuss related work.

2.1. Fairness and throughput on AMPs

Previous research on fairness for CMPs [8,21,6] and AMPs
[26,5] define a scheme as fair if equal-priority applications in a
multi-programworkload suffer the same slowdown due to sharing
the system. To cope with this notion of fairness, we turned to the
lower-is-better unfairnessmetric [6]:

Unfairness =
MAX(Slowdown1, . . . , Slowdownn)

MIN(Slowdown1, . . . , Slowdownn)
(1)

where n is the number of applications in the workload and
Slowdowni =

CT sched,i
CT fast,i

. In turn, CT sched,i denotes the completion
time of application i under a given scheduler, and CT fast,i is the
completion time of application i when running alone on the AMP
(with all the big cores available).

To quantify throughput on AMPs, previous work [29] has
employed the Aggregate SPeedup (ASP) metric, defined as follows:

ASP =

n
i=1


CT slow,i

CT sched,i
− 1


(2)

where CT slow,i is the completion time of application i when it
runs alone on the AMP and uses small cores only. The ASP metric
captures the overall efficiency that a workload derives from the
various cores under a particular scheduler.

To illustrate the interrelationship between these two metrics,
we carry out a theoretical study on the effectiveness of different
scheduling algorithms when running synthetic multi-program
workloads on an AMP consisting of two big cores and two small
cores. All workloads comprise four CPU-bound single-threaded
applications each. In this hypothetical scenario, we assume that
applications exhibit constant big-to-small performance ratios that
range between 1.0 and 4.7, a similar speedup range to that of
the SPEC CPU applications running on the Intel QuickIA prototype
we used for our experiments. For single-threaded programs, the
speedup matches the speedup factor (SF) of its single runnable
thread, defined as IPSbig

IPSsmall
, where IPSbig and IPSsmall are the thread’s

instructions per second ratios achieved on big and small cores
respectively. Each row in Table 1 shows the SFs for individual
applications in a workload (Wi).

To approximate fairness and throughput in this scenario we
turned to a set of analytical formulas derived in an earlierwork [29]
and shown in Table 2. As is evident, the formulas only depend on
SF i and Fi, where Fi denotes the big-core time fraction allotted by
a given scheduler to application i throughout the execution. The
model [29] assumes that (I) 0 ≤ Fi ≤ 1, (II) an application’s



J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131 117
Table 2
Analytical formulas. Note that the associated performance model [29] does not
factor in overheads due to shared-resource contention or thread migrations.

Metric Analytical formula

Aggregate speedup
n

i=1 Fi · (SF i − 1)

Unfairness MAX(Slowdown1,...,Slowdownn)

MIN(Slowdown1,...,Slowdownn)

Slowdowni
SF i

1−Fi+SF i ·Fi

Fig. 1. ASP and unfairness values for the analyzed workloads under the various
schedulers. The closer to the top left corner, the better the ASP-Unfairness tradeoff.

Fig. 2. Big-core cycle distribution among applications for the various workloads in
Table 1 under Opt-Unfairness and ACFS.

small-core fraction is 1 − Fi (work-conserving scheduler) and (III)n
j=1 Fj = NBC , where NBC denotes the number of big cores in the

AMP.
Fig. 1 shows the unfairness and aggregate speedup (ASP) an-

alytical values obtained for the aforementioned workloads under
various schedulers. In the figure both metrics have been normal-
ized to the (0,1) interval, where 0 represents the minimum value
attainable for themetric in the platform and 1 themaximumvalue.
Specifically, Norm. ASP =

ASP
(SFmax−1)·NBC

and Norm. Unfairness =

Unfairness−1
SFmax−1 , where SFmax represents the maximum SF attainable in

the AMP. For our study, we used three asymmetry-aware sched-
ulers. The first one, aimed to optimize throughput and denoted
as HSP (High-SPeedup) [15,27,13], assigns all big cores to the NBC
single-threaded applications in the workload that experience the
greatest big-to-small speedup. For these applications Fi = 1; the
remaining threads are mapped to small cores (Fi = 0). The sec-
ond scheduler is an asymmetry-aware round-robin (RR) policy, a
fairness-aware scheme that equally shares big cores among appli-
cations [3] (i.e. ∀j Fj =

NBC
n ). Finally, the third scheduler, referred to

as Opt-Unfairness, constitutes a theoretical algorithm which en-
sures the maximum ASP value attainable for the optimal unfair-
ness. Determining per-application big-core cycle distributions for
this theoretical schedule requires an extensive exploration of the
search space. To that end we created a simulator that makes use
of the analytical formulas in Table 2 and finds the optimal solution
in each case via a branch-and-bound algorithm. Specifically, the
search algorithm operates as follows. Given a workload, defined
by the set of applications’ SFs, the algorithm computes the (Un-
fairness, ASP) pair for each possible distribution of big-core cycles
among the applications. Because exploring the whole continuous
search space is unfeasible, candidate solutions are created varying
Fi from 0 to 1 in steps of 0.01, such that


Fi = NBC . In addition,

simple heuristics are used to prune unpromising solutions.
Results from Fig. 1 show that HSP optimizes the aggregate

speedup (the higher, the better) at the expense of obtaining
the worst unfairness numbers (the higher, the worse) by far.
The comparison between the HSP scheduler and Opt-Unfairness
reveals that, in general, throughput and fairness are largely
conflicting optimization goals on AMPs. Clearly, the theoretical
Opt-Unfairness scheduler needs to sacrifice much throughput in
some cases (up to 22% for W2) to achieve the optimal unfairness.
Note that in some workload scenarios (like W3, W7 and W10) it
is not possible to deliver the same slowdown across applications,
leading to normalized unfairness values slightly bigger than 0. As
for RR,which does not consider application speedupwhen allotting
big-core cycles, the results highlight that this policy degrades both
fairness and ASP compared to Opt-Unfairness in most cases, thus
providing a suboptimal solution.

Prior to evaluating our OS scheduling approach – the ACFS
scheduler – on real asymmetric hardware, we implemented it
on top of the simulator, so as to compare it against the optimal
fairness scheduler (Opt-Unfairness).We found that in the synthetic
scenario considered and assuming perfect speedup estimations,
the base ACFS design (described in Sections 3.1–3.3) performs in
less than a 1% range of Opt-Unfairness in terms of fairness and
throughput; essentially, both schedulers make almost the same
big-core cycle distribution among applications. As an illustrative
case, Fig. 2 shows the similarities between the big-core cycle
distributions made by both schedulers for workloads in Table 1.
Note thatwe exploredwith additionalworkloads and observed the
same trends.

2.2. Related work

In discussing related work we begin by covering scheduling
proposals that seek to optimize throughput and outline schemes
designed to improve fairness. We then recap previous work that
focuses on reducing energy consumption.
Throughput optimization and determining the speedup. To
maximize throughput in multi-application scenarios, previous
research has demonstrated that the scheduler must follow the HSP
approach, namely it must preferentially run on big cores those
applications that derive a higher big-to-small speedup. The main
difference between the available variants of the HSP approach [15,
3,31,27,13,24] lies in the mechanism employed to obtain threads’
speedup factors online. Three techniques have been explored to do
so. The first approach comes down tomeasuring SFs directly [15,3],
which entails running each thread on big and small cores to track
the IPC (instructions per cycle) on both core types. This approach,
known as IPC sampling, is subject to inaccuracies associated
with program-phase changes [31]. The second approach relies
on estimating a thread’s SF using its runtime properties collected
online on any core type using performance counters [13,27,23].
SF estimation requires to derive performance models specifically
tailored to the platform in question. The third technique is PIE [35],
a hardware-aided mechanism, which has been shown to provide
accurate SF estimates. Notably, PIE poses certain shortcomings that
could render it difficult its integration on real hardware [24]. In



118 J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131
the implementation of our scheduling proposal (ACFS), we use the
second approach to determine a thread’s SF online. We elaborate
on this aspect in Section 4.

Recent research has highlighted that making scheduling deci-
sions based on per-thread SFs only may lead to serious through-
put degradationwhenmultithreaded programs are included in the
workload [28,27]. This stems from the fact that the SF does not ap-
proximate the overall benefit that a multithreaded application as a
whole derives from using the big cores in an AMP [1,10]. Catering
to application-wide speedups is the key to optimizing throughput
in these workload scenarios. Previous research [27,29] has devised
analytical formulas to approximate the speedup for several types
of multithreaded applications based on the runnable thread count
(a proxy for the amount of thread-level parallelism in the appli-
cations), the SF of the application threads and the number of big
cores in the AMP. We turned to these formulas to approximate the
speedup for multithreaded applications in ACFS’s implementation.

Other researchers proposed specific support to accelerate
multithreaded programs on AMPs [1,27,11,12,18]. These proposals
make use of big cores as accelerators for different types of
scalability bottlenecks in parallel applications by employing
software [1,27] or hardware-aided approaches [11,12,18]. Our
OS-level scheduling proposal is largely orthogonal to these
approaches.
Fairness and priority enforcement. The first approach to fairness-
aware scheduling on AMPs was an asymmetry-aware round-
robin (RR) scheduler that simply fair-shares big cores among
applications by performing periodic thread migrations [3]. Fair-
sharing big cores has been shown to provide better performance
and more repeatable completion times across runs [17] on AMPs
compared to default schedulers in general-purpose OSes, which
are asymmetry agnostic. RR has been widely used as a baseline for
comparison [3,31,27], but as shown in Section 2.1, it constitutes a
suboptimal fairness solution.

Li et al. [17] proposed A-DWRR, which aims to deliver fairness
on AMPs by factoring in the computational power of the various
cores when performing per-thread CPU accounting. To that end,
it relies on an extended concept of CPU time for AMPs: scaled CPU
time. Using scaled CPU time, CPU cycles consumed on a big core are
worthmore than on a small one. To ensure fairness, A-DWRR evens
out the scaled CPU time consumed across threads in accordance to
their priorities. As opposed to ACFS, A-DWRR does not take into
account the fact that applications derive different (and possibly
varying) speedups when using big cores in the platform. As our
experimental results reveal, this leads A-DWRR to degrading both
fairness and throughput.

The Prop-SP scheduler [26] was designed to overcome A-
DWRR’s main limitations. Prop-SP strives to even out the
slowdown experienced by equal-priority applications (fairness),
while maintaining acceptable system throughput. To make this
possible, each application receives big-core cycles in proportion to
the product of its speedup and its priority. Unlike ACFS, Prop-SP
is unable to provide a configurable fairness/throughput trade-off
and, as our experiments reveal, it is subject to high unfairness in
some cases.

In [5] the authors devise an EQual-Progress (EQP) scheduler
that seeks to optimize fairness on AMPs. As ACFS, EQP takes per-
thread SF values into consideration when tracking the slowdown
that each thread in the workload experiences at run time and
tries to enforce fairness by evening out observed slowdowns.
Nevertheless, EQP and ACFS exhibit important differences. First,
when determining a thread’s slowdown, EQP does not factor in the
past speedup phases the thread underwent. Instead, the slowdown
is approximated by taking into account the total cycle count that
the thread has consumed on each core type thus far and the current
SF [5]. ACFS, on the contrary, maintains a per-thread counter that
accumulates the total thread’s progress based on the current and
the past speedup application phases. In Section 3, we describe this
mechanism in detail. Second, EQP was designed to achieve equal
slowdown across threads, and so it only takes into account the SF of
individual threadswhen computing slowdowns. ACFS, by contrast,
takes into account the application-wide speedup to guarantee
equal slowdowns among applications. We observed that this feature
makes it possible for ACFS to provide a better support when
multithreaded applications are included in the workload. Third,
ACFS supports user-defined priorities, while the EQP scheduler
does not. Note also that EQP relies on either IPC sampling or PIE
to obtain SFs online [5]. Since PIE is not available on existing
asymmetric hardware, in thisworkwe evaluated the history-based
variant of EQP, which is based on IPC sampling.
Optimizing energy consumption.Other researchers have devised
ways to reduce energy and power consumption on AMPs [20,14,
22,23,36]. Most of these approaches are orthogonal to our fairness
proposal.

Petrucci et al. [22] proposed Octopus-Man, a scheme that
aims to improve energy efficiency while ensuring that the QoS
constraints associated with latency-sensitive jobs are satisfied.
This is one of the few works that employs the QuickIA [4]
prototype, the same asymmetric system we used to evaluate our
scheduling proposal. Nevertheless, the authors do not attempt to
devise a mechanism to obtain accurate per-thread big-to-small
speedup estimates for such a system, as we do here. In a more
recent work, Petrucci et al. [23] propose a scheme to determine
the thread-to-coremappings that optimize energy efficiency. As in
our proposal, this scheme employs a mechanism to estimate the
speedup factor online. Specifically, their approach to estimate the
SF leverages a regression model that factors in two performance
metrics (MIPS and LLC misses) gathered using hardware counters.
We observed that relying on these two performance metrics
alone is not sufficient to accurately predict the speedup factor on
the Intel QuickIA prototype we used. This issue did not become
apparent in [23] since their user-level proposal was evaluated
using asymmetric hardware where cores differ in processor
frequency only.

3. Design

This section describes our scheduling proposal: the ACFS
scheduler.We begin by describing the underlyingmechanismused
by ACFS to track progress as well as the initial core assignment
for newly created threads. We then analyze an example in detail
to illustrate the intuition behind the mechanism to track progress,
and to demonstrate why thread swaps are necessary in some cases
to ensure that running applications experience equal slowdown.
Finally, we elaborate on the design of the unfairness factor, a knob
in ACFS enabling the system administrator to trade fairness for
throughput.

3.1. Tracking progress and initial assignment

To keep track of applications’ relative progress on the AMP, the
scheduler assigns each thread a counter called amp_vruntime.
When a thread runs for a clock tick on a given core type, ACFS
increments its amp_vruntime by ∆amp_vruntime, which is defined
as follows:

∆amp_vruntime =
100 · Wdef

Score · Wt
(3)

where Wt is the thread’s weight, derived directly from the
application priority (set by the user); Wdef is the weight of



J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131 119
Fig. 3. Hypothetical thread-to-core mappings under the ACFS scheduler.
applications with the default priority1; and Score is the slowdown
experienced by the application for this clock tick (relative to using
big cores in the AMP). Hence, when a thread is mapped on the
big core, Score = 1 (no slowdown). When it runs on a small one,
Score = SBS, where SBS represents the speedup that the application
this thread belongs to would derive from using the big cores in
the AMP, relative to using small cores only. Note that the SBS may
vary over time as the application goes through different program
phases. As such, catering to the varying speedup is essential to
accurately track the relative progress throughout the execution.
As discussed in Section 2.2, ACFS approximates SBS at run time by
factoring in the thread’s SF as well as the runnable thread count of
the application (a proxy for the amount of thread-level parallelism)
using the approach described in our previouswork [27,29]. In turn,
the thread’s SF is estimated by feeding an estimation model with
high-level metrics (such as the IPC or the LLC miss rate) collected
via hardware counters. We elaborate on this aspect in Section 4.3.

For single-threaded programs, the amp_vruntime counter
associated with the single-runnable thread indicates how much
progress the application has made thus far with respect to the
progress that would have resulted from running it on a big
core the whole time. The example analyzed in the next section
illustrates this fact. In a multithreaded application, tracking the
application-wide progress is more complex, because different
threads in the application can be mapped to different core types
for short periods of time and threads may block sometimes due
to synchronization. Instead ofmaintaining a global per-application
progress counter, which may cause contention, ACFS uses the
amp_vruntime counter of the various threads in the application
to ensure fairness. This makes it possible for ACFS to track the
relative progress that a given thread has made in the AMP with
respect to other threads of the same application. Ensuring equal
progress among threads when a multithreaded HPC application
goes through a parallel phase is crucial to improve performance
[5,11,12]. Moreover, as our experiments reveal (Section 5), using
per-thread amp_vruntime counters enables the scheduler to
deliver system-wide fairness in multi-application scenarios.

When a new thread enters the system, the thread is assigned to
the idlest core in the platform. Hence, the load balance across the
various cores is preserved. In selecting the target core for a newly
created thread, ACFS populates big cores first, since this approach
proves effective when it comes to maximizing throughput [16].
Note that the amp_vruntime of a newly created thread is set to
the maximum amp_vruntime value observed among threads in

1 The approach used by ACFS to factor in priorities in CPU accounting is inspired
by themechanism used by Linux’s Completely Fair Scheduler, which is described in
detail in [19].
the system. This initial value enables a fair comparison between
amp_vruntimes for threads that entered the system at different
points in time.

3.2. Case study

To illustrate the intuition behindACFS’smechanism for tracking
progress (Eq. (3)), let us consider the hypothetical scenario
depicted in Fig. 3(a). Two single-threaded applications (A and B)
with the default priority (Wt = Wdef) run on an AMP system
featuring one big and one small core. To maintain load balance,
ACFS initially maps A to the big core and B to the small one.
Suppose further that at a certain point in time applicationA is going
through a program phase with SBS = 3. In other words, running
this application phase on a big core would be three times faster
than running it on the small core. In contrast, application B runs
a program phase that derives no benefit at all from the big core
(SBS = 1). As A and B run, the amp_vruntime counter increases
by 100 units per tick for both threads (according to Eq. (3)). This
increment reflects that both threads are making the same (and
maximum attainable) progress (100%) on the AMP system, which
leads to similar slowdown (1) for both applications and, in turn, to
the optimal unfairness value. Notably, this thread-to-coremapping
also ensures optimal throughput, since the application with the
highest relative speedup is mapped to the faster core. By keeping
track of the progress of both threads, ACFS performs optimally (as
Opt-Unfairness) in this context.

Now let us suppose that application B enters a new program
phase with SBS = 2.5, as depicted in Fig. 3(b). At this point,
application B would speed up if it were mapped to the big
core. If the thread-to-core assignment remains the same, the
optimal throughput is still achieved, since the application going
through the program phase with the highest relative speedup is
mapped to the big core. However, thismapping does not guarantee
fairness. Essentially, as B runs, its amp_vruntime increases by 40
units per tick (B makes only 40% of the attainable progress). In
contrast, A’samp_vruntime increases by 100 units per tick. Under
these circumstances, the difference between amp_vruntimes
will increase over time and so will unfairness in the AMP system.

3.3. Enforcing fairness via thread swaps

To guarantee fairness, ACFS must even out the progress across
applications. This comes down to balancing the amp_vruntime
across threads. To make this possible ACFS may need to perform
thread swaps (migrations) between different core types every so
often. Note that thread swaps are preferred over one-way thread
migrations, since swaps do not disturb load balance.



120 J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131
(a) 1 big—11 small. (b) 2 big—10 small. (c) 3 big—9 small.

Fig. 4. Tswap for different number of threads on various AMP configurations.
Because frequent thread swaps may introduce significant
overheads, the scheduler does not trigger a swap as soon as it
detects that a thread TA running on a big core has a greater
amp_vruntime than that of a thread TB running on a small
core. Instead, the ACFS scheduler swaps TA and TB in the event
that (amp_vruntimeTA − amp_vruntimeTB) exceeds a given
configurable threshold. Increasing this threshold makes it possible
to effectively reduce the thread-swap frequency thus mitigating
migration overheads. Conversely, very high threshold values may
lead to accumulating unfairness for longer periods.

Notably, using a fixed threshold does not guarantee a uniform
average thread-swap period (Tswap) for different number of threads
over a certain period of time (Total_time); specifically Tswap =
Total_time∗NBC
Total_swaps , where NBC denotes the number of big cores in the

AMP. To enforce a target value of Tswap, the threshold must be
properly adjusted by factoring in the system load as well as
NBC . Making the system administrator responsible for setting
the threshold manually based on the system load can be a big
burden. Moreover, constantly changing this threshold by hand
can be largely impractical in workload scenarios where the
number of runnable threads varies very frequently. To overcome
these shortcomings, the ACFS scheduler exposes a configurable
parameter, referred to as amp_threshold, which represents a
base value of the threshold. This base value enforces a target value
of Tswap when the total number of threads is twice the number
of big cores. At run time, the actual threshold used by ACFS is
automatically adjusted by multiplying amp_threshold by the
following factor2: 2·(NT−NBC )

NT
, whereNT denotes the total number of

threads. Intuitively, when the number of threads does not exceed
the number of big cores, ACFS does not trigger migrations, so the
scale factor is not taken into consideration in this scenario. In
practice, the scale factor ensures that the actual threshold used by
ACFS is smaller than amp_threshold when NBC < NT < 2 · NBC .
By contrast, when NT > 2 · NBC the actual threshold is bigger than
amp_threshold.

To achieve a target average swap period (Tswap), the value of
the base threshold (amp_threshold) can be approximated as
follows:

amp_threshold = 100 ·
Tswap

2 · Ttick
·


1 −

1
SF avg


(4)

where SF avg denotes the average speedup factor observed in the
platform, and Ttick represents the tick length. We derived this
formula analytically by calculating how long it takes for two
sequential applications (with Wt = Wdef) that have just been
swapped to be swapped again in a scenario where NT = 2 · NBC .

2 This factor was determined empirically by analyzing how the average swap
period varieswith the number of threadswhilemaintaining a constant value for the
threshold under different AMP configurations. In oversubscription scenarios, the
factor is downscaled by also taking the average run queue length into consideration.
To demonstrate that adjusting the threshold dynamically in this
way guarantees a target swap period, we performed a sensitivity
study using various 12-core AMP configurations. (These configu-
rations are based on the AMD platform described in Section 4.1.)
Specifically, on each AMP configuration we ran different num-
ber of instances (ranging from NBC + 1 to the total core count)
of a single-threaded application. For all the experiments we set
a constant value of the amp_threshold value so as to enforce
an average swap period of 500 ms. Fig. 4 shows the actual aver-
age thread-swap period for different number of threads when us-
ing a dynamically adjusted threshold, and a fixed one (equal to
amp_threshold). As is evident, the dynamically adjusted thresh-
old enables ACFS to approximate the target average swap period,
whereas using a constant threshold only guarantees the target pe-
riod in the base case (NT = 2 · NBC ). In practice, the scale factor
used effectively enlarges the threshold as the number of threads
increases so as to approximate to the target swap period.

3.4. Throughput-fairness trade-off

As illustrated in Section 2.1, the base ACFS described thus
far closely tracks the behavior of the Opt-Unfairness theoretical
scheduler, which provides themaximum throughput attainable for
the optimal unfairness. Because fairness and throughput are clearly
conflicting objectives (as shown in our theoretical study), Opt-
Unfairnessmay degrade the system throughput significantly at the
expense of delivering the optimal (minimal) unfairness value. To
overcome this limitation under the ACFS scheduler, we created the
unfairness_factor (UF) knob, which makes it possible for the
system administrator to trade fairness for throughput in scenarios
where fairness constraints are relaxed.

When the UF knob is set at its default value (1.0), the scheduler
behaves as the base implementation, hence attempting to achieve
the maximum throughput attainable for the optimal unfairness.
For UF values >1, ACFS increases throughput at the expense of
degrading fairness up to a certain extent. Intuitively, making this
possible comes down to gradually increasing the big-core share
for those applications in the workload with a higher speedup
while reducing the big-core share of the remaining ones. The
main challenge is how to gradually improve throughput while
keeping fairness under control. To this end, we factor in the UF
when updating a thread’s amp_vruntime every tick. This entails
replacing the thread’s static priority or weight (Wt ) in Eq. (3) with
its dynamic weight (DW t ), which is defined as follows:

DW t = Wt ·


1 +

(UF − 1) · (SBS − Smin)

Smax − Smin


(5)

where Smax and Smin are the maximum and minimum speedups
(SBSs) observed among applications in the workload, respectively.
Essentially, by replacing the thread’s static weight (Wt ) with its
dynamic counterpart (DW t ), the amp_vruntime of high-speedup
threads is incremented at a slower pace than that of low-speedup



J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131 121
Fig. 5. Theoretical unfairness and aggregate speedup for different UF values. The
optimal unfairness value for workload W10 is 1.29; the optimal value for the other
workloads is 1.

threads, which results in a higher big-core share for high-speedup
applications and, in turn, in higher system throughput.

Using our implementation of ACFS on top of the simulator
described in Section 2.1, we observed that gradually increasing
the unfairness_factor (UF) for a workload under ACFS leads
to throughput gains while ensuring unfairness no greater than
UF ·opt , where opt denotes the optimal unfairness for theworkload
in question. Fig. 5 showcases this trend by showing the analytical
aggregate speedup (throughput) and unfairness values for some
syntheticworkloads fromTable 1 and different UF settings (labeled
in the figure). It should be noted that the theoretical fairness
results shown in Fig. 5 can only be reached with perfect speedup
estimates. In Section 5.4, we analyze the effect of varying the UF
using our real-world implementation of ACFS in the Linux kernel.

4. Determining the speedup factor

As explained in the previous section, the ACFS scheduler takes
a thread’s speedup factor (SF) into consideration when measuring
the thread’s progress on the AMP. To determine a thread’s SF
online, ACFS feeds a platform-specific estimation model with
values from diverse performance metrics collected over time.
Because the value of a performance metric (e.g., IPC) may differ
across core types, the scheduler relies on two models: one for
predicting the SF from big-core metrics and another for predicting
it from small-core metrics. These two estimation models (used
for all threads) are generated offline. It should be noted that
building accurate estimation models is a challenging task, since
it requires the identification of a reduced subset of performance
metrics that enable to explain the performance differences that
come from running a thread on various core types [13]. The fact
that these metrics are largely architecture-dependent and vary
with the underlying form of performance asymmetry of the AMP,
further complicates the identification of these metrics [27].

The remainder of this section is organized as follows. Section 4.1
introduces our experimental setting,which is crucial to understand
the different forms of performance asymmetry we explored, as
well as the challenges that arise when building SF estimation
models on various platforms. Section 4.2 presents our proposed
methodology to generate these models via offline processing.
Finally, Section 4.3 describes how our implementation of the ACFS
scheduler in the Linux kernel uses the estimation models at run
time.

4.1. Experimental setup

To evaluate the effectiveness of ACFSwe experimentedwith the
Intel QuickIA prototype system [4] as well as with an AMD-based
multicore server platform.

The Intel QuickIA platform consists of a dual-socket UMA
system featuring twomulticore processors: a quad-core Intel Xeon
E5450 processor and a dual-core Intel Atom N330 processor. To
reduce shared-resource contention effects3 for the experiments on
this systemwedisabled one core on each die in the Xeon processor.
This setting gives us a pairing of two high-performance big cores
(E5450) with two low-power small ones (N330). We will refer
to this asymmetric configuration as 2B-2S. The different cores in
this platform feature three fixed-function performancemonitoring
counters (PMCs) and two general-purpose (configurable) PMCs. In
practice, this allows the gathering of three insightful performance
metrics simultaneously on any core type: the IPC, using fixed-
function PMCs, and two other high-level metrics using general-
purpose PMCs. As we show later, this restriction coupled with
the profound differences across cores makes SF estimation on this
platform a difficult task.

Because of the reduced core count on the Intel QuickIA, we
opted to explore other AMP configurations more suitable to run
workloads includingmultithreaded programs. Specifically, we also
experimented with a NUMA multicore server that integrates two
AMD Opteron 2425 hex-core processors. On this platform we
emulated an AMP configuration consisting of 2 big cores and
10 small ones (2B-10S) by reducing the processor frequency of
some cores. Specifically, ‘‘big’’ cores on 2B-10S operate at 2.1 GHz,
whereas ‘‘small’’ cores run at 800 MHz. Each core on the platform
is equipped with four configurable PMCs.

4.2. Generating speedup factor estimation models offline

To aid in the construction of platform-specific SF estimation
models, we first opted to apply the methodology presented as part
of our earlier work [27], which at a high level, entails performing
the following steps:

1. Select a representative set AP of sequential applications as well
as a comprehensive set of performance metrics M , allowing to
characterize the microarchitectural and memory behavior of
the various applications.

2. Run applications in AP on both core types to obtain their overall
speedup factor (i.e., ratio of completion times on both core
types) and gather the values for performancemetrics inM using
PMCs. Because PMCs are a limited resource, this stepmay entail
running the applications more than once in some platforms.

3. Build estimation models to approximate the SF from the big
and from the small core as follows. Using the overall SF as
well as the average metric values collected for the entire
execution of applications in AP on both core types, apply
additive regression [7] to approximate the SF from the metric
values. For this taskwe turned to the additive-regression engine
implemented in the WEKA machine-learning tool [9].

4. From thebig-core and the small-coremodel obtained in thepre-
vious step, identify the subset ofmetrics (SM ⊆ M)with greater
regression coefficients that can be monitored simultaneously
in the platform in question. Specifically, gathering the values
for metrics in SM must not require more performance counters
than those available in the platform. This makes it possible to
avoid in-kernel event multiplexing, when estimating the SF.

5. Finally, build the final big-core and small-core SF estimation
models by performing the same actions as in Step 3 but using
only the collected values for metrics in SM . In doing so, the final
estimation models just depend upon metrics in SM .

3 None of the scheduling algorithms analyzed in this work deals with share-
resource contention issues. We leave for future work analyzing the effects
of coupling performance asymmetry with serious shared resource contention
scenarios.



122 J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131
Fig. 6. SF prediction on the big core (left) and the small core (right) on the AMD system obtained with Overall-SF. Perfectly accurate estimations have all points on the
diagonal line.
Fig. 7. Speedup factor vs. several big-core performance metrics for SPEC CPU 2006 benchmarks running on the Intel QuickIA prototype.
Henceforth, we will refer to this methodology as the Overall-
SF approach. To build SF estimation models in our experimental
platforms using this technique, we employed some applications
in the SPEC CPU2006 and CPU2000 suites as the AP set. For these
applications,wemonitored awide range of high-level performance
metrics, such as the IPC, LLC (Last-level-cache) misses and LLC
requests per 1K instructions, the branch misprediction rate, the
number of DTLB and ITLB misses per 1M instructions, etc.

Fig. 6 shows the observed and predicted SFs on the big and the
small core of the AMD system. On this platform, Overall-SF yields
to accurate and simple estimationmodels, which rely primarily on
memory and cache-related metrics. The simplicity of this model
stems from the fact that cores in this AMP setting differ only
in processor frequency; in this scenario the LLC miss or the LLC
access rates are known to show a negative correlation with the SF
[13,27]. Specifically, these models achieve correlation coefficients
of 0.97 and 0.96 when predicting the SF on the big and the small
core. Despite the fact that these models were generated using
SPEC CPU benchmarks, we also experimented with additional
applications from other benchmark suites, as shown in Section 5.

On the QuickIA prototype we could not obtain accurate SF
estimation models by using Overall-SF. The more pronounced dif-
ferences between cores (microarchitecture, cache sizes, processor
frequency, etc.) coupled with the reduced set of high-level metrics
that can be monitored simultaneously at run time, make it harder
to estimate the SF online on this system. With such a restriction,
SF estimationmodels that depend upon three performancemetrics
achieve correlation coefficients no higher than 0.80. On this plat-
form,we also observed that none of the performancemetrics alone
we gathered for the entire execution of the applications exhibits
a clear correlation with the average speedup factor. (Fig. 7 shows
the trends for some of these metrics.) This makes it difficult for the
additive-regression engine to generate accurate models from this
data.

We also analyzed the effectiveness of SF estimation models
that depend on more than three performance metrics on the
Intel QuickIA. Note that, to use these performance models at run
time, the schedulermust performeventmultiplexing (i.e., different
sets of performance metrics must be monitored in a round-robin
fashion). Event multiplexing makes it possible to eliminate the
restriction on the small number of metrics that can be monitored,
and allows us to obtain estimation models with a correlation
coefficient equal to 0.90 on both core types. Fig. 8 depicts the
observed and predicted SFs with these models on the big and the
small core. Despite the 0.90 correlation coefficient for the overall
SFs (average throughout the execution), we found that these
models do not provide accurate estimations for individual program
phases in the applications. Essentially, on the Intel QuickIA
prototype some applications exhibit coarse-grained phases with
an SF value greater than the maximum overall SF observed for
the SPEC CPU benchmarks (4.7 in this platform). For example, as
Fig. 9(a) reveals, the mcf benchmark exhibits long-term phases



J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131 123
Fig. 8. SF prediction on the big core (left) and the small core (right) on the Intel system for the SPEC CPU benchmarks obtained with Overall-SF.
Fig. 9. SF over time for mcf on the Intel (a) and the AMD (b) systems. The horizontal red line indicates the maximum overall SF observed for SPEC CPU applications on each
platform. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
with an SF value as high as 8. Unfortunately, the generated models
provide poor estimations for such high-SF program phases. By
contrast, models built for the AMD system are not subject to
this issue, and provide accurate estimations for different program
phases. Note that benchmarks on the AMD platform do not
exhibit coarse-grained phases with an SF value greater than the
maximum overall SF observed (2.625). As shown in Fig. 9(b), the
mcf benchmark does not go through long phaseswith an SF greater
than 2.625 on such a system.

To generate SF models with a higher estimation accuracy on
the Intel QuickIA, we devised a variant of Overall-SF. Instead of
using the overall SF and metric values for the entire execution
of the benchmarks to generate the models, the new approach
leverages information associated with different program phases.
We will refer to this new scheme as Phase-SF. To track the SF
and performance-metric values for different program phases in
a single-threaded application we sample performance counters
every 200 million instructions on both core types. We observed
that gathering offline information by using this sampling rate
makes it possible to effectively capture coarse-grained program
phases and filter out many SF spikes. Note that the SF of a certain
application’s instruction window is the ratio of the IPS values (big-
to-small) collected on both core types for that instruction window.

From the SF trace for the various instruction windows of an
application, we identify coarse-grained program SF phases. The
mechanism to break down an SF trace into phases is described in
the Appendix. Once coarse-grained SF phases have been detected
for an application, we generate a compact summary of each SF
phase, which consists of a tuple including the geometric mean of
the values for each performance metric as well as the geometric
mean of the SF for the various samples belonging to the same
program phase. Finally, we use the collection of per-application
SF-phase summaries obtained in the previous step as input to the
additive-regression engine. This makes it possible to generate the
final SF models for both core types.
Fig. 10 shows the SFs predictedwith the final estimationmodels
on the Intel QuickIA obtained bymeans of Phase-SF. The correlation
coefficients for the estimation on the big core and the small
core are 0.95 and 0.94 respectively. In generating the models,
we used performance data from 742 SF phases from SPEC CPU
benchmarks. Notably, we found that using information from 500
diverse SF phases is enough to generate a big-core model with
a similar accuracy to that of the best model we found for the
Intel QuickIA. By contrast, obtaining a small-core model with a
correlation coefficient no smaller than 0.94 requires monitoring
data from at least 700 SF phases. Despite the fact that the additive-
regression prediction engine we used enabled us to discard some
metrics from the final estimation models, the models still depend
upon more than three performance metrics on both core types
(shown in Table 3), so the scheduler implementation needs to turn
to event multiplexing to estimate the SF online in this case. We
elaborate on this issue in the next section.

To conclude the discussion, it is worth noting that the offline
analysis required to build the speedup factor estimation models
has to be performed just once on each asymmetric platform. Thus,
to deploy the mechanism transparently on a production system,
the associated experiments could be automatically launched by
the OS when it boots for the first time. Alternatively, estimation
models can be automatically rebuilt periodically by leveraging idle
system periods to collect new performance samples for additional
applications. In our experiments, we carried out a full execution
of a subset of benchmarks from SPEC CPU on the different
core types of the system, in order to perform a comprehensive
characterization of the performance of these benchmarks on
each evaluated AMP configuration. This can be a time-consuming
process, especially on the small core of the QuickIA platform (Intel
Atom), so it may not constitute a practical approach. Nevertheless,
we found that a complete execution of the benchmarks is not
really necessary to build accurate estimation models. In practice,



124 J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131
Table 3
Performance metrics used to predict the SF on the Intel QuickIA system.

Performance metrics Used in big-core model Used in small-core model

Instructions retired per cycle (IPC) ✓ ✓

L2 cache accesses per 1K retired instr. ✓ ✓

L2 cache misses per 1K retired instr. ✓ ✓

Branch instructions retired per 1K instr. ✓ ✓

Mispredicted branches per 1K retired instr. ✓ ✓

ITLB misses per 1M retired instr. ✓

DTLB misses per 1M retired instr. ✓
Fig. 10. SF prediction on the big core (left) and the small core (right) for different phases from SPEC CPU benchmarks on the Intel QuickIA. Models were obtained using
Phase-SF.
the vast majority of the representative program phases come
from a few short phased benchmarks, such as soplex, astar
or gcc. Many other relevant phases become apparent at the
beginning of the execution of long-running benchmarks, such as
lbm or libquantum, which exhibit a largely regular behavior.
Hence, gathering information for just a small number of instruction
windows from a set of representative benchmarks suffices to
obtainmodelswith similar accuracy; this constitutes amore viable
option.

4.3. Implementation: using SF-estimation models at run time

To implement the estimation models for the AMD platform
and the Intel QuickIA we created two independent monitoring
modules using the PMCTrackmonitoring tool [25]. Themonitoring
modules (deployed in a loadable kernelmodule) feed the scheduler
with per-thread SF estimates at run time. In using this approach,
the core scheduler implementation (inside the OS kernel) remains
fully architecture independent and completely decoupled from
the underlying technique to obtain SFs online [25]. To obtain
SF estimates, the monitoring module in question continuously
gathers the necessary performance metric values via hardware
counters and applies the estimation model. In our setting, the
counters are sampled on a per-thread basis every 200 ms; this
sampling interval was used in previous work on scheduling
on AMPs [23,27]. We observed that the overhead associated
with sampling and SFs estimation is negligible at this rate. To
experiment noticeable overhead (around 1%) on our experimental
platforms, the sampling period has to be reduced to a value as low
as 8 ms.

Unlike SF estimation on the AMD platform, determining SFs
on the Intel QuickIA requires monitoring a set of performance
metricswhose values cannot be gathered simultaneously using the
number of performance counters available. Thus, on the QuickIA,
gathering the information necessary for the estimation model
entails monitoring different sets of hardware events in a round-
robin fashion (aka. event multiplexing). On this platform, two PMC
sampling periods are required for the big-core model and three for
the small-core model. Once all the required performance metrics
have been gathered on a certain core type using the necessary
sampling periods, themetric values are used to predict the thread’s
SF. This process is repeated continuously throughout the thread’s
execution to feed the scheduler with up-to-date SF estimates.

We found that an important issue arises when implementing
such a scheme on the Intel QuickIA. Performance metrics
monitored in subsequent PMC sampling periods on a given core
may not belong to the same programphase, and using eventmetric
values from different phases leads to inaccurate SF predictions. To
overcome this issue, we augmented the prediction scheme with
a heuristic to detect transitions between program phases. This
heuristic is similar to that proposed in [3], which was evaluated
in a simulation environment. At a high level, the heuristic works
as follows. For each thread, we maintain a running average of the
IPC. To this end, we alwaysmonitor the number of instructions per
cycle together with the other metrics in a particular event set. If
a sudden variation of the IPC is detected in the last sample (with
respect to the running average of the IPC), we assume that the
sample belongs to a new program phase. If a sample for a different
program phase is detected, previously collected samples from the
same sampling round are discarded when estimating the SF, and a
new sampling round is started. By contrast, if an entire sampling
round is completed without detecting phase transitions, then the
samples collected are used to generate an up-to-date SF valuewith
the associated estimation model. We observed that this heuristic
turns out effective in detecting phase transitions, and, in turn, leads
to more accurate SF estimates over time.

5. Experimental evaluation

In our experiments, we carry out an extensive comparison
of ACFS with several state-of-the-art schedulers for AMPs: HSP
[13,27], Prop-SP [26], the history-based variant of EQP [5], RR [3]
and A-DWRR [17]. We implemented all scheduling algorithms as
a separate scheduling class in the Linux kernel v3.2. Like ACFS,
the HSP, Prop-SP and EQP schemes make scheduling decisions by
taking thread speedup factors (SFs) into consideration, so they rely



J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131 125
Fig. 11. Fairness and throughput on 2B-2S (Intel QuickIA).
on hardware performance counters to function. As stated in [5], the
history-based variant of EQP employs IPC sampling to determine
SFs online. We found that the HSP and Prop-SP schedulers yield
better performance when using estimation models to determine a
thread’s SF online. As such, in our final experiments, we opted to
use SF estimation rather than IPC sampling for these schedulers.

Our evaluation targets multi-application workloads consisting
of benchmarks from diverse suites (SPEC CPU2006, OMP 2001,
PARSEC and Minebench). We also experimented with BLAST – a
bioinformatics benchmark; and FFTW3D – a program performing
the fast Fourier transform. In all the experiments, the total thread
count in the workload was set to match the number of cores in
the platform, as in previous work on AMPs [13,27,23] that also
employs CPU-boundworkloads. In multi-application experiments,
we ensure that all applications are started simultaneously and
when an application terminates it is restarted repeatedly until
the longest application in the set completes three times. We then
obtain the aggregate speedup and unfairness for the scheduler in
question, by using the geometric mean of the completion times for
each program.

In the remainder of this section we analyze the results for
four sets of experiments. First, we discuss the effectiveness of
the various schedulers for multi-application workloads consist-
ing of applications with the same priority. Second, we analyze
multi-application scenarios where applications are assigned dif-
ferent priorities. Third, we show the effects of adjusting ACFS’s
unfairness_factor knob. Finally, we carry out a sensitivity
study that showcases the impact of the thread swap frequency on
throughput and fairness under ACFS.

5.1. Applications with the same priority

In creating the workloads, we categorized applications into
three groups with respect to their parallelism: highly parallel
(HP), partially sequential (PS) – parallel programs with a serial
component of over 25% of the total execution time – and single
threaded (ST). We further divided the three aforementioned
application groups into three subclasses based on their SFs—high
(H), medium (M) and low (L). The program mixes we explored
mimic scenarios with different SF ranges and varying degree of
competition for the scarce big cores in the AMP.

(A) Workloads consisting of single-threaded applications. Fig. 11
shows the results for workloads in Table 4 running on 2B-2S
(Intel QuickIA). These program mixes include single-threaded
applications only. The workload name shown in the table encodes
the category of each application as it appears in the corresponding
row. For example, in the 2STH-2STL workload, mcf and calculix
are STH (Single-Threaded High-SF) programs and sjeng06 and
gobmk are STL (Single-Threaded Low-SF) applications. Note that
the SF subcategories (H, M and L) are largely architecture specific.
Table 4
Multi-application workloads consisting of single-threaded applications.

Workload Benchmarks

4STH calculix, gamess, GemsFDTD, bzip2
3STH-1STM calculix, GemsFDTD, bzip2, h264ref
3STH-1STL gamess, GemsFDTD, bzip2, sjeng
3STH-1STLB calculix, gamess, sphinx3, sjeng
2STH-2STM gamess, soplex, povray, h264ref
2STH-2STL mcf, calculix, sjeng, gobmk
2STH-2STLB gamess, sphinx3, gobmk, libquantum
1STH-1STM-2STL mcf, h264ref, sjeng, gobmk
2STM-2STL namd, h264ref, gobmk, libquantum

For example, the gobmk benchmark is classified as a low-SF
program on 2B-2S (Intel QuickIA) but it constitutes a high-SF
program on 2B-10S (AMD platform).

As shown in Fig. 11, the scheduler that optimizes throughput
(HSP) effectively obtains the best aggregate speedup, but that
comes at the expense of delivering the worst unfairness numbers
(the higher, the worse) across the board. As for RR and A-DWRR,
both schemes fair-share big cores among threads in this scenario,
and so they perform similarly in most cases. As is evident, fair-
sharing big coresmay lead to throughput and fairness degradation,
especially for workloads exhibiting a wide range of big-small
speedups (e.g., 3STH-1STL and 2STH-2STL). In addition, the results
highlight that Prop-SP is able to achieve a better balance between
throughput and fairness than that of HSP. However, Prop-SP is still
subject to high unfairness in some cases (e.g., 2STH-2STL).

Now we zoom in on the results for EQP and ACFS, which
strive to optimize fairness. Clearly, EQP is not able to obtain lower
unfairness than RR or A-DWRR for all workloads, thus failing to
achieve its main goal. We found that this primarily stems from
the inaccuracies associated with the mechanism employed by EQP
to approximate threads’ slowdowns, as pointed out in Section 2.2.
Moreover, EQP is subject to high SFmispredictions that come from
its reliance on IPC sampling on off-the-shelf AMPs. IPC sampling
has been shown to lead to inaccurate SFs, since IPC values collected
on each core typemay belong to different programphases [31].We
observed that these inaccurate values become apparent especially
in the last four workloads. In contrast, the ACFS scheduler is
not subject to the aforementioned program-phase issues, since
it predicts a thread’s SF by means of an estimation model that
uses performance metrics collected on the current core type. The
results reveal that, despite the existing imperfections in the SF
model, ACFS is able to obtain the best unfairness figures across the
board. On average it reduces unfairness by 10% compared to RR
and A-DWRR, and by 13% compared to EQP, while ensuring better
system throughput than these schemes. To evaluate the impact
of SF inaccuracies on ACFS’s behavior, we also experimented with
a static version of ACFS (ACFS-S), where the scheduler is fed
with applications’ SFs measured offline for the entire execution.



126 J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131
Fig. 12. Results for workloads consisting of single-threaded and multithreaded applications.
Fig. 13. Fairness and throughput for selected workloads on 2B-10S (AMD platform).
As evident, perfect overall SF values enable to reduce unfairness
even further. This fact underscores that high accuracy in speedup
estimation is paramount when it comes to delivering fairness on
AMPs.

(B) Workloads consisting of single-threaded and multithreaded
applications. Due to the reduced core count of the 2B-2S
configuration, we used the 2B-10S (AMD platform) configuration
to experimentwithworkloads consisting of parallel and sequential
applications. In this workload scenario there is a much bigger
set of workload types to explore, since there are 9 potential
application categories: 3 parallelism classes (ST, HP and PS) with 3
SF subclasses each (H,M and L). To cater to this higher diversity, we
generated 44 randomprogrammixes by combining 14 applications
from different categories. In generating the workloads we made
sure that at least one multithreaded application was included in
each program mix. Overall, we observed that these workloads
exhibit a wider big-to-small speedup range across applications
than that of workloads consisting of single-threaded applications
only. Essentially, many workloads combine parallel applications
that derive a modest speedup from using the scarce big cores
(such as HP applications) with other applications that experience
significant performance gains when using these cores (such as
single-threaded applications).

Fig. 12(a) shows the unfairness vs. throughput for all the work-
loads considered. For the sake of clarity, all the throughput (ASP)
values displayed are normalized with respect to the throughput
delivered by the HSP scheduler. Note that the closer a (workload)
point is to the top left corner, the better the throughput-fairness
tradeoff. To illustrate how the various algorithms perform in gen-
eral, Fig. 12(b) displays the average unfairness and relative ASP
values observed across workloads. In addition, to gain further in-
sight into the results, Fig. 13 displays the individual unfairness and
Table 5
Subset of workloads consisting of single-threaded and multithreaded applications.

Workload Benchmarks

2STH-1HPH-1HPM gamess, hmmer, fma3d_m(5), wupwise_m (5)
3STH-1HPH hmmer, gobmk, h264ref, fma3d_m(9)
2STH-1STL-1HPH perlbench, soplex, h264ref, fma3d_m(9)
3ST{H, M, L}-1PSH gamess, astar, soplex, blackscholes(9)
2STH-1PSH-1HPM hmmer, perlbench, semphy(5), wupwise_m(5)
1STH-1PSH-1PSL gobmk, BLAST(6), FFTW3D(5)
2PSH-1PSL BLAST(4), semphy(4), FFTW3D(4)
1PSH-1PSL semphy(6), FFTW3D(6)
2PSH-1HPM BLAST(4), semphy(4), wupwise_m(4)
1PSH-1HPH BLAST(6), fma3d_m(6)

throughput values for 10 selected workloads from different cat-
egories that represent very different points in Fig. 12(a). Table 5
shows the composition of these workloads. Note that for multi-
threaded applications, the number in parentheses shown by each
program’s name in the table is the number of threads it runs with.

For HSP and ACFS, results in Figs. 12 and 13 showcase similar
trends as those of workloads on 2B-2S: ACFS achieves the best
fairness figures across the board while HSP obtains slightly
better throughput than ACFS at the expense of degrading fairness
significantly. Notably, we observe that ACFS obtains more modest
fairness improvements over Prop-SP (5.5% on average) than those
observed for workloads including single-threaded programs only
(16%). In this case, we found that Prop-SP makes a big-core
cycle distribution more similar to that of ACFS, hence the similar
fairness and throughput results. Specifically, assigning big-core
cycles in proportion to the application speedup (Prop-SP) is known
to provide better fairness results when both multithreaded and
single-threaded applications are included in the workload [29].



J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131 127
Table 6
Average reduction in unfairness and increase in throughput achieved by ACFS over
the other schemes across the whole set of explored workloads.

ACFS vs. others Reduct. in Unf. Increase in ASP

HSP 36.65% −24.16%
Prop-SP 7.25% 2.78%
RR 12.94% 15.80%
A-DWRR 23.39% 76.10%
EQP 23.21% 73.65%

While the results associated with the ACFS, Prop-SP and HSP
schedulers exhibit a consistent and clear trend across the board,we
observe important divergences in the results of EQP and A-DWRR.
Numbers in Fig. 13 enable us to explain the source of the major
divergences. The results reveal significant differences between
EQP, A-DWRR and the other fairness-aware schedulers especially
for workloads including both single-threaded and multithreaded
applications (the first six workloads in Table 5). More specifically,
EQP and A-DWRR perform very poorly (in terms of both fairness
and throughput) for workloads that combine sequential programs
with highly parallel applications (such as 3STH-1HPH or 2STH-
1HPH-1HPM). In fact, workload points concentrated in the bottom
center of Fig. 12(a) for these two schedulers correspond to
workloads with such a composition. The poor fairness and
throughput numbers in this context stem from the fact that
EQP and A-DWRR make scheduling decisions without taking into
consideration the number of runnable threads in the various
applications (a proxy for the amount of thread-level parallelism).
Specifically, A-DWRR ensures that each thread in the workload
receives the same AMP-scaled CPU time, regardless the application
it belongs to. EQP aims to enforce equal slowdown across threads
by considering the SF of individual threads only, but ignoring the
number of threads in the associated applications. Under these two
schedulers, the higher the number of threads in the application,
the higher the big-core share allotted to the application. Because
highly-parallel applications are known to derive lower speedup
from the scarce big cores than applications with limited thread-
level parallelism [27,1], favoring highly-parallel applications over
single-threaded programs leads A-DWRR and EQP to worse
unfairness and throughput than the other schemes. These results
enable us to draw a very important conclusion: enforcing fairness
across individual threads in the system without factoring in the
application thread count (what A-DWRR and EQP do) does not
ensure equal slowdowns among applications when multithreaded
programs are included in the workload. Notably, Prop-SP and ACFS
do take the number of threads in the application into consideration
when making scheduling decisions, which leads to fairness and
throughput benefits in this context. Specifically, this enables ACFS
to reduce unfairness by 25% on average relative to EQP and A-
DWRR, and it yields significantly higher throughput.

For workloads that do not include any sequential application
(the last four workloads in Table 5), EQP and A-DWRR provide
unfairness and throughput values closer to those of ACFS and
Prop-SP. Note that multithreaded applications used in these
workloads derive modest speedup values from using the scarce
fast cores. Low speedup values across applications (observedwhen
each program runs alone on the AMP) typically lead to low
per-application slowdown values in the workloads. This results
in smaller unfairness and throughput figures for all fairness-
aware schedulers in this scenario, including the RR scheduler.
This scheduling scheme, however, outperforms EQP and A-DWRR
for workloads that combine one HP and several single-threaded
applications. In that context, RR grants a higher big-core share to
threads from single-threaded programs than to individual threads
in HP applications. As stated earlier, this is not the case under
EQP and A-DWRR, which leads these two schedulers to higher
unfairness and throughput degradation than RR. Despite this fact,
ACFS still reduces unfairness by 13% on average with respect to RR.

(C)Overall results.Table 6 shows the observed average reduction
in unfairness and average increase in throughput achieved by ACFS
over the other schemes across the whole set of workloads that
we explored −9 of them made up of single-threaded programs,
plus 44 mixes consisting of single-threaded and multithreaded
applications. As is evident, ACFS reduces unfairness substantially
over the other fairness-aware schemes: 23% with respect to EQP
and A-DWRR, 13% compared to RR, and 7% over Prop-SP.Moreover,
our approach is able to deliver substantial throughput (ASP) gains
compared to these schemes.

5.2. Applications with different priorities

We now assess the effectiveness of the schemes that support
user-defined priorities (A-DWRR, Prop-SP and ACFS) in scenarios
where applications with different priorities coexist on the 2B-
2S configuration. Specifically, we experimented with a workload
featuring two high-SF applications (gamess and bzip2), onemid-
SF program (h264ref) and a low-SF one (gobmk). Such aworkload
enables us to explore howdifferent applications can be accelerated
as the priority increases and how unfairness is affected under the
various schedulers.

Our experiments consist in gradually increasing the priority
of one selected high-priority application (HPA) while keeping the
priority of the remaining applications at the default setting. For
each selected HPA, we gradually increase its priority so that
the associated weight (Wt ) increases in steps of 25%. Fig. 14
shows the results. The x-axis indicates the selected HPA; the
associated weight Wt , derived directly from the application
priority, is specified in parentheses. For the different priority
settings and schedulers, we report the HPA’s relative speedup and
the unfairness. To factor in application priorities in the unfairness
metric (as in [6]), we replaced slowdowns in Eq. (1) with their
weighted counterparts: Wt · Slowdownapp. Note also that the
HPA speedup is normalized to A-DWRR in the scenario when all
applications have the same priority or weight. This enables us to
track by how much the HPA speeds up with the priority. Since
we observed very similar trends for the two single-threaded high-
speedup programs, we omitted the results for bzip2.

In the scenario where all applications have the same priority
(labels with the ‘‘(1.0)’’ suffix), A-DWRR fair-shares big cores
among all applications. In contrast, Prop-SP and ACFS grant a
higher big-core share to gamess, bzip2 and h264ref; these
applications derive a greater speedup from using big cores than
gobmk. As the HPA’s priority increases, all schedulers are able
to reduce its completion time, since they all gradually increase
the HPA’s big-core share with the priority. As is evident, only
ACFS is able to maintain low unfairness as the HPA’s priority
increases; Prop-SP and A-DWRR are subject to higher fairness
degradation. Throughput results, omitted due to space constraints,
reflect similar trends to those observed in scenarios with equal-
priority applications.

5.3. Trading fairness for throughput under ACFS

Recall that the ACFS scheduler is equipped with the
unfairness_factor (UF) knob, which empowers the user with
a means to provide a configurable balance between fairness and
the system throughput extracted from the AMP. Fig. 15 shows how
the UF choice affects fairness and throughput for three selected
workloads from Table 4 running on the Intel QuickIA. Both metrics
have beennormalized to the (0,1) interval, by using themechanism



128 J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131
Fig. 14. HPA speedup (left) and unfairness (right) for program mixes consisting of applications with different priorities.
Fig. 15. Normalized unfairness vs. normalized aggregate speedup for different UF
values.

described in Section2.1. The results reveal that the default and low-
est possible setting for the UF (1.0) provides the best fairness fig-
ures, while higher UF values always lead to throughput gains at the
expense of degrading fairness. Notably, the trends illustrate that,
by gradually increasing the UF, the ACFS scheduler can get closer
to the HSP scheduler, which optimizes throughput.

5.4. Impact of the thread swap frequency on throughput and fairness

All the scheduling algorithms considered in our study trigger
thread swaps every so often to accomplish different goals.
Our implementations of the different algorithms in the Linux
kernel rely on the same mechanism for swapping threads. As
an illustrative case, we analyze the impact of the thread swap
frequency on throughput and fairness under ACFS. For our analysis
we used 3 program mixes with four sequential programs each
running on two AMP configurations (on the Intel and on the AMD
platform) consisting of 2 big cores and 2 small cores.

It is well known that threadmigrations introduce both software
and hardware overhead [16]. The software overhead includes the
time to move one thread from one core to another; this entails
acquiring multiple run queue locks. Note that in the scenario
considered (one thread per core) the two migrations in a thread
swap must be often serialized since, in addition to acquiring the
locks, the scheduler must trigger the preemption of two running
threads from different CPUs. Serializing migrations in a swap may
lead to load imbalance for very short periods of time. As for the
hardware overhead associated with amigration, wemust consider
twoaspects: (1) the threadhas to rebuild its cache state (up to three
cache levels on the AMD platform), which involves extra cache
misses; and (2) the cost of cache misses after a migration can be
higher on NUMA platforms (AMD system) than on UMA machines
(Intel QuickIA) [16].
Fig. 16 shows the impact on unfairness and aggregate speedup
that comes from varying the average swap period from 100 ms
to 1 s. The results reveal that the throughput degradation and
the unfairness clearly decrease when increasing the swap period.
(In the experiments of the previous sections we set the average
swap period to 850 ms, as this setting provides satisfactory results
across platforms, as shown in the figure.) For the first workload,
which consists of four instances of gamess, we observe that the
unfairness stays the same even for small values of the swap period.
This stems from the fact that the gamess program is CPU intensive
and has a smallworking set; such a programexperiences negligible
hardware overhead after migration. Nevertheless, setting the
average swap period to a value lower than 300 ms leads to non-
negligible software overhead – primarily related to the transient
load imbalance situations – which has a negative impact on
throughput. The other two workloads combine three instances of
gamesswith a mildly memory-intensive application (astar) and
a highly memory-intensive program (libquantum), respectively.
These memory-intensive applications experience a significant
hardware-related overheadwhenmigrated frequently, as opposed
to gamess. This leads to uneven application slowdown and hence
to higher unfairness for small values of the swap period.

6. Conclusions

In this paper we proposed ACFS, a scheduler that seeks to
optimize fairness on Asymmetric single-ISA Multicore Processors
(AMPs) whilemaintaining acceptable system throughput. Tomake
this possible, ACFS evens out the slowdown that the various
applications in the workload experience as a result of sharing the
AMP system. To track the relative progress that an application
makes over time, the scheduler takes into account the relative
benefit (speedup) that the application derives from using the big
cores in the AMP as it goes through different program phases.
Our experimental evaluation, using real hardware and scheduler
implementations in the Linux kernel, reveals that ACFS is able
to reduce unfairness by 23% on average compared to two state-
of-the-art fairness-aware schemes [17,5] and by 13% relative
to an asymmetry-aware round-robin policy [3,27]. Moreover,
ACFS yields considerably higher system throughput than these
approaches. Notably, ACFS’s throughput and fairness gains relative
to the other schedulers are especially pronounced for workloads
including multithreaded programs. We also demonstrated that
previous scheduling proposals that support user priorities on
AMPs [3,26] are subject to high fairness degradation in the event
that applications with different priorities coexist on the system;
ACFS, by contrast, ensures low unfairness in this context.

Key elements for the success of ACFS are themechanismused to
keep track of the relative progressmade by each application on the
AMP, and its reliance on online estimation models to approximate



J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131 129
Fig. 16. Unfairness and aggregate speedup when varying the average swap period under ACFS on AMP configurations consisting of 2 big cores and 2 small cores.
Fig. 17. Breaking down the SF trace of the mcf program into phases: (a) SF subintervals for U = 3, (b) Nearest threshold value, and (c) Resulting SF phases.
the relative benefit that a thread derives from running on a
big core relative to a small core (aka speedup factor). One of
the major challenges that became apparent when implementing
ACFS as well as other schedulers used for comparison purposes,
was to devise estimation models based on performance counters
to predict a thread’s speedup factor at run time on highly
asymmetric hardware. Existingmethodologies to aid in generating
those estimation models have proven effective on AMP platforms
where cores differ in processor frequency only or exhibit slight
microarchitectural differences [27]. We found that these schemes
turn out ineffective for asymmetric systems such as the Intel
QuickIA prototype [4] used for our experiments, where cores
exhibit profound differences (microarchitecture, frequency, cache
sizes, etc.). In this work, we proposed a methodology enabling
to derive accurate speedup-factor prediction models for such a
system.

Acknowledgments

This work has been supported by the EU (FEDER) and the
Spanish MINECO, under grant TIN 2015-65277-R, as well as by the
HIPEAC-4 EuropeanNetwork of Excellence.Wewould like to thank
David Koufaty (Circuits and Systems Research Lab at Intel) and
Alexandra Fedorova (University of British Columbia) for enabling
us to experiment with the QuickIA prototype system. We also
thank the anonymous reviewers for their valuable comments and
suggestions.

Appendix

This appendix describes the mechanism used to break down
a speedup factor (SF) trace for the entire execution of a single-
threaded application into coarse-grained SF phases. Recall that
the Phase-SF methodology (presented in Section 4.2) relies on the
ability to identify distinct phases in an SF trace. We define a phase
as a set of contiguous instruction windows where either the SF
remains constant or does not vary significantly across the various
samples. Several schemes have been proposed to identify program
phases at run time by employing either hardware-based [34,33] or
software approaches that can be exploited by the OS scheduler [3].
Here, we aim to detect these phases offline from an SF trace of the
entire execution of the application collected beforehand.

Our scheme to break down an SF trace into phases is inspired by
thresholding algorithms. It entails performing the following four
steps. First, find the maximum and minimum SF values (SFmax and
SFmin) in the SF trace. Second, divide the observed SF range into
U same-sized subintervals, where U is a configurable parameter.
Let S be SFmax − SFmin, and let p be the length of each subinterval
(p = S/U). Hence, each ith SF subinterval (i ∈ {0 .. U − 1}) is
defined as [SFmin + p · i, SFmin + p · (i + 1)]. Fig. 17(a) depicts
a potential division into subintervals for the SF trace of the SPEC
CPU mcf benchmark running on the Intel QuickIA. Third, for each
sample in the SF trace, find the nearest threshold value (limit of a
subinterval). Specifically, given a certain SF value, such that u ≤

SF ≤ u + p, where u and u + p are the limits of a subinterval, the
nearest threshold value (NTV ) function is defined as follows:

NTV (SF) =


u if (SF − u) ≤ (u + p − SF)
u + p if (SF − u) > (u + p − SF) .

(6)

Fig. 17(b) illustrates how the NTV function is applied to the SF
trace of the mcf benchmark. The last step of the process consists
in breaking down the SF trace into phases using the information
obtained in the previous step, as shown in Fig. 17(c). Essentially,
two consecutive SF samples SF j, SF j+1 in the trace are said to
belong to the same phase if NTV


SF j


= NTV


SF j+1


.

Despite the simplicity of the scheme, it allows us to detect
coarse-grained phases relatively well for the SPEC CPU bench-
marks. Because themost appropriate choice for the U parameter is
application specific, we employed an iterative algorithm that finds
the lowest value for this parameter such that the average devia-
tion in the resulting SF phases reaches a certain threshold. Note
also that, since our goal is to factor in coarse-grained phases when
creating the SF estimation model, phases with scarce SF samples
(e.g., spikes in the figures) are discarded when applying the Phase-
SF methodology (Section 4.2).



130 J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131
References

[1] M. Annavaram, E. Grochowski, J. Shen, Mitigating Amdahl’s Law through
EPI Throttling, in: Proceedings of International Symposium on Computer
Architecture, ISCA’05, Wisconsin, USA, 2005, pp. 298–309.

[2] ARM, Benefits of the big.LITTLE Architecture, 2013. https://www.arm.
com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf (accessed:
31.10.16).

[3] M. Becchi, P. Crowley, Dynamic thread assignment on heterogeneous
multiprocessor architectures, in: Proceedings of International Conference on
Computing Frontiers, CF’06, Ischia, Italy, 2006, pp. 29–40.

[4] N. Chitlur, G. Srinivasa, S. Hahn, P.K. Gupta, D. Reddy, D. Koufaty, P. Brett,
A. Prabhakaran, L. Zhao, N. Ijih, S. Subhaschandra, S. Grover, X. Jiang, R.
Iyer, QuickIA: Exploring heterogeneous architectures on real prototypes,
in: Proceedings of International Conference of High Performance Computer
Architecture, HPCA’12, New Orleans, LA, 2012, pp. 1–8.

[5] K.V. Craeynest, S. Akram, W. Heirman, A. Jaleel, L. Eeckhout, Fairness-
aware scheduling on single-ISA heterogeneous multi-cores, in: Proceedings
of the International Conference on Parallel Architectures and Compilation
Techniques, PACT’13, Edinburgh, Scotland, 2013, pp. 177–187.

[6] E. Ebrahimi, C.J. Lee, O. Mutlu, Y.N. Patt, Fairness via source throttling: a
configurable and high-performance fairness substrate for multi-core memory
systems, in: Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS’10,
Pittsburgh, PA, 2010, pp. 335–346.

[7] J.H. Friedman, Stochastic gradient boosting, Comput. Statist. Data Anal. 38 (4)
(2002) 367–378.

[8] R. Gabor, S. Weiss, A. Mendelson, Fairness and throughput in switch
on event multithreading, in: Proceedings of International Symposium on
Microarchitecture, MICRO’06, Orlando, FL, 2006, pp. 149–160.

[9] M.A. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA data mining software: an update, ACM SIGKDD Explor. Newslett. 11
(2009) 10–18.

[10] M.D. Hill, M.R. Marty, Amdahl’s law in the multicore era, IEEE Comput. 41 (7)
(2008) 33–38.

[11] J.A. Joao, M.A. Suleman, O. Mutlu, Y.N. Patt, Bottleneck identification and
scheduling in multithreaded applications, in: Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’12, London, England, UK, 2012, pp. 223–234.

[12] J.A. Joao, M.A. Suleman, O. Mutlu, Y.N. Patt, Utility-based acceleration of
multithreaded applications on asymmetric cmps, in: Proceedings of the
International Symposium on Computer Architecture, ISCA’13, Tel-Aviv, Israel,
2013, pp. 154–165.

[13] D.A. Koufaty, D. Reddy, S. Hahn, Bias scheduling in heterogeneous multi-
core architectures, in: Proceedings of the European Conference on Computer
systems, EuroSys’10, Paris, France, 2010, pp. 125–138.

[14] V. Kumar, A. Fedorova, Towards better performance per watt in virtual
environments on asymmetric single-ISA multi-core systems, SIGOPS Oper.
Syst. Rev. 43 (3) (2009) 105–109.

[15] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, K.I. Farkas, Single-
ISA heterogeneous multi-core architectures for multithreaded workload
performance, in: Proceedings of the International Symposium on Computer
Architecture, ISCA’04, Munchen, Germany, 2004, p. 64–.

[16] T. Li, D. Baumberger, D.A. Koufaty, S. Hahn, Efficient operating system
scheduling for performance-asymmetric multi-core architectures, in: Pro-
ceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC’07, 2007,
pp. 53:1–53:11.

[17] T. Li, P. Brett, R.C. Knauerhase, D.A. Koufaty, D. Reddy, S. Hahn, Operating
system support for overlapping-ISA heterogeneous multi-core architectures,
in: Proceedings of the International Conference on High-Performance
Computer Architecture, HPCA’10, Bangalore, India, 2010, pp. 1–12.

[18] N.Markovic, D. Nemirovsky, O. Unsal,M. Valero, A. Cristal, Thread lock section-
aware scheduling on asymmetric single-ISA multi core, IEEE Comput. Archit.
Lett. 14 (2) (2015) 160–163.

[19] W. Mauerer, Professional Linux Kernel Architecture, Wrox Press Ltd.,
Birmingham, UK, UK, 2008.

[20] J.C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, V. Talwar, Using
asymmetric single-isa cmps to save energy on operating systems, IEEE Micro
28 (3) (2008) 26–41.

[21] O. Mutlu, T. Moscibroda, Stall-time fair memory access scheduling for
chip multiprocessors, in: Proceedings of International Symposium on
Microarchitecture, MICRO’07, Chicago, IL, 2007, pp. 146–160.

[22] V. Petrucci, M.A. Laurenzano, J. Doherty, Y. Zhang, D. Mossé, J. Mars, L. Tang,
Octopus-man: Qos-driven task management for heterogeneous multicores in
warehouse-scale computers, in: Proceedings of the International Symposium
on High Performance Computer Architecture, HPCA’15, San Francisco, CA,
2015, pp. 246–258.

[23] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N.A. Gazala, S. Gobriel,
Energy-efficient thread assignment optimization for heterogeneousmulticore
systems, ACM Trans. Embedded Comput. Syst. 14 (1) (2015) 15:1–15:26.

[24] M. Pricopi, T.S. Muthukaruppan, V. Venkataramani, T. Mitra, S. Vishin, Power-
performance modeling on asymmetric multi-cores, in: Proc. of International
Conference on Compilers, Architecture and Synthesis for Embedded Systems,
CASES’13, Montreal, Canada, 2013, pp. 15:1–15:10.
[25] J.C. Saez, J. Casas, A. Serrano, R. Rodríguez-Rodríguez, F. Castro, D. Chaver,
M. Prieto-Matias, An OS-oriented performance monitoring tool for multicore
systems, in: Proceedings of International European Conference on Parallel and
Distributed Computing, Euro-Par’15: Parallel Processing Workshops, Vienna,
Austria, 2015, pp. 697–709.

[26] J.C. Saez, F. Castro, D. Chaver, M. Prieto, Delivering fairness and priority
enforcement on asymmetric multicore systems via OS scheduling, in:
Proceedings of the International Conference onMeasurement andModeling of
Computer Systems, SIGMETRICS’13, Pittsburgh, PA, USA, 2013, pp. 343–344.

[27] J.C. Saez, A. Fedorova, D. Koufaty, M. Prieto, Leveraging core specialization
via OS scheduling to improve performance on asymmetric multicore systems,
ACM Trans. Comput. Syst. 30 (2) (2012) 6:1–6:38.

[28] J.C. Saez, A. Fedorova, M. Prieto, H. Vegas, Operating system support
for mitigating software scalability bottlenecks on asymmetric multicore
processors, in: Procedings of the ACM International Conference on Computing
Frontiers, CF’10, Bertinoro, Italy, 2010, pp. 31–40.

[29] J.C. Saez, A. Pousa, F. Castro, D. Chaver, M. Prieto-Matías, Exploring
the throughput-fairness trade-off on asymmetric multicore systems, in:
Proceedings of International European Conference on Parallel and Distributed
Computing, Euro-Par’14: Parallel Processing Workshops, Part II, Porto,
Portugal, 2014, pp. 326–337.

[30] J.C. Saez, A. Pousa, F. Castro, D. Chaver, M. Prieto-Matias, ACFS: A completely
fair scheduler for asymmetric single-ISAmulticore systems, in: Proceedings of
the ACM Symposium on Applied Computing, SAC’15, Salamanca, Spain, 2015,
pp. 2027–2032.

[31] J.C. Saez, D. Shelepov, A. Fedorova, M. Prieto, Leveraging workload diversity
throughOS scheduling tomaximize performance on single-ISA heterogeneous
multicore systems, J. Parallel Distrib. Comput. 71 (2011) 114–131.

[32] D. Shelepov, J.C. Saez, S. Jeffery, A. Fedorova, N. Perez, Z.F. Huang, S. Blagodurov,
V. Kumar, HASS: a scheduler for heterogeneous multicore systems, Oper. Syst.
Rev. 43 (2) (2009) 66–75.

[33] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, B. Calder, Discovering and
exploiting program phases, IEEE Micro 23 (6) (2003) 84–93.

[34] T. Sherwood, S. Sair, B. Calder, Phase tracking and prediction, in: Proceedings
of International SymposiumonComputer Architecture, ISCA’03, SanDiego, CA,
2003, pp. 336–349.

[35] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, J. Emer, Scheduling
heterogeneous multi-cores through performance impact estimation (PIE), in:
Proceedings of International Symposium on Computer Architecture, ISCA’12,
Portland, OR, 2012, pp. 213–224.

[36] Y. Zhang, L. Duan, B. Li, L. Peng, S. Sadagopan, Cross-architecture prediction
based scheduling for energy efficient execution on single-isa heterogeneous
chip-multiprocessors, Microprocess. Microsyst. 39 (45) (2015) 271–285.

Juan Carlos Saez received his Ph.D. in computer science
from the Complutense University of Madrid (UCM) in
2011. He is now an Associate Professor in the Department
of Computer Architecture at UCM. Since 2012 he has been
teaching different subjects related to Operating Systems
and Computer Architecture. His research interests include
energy-aware computing and improving the interaction
between the operating system and hardware for emerging
architectures. His recent research activities focus on
OS scheduling on heterogeneous multicore processors,
exploring new techniques to deliver better performance

per watt, and quality of service on these systems.

Adrian Pousa received the degree in Computer Science
and the Specialization Degree in Networking and Security
from the University of La Plata, Argentina, in 2007 and
2012 respectively, where he is currently an Associate
Professor. He has been teaching different subjects related
to Computer Science since 2005. He is member of
the Institute of Research in Computer Science (III-
LIDI). His current research interests include: (1) parallel
architectures (2) parallel computing techniques (3) OS
scheduling techniques for asymmetric multiprocessors.

Fernando Castro obtained theM.S. degree in physics from
University of Santiago de Compostela (Spain) in 2000, the
M.S. degree in electrical engineering and the Ph.D. degree
in computer science from the University Complutense of
Madrid (UCM) in 2004 and 2008, respectively. He is now
an assistant professor in the Department of Computer
Architecture, UCM. His research interests include energy-
aware processor design, efficient memory management
and OS scheduling on asymmetric multiprocessors.

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref7
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref9
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref10
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref14
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref18
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref19
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref20
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref23
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref27
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref31
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref32
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref33
http://refhub.elsevier.com/S0743-7315(16)30187-3/sbref36


J.C. Saez et al. / J. Parallel Distrib. Comput. 102 (2017) 115–131 131
Daniel Chaver received the degree in physics from the
University of Santiago de Compostela, Spain, in 1998, and
the Electrical Engineering and Ph.D. degrees from the
Complutense University of Madrid, Spain, in 2000 and
2006, where he is currently an Associate Professor. He
has been teaching different subjects related to Computer
Science and Electrical Engineering since 2000. His current
research interests include: (1) architectural techniques for
managing efficiently the memory hierarchy and (2) OS
scheduling techniques for asymmetric multiprocessors.
Manuel Prieto-Matias received the Ph.D. degree from the
Complutense University of Madrid (UCM) in 2000. He is
now associate professor in the Department of Computer
Architecture at UCM and serves as vice-dean for External
Relations and Research at the School of Computer Science
and Engineering. His research interests include areas of
parallel computing and computer architecture. Most of his
activities have focused on leveraging parallel computing
platforms and on complexity-effective micro-architecture
design. His current research addresses emerging issues
related to asymmetric processors, heterogeneous systems

and energy-aware computing, with a special emphasis on the interaction between
the system software and the underlying architecture. He has co-written numerous
articles in journals and for international conferences in the field of parallel
computing and computer architecture.


	Towards completely fair scheduling on asymmetric single-ISA multicore processors
	Introduction
	Background and related work
	Fairness and throughput on AMPs
	Related work

	Design
	Tracking progress and initial assignment
	Case study
	Enforcing fairness via thread swaps
	Throughput-fairness trade-off

	Determining the speedup factor
	Experimental setup
	Generating speedup factor estimation models offline
	Implementation: using SF-estimation models at run time

	Experimental evaluation
	Applications with the same priority
	Applications with different priorities
	Trading fairness for throughput under ACFS
	Impact of the thread swap frequency on throughput and fairness

	Conclusions
	Acknowledgments
	Appendix
	References


