
Principal Type Specialisation

Pablo E. Martı́nez López
∗

LIFIA, UNLP
CC.11 Correo Central

(1900) La Plata, Bs.As. Argentina

fidel@info.unlp.edu.ar

John Hughes
Chalmers Tekniska Högskola

Institutionen för Datavetenskap
412 96 Göteborg Sweden

rjmh@cs.chalmers.se

ABSTRACT
Type specialisation is an approach to program specialisation
that works with both a program and its type to produce
specialised versions of each. As it combines many powerful
features, it appears to be a good framework for automatic
program production, – despite the fact that it was designed
originally to express optimal specialisation for interpreters
written in typed languages.

The original specification of type specialisation used a
system of rules expressing it as a generalised type system,
rather than the usual view of specialisation as generalised
evaluation. That system, while powerful, has some weak-
nesses not widely recognized – the most important being the
inability to express principal type specialisations (a principal
specialisation is one that is “more general” than any other
for a given specialisable term, and from which those can be
obtained by a suitable notion of instantiation). This inabil-
ity is a problem when extending type specialisation to deal
with polymorphism or modules.

This work presents a different formulation of the system
specifying type specialisation capturing the notion of prin-
cipal specialisation for a language with static constructions
and polyvariance. It is a step forward in the study of type
specialisation for polymorphic languages and lazy languages,
and also permits modularity of specialisation, and better im-
plementations.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming — Program Transformation; D.1.1 [Programming
Techniques]: Functional Programming; D.3.3 [Program-

∗The research reported in this paper was carried out at the
Department of Computer Science of the Chalmers Univer-
sity, and it was partially funded by grants received by this
author, who is a PhD student of University of Buenos Aires,
from the ALFA-CORDIAL project Nr. ALR/B73011/94.04-
5.0348.9, and the FOMEC project of Computer Science De-
partment, FCEyN, University of Buenos Aires.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA-PEPM’02,September 12-14, 2002, Aizu, Japan.
Copyright 2002 ACM 1-58113-458-4/02/0009 ...$5.00.

ming Languages]: Language Constructs and Features—
Polymorphism

General Terms
Languages,Algorithms

Keywords
Program Specialisation, Type Specialisation, Type Based
Transformation, Qualified Types

1. INTRODUCTION
Program specialisation is a way to generate programs au-

tomatically: a given (source) program is used to produce
one or more versions of it (the residual programs), each
specialised to particular data. The classic example is the
recursive power function, which, given, for example, that
the exponent is known to be 3, can be specialised to the
non-recursive residual version \x->x*(x*x), and similarly
for other exponents.

There are different approaches to program specialisation,
Partial Evaluation [17] being the most popular, well-known
and well-engineered. Partial evaluation specialises programs
by a form of generalized evaluation: subexpressions which
depend on known data are replaced by the result of comput-
ing them. It is important to remark that we use the term
Partial Evaluation referring to how the specialisation works,
not any particular partial evaluator.

A good way to determine the limits of a specialisation
method is to specialise an interpreter with it and compare
the residual programs with the source one: if they are essen-
tially the same, we can be confident that no limits exist –
we say that the specialisation is optimal. Traditional partial
evaluation can achieve optimality in the case of interpreters
written in untyped – or dynamically typed – languages. But
for typed interpreters, the residual code will contain type in-
formation coming from the representation of programs in the
interpreter, and thus optimality is lost. This problem was
stated by Neil Jones in 1987 as one of the open problems in
the partial evaluation field [16].

Type Specialisation [10] was introduced by John Hughes
in 1996 as a solution for optimal specialisation of typed in-
terpreters. The basic idea behind type specialisation is to
move static information to the type, thus specialising both
the source term and source type to residual term and resid-
ual type. Types can be regarded as a static property of
code, approximating known facts about it; for example in a
functional language, when some expression has type Int, we

statically know that if its evaluation produces some value, it
will be an integer. But if the expression is known to be the
constant 42, for example, then a better approximation can
be obtained by having a type representing the property of
being the integer 42 – let’s call this type 4̂2, and allow the
residual type system to have types like this one (and call
them one-point types). Having all the information in the
type, there is no need to execute the program anymore, and
thus, we can replace the integer constant by a dummy con-
stant having type 4̂2 – that is, the source expression 42 : Int
can be specialised to • : 4̂2, where • is the dummy constant.
This specialisation of types into ones expressing more de-
tailed facts about expressions – the type Int specialised to
the type 4̂2 in this example – needs a more powerful residual
type system, which is the key fact allowing optimal special-
isation for typed interpreters. Type specialisation is spec-
ified by a system of rules similar to those used to specify
type systems – indeed, type specialisation can be seen as a
generalised form of type inference, although up to now, only
monomorphic. Thus, the specification of the specialisation
procedure is modular: the specialisation of new constructs
in the source language can be specified by the addition of
new rules, without changing the rest of them.

Although type specialisation resembles partial evaluation
in many aspects – it is also a technique for program special-
isation, after all –, it is a different approach to program spe-
cialisation. This is something deserving attention, as type
specialisation features are usually misunderstood for similar
features of partial evaluation. The most common misunder-
standing is that of annotations. In order to perform special-
isation, both techniques use annotated programs. However,
while in partial evaluation annotations can be automatically
calculated, in type specialisation they are an important part
of the input. For example, when specialising an interpreter
for a given object language L, compilation for both untyped
and typed versions of L can be obtained just varying the
annotations. By choosing the annotations the programmer
decides the static semantics of the language L – with the
consequence that the annotations cannot be automatically
calculated. This is possible because type checking is an in-
tegral part of type specialisation, and so it is embedded in
the process of generating the residual program.

It is our goal to extend the power of type specialisation to
treat other features of modern languages, such as Hindley-
Milner polymorphism, type classes and lazy evaluation – to
be able, for example, to type specialise Haskell programs.
This work is a first step in the direction of generating and
specialising polymorphic and lazy programs, as we illustrate
with the examples in the appendix.

The original formulation of type specialisation [10] has
some problems. One of them is that there are rules that
are not completely syntax directed and so, for some source
terms, several different unrelated specialisations can be pro-
duced. Another problem is related with the treatment of
polyvariance – the ability of an expression to produce more
than one residual in the same specialisation – and its inter-
action with dynamic recursion. In type specialisation poly-
variance is first class (any expression may be polyvariant)
and not the default (i.e. polyvariant expressions have to be
explicitly annotated as such). This is essential to the ex-
pressiveness: for example, the firstifyier interpreter in [10]
needs to pass polyvariant functions as arguments. But the
way information flows when combining polyvariance with

recursion is difficult to predict; the algorithm presented in
[10] uses backtracking to calculate the solution.

These problems have important consequences. Firstly,
the extension to produce polymorphic residual code or spe-
cialising polymorphic source code is very difficult to treat.
Hindley-Milner polymorphism can be obtained as a varia-
tion of polyvariance (see the Ex. A.1), but for that to be
possible an optimal treatment of the latter is mandatory.
Secondly, an algorithm for specialisation will fail for terms
with more than one specialisation when the context does not
indicate which one to choose (or even worse, it may choose
one of them arbitrarily!). Thirdly, even when the context
provides enough information for the choice, it is too restric-
tive for the whole process of specialising a term to depend
on the whole context; with this kind of restriction, speciali-
sation of program modules is very hard to achieve, because
in order to specialise a module, the specialiser may need to
know all the program – in general, information about other
modules on which the current one has no syntactic depen-
dencies. Finally, due to backtracking, the algorithm may
loop on correct inputs.

The main contribution of this paper is the presentation of
a different formulation of type specialisation, and the proof
of existence of principal specialisations for it – that is, spe-
cialisations that are more general than any other a given
specialisable source term can have, and from which all those
can be obtained by a suitable notion of instantiation. We
separate the process of specialisation into two phases, one
that is syntax directed and the other one based on constraint
solving. Our treatment of polyvariance is essentially differ-
ent from that in the original formulation; we use the notion
of conversion from [13], but introducing it into the language
in order to represent the coercions needed to specialise poly-
variant expressions. The resulting system is more expressive
than the original one. This additional expressiveness and
the improved treatment of polyvariance are the key to prin-
cipality, which is a necessary step in the specialisation of
polymorphism – currently our system generates some poly-
morphic terms, but with a restricted form of polymorphism
(see Ex. 3.2 and also Ex. A.1).

The translation of a type specialisation problem into one
of constraint solving is essential for the improvement and
also contributes to understand the interaction between poly-
variance and recursion. Although it may seem at first glance
that we are shifting the problem, constraint solving provides
us with a better understanding of the information flow, al-
lows the introduction of different heuristics that permit vari-
ations on the residual code, and permits a precise formula-
tion of the problems posed by recursion. For example, the
addition of polymorphism or lazy evaluation for static code
can be obtained as variations of the algorithm for solving
constraints – see Exs. A.1 and A.3. The contributions of
this paper are important because they enable the possibil-
ity to add polymorphism in both the source and residual
languages, the possibility to consider different evaluation
strategies during constraint solving, and the possibility of
modular specialisation: each module can be specialised in a
principal manner, and the right instantiation produced when
linking the residual code to the residual main program.

In the Sect. 2, we start by introducing the idea of type
specialisation, we present several simple examples, and we
explain some problems of the original formulation – we con-
sider easier to explain the idea of type specialisation and the

problems we want to tackle using the original formulation,
because it is more intuitive, and its problems are not widely
recognized. The new specification proposed is presented in
Sect. 3, and the problematic examples of the previous sec-
tion are revisited. Section 4 explains constraint solving and
post-processing phases used to obtain the final residual code.
Extensions to the source language and the different prob-
lems that each of them introduce in the specialisation and
post-processing phases are discussed in Sect. 5. We discuss
related works on Sect. 6 and conclude the paper in Sect. 7.
App. A contains a couple of more complex examples showing
the possibilities enabled by our approach.

2. TYPE SPECIALISATION IN ITS ORIGI-
NAL FORM

The key question behind type specialisation is “How can
we improve the static information provided by the type of
an expression?” An obvious first step is to have a more
powerful type system. But, we also want to remove the
static information expressed by this new type from the code,
in order to obtain a simpler and (hopefully) more efficient
code. So, we will work with two different typed languages:
the source language, in which we code the programs to be
specialised, and the residual language, which may contain
additional constructs to express specialisation features.

Starting with the source language, an obvious question is
how to know which information we want to move into the
type. In the best scenario, some process will analyze our
program, and mark those parts containing static informa-
tion – a binding time analyser (or BTA). But, as shown by
Hughes in [10], no completely automatic binding time anal-
ysis can be performed for type specialisation, because the
only difference between an interpreter for a statically typed
language and an interpreter for a dynamically typed one is
their binding times: by annotating an interpreter, we decide
the static semantics of the object language – and we cannot
expect a program to do that for us, can we? See Ex. A.1 for
a standard interpreter annotated in a non-standard way.

So we will assume that the binding time analysis has al-
ready been performed (at present, by hand; semiautomatic
binding time analysis is under study), and define the source
language as a two level language [7]: expressions with infor-
mation we want to move from the code into the type will be
marked static (with a ()S superscript), and those we want
to keep in the residual code will be marked dynamic (with
a ()D superscript). Observe that, as we have mentioned
in the introduction, annotations are part of the input (i.e.
part of the specification of the problem) – when annotating
a term the programmer specifies, among other things, what
specialisations are to be allowed. It is worthwhile to repeat
one of the consequences of this: by annotating an interpreter
to a language, the programmer decides its static semantics.

Source types will also reflect the static or dynamic na-
ture of expressions – the type of constants, functions and
operators will be consistent with the types of arguments.
For example, the constant 42D has type IntD and the con-
stant 42S has type IntS , and a dynamic function can only
be dynamically applied, that is, both D ’s in the following
expression correspond to each other: (λDx.x) @D y. Ad-
ditionally, we need some extra features, such as casting a
static computation into a dynamic one, or allowing a single
expression to produce several different residual expressions

in the residual code; these features can be obtained by extra
annotations (lift, poly, and spec), whose effect is explained
in the examples. We can define the source language as:

e::=x | nD | e +D e | nS | e +S e | lift e |
λDx.e | e @D e | poly e | spec e

τ ::=IntD | IntS | τ→D τ | poly τ

This language is a small subset of the language of the type
specialiser from [10], but contains enough constructs to il-
lustrate the problem considered here, and can be expanded
to the full language (see Sect. 5).

Source type inference is straightforward, but with a ma-
jor difference from partial evaluation techniques: as we have
said, no restriction is imposed on annotations, and thus con-
straints that a BTA uses to infer a “best” type do not exist –
see Ex. 6.1 for a program annotated in a way that is invalid
for partial evaluation. It is important to repeat again that
annotating a program involves taking decisions about the
meaning of what we are specialising; so, annotations need
to be very flexible.

The residual language has constructs and types corre-
sponding to all the dynamic constructs and types in the
source language, plus additional ones used to express the
result of specialising static constructs. In the original for-
mulation, these additional constructs are, in the term lan-
guage, the dummy constant (•), tuples and projections used
for polyvariance, and, in the type language, singleton types
(or one-point types, e.g. 4̂2) and tuple types.

e′ ::=x′ | n | e′ + e′ | • |
λx′.e′ | e′@e′ | (e′1, . . . , e′n) | πie′

τ ′::=Int | n̂ | τ ′ → τ ′ | (τ ′1, . . . , τ ′n)

In order to express the result of the specialisation pro-
cedure, Hughes introduced a new kind of judgment, and
a system of rules to derive valid judgements. We write
Γ ` e : τ ↪→ e′ : τ ′ to express the fact that, under the
assumptions in Γ, source expression e of source type τ spe-
cialises to residual expression e′ and residual type τ ′. For ex-
ample, ` 42D : IntD ↪→ 42 : Int, and ` 42S : IntS ↪→ • : 4̂2
are derivable judgments corresponding to the examples dis-
cussed in the introduction.

Example 2.1 Observe how every expression annotated as
dynamic appears in the residual term (in fact, we have that a
fully dynamic expression, that is one in which every annota-
tion is D , specialises to a copy of itself with the annotations
removed).

1. ` (2D +D 1D) +D 1D : IntD ↪→ (2 + 1) + 1 : Int

2. ` (2S +S 1S) +S 1S : IntS ↪→ • : 4̂

3. ` lift (2S +S 1S) +D 1D : IntD ↪→ 3 + 1 : Int

Also observe in 3 how the use of lift coerces a static integer
into a dynamic one, thus inserting the result of the static
computation into the residual term.

The rules (O-INTD), (O-+D), (O-INTS), (O-+S), and (O-LIFT)
1

used to derive the judgments on Ex. 2.1 appear on Fig. 1. It
is important to note that both (O-+S) and (O-LIFT) force the
choice of a suitable one-point type for the subexpressions, n

1The O- prefix distinguishes the Original rules from the ones
presented later in this paper.

(O-VAR) Γ, x : τ ↪→ e′ : τ ′,Γ′ ` x : τ ↪→ e′ : τ ′

(O-INTD) Γ ` nD : IntD ↪→ n : Int

(O-+D)
Γ ` ei : IntD ↪→ e′i : Int

Γ ` e1 +S e2 : IntD ↪→ e′1 + e′2 : Int

(O-INTS) Γ ` nS : IntS ↪→ • : n̂

(O-+S)
Γ ` ei : IntS ↪→ e′i : n̂i

Γ ` e1 +S e2 : IntS ↪→ • : n̂
(n1+n2=n)

(O-LIFT)
Γ ` e : IntS ↪→ e′ : n̂

Γ ` lift e : IntD ↪→ n : Int

(O-λD)
Γ, x : τ2 ↪→ x′ : τ ′2 ` e : τ1 ↪→ e′ : τ ′1 x′ fresh

Γ ` λDx.e : τ2→D τ1 ↪→ λx′.e′ : τ ′2 → τ ′1

(O-@D)

Γ ` e1 : τ2→D τ1 ↪→ e′1 : τ ′2 → τ ′1
Γ ` e2 : τ2 ↪→ e′2 : τ ′2

Γ ` e1 @D e2 : τ1 ↪→ e′1@e′2 : τ ′1

(O-POLY)

(∀i)(∃e′τ ′)(Γ ` e : τ ↪→ e′ : τ ′

⇀
τ
′
!i = τ ′

⇀
e
′
!i = e′)

Γ ` poly e : poly τ ↪→ ⇀
e
′

:
⇀
τ
′

(O-SPEC)
Γ ` e : poly τ ↪→ e′ :

⇀
τ
′ ⇀

τ
′
!i = τ ′

Γ ` spec e : τ ↪→ πie
′ : τ ′

Figure 1: Original type specialisation rules.

in the former, and n1, n2 in the latter – this is not (always)
syntax directed.

Example 2.2 Assumptions provide the information for the
specialisation of free variables, which allows the specialisa-
tion of functions.

1. x : IntS ↪→ • : 3̂ ` x +S 1S : IntS ↪→ • : 4̂

2. ` (λDx.x +S 1S) @D (2S +S 1S) : IntS ↪→ (λx′.•)@• : 4̂

3. ` (λDx.lift x +D 1D) @D (2S +S 1S) : IntD

↪→ (λx′.3 + 1)@• : Int

Observe in Ex. 2.2-2 and Ex. 2.2-3 that a dynamic function
is allowed to have a static argument, because the unification
of the residual types will provide the value needed for the
computation; for example, in Ex. 2.2-2, the residual function
(λx′.•) has residual type 3̂ → 4̂ thus providing information
about x′ to the function body even when the function is not
reduced. It is not possible for dynamic functions to have
static arguments with the partial evaluation approach [7],
as the only way to propagate information is by reduction,
and a dynamic function is never reduced. Another exam-
ple of these freedom of annotations is presented in Ex. 6.1.
Our examples are too small to show the actual usefulness
of this kind of annotations – we want them to remain sim-
ple –, but the absence of restrictions is the key to the new
possibilities of type specialisation: the ability to have static
parameters under dynamic constructs allows the necessary
elimination of type tags to achieve optimal specialisation
of typed interpreters. In the appendix we present a couple
of bigger examples, one of them eliminating the tags from

an interpreter for a typed lambda calculus with let-bound
polymorphism.

In Fig. 1 there also appear rules (O-VAR), (O-λD), and (O-@D)

needed to derive judgments involving free variables and func-
tions. Observe that in (O-@D) there is the expected flow
of information, because in a specialisation algorithm the
antecedent of the residual function type should be unified
with the residual type of the argument. Also observe that
the residual type τ ′2 assigned to the residual of the λ-bound
variable in (O-λD) is not restricted, allowing any type to be
chosen at this stage (this choice will be further restricted by
application, as noted above).

One important feature of type specialisation is that there
exist correctly annotated terms that cannot be specialised.
Consider2

letD f = λDx.lift x +D 1D

in (f @D 42S , f @D 17S)D : (IntD , IntD)D .

What should the specialisation for this term be? As we
have seen in Ex. 2.2-3, the body of the function is specialised
according to the parameter, but f has two different parame-
ters! Thus, the type specialiser fails. This ability to fail is an
important feature of type specialisation – when specialising
a typed interpreter with an input that does not typecheck,
it is this ability to fail which allows producing the error,
representing a typing error by a specialisation one.

But what to do if we do not want an error in this case?
The solution is to allow f to specialise in more than one
way in the same program. Polyvariance is the ability of an
expression to specialise to more than one residual expression.
Type specialisation is not polyvariant by default – as can
be noticed from this paper, the treatment of polyvariant
expressions is much more complex than that of monovariant
ones –, and it is first class, so its use is indicated in the source
language by the annotations poly and spec, the former to
produce a polyvariant expression, and the latter to choose
the corresponding specialisation of it.

Example 2.3 Observe the use of poly in the definition of f
(and how that annotation produces a tuple for the definition
of f ′ in the residual code), and the use of spec in every
application of f to an argument (and how that produces a
corresponding projection in the residual code). Also notice
that we chose to mark the addition as dynamic; the reason
for this is to keep the details of its principal specialisation
simple – see Exs. 3.3 and 3.4-1.

` letD f = poly (λDx.lift x +D 1D)
in (spec f @D 42S , spec f @D 17S)D : (IntD , IntD)D

↪→ let f ′ = (λx′.42 + 1, λx′.17 + 1)
in (π1f ′@•, π2f ′@•) : (Int, Int)D

The size of the residual tuple is arbitrary, provided that
it has at least two elements (λx′.42 + 1 and λx′.17 + 1),
and the order is arbitrary as well, provided that the pro-
jections select the appropriate element. The rules (O-POLY)

and (O-SPEC) used to specialise polyvariance reflect that (see

Fig.1, where
⇀
τ
′

stands for a tuple of residual types,
⇀
τ
′
!i be-

ing its i-th component, and similarly with
⇀
e
′
). These rules

are not syntax directed, because in order to decide the size
and order of the residual tuple, every use of the polyvariant

2let constructs mean the usual abbreviation for a β-redex
(in a monomorphic setting); tuples are easily added.

expression must be known, so, they depend on the context
where the expression appears.

We remarked that when the context provides enough in-
formation, the specialisation can proceed with no problems
(Exs. 2.2-2, 2.2-3, and 2.3). But, what happens when spe-
cialising any of the expressions in the following example?

Example 2.4 Observe that in all cases there is some static
information missing.

1. λDx.x +S 1S : IntS →D IntS

2. poly (λDx.lift x +D 1D) : poly (IntS →D IntD)

3. λDf.spec f @D 13S : poly (IntS →D IntD)→D IntD

All have many different unrelated specialisations! For ex-
ample, the function in Ex. 2.4-1 has one specialisation for
each possible value for x – in particular, λx′.• : n̂ → n̂′,
for every value of n and n′ such that n′ = n + 1. If this
function appears in a module, but it is applied in another
one, then the specialisation should wait until the value n of
the argument is known, in order to decide the residual type.
The same problem appears in the case of polyvariance, as
can be observed in Ex. 2.4-2 and Ex. 2.4-3: the generation
of the tuple or the selection of the right projection should be
deferred until all the information is available – in the second
case, if the expression is annotated as polyvariant, the right
projection can even be a different one on each application!

These problems make the design of algorithms to perform
type specialisation a difficult task, introducing the need for
failures or the need to choose arbitrarily when there is not
enough contextual information, and also forcing the special-
isation of programs as a whole. They make also difficult
dealing with polymorphism. In the next section we present
a different formulation of the system specifying type special-
isation, designed to cope with this problem.

3. PRINCIPAL TYPE SPECIALISATION
The problem identified is very similar to that appearing

in simply typed λ-calculus when typing an expression like
λx.x: the type of x is determined by the context of use, and
different types for this expression have no relation between
them expressible in the system. The solution to this problem
for the Hindley-Milner type system is to extend the type
language in order to allow polymorphism – by introducing
type variables – modifying the typing rules accordingly [2],
and defining a notion of instantiation for types. Then it can
be proved that there exists a particular type for every term
– the principal type – such that every other valid type for
the same term can be obtained by instantiation of it.

Our contribution is to achieve a similar result for spe-
cialisations: the existence of a principal type specialisation,
that is, a specialisation such that every other valid one for
the same source term can be obtained by instantiation of
it. A first step in this direction is to introduce residual type
variables – here denoted by t. Unfortunately, this is not
enough, as subtle dependencies between types (such as the
relation between n̂ and n̂′ in the specialisation of Ex. 2.4-
1), cannot be expressed. Using type variables, we expect a
specialisation of the form ` λDx.x +S 1S : IntS →D IntS ↪→
λx.• : ∀t, t′.t → t′ but with an extra condition relating t
and t′. The theory of qualified types presents a type frame-
work that allows us to express conditions relating univer-
sally quantified variables [13]. In this framework, types are

e′ ::= x′ | n | e′ + e′ | • | λx′.e′ | e′@e′ |
h | v[e′] | Λh.e′ | e′((v))

v ::= h | n | C | v ◦ v
C ::= [] | Λh.C | C ((v))

τ ′ ::= t | Int | n̂ | τ ′ → τ ′ | poly σ
ρ ::= δ ⇒ ρ | τ ′
σ ::= s | ∀s.σ | ∀t.σ | ρ
δ ::= IsInt τ ′ | τ ′ := τ ′ + τ ′ | IsMG σ σ

Figure 2: Syntax of residual terms and types.

enriched with predicates constraining variables, and type in-
ference, the ‘more general’ ordering, instantiation, etc. from
the Hindley-Milner system, have to be redefined to take the
predicates into consideration.

In the example above, we can introduce a predicate ex-
pressing the relation between type variables, and thus pro-
duce ` λDx.x +S 1S : IntS →D IntS ↪→ λx.• : ∀t, t′.t′ :=
t+ 1̂⇒ t→ t′, in which the predicate t′ := t+ 1̂ is qualify-
ing the type t→ t′ and thus restricting the quantification.

In the theory of qualified types, predicates appearing in
types have corresponding information appearing in terms –
called evidence in [13]. Abstraction and application of evi-
dence are used to ask for or provide the information proving
a given predicate, although the system can be presented
more concisely without it. But our system depends vitally
on evidence; consider the source term

e = λDx.lift (x +S 1S) : IntS →D IntD

Its residual type will be ∀t, t′.t′ := t+1̂⇒ t→ Int, but what
should the residual term be? Associated with every pred-
icate, we have evidence that the predicate can be proved,
and when that evidence is not known, we use an evidence
variable abstracted by an evidence abstraction. The resid-
ual language is changed in order to introduce evidence and
predicates – its syntax is presented in Fig. 2 – and a no-
tion of instantiation, ≥, is defined following [13]. We have
added the syntactic category of evidence, denoted by v, and
evidence variables (h), evidence abstraction (Λh.e′), and ev-
idence application (e′((v))). Type and scheme variables are
introduced in the type language – denoted by t and s re-
spectively – and also different kinds of predicates to express
the specialisation of different kinds of missing static infor-
mation; for each kind of predicate, a corresponding kind
of evidence is defined. Quantification is treated, as in the
Hindley-Milner polymorphic system, in two syntactic lev-
els, with quantifiers appearing on type schemes (σ). The
innovation is the use of the new type poly σ in order to
express first-class polyvariance; this allows type schemes to
appear in types – but in a way controlled by the annotations
– thus supporting residual programs with a controlled kind
of higher-order polymorphism. Scheme variables will be ap-
propriately constrained by predicates of the form IsMG (for
“is More General”, because it internalizes the relation ≥);
the evidence for these predicates are conversions, denoted
by C , which are special constructs that coerce a term of a
general type (scheme) into a more specific one by adapting
the evidence – remember that types schemes also include
constraints in the form of predicates, and that evidence ab-
straction is used on terms to wait for the corresponding ev-
idence (see Ex. 3.1). An important difference between this
work and [13] is that we use conversions as part of the resid-

(Fst) h : ∆, h′ : ∆′ `̀ h : ∆

(Snd) h : ∆, h′ : ∆′ `̀ h′ : ∆′

(Univ)
h : ∆ `̀ v′ : ∆′ h : ∆ `̀ v′′ : ∆′′

h : ∆ `̀ v′ : ∆′, v′′ : ∆′′

(Trans)
h : ∆ `̀ v′ : ∆′ h′ : ∆′ `̀ v′′ : ∆′′

h : ∆ `̀ v′′[v′/h′] : ∆′′

(Close)
h : ∆ `̀ v′ : ∆′

h : S∆ `̀ v′ : S∆′

Figure 3: Structural laws satisfied by entailment.

(IsInt) ∆ `̀ n : IsInt n̂

(IsOp) h : ∆ `̀ n : n̂ := n̂1 + n̂2 (whenever n=n1+n2)

(IsMG)
C : (∆ | σ′) ≥ (∆ | σ)

∆ `̀ C : IsMG σ′ σ

(Comp)
∆ `̀ v : IsMG σ1 σ2 ∆ `̀ v′ : IsMG σ2 σ3

∆ `̀ v′ ◦ v : IsMG σ1 σ3

Figure 4: Entailment for evidence construction.

ual language (as evidence), while in that work they are used
only in the metalanguage to achieve the technical results.

Returning to the example above, the expression e has
residual type ∀t, t′.t′ := t+1̂⇒ t→ Int, and as the evidence
associated with the predicate is the number represented by
the one-point type, the resulting residual term is Λh.λx′.h:
the evidence variable h in the evidence abstraction waits for
the number represented by t′ to be known. If we apply e
to 42S : IntS , the residual function needs to be applied to
• : 4̂2, but first the evidence proving that 4̂3 := 4̂2+1̂ should
be provided using an evidence application – in this case that
evidence is the number 43, resulting in (Λh.λx′.h)((43))@•.
This last term can be reduced to (λx′.43)@• using a corre-
sponding β-reduction for evidence ((Λh.e′)((v)) .βv e

′[v/h]).
These reductions are performed by a postprocessor before
the program is run; this postprocessing is included in the
phase of evidence elimination (see Sect. 4).

Properties relating lists of predicates (denoted by ∆) and
evidence are captured by a relation called entailment (de-
noted by `̀), which satisfies several structural properties as
stated in [13] – see Fig. 3 –, plus some specific ones appear-
ing in Fig. 4. The rules of entailment for IsMG ((IsMG) and
(Comp)) capture its internalization of ≥– rule (Comp) captures
the transitivity of ≥, which is important in the proofs.

The notion of instantiation for qualified types is more in-
volved than the corresponding one for normal types: besides
replacing quantified type variables by types, it should take
into account predicates and evidence. Informally, the rela-
tion ≥ capturing the notion of instantiation is defined such
that C : (∆ | σ1) ≥ (∆′ | σ2) when σ2 is an instance of σ1

(this means instantiating variables, and proving predicates
– see Ex. 3.1, specially item 1), and if e : σ1 assuming the
predicates in ∆, then C [e] : σ2 assuming the predicates in
∆′. Observe that C provides the term e with evidence for
the predicates in σ1. The exact definition is rather technical,

(QIN)
∆, h : δ | Γ P̀ e : τ ↪→ e′ : ρ

∆ | Γ P̀ e : τ ↪→ Λh.e′ : δ ⇒ ρ

(QOUT)
∆ | Γ P̀ e : τ ↪→ e′ : δ ⇒ ρ ∆ `̀ v : δ

∆ | Γ P̀ e : τ ↪→ e′((v)) : ρ

(GEN)
∆ | Γ P̀ e : τ ↪→ e′ : σ

∆ | Γ P̀ e : τ ↪→ e′ : ∀α.σ
(α 6∈FV(∆)∪FV(Γ))

(INST)
∆ | Γ P̀ e : τ ↪→ e′ : ∀α.σ
∆ | Γ P̀ e : τ ↪→ e′ : S σ

(dom(S)=α)

Figure 5: Specialisation rules (part II).

and can be found in the technical report [19].

Example 3.1 Conversions are used to adjust the evidence
demanded by different schemes. For all ∆ it holds that

1. []((42)) : (∆ | ∀t.IsInt t⇒ t→ Int) ≥ (∆ | 4̂2→ Int)

2. C :(∆ | ∀t1, t2.IsInt t1, IsInt t2 ⇒ t1 → t2)
≥ (∆ | ∀t.IsInt t⇒ t→ t)

where C = Λh.[]((h))((h))

For example, the conversion []((42)) in Ex. 3.1-1 applies the
evidence 42, thus transforming a term of type (∀t.IsInt t⇒
t → Int) into one of type (4̂2 → Int) (one example of such
a term can be found in Ex.3.2-1). Conversions have several
interesting and useful properties, such as reflexivity, transi-
tivity, etc. – see [13].

Judgments are extended with a new environment of pred-
icates and produce residual type schemes, and thus they
become ∆ | Γ P̀ e : τ ↪→ e′ : σ; the rules are changed
accordingly – Figs. 6 and 5. Observe, for example, in rules
(LIFT) and (+S) how the relation `̀ is used on the premises,
allowing residual types to be properly constrained type vari-
ables when corresponding static information is missing. The
acute reader may have noticed that the assumptions in Γ
were slightly modified: instead of allowing a variable to be
specialised to any residual expression e′, we only allow it to
be specialised to a residual variable x′. The original form
of assumptions are used to produce unfolding in the case of
static lets and static lambdas; we use a different mechanism
to obtain it (by extending the language of evidence with a
form of application (@v) reducible using a special β-rule :
(λx′.e′1)@ve

′
2 .@v e′1[x′/e′2]).

Example 3.2 The predicate IsInt constraints a type such
that it can only be a one-point type, and := + constraints
three types such that they are one-point types, and the first
is the result of adding the other two.

1. P̀ λDx.lift x : IntS →D IntD

↪→ Λh.λx′.h : ∀t.IsInt t⇒ t→ Int

2. P̀ λDx.x +S 1S : IntS →D IntS

↪→ Λh, h′.λx′.• : ∀t, t′.IsInt t, t′ := t+ 1̂⇒ t→ t′

3. P̀ λDx.lift x +D 1D : IntS →D IntD

↪→ Λh.λx′.h+ 1 : ∀t.IsInt t⇒ t→ Int

4. P̀ λDx.lift x +D lift (x +S 1S) : IntS →D IntD

↪→ Λh, h′.λx′.h+h′ : ∀t, t′.IsInt t, t′ := t+ 1̂⇒ t→ Int

(VAR) ∆ | Γ, x : τ ↪→ x′ : τ ′,Γ′ P̀ x : τ ↪→ x′ : τ ′

(INTD) ∆ | Γ P̀ nD : IntD ↪→ n : Int

(+D)
∆ | Γ P̀ ei : IntD ↪→ e′i : Int

∆ | Γ P̀ e1 +S e2 : IntD ↪→ e′1 + e′2 : Int

(INTS) ∆ | Γ P̀ nS : IntS ↪→ • : n̂

(+S)

∆ | Γ P̀ ei : IntS ↪→ e′i : τ ′i
∆ `̀ v : τ ′ := τ ′1 + τ ′2

∆ | Γ P̀ e1 +S e2 : IntS ↪→ • : τ ′

(LIFT)
∆ | Γ P̀ e : IntS ↪→ e′ : τ ′ ∆ `̀ v : IsInt τ ′

∆ | Γ P̀ lift e : IntD ↪→ v : Int

(λD)

∆ | Γ, x : τ2 ↪→ x′ : τ ′2 P̀ e : τ1 ↪→ e′ : τ ′1
∆ S̀R τ2 ↪→ τ ′2 x′ fresh

∆ | Γ P̀ λDx.e : τ2→D τ1 ↪→ λx′.e′ : τ ′2 → τ ′1

(@D)

∆ | Γ P̀ e1 : τ2→D τ1 ↪→ e′1 : τ ′2 → τ ′1
∆ | Γ P̀ e2 : τ2 ↪→ e′2 : τ ′2

∆ | Γ P̀ e1 @D e2 : τ1 ↪→ e′1@e′2 : τ ′1

(POLY)
∆ | Γ P̀ e : τ ↪→ e′ : σ′ ∆ `̀ v : IsMG σ′ σ

∆ | Γ P̀ poly e : poly τ ↪→ v[e′] : poly σ

(SPEC)

∆ | Γ P̀ e : poly τ ↪→ e′ : poly σ

∆ `̀ v : IsMG σ τ ′ ∆ S̀R τ ↪→ τ ′

∆ | Γ P̀ spec e : τ ↪→ v[e′] : τ ′

Figure 6: Specialisation rules (part I).

The residual term Λh.λx′.h in Ex. 3.2-1 can be converted
into λx′.42 of type 4̂2→ Int using the conversion in Ex. 3.1-
1, and reducing the resulting redexes.

Observe how every predicate appearing in a residual type
has a corresponding evidence abstraction on the term level.
This is obtained by rules moving predicates from the context
into the type, and vice-versa: (QIN) and (QOUT) in Fig. 5.

It should also be observed that the predicate := +
constrains many variables at once and creates some depen-
dencies between them; for example, in t′ := t+1̂, the variable
t′ depends on t. In order to quantify residual types in the
right way (that is, either all or none of the variables with de-
pendencies are quantified; the type (∀t.IsInt t, t′ := t+ 1̂⇒
t→ t′) is excluded in Ex. 3.2-2, because as t′ depends on t,
it cannot be free when t is bounded), a notion of functional
dependency should be used in the rules for generalization,
exactly as it is done in [15].

We have said that the residual type assigned to the resid-
ual variable in the rule for lambda abstraction is not con-
strained in any way in the original formulation. In that
work it was not a problem, because only whole programs
were the target for specialisation, so it was expected that
every function be applied at least once. But when looking
for principal specialisations, this becomes a problem, since
certain terms have more specialisations than expected (e.g.
` λDx.x : IntS →D IntS ↪→ λx′.x′ : Bool → Bool is a valid
specialisation), and every valid specialisation should be ex-
pressed by the principal one. So, we have added a source-
residual relationship – τ ′ is a residual of τ –, expressed by
a new kind of judgment: ∆ S̀R τ ↪→ τ ′. Rules to derive

(SR-SINT)
∆ `̀ IsInt τ ′

∆ S̀R IntS ↪→ τ ′

(SR-DINT) ∆ S̀R IntD ↪→ Int

(SR-DFUN)
∆ S̀R τ1 ↪→ τ ′1 ∆ S̀R τ2 ↪→ τ ′2

∆ S̀R τ2→D τ1 ↪→ τ ′2 → τ ′1

(SR-POLY)
∆ S̀R τ ↪→ σ′ ∆ `̀ IsMG σ′ σ

∆ S̀R poly τ ↪→ poly σ

(SR-QIN)
∆, δ S̀R τ ↪→ ρ

∆ S̀R τ ↪→ δ ⇒ ρ

(SR-QOUT)
∆ S̀R τ ↪→ δ ⇒ ρ ∆ `̀ δ

∆ S̀R τ ↪→ ρ

(SR-GEN)
∆ S̀R τ ↪→ σ

∆ S̀R τ ↪→ ∀α.σ
(α 6∈FV(∆))

(SR-INST)
∆ S̀R τ ↪→ ∀α.σ
∆ S̀R τ ↪→ S σ

(dom(S)=α)

Figure 7: Source-residual relationship.

this judgment are more or less straightforward, (SR-SINT) for
static integers and (SR-POLY) for polyvariance being the most
interesting ones – see Fig. 7. In this way, we cure a simple
omission in the original paper, which is necessary to achive
our contribution. We use this new judgment in the rule for
λ-abstraction, which becomes rule (λD) (in Fig. 6). It is by
combining rules (λD) and (SR-SINT) that the predicate IsInt
appears in all the specialisations of Ex. 3.2.

Type specialising polyvariance in a principal manner is
more involved; its treatment is the key notion allowing prin-
cipality and thus the main contribution of the paper. The
basic idea is that the specialisation of a polyvariant expres-
sion e should have a scheme as its residual type (instead of a
tuple type), and spec’s of e provide adequate instances (in-
stead of projections); this is easier to see with an example.

Example 3.3 A specialisation of the expression in Ex. 2.3
using this idea is

P̀ letD f = poly (λDx.lift x +D 1D)
in (spec f @D 42S , spec f @D 17S)D : (IntD , IntD)D

↪→ let f ′ = Λh.λx′.h+ 1
in (f ′((42))@•, f ′((17))@•) : (Int, Int)D

Observe the use of an evidence abstraction corresponding
to the use of poly and the use of evidence applications cor-
responding to the use of every spec (instead of the previ-
ous use of tuples and projections), so no decision about the
size and order of the tuple is needed. Unfortunately, this is
not enough to achieve principality, because a given source
expression may have different residual schemes in different
specialisations (e.g. λDx.λDy.lift x : IntS →D IntS →D IntD

specialises to Λh, h′.λx′.λy′.h : ∀t, t′.IsInt t, IsInt t′ ⇒ t →
t′ → Int and also to Λh.λx′.λy′.h : ∀t.IsInt t⇒ t→ t→ Int)
and the principal one should express both of them. In order
to express this, we use the predicate IsMG in the definition
of rules (POLY) and (SPEC) in Fig. 6. The type scheme for
poly e cannot be derived entirely from the type of e, be-
cause the context can place further constraints on it, for ex-
ample by passing the expression to a function which expects

an argument with a more restricted residual type; the use
of the predicate IsMG in the rule (POLY) permits expressing
the principal specialisation of a poly by allowing to abstract
over those constraints placed by the context: instead of cal-
culating the residual type directly, a scheme variable s can
be introduced and constrained with an upper bound; further
constraints can be expressed as additional upper bounds to
s. Conversely, the use of IsMG in the rule (SPEC) allows the
selection of the proper instance for a spec; it introduces a
lower bound for s, whose conversion establishes how to in-
stantiate the polyvariant expression to the type needed. The
rule (SPEC) also uses the source-residual relation, for just the
same reason as it is used in the rule (λD). The rule for poly
types – (SR-POLY) in Fig. 7 – is used when a lambda-bound
variable is of a poly type – see Ex. 3.4-2.

The principal specialisation for the expression in Ex. 3.3
then is

Λh′, h1, h2.let f ′ = h′[Λh.λx′.h+ 1]
in (h1[f ′]@•, h2[f ′]@•)

: ∀s.IsMG (∀t.IsInt t⇒ t→ Int) s,
IsMG s (4̂2→ Int),
IsMG s (1̂7→ Int)
⇒ (Int, Int)D

The upper bound (IsMG (∀t.IsInt t ⇒ t → Int) s) intro-
duced by (POLY) is responsible for the use of h′ in the princi-
pal specialisation for f , and the lower bounds (IsMG s (4̂2→
Int)) and (IsMG s (1̂7→ Int)) introduced by (SPEC), for the
conversion variables h1 and h2, respectively.

Example 3.4 These are the principal specialisations for
the expressions in Ex. 2.4.

1. P̀ poly (λDx.lift x +D 1D) : poly (IntS →D IntD)
↪→ Λh.h[Λhx.λ

Dx′.hx + 1]
: ∀s.IsMG (∀t.IsInt t⇒ t→ Int) s⇒ poly s

2. P̀ λDf.spec f @D 13S

: poly (IntS →D IntD)→D IntD

↪→ Λh, h′.λf ′.h′[f ′]@•
: ∀s.IsMG (∀t.IsInt t⇒ t→ Int) s,

IsMG s (1̂3→ Int)
⇒ poly s→ Int

Observe that scheme variables are used when a poly ap-
pears in the source type, and that the predicates constrain-
ing them are upper and lower bounds: the upper bounds
come from poly’s (h in expression 1), and the lower bounds
come from spec’s (h′ in expression 2). Also observe the up-
per bound in expression 2: this is one additional constraint
that every poly expression used as argument to the function
must satisfy.

The main result in this paper is the existence of principal
type specialisations.

Theorem 3.5 Let us consider Γ, e, and τ such that e : τ
is specialisable under Γ (i.e. ∆ | Γ P̀ e : τ ↪→ e′ : σ
for some ∆, e′, and σ). Then, there exist e′p and σp st.
Γ P̀ e : τ ↪→ e′p : σp and for all ∆′′, e′′, and σ′′ st.
∆′′ | Γ P̀ e : τ ↪→ e′′ : σ′′ there exist a conversion C and a
substitution R st. C : (| Rσp) ≥ (∆′′ | σ′) and C [e′p] = e′′.

The residual pair e′p : σp is the principal specialisation of
e : τ , under the assignment Γ. The proof follows the lines
of the proof of principality for the theory of qualified types

[13], the main difference being the rules for polyvariance and
the use of conversions inside the language of evidence. The
proof proceeds in two steps: first, we define S̀ , a syntax
directed version of P̀ , and prove that they are equivalent,
and then, we define an algorithm Ẁ , and prove that the S̀

system is equivalent to Ẁ . The reason for this separation
is that comparing the algorithm against a syntax directed
system is easier, and so the proofs are simpler. The algo-
rithm Ẁ (based on the algorithm W [20]) has two inter-
esting cases: in the rule for polyvariant expressions, and in
lambda abstractions when the domain type is polyvariant.
In both cases the algorithm introduces a new type scheme
variable, and constraints it with an appropriate IsMG pred-
icate. A detailed version of the proof can be obtained from
the technical report [19] or [18].

It is important to observe that the proof of principality
is constructive, involving an algorithm producing principal
specialisations (or failing when none exists). Additionally,
some heuristics for the actual implementation can easily be
devised. For example, when the principal type of a poly-
variant expression is not a type scheme, there is no need to
introduce additional constraints to instantiate it.

4. POST-PROCESSING AND IMPLEMEN-
TATION

There are three post-processing phases that can be applied
to the output of the algorithm. There is a degree of freedom
in choosing none, just the first, the first two, or all of them to
be applied; but in order to get optimal code, all are needed.

The first one, constraint solving, establishes how to solve
sets of constraints, or determines in some cases that the
set is ambiguous. It chooses one solution out of many, and
thus the result after this phase may no longer be the prin-
cipal one. When considering this framework for modular
specialisation, constraint solving has to be divided among
those steps which do not lose principality and those which
do, so as much work as possible can be done for each mod-
ule. Constraint solving proceeds by instantiating type and
scheme variables. Constraints for integers can be solved
when the type is known to be a one-point type, which cor-
responds to knowing the static value of an integer computa-
tion in the source code. If the information is not available,
we can sometimes establish that the specialisation is am-
biguous, as in P̀ letD f = λDx.lift x in 2D : IntD ↪→
Λh.let f ′ = λx′.h in 2 : ∀t.IsInt t ⇒ Int. The interesting
case arises when solving constraints for polyvariant expres-
sions. A given scheme variable is constrained with upper
and lower bounds, and our algorithm calculates the great-
est lower bound of all upper bounds, and instantiates the
scheme variable to it. When there is more than one so-
lution, it can be shown that after all postprocesses, every
solution will produce the same residual term.

The second one, evidence elimination, eliminates evidence
abstractions and applications coming from poly and spec
annotations in the source code in favour of tuples – see
Ex. 3.3 and compare it with Ex. 2.3 – and reduces the βv
redexes. This phase is obtained with a small variation in
the algorithm for constraint solving – each conversion for
an upper bound should be changed to another one produc-
ing a tuple, and each conversion for a lower bound should
be changed to another one producing the right projection
– thus showing that the specialisations of the original sys-

tem can also be obtained as instances of ours, and then, the
property of principality is much more general than which is
implied by Theo. 3.5.

And the third one, arity raising, eliminates dummy values
and static tuples. It was specified in [11], and previously
called void erasure in [10].

We have implemented a prototype of the specialisation
algorithm, including constraint solving and post-processing
phases, in the language Haskell. It has been useful to polish
the ideas presented and to test different heuristics for con-
straint solving identifying problems in it; we are currently
working in the design of a more powerful constraint solver
based on the experience gained. However, the prototype is
not strong enough to be applied to more real world situa-
tions; it is mandatory the design and implementation of a
full-fledged type specialiser. The code of the prototype can
be downloaded from

URL: http://www-lifia.info.unlp.edu.ar/~fidel/

File: Works/PTS/PTS.tgz.

5. ADDING FEATURES TO THE SOURCE
LANGUAGE

The language presented here is only a fragment of the one
in [10], but rich enough to present the problem of principal-
ity. Extensions to treat the full language can be made in an
independent way, without affecting our main result.

The first extension that can be made is the addition of
booleans and if-then-else. Besides the expected predicates
(such as IsBool and those for static operators), we need to
introduce conditional predicates (τ?δ and !τ?δ) in order to
defer the principal specialisation of both branches but with
only one being effectively specialised at the end (a predicate
with a guard set to False can be solved trivially). The in-
troduction of conditional predicates forces us to introduce
predicates to defer unification and failure. Similar exten-
sions are needed to handle sum types and case expressions.

In order to specialise static functions, a predicate express-
ing the specialisation of the body is introduced, its evidence
being a special function that can be reduced by a special
reduction rule (similar to βv). This predicate is similar in
nature to the IsMG predicate. Static recursion is handled
in a similar way.

Similarly to partial evaluation, dynamic recursion is prob-
lematic, and poses the most challenging problem. We can
calculate the constraints expressing the principal specialisa-
tion of dynamically recursive programs, but as its combina-
tion with polyvariance gives rise to IsMG predicates where a
scheme variable appears on both sides, constraint solving is
more involved. Our solution is, at present, an ad-hoc heuris-
tic handling several interesting examples; however, our ap-
proach helps to precisely formulate the problem, and clarifies
the way information flows, thus contributing to the finding
of solutions for this problem.

One important issue is the size of the generated predicates:
they can be quite complex. Simplification [14] and adding
local declarations into types to factorize common subexpres-
sions are ways to alleviate this problem. Constraint solving
is another way to reduce the size of predicates, although at
the cost of principality (because it chooses a solution among
many). It is still an open problem to determine if this com-
plexity is inherent to type specialisation, or it is something
introduced by our approach.

6. RELATED WORK
As stated in the introduction, partial evaluation works

by generalized reduction, while type specialisation works by
generalized type inference. We have stressed that type spe-
cialisation is a different approach to program specialisation
than partial evaluation – it is a common misunderstanding,
while other techniques for program specialisation, such as
deforestation or supercompilation, although more similar in
nature to partial evaluation, are never confused with it.

The main difference is that in partial evaluation the over-
all type of the residual program is not changed – types of
subexpressions can be changed, but only in limited ways;
type specialisation can produce arbitrary types from a given
source program. Another difference is that in partial evalua-
tion, annotations are restricted and thus a “best” annotation
can be computed; in type specialisation there do not exist
something as a best annotation, and thus, annotations are
part of the input. This issue has been misunderstood in the
past, with several people asking “why to worry about this
contrived annotation, while this other will do?”: because by
deciding the annotations, we decide which specialisations
are allowed and which not. In addition, the flexibility in
the annotations allows us to specialise more programs: for
example, in the following recursive program, the annotation
is considered invalid even by a CPS partial evaluator, while
type specialisation can produce the residual shown.

Example 6.1 Observe that the result of the recursive func-
tion f contains a static part, but it appears under a dynamic
recursion, and thus, under a potentially infinite number of
distinct dynamic contexts.

P̀ letS f = fixD (λDf.λDn.
ifD n == D 0D

then (1S , 2D)D

else letD p = f @D (n −D 1D)
in (fstD p, sndD p ∗D sndD p)D)

in λDn.lift (fstD (f @D n))
: IntD →D IntD

↪→ λn.1 : Int→ Int

But while partial evaluators are very well engineered, type
specialisation is currently at prototype stage and thus not
widely usable in practice, yet.

Inspired by type specialisation, Peter Thiemann has pro-
posed a partial evaluator with first-class polyvariance and
co-arity raising [26]. He shows that these two features are
enough to have optimal specialisation of typed interpreters.

Regarding polymorphism and modules, Heldal has written
a partial evaluator for a polymorphic source language with
modules [9]; he showed how to generate a residual program
with different modules from a single source program, but
it is not clear that he can generate polymorphic programs
from monomorphic ones.

Type-directed partial evaluation [4, 22] is a simple method
for implementing powerful partial evaluators that uses reifi-
cation3 in a key way. Similarly to our work, residual terms
with different types can be obtained from the same source
term, but this is achieved by varying the type guiding the
reification: the residual type is an input to the specialisation
process, instead of an output. The benefit of this approach

3Reification translates from a semantic domain back to the
syntactic domain.

over type specialisation is that it is a simpler one, where the
symbolic reduction mechanism is the operational semantics
of the language; in our approach, constraint solving is used
for symbolic reduction. Even when the ML implementation
of TDPE can handle polymorphism in source terms [22],
there is no attempt to take polymorphic types to guide the
reification – polymorphic TDPE is still an open problem.

Tag elimination [24, 25] is a transformation that removes
type tags as a post-processing phase to traditional partial
evaluation. Similarly to TDPE, it uses the desired residual
type as input, and performs a type checking of the subject
program after the interpretation, removing superfluous tags.
The main contribution of tag elimination is that theoretical
results about the process can be easily proved: e.g. Jones-
optimality for a typed object language, and that performing
tag elimination is exactly the same as type-checking the term
being interpreted; the only theoretical results about the
power of type specialisation are its correctness [12] and the
principality established here, although there is also an ex-
ample showing that optimal interpretation for typed lambda
calculus can be achieved [10].

Ohori [21] has developed a framework to efficiently imple-
ment a language with polymorphic primitives. His work re-
sembles that of Jones [13] (his kinds corresponding to Jones’
predicates), and it is very similar in some technical aspects
to our work: his transformation of polymorphic primitives
into a pair of a low-level operation and a type attribute re-
sembles closely our treatment of polyvariance. The key dif-
ference is it is a compilation mechanism, instead of a frame-
work for program generation.

Other approaches to program specialisation include differ-
ent techniques for staging a program. One of such is multi-
stage specialisation, by Glück and Jørgensen [6], which is a
partial evaluation technique for which the static data is pro-
vided in several stages, and thus every stage except the last
one produces a generating extension. Our system performs
a kind of multi-staging, because the static data may not be
completely known at the same time.

7. CONCLUSIONS
We have presented a new system of rules specifying type

specialisation for a small functional language, and proved
that it produces principal specialisations.

The technique used consists of introducing residual type
variables and predicates to restrict those variables. The
main contributions are the following. We proved principality
for type specialisation of a functional language with simple
static constructions and first-class polyvariance. We defined
two phases for specialisation, the first one syntax directed,
and the second one based on constraint solving. We express
polyvariance using schemes and conversions giving us a bet-
ter understanding of this feature; the way we use conversions
is also new. Additionally, a prototype of the algorithm has
been implemented in the language Haskell, including con-
straint solving and the post-processing phases. The system
is a necessary step towards the introduction of parametric
polymorphism on both the source and residual languages.

8. REFERENCES
[1] Dines Bjørner, Andrei P. Ershov, and Neil D. Jones,

editors. Partial Evaluation and Mixed Computation,
North Holland, 1988. IFIP World Congress
Proceedings, Elsevier Science Publishers B.V.

[2] Luis Damas and Robin Milner. Principal type-schemes
for functional languages. In Proceedings of the Ninth
Annual ACM Symposium on Principles of
Programming Languages, pages 207–212, Albuquerque,
New Mexico, January 1982.

[3] O. Danvy and A. Filinski, editors. Programs as Data
Objects II, volume 2053 of Lecture Notes in Computer
Science (LNCS). Springer-Verlag, May 2001.

[4] Olivier Danvy. Type-directed partial evaluation. In
Guy L. Steele Jr., editor, Proceedings of 23rd ACM
SIGPLAN-SIGACT Annual Symposium on Principles
of Programming Languages (POPL ’96), pages
242–257, St. Petersburg Beach, Florida, USA, January
1996. ACM Press.

[5] John Gallagher, editor. Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and
Semantics Based Program Manipulation (PEPM ’97),
Amsterdam, The Netherlands, June 1997. ACM.

[6] Robert Glück and Jesper Jørgensen. Efficient
multi-level generating extensions for program
specialisation. In Manuel V. Hermenegildo and
S. Doaitse Swierstra, editors, Proceedings of 7th
International Symposium on Programming Languages,
Implementations, Logics, and Programs (PLILP ’95),
volume 982 of Lecture Notes in Computer Science
(LNCS), Utretch, The Netherlands, September 1995.
Springer-Verlag.

[7] Carster K. Gomard and Neil D. Jones. A partial
evaluator for the untyped lambda-calculus. In Journal
of Functional Programming, volume 1 of 1, pages
21–70, January 1991.

[8] J. Hatcliff, T. Mogensen, and P. Thiemann, editors.
Partial Evaluation - Practice and Theory, volume
1706 of Lecture Notes in Computer Science (LNCS),
Copenhagen, Denmark, June 1998. Springer-Verlag.

[9] R. Heldal. The Treatment of Polymorphism and
Modules in a Partial Evaluator. PhD thesis, Chalmers
and Göteborg Universities, 2001.

[10] John Hughes. Type specialisation for the λ-calculus;
or, a new paradigm for partial evaluation based on
type inference. In Olivier Danvy, Robert Glck, and
Peter Thiemann, editors, Selected papers of the
International Seminar “Partial Evaluation”, volume
1110 of Lecture Notes in Computer Science, pages
183–215, Dagstuhl, Germany, February 1996.
Springer-Verlag, Heidelberg, Germany.

[11] John Hughes. A type specialisation tutorial. In
Hatcliff et al. [8], pages 293–325.

[12] John Hughes. The correctness of type specialisation.
In Smolka [23], pages 215–229.

[13] Mark P. Jones. Qualified Types: Theory and Practice.
Distinguished Dissertations in Computer Science.
Cambridge University Press, 1994.

[14] Mark P. Jones. Simplifying and improving qualified
types. In Proceedings of Conference on Functional
Programming Languages and Computer Architecture
(FPCA ’95), pages 160–169, June 1995.

[15] Mark P. Jones. Type classes with functional
dependencies. In Smolka [23], pages 230–244.

[16] Neil D. Jones. Challenging problems in partial
evaluation and mixed computation. In Bjørner et al.
[1], pages 1–14.

[17] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.
Partial Evaluation and Automatic Program
Generation. Prentice Hall International Series in
Computer Science, 1993. Available online at URL:
http://www.dina.dk/~sestoft/pebook/pebook.html.

[18] Pablo E. Mart́ınez López. Type Specialisation for
Polymorphic Languages. PhD thesis, University of
Buenos Aires, 2002. In preparation.

[19] Pablo E. Mart́ınez López and John Hughes. Towards
principal type specialisation. Technical report,
University of Buenos Aires, 2001.
URL: http://www-lifia.info.unlp.edu.ar/~fidel/
File: Works/PTS/towardsPTS.dvi.tgz.

[20] Robin Milner. A theory of type polymorphism in
programming. In Journal of Computer and System
Sciences, volume 17 of 3, 1978.

[21] Atsushi Ohori. Type-directed specialization of
polymorphism. Information and Computation, 1999.

[22] Tim Sheard. A type-directed, on-line, partial
evaluator for a polymorphic language. In Gallagher
[5], pages 22–35.

[23] Gert Smolka, editor. Proceedings of 9th European
Symposium on Programming (ESOP 2000), volume
1782 of Lecture Notes in Computer Science (LNCS).
Springer-Verlag, March/April 2000.

[24] Walid Taha and Henning Makholm. Tag elimination -
or - type specialisation is a type-indexed effect. In
APPSEM Workshop on Subtyping & Dependent Types
in Programming, Ponte de Lima, Portugal, July 2000.

[25] Walid Taha, Henning Makholm, and John Hughes.
Tag elimination and Jones-optimality. In Danvy and
Filinski [3], pages 257–275.

[26] Peter Thiemann. First-class polyvariant functions and
co-arity raising, November 2000. Unpublished
manuscript. Available from URL:
http://www.informatik.uni-freiburg.de/~thiemann/

File: papers/fcpcr.ps.gz.

APPENDIX

A. EXAMPLES
In this appendix we present some bigger examples of the

use of type specialisation. We have decided to postpone
their presentation to the very end because they use some of
the additional features that we have not described, so their
inclusion in the main body of the paper will make it non-
self-contained – the details of extensions can be obtained
from [18]. However, there is a need for more compelling
examples, an issue which we address in this section.

Our first example uses an interpreter for lambda calculus
with let-constructs, presented in Figure 8. It uses datatype
LES to represent lambda expressions, and datatype ValueS

to represent the result of the interpretation. The interpre-
tation is given by the function eval : LES →S ValueS . The
environment is represented as a function CharS →S MPS ,
which is the type of the first argument in function preeval .

It is interesting to observe with some care the annota-
tions. Very few constructs are annotated dynamic: lambda
abstractions in the Lam branch, application in the App
branch, the outer let in the Let branch, and the numbers,
which are lifted, in the Con branch; all the rest is static.
This implies that the residual code will be formed only with

these constructs, thus representing lambda terms without
tags. In particular, notice that the tags of datatype ValueS

are marked static (even when the argument is dynamic!),
and thus they will appear in the residual type.

An important feature of the example is the way poly-
variance is used to make the lambda calculus typed with a
Hindley-Milner polymorphic style: every let-bound expres-
sion in the object program is made polyvariant (in LetS

branch), and thus stored in the environment, being spe-
cialised when it is used (in the VarS branch). This is only
possible because polyvariance is first-class. By removing all
the polyvariance from this example we get a simply typed
lambda calculus, as the one presented in [10].

We consider the intepretation of the lambda expression

let i = λx.x in (i@i)@0

encoded as a LES expression. We present both the speciali-
sation using the original formulation and ours, so differences
can be appreciated.

Example A.1 The following expression completes the def-
initions given in Figure 8.

meval @S (LetS ′i′ (LamS ′x′ (VarS ′x′))
(AppS (AppS (VarS ′i′) (VarS ′i′))

(ConS 0S)))

The specialisation using the original formulation is the fol-
lowing (we show the result before the arity raising, because
it simplifies the comparison with the other specialisation).

let v = (λv ′.v ′, λv ′.v ′)S

in ((fstS v@sndS v)@0) : Num Int

Observe the two copies of the identity function in the static
pair; they correspond to each of the monomorphic instances
used in the code, which can be observed in the use of static
projections when using the residual function v. Polyvariance
introduces one copy of the residual function for each differ-
ent residual type – in this case, one for each monomorphic
instance of the polymorphic identity: the type of v is

(Fun (Fun (Num Int→ Num Int)
→ Fun (Num Int→ Num Int)),

Fun (Num Int→ Num Int))S

which shows that the type ValueS has been specialised pre-
cisely to the types at which the instances of the identity
function were used.

The specialisation of the same expression using the for-
mulation presented in this paper is the following.

let v = Λh.λv ′.v ′

in (v((Fun))@(v((Fun))))@0 : Num Int

Observe how the residual of the let-bound identity function
is an evidence abstraction, instead of a tuple; its type is

poly (∀t .IsResidualOf t ValueS ⇒ Fun (t → t))

– the evidence variable h is waiting for evidence that type t
is the residual type of an expression of source type ValueS.
So, in order to use v, it must first be provided with suit-
able evidence that the corresponding instance of t satisfy
the predicate, which is done by evidence application; the
first Fun is the evidence that the first component of the
residual type of v in the previous specialisation is the resid-
ual of ValueS, and that of the second one is the evidence

data LES = Var CharS | Con IntS | Lam CharS LES | App LES LES | Let CharS LES LES

data ValueS = Num IntD | Fun (ValueS →D ValueS) |Wrong

data MPS = M ValueS | P (poly ValueS)

letS bind = λS x .λS v .λS env .λS y .if S x == y then v else env @S y
in letS preeval = fixS (λS eval .λS env .λS expr .

caseS expr of
Var x → caseS (env @S x) of {M v → v ; P v → spec v}
Con n → NumS (lift n)
Lam x e → FunS (λD v .letS env ′ = bind @S x @S (MS v) @S env

in eval @S env ′ @S e)
App e1 e2 → caseS (eval @S env @S e1) of

Fun f → f @D (eval @S env @S e2)

Let x e1 e2 → letD v = poly (eval @S env @S e1)
in letS env ′ = bind @S x @S (PS s) @S env

in eval @S env ′ @S e2)
in letS meval = preeval @S (λS x .MS WrongS)
in 〈. . . 〉

Figure 8: An interpreter for lambda-calculus, annotated to produce monomorphization.

that the second component of that type is also a residual
of ValueS. This specialisation can be transformed into the
first one by the process of evidence elimination.

Observe that the type of the residual identity function is
polymorphic (although annotated and qualified). There is
still a difference from a truly parametric polymorphic type
– we are working on a variation of evidence elimination that
will produce the desired type and code.

Our final example shows the specialisation of an expres-
sion that uses a static function producing an infinite static
list. It uses the datatype

data ListS t = Nil | Cons t (ListS t)

of lists with a static spine. In order to observe how static
lists are specialised, we present two simple finite lists first.

Example A.2 These examples can be specialised identi-
cally with the original formulation.

1. P̀ NilS : ListS τ ↪→ ()S : Nil

2. P̀ ConsS 42D (ConsS 17D NilS) : ListS IntD

↪→ (42, (17, ()S)S)S : Cons Int (Cons Int Nil)

Observe in the two cases how the static constructors of the
lists are moved into the residual type, while the dynamic
values are preserved in a static tuple in the residual term –
which will be further eliminated by arity raising.

Example A.3 The specialisation shown in Fig. 9 is obtain-
able with our approach, but there is no specialisation in the
original formulation for it. The example shows that we can
represent ‘infinite’ static structures using qualified residual
types; the predicate IsFixS will produce the unfolding during
constraint solving. Both the original formulation and our
present constraint solver will loop if this unfolding is ever
attempted; however, we have now the possibility to make a
constraint solver taking care of static lazy evaluation.

P̀ letD f = fixS (λSf.λSx.ConsS 1D (f @S x))
in caseS f @S ()S of

Cons x xs → x
: IntD

↪→ ΛhU , hL, hys .let f = •
in fstS (hL@vf@v()S)

: ∀t, tys , te.IsFixS clxs t
IsFunS t
clos(te : ()S → Cons Int tys),

IsConstrOf (ListS IntD) tys ,
⇒ Int

where
clxs =

clos(Λhf , hr.λfs.λf.(f)S

: ∀tf , tr, te.IsFunS clf (te) tf ,
IsFunS clr(tf) tr
⇒ tf → tr)

clf (te) =
clos(te : ∀txs .IsConstrOf (ListS IntD) txs

⇒ ()S → txs)
clr(tf) =

clos(Λh′ys , h
′
L.λ

Sf ′s.λ
Sx.(1, h′L@vπ1,1 f

′
s@vx)S

: ∀t′ys , t
′
e.IsConstrOf (ListS IntD) t′ys

IsFunS tf clos(t′e : ()S → t′ys)
⇒ ()S → Cons Int t′ys)

Figure 9: A term with an infinite list.

